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Abstract

A non�blocking FIFO queue algorithm for multiprocessor shared mem�
ory systems is presented in this paper� The algorithm is very simple� fast
and scales very well in both symmetric and non�symmetric multiprocessor
shared memory systems� Experiments on a ���node SUN Enterprise �����
� a symmetric multiprocessor system� and on a ���node SGI Origin ����
� a cache coherent non uniform memory access multiprocessor system
� indicate that our algorithm considerably outperforms the best of the
known alternatives in both multiprocessors in any level of multiprogram�
ming� This work introduces two new� simple algorithmic mechanisms�
The 	rst lowers the contention to key variables used by the concurrent
enqueue and
or dequeue operations which consequently results in the
good performance of the algorithm� the second deals with the pointer
recycling problem� an inconsistency problem that all non�blocking algo�
rithms based on the compare�and�swap synchronisation primitive have
to address� In our construction we selected to use compare�and�swap

since compare�and�swap is an atomic primitive that scales well under
contention and either is supported by modern multiprocessors or can be
implemented e�ciently on them�

� Introduction

Concurrent FIFO queue data structures are fundamental data structures used
in many applications� algorithms and operating systems for multiprocessor sys�
tems� To protect the integrity of the shared queue� concurrent operations that
have been created either by a parallel application or by the operating system
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search and ii� the Swedish Research Council for Engineering Sciences�
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have to be synchronised� Typically� algorithms for concurrent data structures�
including FIFO queues� use some form of mutual exclusion �locking� to syn�
chronise concurrent operations� Mutual exclusion protects the consistency of
the concurrent data structure by allowing only one process �the holder of the
lock of the data structure� at a time to access the data structure and by blocking
all the other processes that try to access the concurrent data structure at the
same time� Mutual exclusion and� in general� solutions that introduce blocking
are penalised by locking that introduces priority inversion� deadlock scenar�
ios and performance bottlenecks� The time that a process can spend blocked
while waiting to get access to the critical section can form a substantial part of
the algorithm execution time ��� ��� �	� �
�� There are two main reasons that
locking is so expensive� The �rst reason is the convoying e
ect that blocking
synchronisation su
ers from� if a process holding the lock is preempted� any
other process waiting for the lock is unable to perform any useful work until the
process that hold the locks is scheduled� When we taking into account that the
multiprocessor running our program is used in a multiprogramming environ�
ment� convoying e
ects can become serious� The second is that locking tends
to produce a large amount of memory and interconnection network contention�
locks become hot memory spots� Researchers in the �eld �rst designed di
erent
lock implementations that lower the contention when the system is in a high
congestion situation� and they give di
erent execution times under di
erent
contention instances� But on the other hand the overhead due to blocking re�
mained� To address the problems that arise from blocking researchers have pro�
posed non�blocking implementations of shared data structures� Non�blocking
implementation of shared data objects is a new alternative approach to the
problem of designing scalable shared data objects for multiprocessor systems�
Non�blocking implementations allow multiple tasks to access a shared object
at the same time� but without enforcing mutual exclusion to accomplish this�
Since in non�blocking implementations of shared data structures one process is
not allowed to block another process� non�blocking shared data structures have
the following signi�cant advantages over lock�based ones�

�� they avoid lock convoys and contention points �locks��

	� they provide high fault tolerance �processor failures will never corrupt
shared data objects� and eliminates deadlock scenarios� where two or more
tasks are waiting for locks held by the other�

�� they do not give priority inversion scenarios�

Among all the innovative architectures for multiprocessor systems that have
been proposed the last forty years shared memory multiprocessor architectures
are gaining a central place in high performance computing� Over the last
decade many shared memory multiprocessors have been built and almost all
major computer vendors develop and o
er shared memory multiprocessor sys�
tems nowadays� There are two main classes of shared memory multiprocessors�
the Cache�Coherent Nonuniform Memory Access multiprocessors �ccNUMA�

	



