
Self-Stabilization of

Wait-Free Shared Memory Objects�

Jaap-Henk Hoepman

Department of Computer Science

University of Twente, the Netherlands

hoepman@cs.utwente.nl

Marina Papatrianta�lou

Department of Computing Science

Chalmers University of Technology, Sweden

ptrianta@cs.chalmers.se

Philippas Tsigas

Department of Computing Science

Chalmers University of Technology, Sweden

tsigas@cs.chalmers.se

March 1, 2001

Abstract

This paper proposes a general de�nition of self-stabilizing wait-free shared memory
objects. The de�nition ensures that, even in the face of processor failures, every execution
after a transient memory failure is linearisable except for a bounded number of actions.

Shared registers have been used extensively as communication medium in self-stabilizing
protocols. We give particular attention to the self-stabilizing implementation of such reg-
isters, thus providing a large body of previous research with a more solid fundament.

In particular, we prove that one cannot construct a self-stabilizing single-reader single-
writer regular bit from self-stabilizing single-reader single-writer safe bits, using only a
single bit for the writer. This leads us to postulate a self-stabilizing dual -reader single-
writer safe bit as the minimal hardware needed to achieve self-stabilizing wait-free inter-
process communication and synchronisation. Based on this hardware, adaptations of well
known wait-free implementations of regular and atomic shared registers are proven to be
self-stabilizing.

1 Introduction

In the past, research on fault tolerant distributed systems has focused either on system
models in which processors fail, or on system models in which the memory is faulty. In

�Research partially supported by the Dutch foundation for scienti�c research (NWO) through NFI Proj. AL-
ADDIN (contr. # NF 62-376) and a NUFFIC Fellowship, and by the EC ESPRIT II BRA Proj. ALCOM II
(contr. # 7141). A preliminary version of this paper appeared as [HPT95].

1

the �rst model a distributed system must remain operational while a certain fraction of
the processors is malfunctioning. When constructing shared memory objects like atomic
registers, this issue is addressed by considering wait-free constructions which guarantee that
any operation executed by a single processor is able to complete even if all other processors
crash in the meantime [AH90, Her91]. In the second model a distributed system is required
to overcome arbitrary changes to its state within a bounded amount of time. If the system
is able to do so, it is called self-stabilizing [Dij74, Sch93].

To develop truly reliable systems both failure models must be considered together. Re-
search in this area has started to emerge (see Section 1.2 for an overview). However, these
works have taken the existence of a fault tolerant and self-stabilizing means of communication
(either by message exchange or through shared memory) for granted. Also, most research
on self-stabilization uses shared memory { and shared registers in particular { for commu-
nication, to simplify reasoning about the protocols under study. Again, the shared memory
objects themselves are implicitly assumed to be self-stabilizing. Moreover, no consideration
is given to so called corrupted actions that are active while a transient error occurs. Instead
it is assumed that all atomic actions happen instantaneously and that any such error occurs
only in between calls to atomic actions.

It is not immediately clear that these assumptions are indeed reasonable. Any operation,
even atomic ones, do take some time to complete, during which an error can occur. This
paper, however, shows that these assumptions are valid by thoroughly exploring the rela-
tion between self-stabilization and wait-freedom in shared memory objects, especially shared
registers.

Shared registers are shared objects reminiscent of ordinary variables, that can be read or
written by di�erent processors concurrently. They are distinguished by the level of consistency
guaranteed in the presence of concurrent operations ([Lam86]). A register is safe if a read
returns the most recently written value, unless the read is concurrent with a write in which
case it may return an arbitrary value. A register is regular if a read returns the value written
by a concurrent or an immediately preceding write. A register is atomic if all operations
on the register appear to take e�ect instantaneously and act consistent with a sequential
execution. Shared registers are also distinguished by the number of processors that may
invoke a read or a write operation, and by the number of values they may assume. These
dimensions imply a hierarchy with single-writer single-reader (1W1R) binary safe registers
(a.k.a. bits) on the lowest level, and multi-writer multi-reader (nWnR) z-ary atomic registers
on the highest level. A construction or implementation of a register is comprised of i) a
data structure consisting of memory cells called sub-registers and ii) a set of read and write
procedures which provide the means to access it.

1.1 Summary of results

We give a general de�nition of self-stabilizing wait-free shared memory objects, and focus on
studying the self-stabilizing properties of wait-free shared registers. Our work, �nally, pro-
vides a solid fundament for the use of shared registers as the basis of communication in most
previous research on self-stabilization. Single-writer single-reader safe bits|traditionally
used as the elementary memory units to build these registers with|are shown to be too
weak for our purposes. Focusing on registers, being the weakest type of shared memory

2

objects, allows us to determine the minimal hardware needed for a system to be able to con-
verge to legal behaviours after transient memory faults, as well as to remain operative in the
presence of processor crashes. Moreover, registers are extensively used in the construction of
even more complex shared memory objects, and are the primary means of communication in
most self-stabilizing protocols.

