
SIMPLE AND FAST WAIT-FREE SNAPSHOTS FOR

REAL-TIME SYSTEMS

H�AKAN SUNDELL, PHILIPPAS TSIGAS, YI ZHANG

Abstract. A wait-free algorithm for implementing a snapshot
mechanism for real-time systems is presented in this paper. S-
napshot mechanisms give the means to real-time task to read a
globally consistent set of variable values while other concurren-
t tasks are updating them. Such a mechanism can be used to
solve a variety of communication and synchronisation problems,
including system monitoring and control of real-time application-
s. Typically, implementations of such mechanisms are based on
interlocking. Interlocking protects the consistency of the shared
data by allowing only one process at a time to access the data. In
a real-time environment locking typically leads to diÆculties in
guaranteeing deadlines of high priority tasks because of the block-
ing. Researchers have introduced non-blocking algorithms and
data structures that address the above problems. In this paper
we present a simple and eÆcient wait-free (non-blocking) snap-
shot algorithm by making use of timing information that is avail-
able and necessary to the scheduler that schedules the tasks of
real-time systems. Experiments on a SUN ENTERPRISE 10000
multiprocessor system show that the algorithm that we propose
here, because of its simplicity, outperforms considerably the re-
spective wait-free snapshot algorithm that is not using the timing
information.

Keywords: Snapshot, Wait-free, Real-time, Algorithm

1. Introduction

In any multiprocessing system co-operating processes share data via
shared data structures. To ensure consistency of the shared data struc-
tures programs typically rely on some form of software synchronisation.
In this paper we are interested in designing a shared data structure for

This work is partially funded by: i) the national Swedish Real-Time Systems
research initiative ARTES (www.artes.uu.se) supported by the Swedish Foundation
for Strategic Research and ii) the Swedish Research Council for Engineering Sciences.

1

2 H�AKAN SUNDELL, PHILIPPAS TSIGAS, YI ZHANG

co-operative tasks in real-time multiprocessor systems allowing processes
to read a globally consistent set of variable values while other concurrent
tasks are updating them.

The challenges that have to be faced in the design of inter-task com-
munication protocols for multiprocess systems become more delicate
when these systems have to support real-time computing. In real-time
multiprocess systems inter-task communication protocols i) have to sup-
port sharing of data between di�erent tasks; ii) must meet strict time
constraints, the HRT deadlines; and iii) have to be eÆcient in time and
in space since they must perform under tight time and space constraints.

The classical, well-known and most simple solution when designing
shared data structures enforces mutual exclusion. Mutual exclusion pro-
tects the consistency of the shared data by allowing only one process at
a time to access the data. Mutual exclusion i) causes large performance
degradation especially in multiprocessor systems [SilG94]; ii) leads to
complex scheduling analysis since tasks can be delayed because they
were either preempted by other more urgent tasks, or because they are
blocked before a critical section by another process that can in turn be
preempted by another more urgent task and so on, (this is also called
as the convoy e�ect) [KopR93]; and iii) leads to priority inversion in
which a high priority task can be blocked for an unbounded time by
a lower priority task [ShaR90]. Several synchronisation protocols have
been introduced to solve the priority inversion problem for uniprocessor
[ShaR90] and multiprocessor [Raj90] systems. The solution presented
in [ShaR90] solves the problem for the uniprocessor case with the cost
of limiting the schedulability of task sets and also making the sched-
uling analysis of real-time systems hard. The situation is much worse
in a multiprocessor real-time system, where a task may be blocked by
another task running on a di�erent processor [Raj90].

To address the problems that arise from blocking, researchers have
proposed non-blocking implementations of shared data structures. Two
basic non-blocking methods have been proposed in the literature, lock-
free and wait-free. Lock-free implementations of shared data structures
guarantee that at any point in time in any possible execution some oper-
ation will complete in a �nite number of steps. In cases with overlapping
accesses, some of them might have to repeat the operation in order to
correctly complete it. This implies that there might be cases in which

SIMPLE AND FAST WAIT-FREE SNAPSHOTS FOR REAL-TIME SYSTEMS 3

the timing may cause some process(es) to have to retry a potential-
ly unbounded number of times, leading to an unacceptable worst-case
behaviour for hard real-time systems. Although usually they perform
well in practice. In wait-free implementations each task is guaranteed
to correctly complete any operation in a bounded number of its own
steps, regardless of overlaps and the execution speed of other processes;
i.e. while the lock-free approach might allow (under very bad timing)
individual processes to starve, wait-freedom strengthens the lock-free
condition to ensure individual progress for every task in the system.