�a� The architecture of the SUN
Enterprise �����

�b� The architecture of the Origin ����

Figure �� Architectures
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and the symmetric or Uniform Memory Access �UMA� multiprocessors� their
di
erences coming from the architectural philosophy they are based on� In sym�
metric shared memory multiprocessors every processor has its own cache� and
all the processors and memory modules attach to the same interconnect� which
is a shared bus� ccNUMA is a relatively new system topology that is the foun�
dation for next�generation shared memory multiprocessor systems� As in UMA
systems� ccNUMA systems maintain a uni�ed� global coherent memory and all
resources are managed by a single copy of the operating system� A hardware�
based cache coherency scheme ensures that data held in memory is consistent on
a system�wide basis� In contrast to symmetric shared memory multiprocessor
systems in which all memory accesses are equal in latency� in ccNUMA systems�
memory latencies are not all equal� or uniform �hence� the name � Non�Uniform
Memory Access�� Accesses to memory addresses located on �far� modules take
longer than those made to �local� memory�
This paper addresses the problem of designing scalable� practical FIFO

queues for shared memory multiprocessor systems� First we present a non�
blocking FIFO queue algorithm� The algorithm is very simple� it algorithmi�
cally implements the FIFO queue as a circular array and introduces two new
algorithmic mechanisms that we believe can be of general use in the design of e��
cient non�blocking algorithms for multiprocessor systems� The �rst mechanism
restricts contention to key variables generated by concurrent enqueue and�or
dequeue operations in low levels� contention to shared variables degrades per�
formance not only in memory tanks where the variables are located but also in
the processor�memory interconnection network� The second algorithmic mech�
anism that this paper introduces is a mechanism that deals with the pointer
recycling �also known as ABA� problem� a problem that all non�blocking algo�
rithms based on the compare�and�swap primitive have to address� The perfor�
mance improvements are due to these two mechanisms and to its simplicity that
comes from the simplicity and richness of the structure of circular arrays� We
have selected to use the compare�and�swap primitive since it scales well under
contention and either is supported by modern multiprocessors or can be imple�
mented e�ciently on them� Last� we evaluate the performance of our algorithm
on a ���node SUN Enterprise ����� multiprocessor and a ���node SGI Origin
	���� The SUN system is a Uniform Memory Access �UMA� multiprocessor
system while the SGI system is a Cache�Coherent Nonuniform Memory Access
�ccNUMA� one� SUN Enterprise ����� supports the compare�and�swap while
SGI Origin 	��� does not� The experiments clearly indicate that our algorithm
considerably outperforms the best of the known alternatives in both UMA and
ccNUMA machines with respect to both dedicated and multiprogramming work�
loads� Second� the experimental results also give a better insight into the perfor�
mance and scalability of non�blocking algorithms in both UMA and ccNUMA
large scale multiprocessors with respect to dedicated and multiprogramming
workloads� and they con�rm that non�blocking algorithms can perform better
than blocking on both UMA and ccNUMA large scale multiprocessors� and that
their performance and scalability increases as multiprogramming increases�
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Concurrent FIFO queue data structures are fundamental data structures
used in many multiprocessor programs and algorithms and� as can be expected�
many researchers have proposed non�blocking implementations for them� Lam�
port �
� introduced a wait�free queue that does not allow more than one enqueue
operation or dequeue operation at a time� Herlihy and Wing in ��� presented an
algorithm for a non�blocking linear FIFO queue which requires an in�nite ar�
ray� Prakash� Lee and Johnson in ���� presented a non�blocking and linearisable
queue algorithm based on a singly�linked list� Stone describes a non�blocking al�
gorithm based on a circular queue� Massalin and Pu ���� present a non�blocking
array�based queue which requires the double�compare�and�swap atomic prim�
itive that is available only on some members of the Motorola �
��� family of
processors� Valois in ���� presents a non�blocking queue algorithm together with
several other non�blocking data structures� his queue is an array�based one�
Michael and Scott in ��	� presented a nonblocking queue based on a singly�link
list� which is the most e�cient and scalable non�blocking algorithm compared
with the other algorithms mentioned above�
The remainder of the paper is organised as follows� In Section 	 we give

a brief introduction to shared memory multiprocessors� Section � presents our
algorithm together with a proof sketch� In Section �� the performance evaluation
of our algorithm is presented� The paper concludes with Section ��

� Shared Memory Multiprocessors� Architecture

and Synchronization

There are two main classes of shared memory multiprocessors� the Cache�
Coherent Nonuniform Memory Access �ccNUMA� multiprocessors and the sym�
metric multiprocessors� The most familiar design for shared memory multi�
processor systems is the ��xed bus� or shared�bus multiprocessor system� The
bus is a path� shared by all processors� but usable only by one at a time to handle
transfers from CPU to�from memory� By communicating on the bus� all CPUs
share all memory requests� and can synchronise their local cache memories� Such
systems include the Silicon Graphics Challenge�Onyx systems� OCTANE� Sun�s
Enterprise ����������� Digital�s 
���� and many others � most server vendors
o
er such systems�
Central Crossbar Mainframes and supercomputers have often used a crossbar

�switch� to build shared multiprocessor systems with higher bandwidth than
feasible with busses� where the switch supports multiple concurrent paths to be
active at once� Such systems include most mainframes� the CRAY T��� and
Sun�s new Enterprise ������ Figure ��a� graphically describes the architecture
of the new SUN Enterprise ������ Shared�bus and central crossbar systems are
usually called UMAs� or Uniform Memory Access systems� that is� any CPU
is equally distant in time from all memory locations� Uniform memory access
shared memory multiprocessors dominate the server market and are becoming
more common on the desktop� The price of these systems rise quite fast as the

�



number of processors increases�

LL�pi�O�
�

Pset�O� �� Pset�O� � fpig
return value�O�

�

SC�pi� v� O�
�

if pi � Pset�O�
value�O��� v

Pset�O��� �
return true

else

return false

�

Figure 	� The load�linked	store�conditional primitive

ccNUMA is a relatively new system topology that is the foundation for many
next�generation shared memory multiprocessor systems� Based on �commodity�
processing modules and a distributed� but uni�ed� coherent memory� ccNUMA
extends the power and performance of shared memory multiprocessor systems
while preserving the shared memory programming model� As in UMA systems�
ccNUMA systems maintain a uni�ed� global coherent memory and all resources
are managed by a single copy of the operating system� A hardware�based cache
coherency scheme ensures that data held in memory is consistent on a system�
wide basis� I�O and memory scale linearly as processing modules are added�
and there is no single backplane bus� The nodes are connected by an intercon�
nect� whose speed and nature varies widely� Normally� the memory �near� a
CPU can be accessed faster than memory locations that are �further away��
This attribute leads to the �Non� in Non�Uniform� ccNUMA systems include
the Convex Exemplar� Sequent NUMA�Q� Silicon Graphics�CRAY S	MP �Ori�
gin and Onyx	�� In the Silicon Graphics Origin 	��� system a dual�processor
node is connected to a router� The routers are connected with a fat hypercube
interconnect� Figure ��b� graphically describes the architecture�
ccNUMA systems are expected to become the dominant systems on large

high performance systems over the next few years� The reasons are� i� they
scale up to as many processors as needed� b� they support the cache�coherent
globally addressable memory model c� their entry level and incremental costs
are relatively low�
A widely available hardware synchronisation primitive that can be found