Our contribution in this paper is fourfold. First and foremost, in Sect. 2, we propose
a general de�nition of a self-stabilizing wait-free shared memory object, that ensures that
all operations after a transient error will eventually behave according to their speci�cation
even in the face of processor failures. This de�nition is not limited to shared registers only,
but encompasses all possible shared memory objects that can be de�ned by a sequential
speci�cation. Second, in Sect. 3, we prove that within this framework one cannot construct a
self-stabilizing single-reader single-writer regular bit from single-reader single-writer safe bits,
if we restrict the writer to write only a single bit. We conjecture that this is also impossible
if we allow an arbitrary number of bits written by the writer. Note that single-reader single-
writer safe bits have traditionally been used as the basic building blocks in wait-free shared
register implementations.

This leads us to postulate a self-stabilizing dual-reader single-writer safe bit, which, from
a hardware point of view, resembles a
ip-
op with its output wire split in two (cf. Sect. 4).
Moreover, in the same section we prove that no construction of multi-reader registers from
single-reader registers can be made to stabilize immediately after a transient error. The
�rst operation of each processor must be allowed to behave arbitrarily. Finally, using the
dual-reader safe bit as a basic building block, we formally prove that adaptations of well
known wait-free implementations of regular and atomic shared registers are self-stabilizing
(cf. Sects. 4.1, 4.2, and 4.3). This shows that our de�nition of self-stabilizing wait-free shared
objects is viable|in the sense that it is neither trivial nor impractical. Section 5 concludes
this paper with a thorough discussion of our results and directions for further research.

1.2 Related work

Anagnostou and Hadzilacos [AH93] show that no self-stabilizing, fault-tolerant, protocol ex-
ists to determine, even approximately, the size of a ring. Gopal and Perry [GP93] present a
`compiler' to turn a fault-tolerant protocol for the synchronous rounds message-passing model
into a protocol for the same model which is both fault-tolerant and self-stabilizing. A com-
bination of self-stabilization and wait-freedom in the construction of clock-synchronisation
protocols is presented in [DW93, PT94].

Another approach for combining processor and memory failures is put forward by Afek
et al. [AGMT92, AMT93] and Jayanti et al. [JCT92]. They analyse whether shared objects
do or do not have wait-free (self)-implementations from other objects of which at most t are
assumed to fail. Objects may fail by giving responses which are incorrect, or by responding
with a special error value, or even by not responding at all. In so-called gracefully degrad-
ing constructions, operations on the `high-level' object during which more than t `low-level'
objects fail are required to fail in the same manner as these `low-level' objects.

Li and Vit�anyi [LV91] and Israeli and Shaham [IS92] were the �rst to consider self-
stabilization in the context of shared memory constructions. Both papers implicitly call
a shared memory construction self-stabilizing if for every fair run started in an arbitrary

3

state, the object behaves according to its speci�cation except for a �nite pre�x of the run.
We feel that this notion of a self-stabilizing object does not agree well with the additional
requirement that the object is wait-free. On wait-free shared objects, a single processor can
make progress even if all other processors have crashed. This de�nition of self-stabilization,
on the other hand, only guarantees recovery from transient errors in fair runs (in which no
processors crash). Moreover, both Li and Vit�anyi [LV91] and Israeli and Shaham [IS92] do not
consider the possibility of corrupted operations (that are already active when the transient
error occurs).

2 De�ning self-stabilizing wait-free objects

In the de�nition of shared memory objects we follow the concept of linearizability (cf. [HW90,
Her91]), which we, for the sake of self containment, brie
y paraphrase here. We will then
discuss our processor model and how this a�ects implementing shared memory objects in
Section 2.1, and proceed with our new de�nition of self-stabilizing shared memory objects in
Section 2.2. Finally, we will discuss our model in Section 2.4.

Consider a distributed system of n sequential processors. A shared memory object is a
data-structure stored in shared memory that may be accessed by several processors concur-
rently. Such an object de�nes a set of operations O which provide the only means for a
processor to modify or query the state of the object. The set of processors that can invoke a
certain operation may be restricted. Each operation O 2 O takes zero or more parameters v
on its invocation and returns a value r as its response (r = O(v)). We sometimes write Op to
indicate that processor p is executing operation O1. Each such operation execution is called
an action, and takes a non-zero amount of time to complete. We denote by tI(A) � 0 the
invocation time of an action A and by tR(A) > tI(A) its response time (on the real time axis).
For incomplete actions, tR(A) = 1 and the response is unknown. An object is wait-free if
an action always can complete within an apriori bounded amount of time, irrespective of the
actions or crashes of other processor.

The desired behaviour of an object is described by its sequential speci�cation S. This
speci�es the set of possible states of the object, the initial state of the object, and for each
operation its e�ect on the state and its (optional) response. We write (s; r = O(v); s0) 2 S if
invoking O with parameters v in state s changes the state of the object to s0 and returns r
as its response.