Non-blocking implementation of shared data objects is a new alter-
native approach for the problem of inter-task communication. Non-
blocking mechanisms allow multiple tasks to access a shared object at
the same time, but without enforcing mutual exclusion to accomplish
this. Non-blocking inter-task communication does not allow one task
to block another task, and gives signi�cant advantages over lock-based
schemes because:

1. it can not cause priority inversion, avoids lock convoys that make
scheduling analysis hard and delays longer.

2. it provides high fault tolerance (processor failures will never cor-
rupt shared data objects) and eliminates deadlock scenarios from
two or more tasks both waiting for locks held by the other.

3. and more signi�cantly it completely eliminates the interference be-
tween process scheduling and synchronisation.

Non-blocking protocols on the other hand have to use more delicate
strategies to guarantee data consistency than the simple enforcement of
mutual exclusion between the di�erent operations on the data object.
These new strategies on the other hand, in order to be useful for real-time
systems, should be eÆcient in time and space in order to perform under
the tight space and time constraints that real-time systems demand.

In this paper we show how to exploit information that is part of
the special nature of the real-time systems in order to design a simple
snapshot algorithm with one scanner that is eÆcient in time and space
as needed. The algorithm that we propose here outperforms signi�cantly
| due to its simplicity | the respective one not using this information
[Warp99a, ErmHPT98]. Experiments on a SUN ENTERPRISE 10000
has shown that the new construction gives 400 % better response time
for the update operations for all scenarios and with 20 % better response
time for all practical settings. Please notice that we have one scan task at

4 H�AKAN SUNDELL, PHILIPPAS TSIGAS, YI ZHANG

a time and multiple concurrent update tasks per component in multiple
components.

Previously Chen and Burns in [CheB99a], exploited the use of the
same information for the construction of a non-blocking shared bu�er-
s. Research at the University of North Carolina [AndJJ98, AndJS97]
and [RamMA96] by Anderson et al. has shown that wait-free algo-
rithms can be simpli�ed considerably in real-time systems by exploiting
the way that processes are scheduled for execution in such systems. In
[Warp99a, ErmHPT98] it has also been shown that wait-free methods
can be actually very eÆcient and relatively low demanding in memory
consumption. In our experimental evaluation of the protocol we compare
with this solution.

The rest of this paper is organised as follows. In Section 2 we describe
the computer systems that we consider and give a description of the
problem. Section 3 presents our protocol and later we show how to
bound the size of the bu�ers used in the algorithm. Section 4 shows
some experiments. The paper concludes with Section 5.

2. System and Problem Description

2.1. Real-time Multiprocessor System Con�guration. A typical
abstraction of a shared memory multiprocessor real-time system con-
�guration is depicted in Figure 1. Each node of the system contains a
processor together with its local memory. All nodes are connected to the
shared memory via an interconnection network. A set of co-operating
tasks1 (processes) with timing constraints are running on the system
performing their respective operations. Each task is sequentially exe-
cuted on one of the processors, while each processor can serve (run)
many tasks at a time. The co-operating tasks now, possibly running on
di�erent processes, use shared data objects built in the shared memory
to co-ordinate and communicate. Every task has a maximum computing
time and has to be completed by a time speci�ed by a deadline. Tasks
synchronise their operations through read/write operations to shared
memory.

2.2. The Model. In this paper we are interested in the snapshot prob-
lem or snapshot object, which involves taking an \instantaneous" picture

1throughout the paper the terms process and tasks are used interchangeably

SIMPLE AND FAST WAIT-FREE SNAPSHOTS FOR REAL-TIME SYSTEMS 5

Processor 1

Local Memory

Real-Time Interconnection Network

Shared Memory

Processor 2

Local Memory

Processor n

Local Memory

I/O

Figure 1. Shared Memory Multiprocessor System Structure

of a set of variables, all in one atomic operation. The snapshot is tak-
en by one task, the scanner, while each of the snapshot variables may
concurrently and independently be updated by other processes (called
updaters). A snapshot object is also called a composite register, consist-
ing of a number of components (indexed 1 through c), which constitute
the entities which can be updated and snap-shot. We will use the two
terms (snapshot object and composite register) interchangeably.