on many common architectures is compare�and�swap� The compare�and�swap
primitive takes as arguments the pointer to a memory location� and old and new
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values� As it can be seen from Figure � that describes the speci�cation of the
compare�and�swap primitive� it automatically checks the contents of the mem�
ory location that the pointer points to� and if it is equal to the old value� updates
the pointer to the new value� In either case� it returns a boolean value that indi�
cates whether it has succeeded or not� The IBM System ��� was the �rst com�
puter system that introduced compare�and�swap� SUN Enterprise ����� is one
of the systems that support this hardware primitive� Some newer architectures�
SGI Origin 	��� included� introduce the load�linked	store�conditional in�
struction which can be implemented by the compare�and�swap primitive� The
load�linked	store�conditional is comprised by two simpler operations� the
load�linked and the store�conditional one� The load�linked loads a word
from the memory to a register� The matching store�conditional stores back
possibly a new value into the memory word� unless the value at the mem�
ory word has been modi�ed in the meantime by another process� If the word
has not been modi�ed� the store succeeds and a � is returned� Otherwise the�
store�conditional fails� the memory is not modi�ed� and a � is returned� The
speci�cation of this operation is shown in Figure 	� For more information on
the SGI Origin 	��� and the SUN ENTERPRISE the reader is referred to ��� ��
and �	�� respectively�

Compare�and�Swap�int 
mem� register old� new�

�

temp � 
mem�

if �temp �� old� �


mem � new�

new � old�

� else

new � 
mem

�

Figure �� The Compare�and�Swap primitive

The compare�and�swap primitive though gives rise to the pointer recycling
�also known as ABA� problem� The ABA problem arises when a process p reads
the value A from a shared memory location� computes a new value based on A�
and using compare�and�swap updates the same memory location after checking
that the value in this memory location is still A and mistakenly concluding
that there was no operation that changed the value to this memory location
in the meantime� But between the read and the compare�and�swap operation�
other processes may have changed the context of the memory location from
A to B and then back to A again� In this scenario the compare�and�swap

primitive fails to detect the existence of operations that changed the value of
the memory location� in many non�blocking implementations of shared data
structures this is something that we would like to be able to detect without
having to use the read�modify�write operation that has very high latency and
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creates high contention� A common solution to the ABA problem is to split the
shared memory location into two parts� a part for a modi�cation counter and
a part for the data� In this way when a process updates the memory location�
it also increments the counter in the same atomic operation� There are several
drawbacks of such a solution� The �rst is that the real word�length decreases as
the counter now occupies part of the word� The second is that when the counter
rounds there is a possibility for the ABA scenario to occur� especially in systems
with many� and with fast processors such as the systems that we are studying�
In this paper we present a new� very simple e�cient technique to overcome the
ABA problem� the technique is described in the next section together with the
algorithm�

Compare�and�Swap�int 
mem� register old� new�

�

do

�

temp � LL�mem��

if �temp 
� old� return FALSE�

�while�
SC�mem�new���

return TRUE�

�

Figure �� Emulating compare�and�swap from
load�linked	store�conditional

� The Algorithm

During the design phase of any e�cient non�blocking data structure� a large
e
ort is spent on guaranteeing the consistency of the data structure without
generating many interconnection transactions� The reason for this is that the
performance of any synchronisation protocol for multiprocessor systems heavily
depends on the interconnection transactions that they generate� A high number
of transactions causes a degradation in the performance of memory banks and
the processor�memory interconnection network�
As a �rst step� when designing the algorithm presented here� we tried to

use simple synchronisation instructions �primitives�� with low latency� that do
not generate a lot of coherent tra�c but are still powerful enough to support
the high�level synchronisation needed for the non�blocking implementation of
a FIFO queue� In the construction described in this paper we have selected
to use the compare�and�swap atomic primitive since it meets the three impor�
tant goals that we were looking for� First� it is a quite powerful primitive and
when used together with simple read and write registers is su�cient for building
any non�blocking implementation of any �interesting� shared data�structure ����
Second� it is either supported by modern multiprocessors or can be implemented






e�ciently on them� Finally� it does not generate a lot of coherent tra�c� The
only problem with the compare�and�swap primitive is that� it gives rise to the
pointer recycling �also known as ABA� problem� As a second step� we have tried
when designing the algorithm presented here to use the compare�and�swap op�
eration as little as possible� The compare�and�swap operation is an e�cient
synchronisation operation and its latency increases linearly with the number of
processors that use it concurrently� but still it is a transactional one that gen�
erates coherent tra�c� On the other hand read or update operations require
a single message in the interconnection network and do not generate coherent
tra�c� As a third step we propose a simple new solution that overcomes the
ABA problem that does not generate a lot of coherent tra�c and does not
restrict the size of the queue�
Figure � and Figure � present commented pseudo�code for the new non�

blocking queue algorithm� The algorithm is simple and practical� and we were
surprised not to �nd it in the literature� The non�blocking queue is algorith�
mically implemented as a circular array with a head and a tail pointer and a
ghost copy of NULL has been introduced in order to help us to avoid the ABA
problem as we are going to see at the end of this section� During the design
phase of the algorithm we realised that� i� we could use the structural properties
of a circular array to reduce the number of compare�and�swap operations that
our algorithm uses as well as to overcome more e�ciently the ABA problem
and ii� all previous non�blocking implementations were trying to guarantee that
the tail and the head pointers always show the real head and tail of the queue
but by allowing the tail and head pointers to lag behind we could even further
reduce the number of compare�and�swap asymptotically close to optimal� We
assume that enqueue operations inserts data at the tail of the queue and de�
queue operations remove data from the head of the queue if the queue is not
empty� In the algorithm presented here we allow the head and the tail pointers
to lag at most m behind the actual head and tail of the queue� in this way only
one every m operations has to consistently adjust the tail or head pointer by
performing a compare�and�swap operation� Since we implement the queue as
a circular array� each queue operation that successfully enqueues or dequeues
data knows the index of the array where the data have been placed� or have been
taken from� respectively� if this index can be divided by m� then the operation
will try to update the head�tail of the queue� otherwise it will skip the step of
updating the head�tail and let the head�tail lag behind the actual head�tail�
In this way� the amortised number of compare�and�swap operations for an
enqueue or dequeue operation is only � � ��m� � compare�and�swap opera�
tion per enqueue�dequeue operation is necessary� The drawback that such a
technique introduces is that each operation on average will need m�� more read
operations to �nd the actual head or tail of the queue� but if we �xm so that the
latency of �m� ���m compare�and�swap operations is larger than the latency
of m�� read operations� there will be a performance gain from the algorithm�
and these performance gains will increase as the number of processes increases�
It is de�nitely true that array�based queues are inferior to link�based queues�

because they require in�exible maximum queue size� But� on the other hand�
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they do not require memory management schemes that link�based queue imple�
mentations need and they bene�t from spatial locality signi�cantly more than
link�based queues� Taking these into account and having a a simple� fast and
practical implementation in mind we decided to use a cyclical�array in our con�
struction�
We have used the compare�and�swap primitive to atomically swing the

head and tail pointers from their current value to a new one� For the SGI
Origin 	��� system we had to emulate the compare�and�swap atomic primitive
with the load�linked	store�conditional instruction� this implementation
is shown in Figure �� However� using compare�and�swap in this manner is
susceptible to the ABA problem� In the past researchers have proposed to
attach a counter to each pointer� reducing in this way the size of the memory
that these pointers can point at e�ciently� In this paper we observe that the
circular array itself works like a counter mod l where l is the length of the
cyclical array� and we can �x l to be arbitrary large� In this way by designing
the queue as a circular array we overcome the ABA problem the same way the
counters do but without having to attach expensive counters to the pointers�
that restrict the pointer size� Henceforth� when an enqueue operation takes
place� the tail changes in one direction and goes back to zero when it reaches
the end of the array� Henceforth� the tail will change back to the same old value
after the shared object �nishes l enqueue operations and not after two successive
operations �exactly as when using a counter mod l�� The same also holds for
the dequeue operations�

� MAXNUM is l� the length of the cyclical

structure Queue

�head� unsigned integer�

nodes� array����MAXNUM��� of pointer�

tail� unsigned integer�

�

newQueue��� pointer to Queue

Queue 
temp�

temp � �Queue 
� malloc� sizeof�Queue���

temp��head � ��

temp��tail � ��

�we define another NULL

for �i���i��MAX�NODES�i���

�NULL means empty

temp��nodes�i��NULL����

temp��nodes��� � NULL����

return temp�

Figure �� Initialisation

The atomic operations on the array are other potential places where the
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ABA problem can take place giving rise to the following scenarios�
The array is �almost� empty�

�� the array location x is the actual tail of the queue and its content is Null�

	� processes a and b �nd the actual tail

�� process a enqueues data and updates the content of location x with the
use of
compare�and�swap� Since the contents of x is Null� a succeeds

�� process c dequeues data and updates the content of location x to Null�
changing also the pointer head

�� process b enqueues data and updates the contents of location x with the
use of
compare�and�swap� Since the content of x is Null� b incorrectly succeeds
to enqueue a non active cell in the queue�

or
The array is �almost� full�

�� The array location x is the actual head of the queue and its content is C�

	� Processes a and b �nd the actual head and read the content C of location
x out�

�� Process a dequeues data and updates the content of location x to Null
with the use of compare�and�swap� Since the contents of x is C� a suc�
ceeds�

�� Process c comes and enqueues data C and updates the content of location
x to C� changing also the pointer tail�

�� Process b dequeues data and updates the contents of location x to Null
with the use of compare�and�swap� Since the content of x is C� b succeeds
to dequeue a data not in a FIFO order�

In order to overcome these speci�c ABA instances instead of using a counter
with all the negative side�e
ects� we introduce a new simple mechanism that
we were surprised not to �nd in the literature� The idea is very simple� instead
of using one value to describe that an entry in the array is empty we use two�
NULL��� and NULL���� When a processor dequeues an item� it will swap into
the cell one of the two NULLs in such a way that two consecutive dequeue
operations on the same cell give di
erent NULL values to the cell�
Returning to the ABA scenario described above� the scenario would now

look like this�

�the cell is empty
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�� array location x is the actual tail and it�s content is NULL���

	� processes a and b �nd the actual tail� ie� location x

�� process a enqueues data and updates the content of location x with a
compare�and�swap operation� Since x�s content is NULL���� a succeeds

�� process c dequeues data and updates the content of location x toNULL���

�� process b enqueues data and updates the content of location x with
compare�and�swap� As the content is NULL���� b fails in this turn�

A variable� vnull is used to help the dequeue operations to determine which
NULL they should use any time�
With this mechanism the ABA scenario that was taking place before� when a

process was preempted by only one other process� now changes to an ABA�BA
scenario� The ABA�B�A scenario is still a pointer recycling problem� but in
order to take place l dequeue operations are needed to take the system from A
to B and subsequently to A�� after that l more dequeue operations are needed
in order to take the system from A� to B� and then to A� Moreover� all these
operations have to take place while the process that will experience the pointer
recycling is preempted� Taking into account that l is an arbitrary large number�
the probability that the above ABA�B�A scenario can happen can go as close
to � as we want��
The above sketches a proof of the following theorem�

Theorem � The algorithm does not give rise to the pointer recycling problem�

if an enque or dequeue operation can not be preempted by more than l operations�
l is an arbitrary large number�

For the rest of these paper we assume that we have selected l to be large
enough not to give rise to the pointer recycling problem in our system�
The accessing of the shared object is modelled by a history h� A history h

is a �nite �or not� sequence of operation invocation and response events� Any
response event is preceded by the corresponding invocation event� For our case
there are two di
erent operations that can be invoked� an Enqueue operation
or a Dequeue operation� An operation is called complete if there is a response
event in the same history h� otherwise� it is said to be pending� A history is
called complete if all its operations are complete� In a global time model each
operation q �occupies� a time interval 	sq� fq 
 on one linear time axis �sq � fq��
we can think of sq and fq as the starting and �nishing time instants of q� During
this time interval the operation is said to be pending� There exists a precedence
relation on operations in history denoted by �h� which is a strict partial order�
q� �h q� means that q� ends before q� starts� Operations incomparable under