A run over the object is a tuple hA;!i with actions A and partial order! such that for
A;B 2 A, A ! B i� tR(A) < tI(B). If two actions A;B are incomparable under !, i.e., if
neither A! B nor B ! A, they are said to overlap. Then we write AkB. We write A 6 B
if A ! B or AkB. Because processors are sequential, we require for every run that no two
actions A and B executed by the same processor overlap. Furthermore, runs start with no
processor accessing the object. Runs have in�nite length, and capture the real time ordering
| as could be observed externally without a stopwatch | between actions invoked by the
processors.

1Although the notation might imply otherwise, we consider Op(u) and Op(w) to be di�erent operations.
In other words, both the processor p executing O and the actual parameters v to O are part of the name
Op(v). The set O contains all these di�erent operations.

4

A run is called complete, if all actions that start in it have �nished in it, i.e., if no crashes
occurred. A non-complete run can be completed by including an arbitrary response for each
pending action, where the inserted responses are ordered after all other actions in the run,
and ordered arbitrarily among each other2. This complete run is called the completion of
the run. A run may have many completions (by using all possible values for the unknown
responses).

A sequential execution hA;)i over the object is a run where all actions are totally ordered
according to the transitive irre
exive order). In other words, A consists of actions A1; A2; : : :
and Ai) Aj if and only if i < j. A run hA;!i corresponds to a sequential execution hA;)i
if the set of actions A is the same in both runs, and if) is a total extension of! (i.e., A! B
implies A) B). Stated di�erently, the sequential execution corresponding to a run, is a run
in which no two actions are concurrent but in which the `observable' order of actions in the
run is preserved. Note that there may be more than one sequential execution corresponding
to a single run, because the order between two concurrent actions can be �xed either way.
A sequential execution satis�es sequential speci�cation S if there exists a sequence of states
s1; s2; : : : such that s1 is the initial state of S and (si; Ai; si+1) in S for all Ai in A.

De�nition 2.1 A run hA;!i over an object is linearisable w.r.t. sequential speci�cation S,
if for at least one of its completions there exists a corresponding sequential execution hA;)i
that satis�es S.

An object is linearisable w.r.t. its sequential speci�cation S if all possible runs over the
object are linearisable w.r.t. S. Informally speaking, an object is linearizable w.r.t. to spec-
i�cation S if all actions appear to take e�ect instantaneously and act according to S. The
challenge in implementing such linearizable objects is to avoid all non-linearizable runs.

2.1 Implementing shared memory objects

When implementing compound objects from lower level ones, the operations of the compound
object are implemented by means of a sequential procedure that can invoke an operation on
one of the primitive objects or do some local computations. The implementation must be
such that from the known properties of the primitive objects and the order of the steps taken
by the procedure, correct behaviour of the compound object can be proven. Processors are
sequential and, therefore, cannot invoke an action if their previously invoked action has not
responded yet. An implementation of a shared object is wait-free if each invocation of an
operation by a processor can respond within a bounded number of steps, irrespective of the
behaviour of the other processors. This includes the case when all other processors have
crashed.

A complication arises when we consider transient errors that can corrupt an arbitrary
part of the system state, including, for instance, the programming counter or other parts of
the internal CPU state of one or more of the processors. We limit the e�ect of such errors by
viewing the abstract processor (or indeed an arbitrary shared memory object) to be an IO
automaton [ALR88, Her91] in the following way.

2Pending actions may have had an e�ect on other concurrent actions, and therefore should be `serialised'
in time before these actions in the corresponding sequential execution. In order to verify that the sequential
speci�cation is satis�ed, the arbitrary response of this action must be �xed.

5

A shared memory object is an IO automaton, that has a distinct input action for each
possible combination of operation, invoking processsor, and possible parameter values. For
each input action, one or more distinct output actions are de�ned that signal the end of the
operation execution and the return value if de�ned. An implementation of a shared memory
object is again an IO automaton that de�nes internal actions, states and a transition function
such that when it is combined with the IO automata implementing the lower level objects,
each input action results in an output action such that the resulting run is linearizable.

In this model, the adversary controlling the e�ect of the transient error can only pick the
state of the whole IO automaton, and execution starts from this state. Translating this model
to ordinary system architectures boils down to the following. Based on the current state, the
program to execute and the current program counter, the instruction scheduler decides which
instruction to execute next. Both the machine state and the current program counter can be
changed by the adversary controlling the e�ect of the transient error. In particular, the ad-
versary can pick an arbitary instruction and start executing this instruction, independent of
the program state. However, the adversary cannot pick the current program counter indepen-
dent of the currently executing instruction (thus further in
uencing the selection of the next
instruction to schedule). Instead, the program counter is guaranteed always to correspond to
the instruction currently executed. Implementations of such a scheduler could enforce this by
verifying at the end of each instruction execution that the current program counter indeed
points to the instruction executed last, using the uncorrupted program segment.

This prevents the adversary from executing an arbitrary instruction and then selecting a
completely unrelated instruction as the start of the executing following the error. Instead,
both instructions must be possible successors as described by the program executed. This
restriction is exploited by two of our constructions, using a �xed programmed sequence of
actions instead of while- or for-loops (cf. Section 4.2). Note also, that in this model calls
to operations on lower level objects should be interpreted as macros, not subroutine calls,
because otherwise the return address could be corrupted by the adversary.