The accessing of the shared object is modelled by a history h. A his-
tory h is a �nite (or not) sequence of operation invocation and response
events. Any response event is preceded by the corresponding invoca-
tion event. For our case there are two di�erent operations that can be
invoked, a snapshot operation or an update operation. An operation
is called complete if there is a response event in the same history h;
otherwise, it is said to be pending. A history is called complete if all
its operations are complete. In a global time model each operation q

\occupies" a time interval [sq ; fq] on one linear time axis (sq < fq); we
can think of sq and fq as the starting and �nishing time instants of q.
During this time interval the operation is said to be pending. There ex-
ists a precedence relation on operations in history denoted by <h, which
is a strict partial order: q1 <h q2 means that q1 ends before q2 starts;
operations incomparable under <h are called overlapping. A complete
history h is linearisable if the partial order <h on its operations can be
extended to a total order!hthat respects the speci�cation of the object
[Her91].

3. The Protocol

3.1. The unbounded version. We �rst start with a simple unbounded
snapshot protocol that �rst appeared in Kirousis et.al. [KirST91a]. The
protocol uses bu�ers of in�nite length, the architecture of this protocol
is shown in �gure 3. The pseudo-code for the algorithm is presented in

6 H�AKAN SUNDELL, PHILIPPAS TSIGAS, YI ZHANG

Unbounded Snapshot Algorithm

int snapshotindex;
valtype *value[NR COMPONENTS];

Writer(int cid, valtype data) f
write data to value[cid][snapshotindex];

g

Snapshot(valtype snapshotdata[]) f
int tempindex = snapshotindex;
tempindex ++;
snapshotindex = tempindex;
tempindex --;
/* read phase */
for (k=0; k < NR COMPONENTS; k++) f

for (l = tempindex;l >= 0; l--) f
if (value[k][l] != NIL) f

snapshotdata[k] = value[k][l];
break;

g
g

g
g

Figure 2. Pseudo-C-code for the Unbounded Snap-
shot Algorithm

�gure 2. The architecture of our unbounded construction is as follows:
For each component k = 0; : : : ; c� 1, we introduce an unbounded num-
ber of subregisters value[k][l], l = 0; : : : ;1 which are written to by the
writers of the corresponding component and are read by the snapshot
function. We call these subregisters memory locations. The second
index of each memory location value[k][l] is its address (the �rst indi-
cates the corresponding component). A memory location holds a value
that belongs either to the set of values of the corresponding component
or is a special new value denoted by NIL. The type of all these values
is denoted by valtype. We call them component values. Initially, the

SIMPLE AND FAST WAIT-FREE SNAPSHOTS FOR REAL-TIME SYSTEMS 7

t

?

nil

nil nil

nil nil

nil nil

nil

nil

w

w

w

?

?

?

?

?

?

?

?

w = writer position

? = previous values / nil

snapshotindex

c1

ci

cc

v11

vk1

vc1

value[k][1]

Figure 3. Unbounded Snapshot Protocol

subregisters value[k][l] for k = 0; : : : ; c � 1 and l = 1; : : : ;1 hold the
value NIL, while the subregisters value[k][0], k = 0; : : : ; c � 1 hold a
value from the set of values of the corresponding component. Moreover,
we introduce a subregister snapshotindex which holds as value an inte-
ger (a pointer to a memory location). This subregister can be written
to by the scanner and can be read by all updaters. It is initialised with
the value 0.