�We should point out that the technique of using � di	erent NULL values can be extended
to k di	erent values requiring more than k � l dequeue operations to preempt an operation
inorder to cause the pointer recycling problem� We think that the scheme with � �NULL

values is simple enough and su
cient for the systems that we are looking at�

�	



�h are called overlapping� A complete history h is linearisable if the partial
order �h on its operations can be extended to a total order �hthat respects
the speci�cation of the object ����
Any possible history� produced by our implementation� can be mapped to

a history where operations use an auxiliary array that is not bounded on the
right side� In order to simplify the proof we will use this new auxiliary array�
Our algorithm guarantees that enqueue operations enqueue data at consecutive
array entries from left to right on this array� and dequeue operations dequeue
items also from left to right� In this way it makes sure that the operations are
dequeued in the order they have been enqueued� From the previous theorem
we also have that when an Enqueue�x� operation �nishes after writing x to
some entry e of the array� the head pointer of our implementation� that guides
the dequeue operations� will not over�pass this entry e� thus making sure that
no enqueued item is going to be lost� The above sketches a proof for the next
theorem�

Theorem � In a complete history such that Enqueue�x�� Enqueue�y�� either
Dequeue�x�� Dequeue�y� or Dequeue�y� and Dequeue�x� overlap�

The dequeue operation that dequeues x is the only one that succeeds to
read and �empty� the array entry where x was written� because of the atomic
compare�and�swap operation� making in this way sure that no other operation
dequeues the same item� Moreover� since the array entry was written by an
enqueue operation� the dequeue operations will always dequeue items that have
been �really� enqueued� The above sketches the proof of the following theorem�

Theorem � If x has been dequeued� then it was enqueued� and Enqueue�x��
Dequeue�x�

The last 	 theorems guarantee the linearizable behaviour of our FIFO queue
implementation ���� Due to space constraints� we only sketched the proof of
these theorems�

� Performance Evaluation

We implemented our algorithm and conducted our experiments on a SUN En�
terprise ����� with �� 	��MHz UltraSPARC processors and on a SGI Origin
	��� with �� ���MHz MIPS R����� processors� The SUN multiprocessor is a
symmetric multiprocessor while the SGI multiprocessor is a ccNUMA one� To
ensure accuracy of the results� we had exclusive access to the multiprocessors
while conducting the experiments� For the tests we compared the performance
of our algorithm �new� with the performance of the algorithm by Michael and
Scott �MS� ��	� because their algorithm appears to be the best non�blocking
FIFO queue algorithm� In our experiments� we also included a solution based
on locks �ordinary lock� to demonstrate the superiority of non�blocking solutions
over blocking ones�
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��� Experiments on SUN Enterprise �����

We have conducted � experiments on the SUN multiprocessor� in all of them we
had exclusive use� In the �rst experiment we measured the average time taken
by all processors to perform one million pairs of enqueue�dequeue operations�
In this experiment �Figure 
a� a process enqueues an item and then dequeues an
item and then it repeats� In the second experiment �Figure 
b� processes stay
idle for some random time between each two consecutive queue operations� In
the third experiment we used parallel quick�sort� that uses a queue data struc�
ture� to evaluate the performance of the three queue implementations� Parallel
quick�sort had to sort �� million randomly generated keys� The results of this
experiment are shown in Figure 
c� The horizontal axis in the �gures repre�
sent the number of processors� while the vertical one represents execution time
normalised to that of Michael and Scott algorithm�
The �rst two experiments �on �
 processors�� show that the new algorithm

outperforms the MS algorithm by more than ��� and the spin�lock algorithm by
more than ���� The third experiment shows that the new queue implementation
o
ers ��� better response time to the sorting algorithm�

��� Experiments on the SGI multiprocessor

On the SGI machine� the �rst three experiments were basically the same ex�
periments that we performed on the SUN multiprocessor� The only di
erence
is that on the SGI machine we could select to use the system as a dedicated
system �multiprogramming level one� or as a multiprogrammed system with
two and three processes per processor �multiprogramming level two and three
respectively�� For the SUN multiprocessor this was not possible� Figures �� ��
and ��a show graphically the performance results� What is very interesting is
that our algorithm gives almost the same performance improvements on both
machines�
On the SGI multiprocessor� it was possible to use the radiosity from SPLASH�

	 shared�address�space parallel applications����� Figure ��b shows the perfor�
mance improvement compared with the original SPLASH�	 implementation�
The vertical axis represents execution time normalised to that of the SPLASH�
	 implementation�

��



� Conclusions

In this paper we presented a new bounded non�blocking concurrent FIFO queue
algorithm for shared memory multiprocessor systems� The algorithm is simple
and introduces two new simple algorithmic mechanisms that can be of general
use in the design of e�cient non�blocking algorithms� The experiments clearly
indicate that our algorithm considerably outperforms the best of the known
alternatives in both UMA and ccNUMA machines with respect to both dedi�
cated and multiprogramming workloads� The experimental results also give a
better insight into the performance and scalability of non�blocking algorithms
in both UMA and ccNUMA large scale multiprocessors with respect to ded�
icated and multiprogramming workloads� and they con�rm that non�blocking
algorithms can perform better than blocking on both UMA and ccNUMA large
scale multiprocessors�
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Enqueue�t� pointer to Queue� newnode�

pointer to data type��Boolean

loop

te � t��tail� �read the tail

ate � te�

tt � t��nodes�ate��

�the next slot of the tail

temp � �ate � �� � MAXNUM�

�we want to find the actual tail

while �tt��NULL��� AND tt��NULL���� do

�check tail�s consistency

if �te 
� t��tail� break�

�if tail meet head�

� it is possible that Queue is full

if �temp �� t��head� break�

�now check the next cell

tt � t��nodes�temp��

ate � temp�

temp � �ate � �� � MAXNUM�

end while

�check the tail�s consistency

if �te 
� t��tail� continue�

�check whether Queue is full

if �temp �� t��head�

ate � �temp � �� � MAXNUM�

tt � t��nodes�ate��

�the cell after head is OCCUPIED

if �tt��NULL��� AND tt��NULL����

return FAILURE� �Queue Full

�help the dequeue to update head

cas��t��head�temp�ate��

�try enqueue again

continue�

end if

if �tt �� NULL����

tnew � newnode � �x���������

else

tnew � newnode�

�check the tail consistency

if �te 
� t��tail� continue�

�get the actual tail and try enqueue data

if �cas���t��nodes�ate���tt�tnew��

if �temp������ �enqueue has succed

cas���t��tail��te�temp��

return SUCCESS�

end if

endloop

Figure �� The enqueue operation
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Dequeue�t� pointer to Queue� oldnode�

pointer of pointer to data type�

loop

th � t��head� �read the head

�here is the one we want to dequeue

temp � �th � �� � MAXNUM�

tt � t��nodes�temp��

� find the actual head after this loop

while �tt��NULL��� OR tt��NULL���� do

�check the head�s consistency

if �th 
� t��head� break�

�two consecutive NULL means EMPTY return

if �temp �� t��tail� return ��

temp � �temp � �� � MAXNUM� �next cell

tt � t��nodes�temp��

end while

�check the head�s consistenicy

if �th 
� t��head� continue�

�check whether the Queue is empty

if �temp �� t��tail�

�help the enqueue to update end

cas��t��tail�temp��temp��� � MAXNUM��

continue� �try dequeue again

end if

if �tt � �x���������

tnull � NULL����

else

tnull � NULL����

�check the head�s consistency

if �th 
� t��head� continue�

�Get the actual head� null value means empty

if �cas���t��nodes�temp���tt�tnull��

if ��temp������� cas���t��head��th�temp��


oldnode � tt � �x�fffffff� �return the value

return ��

end if

endloop

Figure �� The dequeue operation
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