2.2 Adding self-stabilization

Li and Vit�anyi [LV91] and Israeli and Shaham [IS92] were the �rst to consider self-stabilizing
wait-free constructions. Both papers implicitly use the following straightforward de�nition
of a self-stabilizing wait-free object.

De�nition 2.2 A shared wait-free object is self-stabilizing if every fair run (in which all
operations on all processors are executed in�nitely often) that is started in an arbitrary state,
is linearizable except for a �nite pre�x.

A moment of re
ection shows that assuming fairness may not be very reasonable for wait-
free shared objects. The above de�nition requires that after a transient error all processors
cooperate to repair the fault. This clearly violates the wait-free property which states that
processors can make sensible progress even if other processors have crashed. This observation
leads us to the following stronger, still informal, de�nition of a self-stabilizing wait-free shared
object.

De�nition 2.3 A shared wait-free object is self-stabilizing, if every run started in an arbi-
trary state is linearizable except for a bounded �nite pre�x.

6

Let us develop a formal version of this de�nition. To model self-stabilization we need to
allow runs that start in an arbitrary state; in particular we have to allow runs in which a subset
of the processors start executing an action at an arbitrary point within its implementation.
Such runs model the case in which transient memory errors occur during an action, or, rather,
the case where alteration of the program counter by the transient error forces the processor
to jump to an arbitrary point within the procedure implementing the operation. For such so
called corrupted actions A, and for such actions alone, we set tI(A) = 0.

Consider a run hA;!i. For all A 2 A, de�ne count(A) = 0 for all corrupted actions A, i.e.
with tI(A) = 0, and de�ne count(A) equal to i if A is executed by p as its i-th non-corrupted
action. Then the �rst action A executed by processor p either has count(A) = 0 (if it is
corrupted) or count(A) = 1 (if not). As each processor executes sequentially, and actions are
unique and executed by a single processor3, count is well-de�ned.

We are now ready to present the formal de�nition of a self-stabilizing wait-free shared
memory object.

De�nition 2.4 A run hA;!i is linearizable w.r.t. sequential speci�cation S after k proces-
sor actions, if for some completion of the run there exists a corresponding sequential execution
hA;)i and a sequence of states s1; s2; : : :, such that for all Ai 2 A, if count(Ai) > k then
(si; Ai; si+1) 2 S.

De�nition 2.5 A shared object is k-stabilizing wait-free with sequential speci�cation S if
the object is wait-free and all its runs are linearizable w.r.t. S after k processor actions.

We call k the stabilization delay of the object.
These de�nitions allow all corrupted actions, and the �rst k actions of each processor to

behave arbitrarily (even so far as to allow e.g. a read action to behave as a write action or
vice versa). However, the e�ect of such an arbitrary action should be globally consistent.

Observe also that in a sequential execution, the count values of the actions may not be
monotonically increasing. Fast processors may reach the stabilization delay k of the object
much earlier in the sequential execution than some slow processor. In this case the actions
may behave according to the sequential speci�cation for a long time (their count value being
larger than k), until a slow processor executes an action A with count(A) � k changing the
object state in an arbitrary way. Again, this change should be globally consistent, in the
sense that all fast processors must agree on the e�ect of this action A.

We see that all fast processors must agree | after k operations | on the arbitrary
behaviour of the slow processors. In particular, for k = 0 and in the absence of corrupted
actions, the de�nition implies that all actions should reach agreement on the e�ect of the
transient error on the state of the object. For example, for a 0-stabilizing shared register all
reads that occur immediately after a transient error should return the same value. Intuitively,
one could say that 0-stabilization means that each processor has at most one corrupted initial
action.

De�nition 2.5 is general and considers all atomic objects whose behaviour is described
by a sequential speci�cation. Because linearizability can be and generally is used to specify
the behaviour of arbitrary wait-free atomic shared memory objects, our extension of these
de�nitions to include self-stabilization is equally universal.

3There is no concept like joint actions as in CSP

7

Of course, we want to know whether such self-stabilizing shared objects exist and how
they can be implemented. Traditionally, in the non self-stabilizing case, atomic objects have
been built using several layers. Starting with safe registers as the minimal hardware available
for interprocess communication, regular registers, multi-reader registers and �nally atomic
registers were constructed. We take a similar approach. Therefore, we also need to de�ne
when safe and regular registers are self-stabilizing, as their behaviour is not described by a
sequential speci�cation.

2.3 Shared registers: safeness and regularity

A register is a shared object on which read operations R and write operations W (v) are
de�ned. A nWmR register is a register that may be written by n processors and may be read
by m processors. Except for 1W1R registers, we otherwise assume that a processor writing
a register can also read this register using a read operation (and not by examining its local
state, as is customary to assume). In particular, a 1W2R register is one that can be written
by a single processor, and can be read by two processors, one of which is the writer.