In the protocol the scanner is the controller: it is the one who de-
termines where the updaters must write. All that an updater has to
do is to write its value to the memory location forwarded by the s-
canner through a pointer. More speci�cally, the protocol works as fol-
lows: An updater �rst reads snapshotindex and then writes its value
to the memory location of the corresponding component that is point-
ed to by snapshotindex. The scanner, on the other hand, �rst incre-
ments snapshotindex by one; stores its new value into a local variable
tempindex and then for each component k = 0; : : : ; c�1 gets the value to
be returned by reading value[k][tempindex� 1]; : : : ; value[k][0] in this
order until it gets a value which is not NIL. The scanner, by forward-
ing to the updater, with its very �rst sub-operation, a new subregister,
which it does not use again during the current snapshot, it succeeds to
avoid reading values written by update operations that started after its

8 H�AKAN SUNDELL, PHILIPPAS TSIGAS, YI ZHANG

own starting point. Moreover, the scanner, by scanning the subregisters
in the reverse order from the one that they were forwarded in previous
operations and by returning the �rst \non-empty" value, it achieves to
return non overwritten values.

The snapshot protocol presented here is based on the following idea:
if each scan returns for each component a value which is not overwritten
(cf. �gure 4(a)) and which is written by an update which started before
the start of the scan (cf. �gure 4(b,c)), then the solution satis�es an
atomicity criterion [And93, And94, KirST91a] that enables us to argue
for each component separately and hence leads to a more modular proof.
For the following paragraphs and the intuitive understanding of the so-
lution, the reader should keep in mind that the intuitive presentation of
the criterion is summarised in �gure 4.

3.2. Bounding the Construction. The systems that we are a looking
at are real-time uniprocessor or multiprocessor systems. In these systems
tasks come to the respective scheduler with a number of parameters that
allow these schedulers to decide whether these tasks are schedulable.

We assume that we have n tasks in the system, indexed t1 : : : tn. For
each task ti we will use the standard notations Ti, Ci, Ri, Di and Bi

to denote the period, worst case execution time, worst case response
time, deadline and blocking time (the time the task can be delayed by
lower priority tasks), respectively. Also hp(i) denote the set of tasks
with higher priority than task ti. The deadline of a task is less or equal
to its period.

For a system to be safe, no task should miss its deadlines, i.e. 8i j Ri �
Di. The response time Ri for a task in the initial system can be calculat-
ed using the standard response time analysis techniques [AudBDTW95]
as:

Ri = Ci +Bi +
X

j2hp(i)

�
Ri

Tj

�
Cj

We will use TS to denote the snapshot task period and TWi
to denote the

updater tasks period. The summand in the formula gives the time that
task i may be delayed by higher priority tasks. To simplify the formulas
we assume that tasks have no jitter, can be preempted at arbitrary
points during their execution, have unique priorities (given in a deadline
monotonic order), do not experience blocking, and that there are no
overheads for context switching or interrupt handling. We also assume

SIMPLE AND FAST WAIT-FREE SNAPSHOTS FOR REAL-TIME SYSTEMS 9

t

writewrite

write

write write
t

write write
t

t

write
t

write

write

read

read

read

write

= returned by scan operation

read

a)

b)

d)

e)

c)

ci

ci

ci

ci

ci

cj

Figure 4. Intuitive presentation of the atomici-
ty/linearisability criterion satis�ed by our wait-free so-
lution

that one of the tasks in the system acts as a snapshot task, say tsnap, but
in the original system doesn't have any mechanism to get a consistent
snapshot.

In this subsection, we will show how to transform the unbounded
space protocol of the previous subsection into one that uses bounded
space only.

In the bounded space protocol as well, we are going to keep the role of
the reader as the controller of the game. It still is the one who determines

10 H�AKAN SUNDELL, PHILIPPAS TSIGAS, YI ZHANG

S

Wx

Wy

Figure 5. A cyclic bu�er with several updater tasks
and one snapshot task

the subregister where the updater is going to write. However, because
the number of the subregisters must be bounded, instead of forwarding a
new subregister each time, the scanner has to �nd an obsolete subregister
which will be forwarded to the updater after erasing its contents. We call
this procedure of erasing the contents of a subregister and its forwarding
to the updater recycling of the subregister.

We keep the techniques used in the previous algorithm, that is: (i)
The updaters write to the memory location forwarded by the snapshot
operation. (ii) The snapshot operation, by forwarding with its very �rst
sub-operation a recycled subregister, which it is not going to use again
during the current snapshot, it succeeds to avoid reading component
values written by update operations which start after its own starting
point. (iii) The scanner in each snapshot operation reads the remaining
memory locations in the reverse order from the one that they had been
previously forwarded.

Thus, the problem of designing a correct algorithm that uses a bound-
ed number of subregisters is reduced to the problem of having the scan-
ner choose each time a provably obsolete subregister for recycling. By
doing this we can use the timing information that comes together with
the task set on real-time systems. For the beginning please note that
the unbounded construction that was presented in the previous section
has the nice property that the snapshot process is always at least one
position ahead of the updaters when accessing the bu�ers, see �gure 5.
This leads us to consider replacing the unbounded bu�er with a cyclical

SIMPLE AND FAST WAIT-FREE SNAPSHOTS FOR REAL-TIME SYSTEMS 11

snapshotindex % cycle[cid]

t

? w

w

w

nil?

?

?

?
?

?
nil

nil

nil
nil

? = previous values / nil

w = writer position

c1

ci

cc

Figure 6. Bounded Snapshot Protocol

bu�er mechanism where the bu�er slots are now going to be "forwarded"
cyclically by the scanner. Each circular data bu�er now is implemented
by an array of i entries. Each entry is capable of holding one copy of
the data that an updater wants to write. The next step then is to anal-
yse the conditions that the cyclical bu�ers have to satisfy in order to
maintain the safety properties that were described above. Note that the
bu�er length can be of di�erent length for each individual component,
and that the bu�er length is dependent on the timing characteristics of
the updaters that write to this component, and also dependent on the
timing characteristics of the snapshot task which advances the bu�er

12 H�AKAN SUNDELL, PHILIPPAS TSIGAS, YI ZHANG

index. See �gure 10 for the algorithm pseudo-code and �gure 6 for an
explanation how the algorithm interacts with the cyclic bu�ers.

As we are cleaning the next index in the bu�er in our snapshot func-
tion, we know that we need a bu�er of at least length one. So to calculate
how many more indexes we need for each bu�er we compare the maxi-
mum time it takes for an updater to �nish, to the minimum time it takes
for the snapshot function to increment the index compared to the last
increment. If we denote the length of the bu�er of component k with lk,
and the group of updaters to component k with wr(k), our calculations
lead us to the following formula:

lk =

�
2 �maxi2wr(k) TWi

CS

�
+ 1

Taking into account that the time between the second and third index
increments can not be larger than TS we can re�ne our formula to:

l
0

k =

�
2 �maxi2wr(k) TWi

TS

�
+ 2

which we can further re�ne by taking into account that the time
needed for the writer to �nish is bounded by the maximum response
time:

l
00

k =

�
maxi2wr(k)(TWi

+RWi
)

TS

�
+ 2

We can re�ne the last formula even further by de�ning CW1 to be the
computation time needed in the writer process before the actual write
function is called:

l
000

k =

�
maxi2wr(k)(TWi

+RWi
)�mini2wr(k) CW1i

TS

�
+ 2

The last formula that we have calculated describes the bu�er length
that our construction needs in order to guarantee the safety property of
our circular-bu�er. It can be clearly seen that the bu�er lengths keep
very low when the snapshot task period is bigger than the updater task
period, actually very similar bu�er lengths as what can be achieved with
more sophisticated snapshot algorithms, like the wait-free [Warp99a,
ErmHPT98] that does not use the timing information but instead uses

SIMPLE AND FAST WAIT-FREE SNAPSHOTS FOR REAL-TIME SYSTEMS 13

more advanced synchronisation primitives that the tasks can use in order
to synchronise.