For a run hA;!i over such a register, partition the set of actions A into a set of reads
R and a set of writes W, where R may contain `bad' writes (behaving as reads) whereas W
may contain `bad' reads (behaving as writes). Let V be the value-domain of the register, and
�x an arbitrary value assignment val(�) from the set of actions A to V. Also for W 2 W and
R 2 R de�ne W directly precedes R, W *) R, if W ! R and if there is no W 0 2 W such that
W ! W 0 ! R. If no such write exists, we take the imaginary initial write W? responsible
for writing the arbitrary initial value val(W?). De�ne the feasible writes of a read R as all
A 2 W such that A *) R or AkR.

A write W (v) on a register behaves correctly if val(W (v)) = v and W (v) 2 W. A read R
on a safe register behaves correctly if R 2 R and val(R) = val(A) for an A 2 W with A *) R,
or there is an A 2 W such that AkR. A read R on a regular register behaves correctly if
R 2 R and val(R) = val(A) for some feasible write A of R.

De�nition 2.6 A safe or regular register is k-stabilizing wait-free if the register is wait-free
and for all its runs the set of actions can be partitioned in sets R and W and can be assigned
values val(�) such that all actions A with count(A) > k behave correctly.

2.4 Discussion

The de�nition of self-stabilizing wait-free shared memory objects given in the previous section
is only one possible de�nition for such objects. We will later show that this de�nition is viable,
by presenting constructions of shared registers from weaker ones that satisfy this de�nition.
In this section we discuss possible variations on the de�nition, and explain our particular
choice of de�nition.

First, we initially thought that the corrupted actions could pose serious problems to the
self-stabilization of shared memory objects. Indeed, in [HPT95] we wrote

Slow [corrupted] actions can carry the e�ects of a transient error arbitrarily far
into the future. Hence we can only say something meaningful about that part of a
run after the time that all [corrupted] actions have �nished, or the processors on
which these [corrupted] actions run have crashed.

8

Our de�nitions therefore included explicit reference to crash actions p, and we only required
that actions not overlapping with corrupted actions would behave correctly. This is a rather
weak requirement because it allows very slow processors to delay self-stabilizition inde�nitely.

Luckily, our initial intuition turns out to be pessimistic. In fact, even though corrupted
actions can behave arbitrary, they can be forced to do so consistently, in the sense that
other actions have to agree on their (incorrect) behaviour. Thus even actions overlapping
corrupted actions can be forced to behave according to the speci�cation of the object (at the
cost of using dual-reader registers, as we shall see later). This removes the need to explicitly
mention the crash action in our model, keeping our de�nitions cleaner and closer to the
original de�nition of linearizability [HW90, Her91]. It also makes our de�nitions stronger,
resulting in stronger self-stabilizing objects.

Finally, in our de�nition the stabilization delay k is taken to be independent of the type
of operations performed by a processor, while one might very well feel that the diÆculty of
stabilizing di�erent types of operations on the same object may vary. Indeed, preliminary
versions of this de�nition were more �ne-grained and included separate delays for di�erent
types of operations (e.g. allowing the �rst kw writes and the �rst kr reads performed by a
processor on a read/write register to be arbitrary). It turns out that this amount of detail is
really unnecessary, essentially because di�erent types of operations on a shared object already
need to reach some form of agreement on the state of the object.

3 Some impossibility results

The impossibility results to be presented in this section help to set the scene for the actual
constructions of stabilizing shared registers in the sections to come. First we prove that
stabilizing 1W1R safe bits4 are not strong enough to implement k-stabilizing wait-free regular
registers, if we restrict the writer to write a single bit. We conjecture that this impossibility
remains even if the writer can write more than 1 bit. This immediately implies that stronger
self-stabilizing objects, like atomic registers, cannot be implemented using such safe registers,
either. Second, we show that 0-stabilizing 1WnR (multi-reader) atomic registers | and
similar multi-user objects | cannot be constructed from 0-stabilizing 1W1R (single-reader)
atomic registers.

We note that it is a common convention to view the scheduling of processor steps as being
chosen by an adversary, who seeks to force the protocol to behave incorrectly. The adversary
is in control of (i) choosing the con�guration of the system after a transient error and (ii)
scheduling the processors' steps in a run.

Theorem 3.1 There exists no deterministic implementation of a k-stabilizing wait-free 1W1R
binary regular register using 0-stabilizing 1W1R binary safe sub-registers where the writer
writes a single bit.

Proof. Suppose that such an implementation exists. Since we look for a contradiction we
may safely restrict attention to runs with no corrupted actions.

4All objects considered in this paper are wait-free; for brevity we will not always explicitly mention this
when referring to an object.

9

(A)

(B)

(C)

C

C

C 0 C 00

C0

C0 C1

C 01

C 01

k + 1 reads

k + 1 reads

k + 1 reads

k + 1 writes

k + 1 writes

R1

R2

R2

R3

R3

R3

Write(0)

Write(0)

Write(1)

Write(1)

Write(1)

Legend: High-level action Low level sub action

Figure 1: The runs constructed in the proof of Theorem 3.1.

Any implementation of a 1W1R binary regular register from stabilizing 1W1R safe binary
sub-registers must use two sets of sub-registers (that can be considered as two \big" sub-
registers): one (SW) that is written by the writer and read by the reader and one (SR) that
is written by the reader and read by the writer. By assumption, SW consists of a single bit.
Then the whole state of the implementation is described by a con�guration C = (lr; lw; sr; sw),
where lr, lw denote the reader's and writer's local states, and sr, sw denote the contents of
SR, SW , respectively.

A read action on the regular register may involve several sub-reads of SW ; however, in the
course for a contradiction, attention may be restricted to runs in which all those sub-reads
observe the same value of SW . Then the value returned by each read is determined by a
reader function F (lr; sw). Furthermore, let F x(lr; sw) denote the value returned by the x-th
read of a sequence of non-interfered reads that start from a con�guration with local state lr
while all reads �nd SW = sw. Let C) v denote F k+1(C) = v.

Consider an arbitrary initial con�guration C such that C) 1. Schedule k + 1 reads.
The last read returns 1 by assumption. Next schedule k + 1 writes. Then schedule a write
of 0. Call the resulting state C0. Because the run must be stabilised now, C0) 0. Then
schedule a write of 1. Call the resulting state C1. Now C1) 1, and in fact a read following
the write of 1 must return 1. The complete execution appears in Fig. 1 (A)).

Clearly lr in C0 equals lr in C1. So to make sure that C1) 1 while C0) 0, the write
of 1 must write and
ip the bit in SW . If this write writes the safe bit several times, consider
the last time it does so. Call this action w.

Consider the same execution (A) as before, except that an extra read action is scheduled
overlapping the write of 1, and in fact overlapping the last write to the safe bit w such that

10

all reads of the safe bit are interfered by w. By the safeness properties of this bit and the
fact that C0 and C1 di�er only in the value of the single bit in SW , this read can be made to
observe exactly the same state as a read starting in C0 in execution (A). This read must, by
assumption, return 0. Call the state after both read and write have �nished C 01. Note that in
C 01, the state (both local and shared) of the reader may be di�erent from C1. Moreover, the
write of 1 may, after its w action observe the interfering read and perform additional actions.
Still C 01) 1, and in fact a read following the write of 1 must return 1. See Fig. 1 (B)).

Now let a transient error start the system in state C 0 where lw is taken from C0, and
sw; lr; sr are taken from C. Schedule again k + 1 reads, leading to C 00. These reads cannot
distinguish C 0 from C, so the last read (called R1) again returns 1 and lr and sr in C 00 now
have the same value as in C0. Now schedule a write of 1. Call this write W . This write
cannot distinguish C0 from C 00, so it will perform the same actions upto and including the
action w that
ips the bit in SW . See Fig. 1 (C)).

Again schedule a read (called R2) overlapping the write of 1, and in fact overlapping the
sub action w such that all reads of the safe bit are interfered by w. By the safeness property,
R2 can be made to observe the same value for SW as in C0. Because in C

00 the local state lr
of the reader equals that of C0, R2 will return 0. Moreover, the resulting state after R2 and
W have �nished is equal to C 01 of execution (B). Now schedule another read R3. By the last
observation, R3 will return 1.

We now have arrived at a contradiction. The only feasible write for R3 is W . Because R3

returns 1, W must have written 1. The only feasible write for R1 equals the initial write, or
one of the preceding reads. This feasible write also must have written 1. Because count(R1)
and count(R2) are larger than k by construction, neither of them can behave as a write.
Hence R2 must return the value of a feasible write, which is either W or the write feasible
for R1. Both wrote 1, so R2 should have returned 1. This is a contradiction. /

We believe that such an implementation does not exist even if we allow the writer to write
an arbitrary number of safe bits.

Conjecture 3.2 There exists no deterministic implementation of a k-stabilizing wait-free
1W1R binary regular register using 0-stabilizing 1W1R binary safe sub-registers.

The next theorem shows that in order to implement a n-reader self-stabilizing register we
must either

� settle for k-stabilization with k > 0, but using single reader registers in our construction,
or

� achieve 0-stabilization, but using m-reader (e.g. dual reader), m < n, registers in our
construction.

The construction of a 1-stabilizing wait-free nWnR atomic register from stabilizing 1W2R
regular ones in Section 4.3 uses this approach.

Theorem 3.3 For n > 1 and z > 1 there does not exist a deterministic implementation of a
0-stabilizing wait-free 1WnR z-ary atomic register from 0-stabilizing wait-free 1W1R atomic
registers.

11

Proof. Let all subregisters be 1W1R. Then reads of the atomic register executed by di�erent
processors must obtain a value by reading disjoint sets of subregisters. For every processor
and each possible return value v of a read, the adversary can set the con�guration of the
processor (i.e., local state plus values read from the subregisters) independently such that if
this processor executes its �rst read without any interference, this read returns v. Also note
that each processor uses separate local variables and shared registers in the implementation
of each atomic register, so that the adversary can set the con�guration of each of these atomic
registers independently.