4. Experiments

Scenario Scan Period (us) Update Period (us) Bu�er Length

1 500 50 3
2 200 50 3
3 100 50 3
4 50 50 4
5 50 100 6
6 50 200 10
7 50 500 22

Figure 7. Descriptions of Scenarios for experiment

A number of experiments have been performed in order to measure
experimentally the performance of the new construction. To give an
interesting and appropriate comparison we have done experiments with
the wait-free snapshot algorithm [Warp99a, ErmHPT98], and then done
the similar experiments with the bounded-time algorithm presented in
this paper. The experiments have been executed on a Sun ENTER-
PRISE 10000 parallel machine with 64 processors. The system consid-
ered are consisting of 1 scan process and 10 updater processes. The
tasks have been generated as periodic tasks, with one task per cpu. The
periods of the scan and update tasks have been changed according to
some selected scenarios, see �gure 7. Several long executions of the sce-
narios have been executed and the average response times for the scan
and update operations have been measured. The wait-free respective
the bounded-time algorithms have been executed with exactly the same
environment and parameters. The bu�er lengths have been computed
according to the second formula l

0

k presented in the analysis. To give
an interesting and appropriate comparison we have compared the algo-
rithm presented here with the wait-free snapshot algorithm presented in
[Warp99a, ErmHPT98]. Both these algorithms use the same unbound-
ed memory construction, [Warp99a, ErmHPT98] bounds it eÆciently
without using the timing information.

The result of the experiments can be viewed in �gures 8 and 9. Ac-
cording to the experiments, the new construction gives 400 % better

14 H�AKAN SUNDELL, PHILIPPAS TSIGAS, YI ZHANG

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

1 2 3 4 5 6 7

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

Scenario

Wait-Free Snapshot Response Time Using vs Not Using Timing Information - Scan

SCAN NOT USING TIMING INFORMATION
SCAN USING TIMING INFORMATION

Figure 8. Experiment with 1 Scan and 10 Update pro-
cesses - Scan task comparison

response time for the update operations for all scenarios and with 20
% better response time for all scenarios that are common in practical
settings compared to [Warp99a, ErmHPT98]. The protocol presented in
[Warp99a, ErmHPT98] can perform better than the algorithm presented
here, but only with respect to the scan operations, and only when the
scan period is lower than the update period. The reason for this is that
for the construction presented here, the bu�er lengths increase as the
period of a scan operation increases. But as we mentioned above the
new construction gives 400 % better response time for the update oper-
ations for all scenarios. These are very signi�cant results as we usually
do a lot more update operations than scan operations. Although the
scan operation can be slower for the bounded-time for some scenarios,
we can assume that we will get a trade-o� because of the bene�ts with
the faster update operations.

SIMPLE AND FAST WAIT-FREE SNAPSHOTS FOR REAL-TIME SYSTEMS 15

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

1 2 3 4 5 6 7

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

Scenario

Wait-Free Snapshot Response Time Using vs Not Using Timing Information - Update

UPDATE NOT USING TIMING INFORMATION
UPDATE USING TIMING INFORMATION

Figure 9. Experiment with 1 Scan and 10 Update pro-
cesses - Update task comparison

5. Conclusions and Future Work

We have looked at the problem of taking a snapshot of several shared
data components in a concurrent system by using timing information
about the system that is available on real-time systems. By exploiting
this information we design a simple snapshot algorithm with one scanner
that is eÆcient in time and space. The eÆciency of the algorithm was
experimentally evaluated on a SUN ENTERPRISE 10000 multiproces-
sor.

We believe that our construction with simple modi�cations works also
for the multi-scanner case.

16 H�AKAN SUNDELL, PHILIPPAS TSIGAS, YI ZHANG

Bounded Snapshot Algorithm

int snapshotindex;
valtype *value[NR COMPONENTS];
int cycle[NR COMPONENTS];

Initialize() f
for(i=0;i<NR COMPONENTS;i++)

value[i] = malloc(cycle[i]*sizeof(valtype));
g

Writer(int cid, valtype data) f
int tempindex = snapshotindex % cycle[cid];
write data to value[cid][tempindex];

g

Snapshot(valtype snapshotdata[]) f
int tempindex = snapshotindex;
tempindex ++;
/* clean phase */
for (k=0; k < NR COMPONENTS; k++) f

value[k][tempindex % cycle[pid]] = NIL;
g
snapshotindex = tempindex;
tempindex --;
/* read phase */
for (k=0; k < NR COMPONENTS; k++) f

for (l = (tempindex % cycle[i]);l != ((tempindex + 1)
% cycle[k]); l--) f

if (value[k][l] != NIL) f
snapshotdata[k] = value[k][l];
break;

g
g

g
g

Figure 10. Pseudo-C-code for the Bounded Snapshot Algorithm

SIMPLE AND FAST WAIT-FREE SNAPSHOTS FOR REAL-TIME SYSTEMS 17

References

[Warp99a] B. Allvin, A. Ermedahl, H. Hansson, M. Papatrianta�lou, H. Sundell,
Ph. Tsigas. Evaluating the Performance of Wait-Free Snapshots in Real-
Time Systems. In SNART'99 Real Time Systems Conference, pages
196{207, Aug 1999.