Suppose, to the contrary, that such a 0-stabilizing wait-free implementation of a 1WnR
z-ary atomic register A exists. W.l.o.g. (z > 1) assume that 0 and 1 are among the values
stored in register A. Let p0 and p1 (n > 1) be two processors accessing A, and let the
adversary set the con�guration of p0 such that its �rst read on its own will return 0, while
the con�guration of p1 is such that its �rst read on its own will return 1. Consider all runs
over A with only two actions: a read R0 executed by p0 and a read R1 executed by p1, both
non-corrupted. Then according to Def. 2.5 in all such runs R0 and R1 must return the same
value. Also, there is a run (the one where R0 executes without interference) where 0 is the
return value, and there is a run (the one where R1 executes without interference) where 1 is
the return value.

This construction now can be used to solve the two processor consensus problem as
follows. Consider two copies A0 and A1 of the above 0-stabilizing wait-free implementation of
a nWnR z-ary atomic register. Let the initial con�guration of A0 be such that read R0(A

0)
(of processor p0) on its own returns 0, and the read R1(A

0) (of processor p1) on its own
returns 1. Similarly, let the initial con�guration of A1 be such that read R0(A

1) (of processor
p0) on its own returns 1, and the read R1(A

1) (of processor p1) on its own returns 0.
The protocol for pi, where i 2 f0; 1g, to propose a value v 2 f0; 1g simply is to read and

return Ri(A
i�v), where � denotes the bitwise exclusive or. To see that this protocol solves

2-processor consensus consider the following two cases.
If p0 and p1 propose complementary values v and 1 � v respectively, then both read the

same register Av, and by the observation of the second to last paragraph both must return
the same value. This value is either v or 1� v, both of which are proposed.

If p0 and p1 propose the same value v, they will not read the same register, and hence
these reads will execute on their own. If pi proposes v, it reads Ri(A

i�v) which, according to
the initialisations described in the previous paragraph, will return v if executed on its own.
Hence both processors decide v as required.

The above construction, although involving 0-stabilizing registers, does not involve any
errors and is started in an initial state for each of the 1W1R 0-stabilizing atomic registers
used to construct Ai with no corrupted actions pending on these registers. Any run over
Ai induces a run over each of the 1W1R 0-stabilizing atomic registers, that, because of the
above observation, corresponds to a run over an ordinary, non-selfstabilizing, 1W1R atomic
register. Therefore, constructing Ai using such ordinary registers would result in the same
behaviour in the described setting, and would, in particular, solve 2-processor consensus as
well.

Loui and Abu-Amara [LAA87] showed that deterministically solving 1-resilient consensus
(where only one processor may fail) using atomic read/write registers is impossible. We
conclude that therefore a deterministic implementation from 0 stabilizing wait-free 1W1R

12

Reader:

Writer:

Write(1)

(writes 2) (really writes 1)

Read returning 1Read returning 1 Read returning 2

Legend: High-level action Low level sub action

! time

Figure 2: Repeating actions does not make an object 1-stabilizing.

atomic registers of a 0-stabilizing wait-free 1WnR z-ary atomic register does not exist. /

It is straightforward to generalise Theorem 3.3 and its proof to similar multi-user objects
that are known not to be strong enough to solve consensus (e.g. regular registers and atomic
snapshot memories [AAD+90]). Also note that the proof of Theorem 3.3 would also hold for
the construction of k-stabilizing registers, if the �rst k reads were allowed to behave arbitrary
but not as a write. This shows that any such strengthening of De�nition 2.5 (by imposing
restrictions on the arbitrary behaviour of the �rst k actions of a processor) would be infeasible
because implementations of such objects do not, by extensions to Theorem 3.3, exist.

We also would like to point out that a k-stabilizing shared object cannot simply be
transformed into a 1-stabilizing one by executing each operation k times in a row. Consider
the counterexample in Fig. 2 for k = 2. The �rst read (before the write W , and whose only
feasible write is the initial write) returns 1. The third read (that starts after the write W ,
which constitutes its only feasible write) also returns 1. Hence the initial write and the write
W both must have written 1. This contradicts the fact that the second read returns 2 (due
to the fact that the �rst subwrite behaves arbitrary and writes 2 instead of 1), whose only
feasible writes (write W and the initial write) both wrote 1.

4 Self-stabilizing constructions of shared registers

The results of the previous section raise the question whether any self-stabilizing shared
objects can be built or do exist at all. We answer this question aÆrmatively, by giving
constructions of regular and atomic self-stabilizing shared registers using dual-reader safe
self-stabilizing registers, that allow the writer to read the values it writes to its own registers.
We believe there is no fundamental di�erence between assuming that a 1W1R safe bit exists
and assuming that a 1W2R safe bit exists. After all, the �rst models a
ip-
op with a single
output wire, whereas the latter models a
ip-
op with its output wire split in two.