[And93] J. Anderson. Composite registers. In Distributed Computing, 6, pages
141{154, 1993.

[AndJJ98] J. Anderson, R. Jain, and K. Je�ay. EÆcient object sharing in quantum-
based real-time systems. In Proceedings of the 19th IEEE Real-Time
Systems Symposium, pages 346{355. Dec. 1998.

[And94] J. Anderson. Multi-writer composite registers. In Distributed Comput-
ing, 7, pages 175{195, 1994.

[AndJS97] J. Anderson, R. Jain, and S. Ramamurthy. Wait-free object-sharing
schemes for real-time uniprocessors and multiprocessors. In Proceedings
of the 18th IEEE Real-Time Systems Symposium, pages 111{122. Dec.
1997.

[AudBDTW95] N.C. Audsley, A. Burns, R.I. Davis, K.W. Tindell and A.J. Wellings.
Fixed Priority Pre-emptive Scheduling: An Historical Perspective In

Real-Time Systems Vol. 8, Num. 2/3 , pages 129{154, 1995.
[CheB99a] J. Chen, A. Burns. Loop-Free Asynchronous Data Sharing in Multipro-

cessor Real-Time Systems Based on Timing Properties. In RTTAS 99,
Nov 1999.

[ErmHPT98] A. Ermedahl, H. Hansson, M. Papatrianta�lou, Ph. Tsigas. Wait-free
Snapshots in Real-time Systems: Algorithms and their Performance. In
Proceedings of the 5th International Conference on Real-Time Comput-
ing Systems and Applications (RTCSA '98), pages 257{266, 1998.

[Her91] M. Herlihy. Wait-Free Synchronization. In ACM TOPLAS, Vol. 11,
No. 1 , pages 124{149, Jan. 1991.

[KirST91a] L.M. Kirousis, P. Spirakis and Ph. Tsigas. Reading Many Variables in
One Atomic Operation: Solutions with Linear or Sublinear Complexity.
In IEEE Transactions on Parallel and Distributed Systems, 5(7), pages
688{696, July 1994.

[KopR93] H. Kopetz and J. Reisinger. The Non-Blocking Write Protocol NBW:
A Solution to a Real-Time Synchronization Problem. In Proc. of the
14th Real-Time Systems Symp., pages 131{137, 1993.

[Raj90] R. Rajkumar. Real-Time Synchronization Protocols for Shared Mem-
ory Multiprocessors. In 10th International Conference on Distributed
Computing Systems, pages 116{123, 1990.

[RamMA96] S. Ramamurthy, M. Moir, and J. Anderson. Real-time object sharing
with minimal support. In Proceedings of the 15th Annual ACM Sym-
posium on Principles of Distributed Computing, pages 233{242. May
1996.

[ShaR90] L. Sha and R. Rajkumar, J. P. Lehoczky. Priority Inheritance Protocols:
An Approach to Real-Time Synchronization. In IEEE Transactions on
Computers, Vol. 39, 9, pages 1175{1185, Sep. 1990.

18 H�AKAN SUNDELL, PHILIPPAS TSIGAS, YI ZHANG

[SilG94] A. Silberschatz, Peter B. Galvin. Operating System Concepts. Addison
Wesley, 1994.

Authors addresses:

H. Sundell, Department of Computing Science, Chalmers University of Tech-

nology, Sweden, phs@cs.chalmers.se

Ph. Tsigas, Department of Computing Science, Chalmers University of Tech-

nology, Sweden, tsigas@cs.chalmers.se

Y. Zhang, Department of Computing Science, Chalmers University of Tech-

nology, Sweden, yzhang@cs.chalmers.se