We therefore assume the existence of such 1W2R safe bits and use these as basic building
blocks in the construction of a 1W2R 0-stabilizing regular bit (Section 4.1), a 1W2R z-ary
0-stabilizing regular register (Section 4.2), and a nWnR z-ary 1-stabilizing atomic register
(Section 4.3). All these constructions are minor modi�cations of well-known constructions of

13

S: stabilizing 1W2R safe bit

For i 2 f0; 1g:
operation Read i() : f0; 1g
1 return Read i(S) ;

operation Write0(v : f0; 1g)
2 if Read 0(S) 6= v
3 then Write0(S; v) ;

Protocol 4.1: A 0-stabilizing 1W2R regular bit.

the non-self-stabilizing, single-reader, equivalents. We do not present explicit constructions
of single-reader self-stabilizing registers, because the dual-reader registers come more or less
for free given a dual reader safe bit as basic building block. Moreover, we need dual-reader
registers in the construction of the multi-writer atomic register.

A few words on the programming notation are in order. We use := to denote assignment,
name to denote local variables, NAME to denote shared variables, and name for keywords.

4.1 A 0-stabilizing 1W2R regular bit

Protocol 4.1 presents the adaptation of Lamport's [Lam86] construction of a 1W1R regular
bit from a 1W1R safe bit, into the construction of a 0-stabilizing wait-free 1W2R regular bit
using a wait-free 0-stabilizing 1W2R safe bit. Instead of relying on a local copy of the value
of the bit, the writer now actually reads the bit (over its second `wire') to determine whether
its value has to be changed. We proceed by proving correctness of the protocol.

Theorem 4.1 Protocol 4.1 implements a wait-free 0-stabilizing 1W2R regular binary register
using one wait-free 0-stabilizing 1W2R safe binary register.

Proof. Let hA;!i be an arbitrary run of reads R and writes W over the regular bit. By
Protocol 4.1 this induces an order ! over the safe bit S. Let us use R(S) (W (S)) to denote
the read from (write to) the safe bit S performed by read R (write W) on the regular bit.
Let w? be the initialising write of safe bit S, and set val(W?) = val(w?) for the initialising
write W? of the regular bit. If hA;!i has a corrupted write W , set val(W) to the value of S
just after W ; this is the value an interference free5 read starting after W will read. In case of
such a corrupted write, set val(w?) (and val(W?)) to :val(W). For all other, non-corrupted,
writes set val(W (v)) = v. For all non-corrupted reads, set val(R) = val(R(S)).

According to Def. 2.6 it remains to show that in hA;!i all non-corrupted reads R return
the value written by a feasible write. Protocol 4.1 is trivially wait-free.

If a read overlaps a corrupted write W , then both W and W? are feasible writes for this
read. By the de�nition of val(�) above, val(W) 6= val(W?) and hence R always returns the
value written by a feasible write.

To complete the proof we need the following claim.

Claim 4.2 If R(S) is interference free and not-corrupted and W *) R(S) then val(W) =
val(R(S)).

5A read is interference free if it does not overlapp a write.

14

S0 : : : Sz�1: stabilizing 1W2R regular bit

For i 2 f0; 1g:
operation Read i() : f0; : : : ; z � 1g
w : f0; : : : ; zg ;

w := 0 ;
while w < z ^ Read i(S

w) = 0
do w := w + 1 ;
if w = z then return z � 1 ;

else return w ;

operation Write0(v : f0; : : : ; z � 1g)
x : f0; 1g ;

x := 1 ;
goto v

z � 1: Write0(S
z�1; x) ; x := 0 ;

z � 2: Write0(S
z�2; x) ; x := 0 ;

...
1: Write0(S

0; x) ; x := 0 ;
0: return

Protocol 4.2: A 0-stabilizing 1W2R z-ary regular register.

Proof. Let W *) R(S) and let val(R(S)) = a. If W = W? or W is a corrupted write,
then val(W) = a by de�nition. Otherwise, note that a write W (x) reads S by R0(S) without
interference. Either val(R0(S)) = x so W does not write S or val(R0(S)) = :x and W does
write x to S by W (S). Note that S is 0-stabilizing, and that none of these actions on S is
corrupted.

In the �rst case, as there cannot be another write to S between R0(S) andR(S), val(R(S)) =
val(R0(S)) = x = val(W). In the second case, as W (S) *) R(S), val(R(S)) = val(W (S)) =
x = val(W). /

Now consider a read R not overlapping a corrupted write. If R(S) is interference-free, then
by Claim 4.2, for a write W with W *) R(S) we have val(W) = val(R(S)) = val(R) and W is
feasible for R.

If R(S) is interfered, there is a writeW (x) withWkR writing S andW cannot be corrupted
by assumption. W reads S by R0(S) and val(R0(S)) = :x. By Claim 4.2 and the fact that
R0(S) cannot overlap another write (because it is executed by one), for W 0 with W 0 *)W we
must have val(W 0) = :x. As WkR, then W 0 *) R or W 0kR, so both W and W 0 are feasible
for R. One of these writes writes 0 and the other writes 1, so val(R) equals the value written
by a feasible write. /

4.2 A 0-stabilizing 1W2R z-ary regular register

Protocol 4.2 presents the adaptation of Lamport's [Lam86] construction of a 1W1R z-ary
regular register from z regular 1W1R bits, into the construction of a wait-free 0-stabilizing
1W2R z-ary regular register using z wait-free 0-stabilizing 1W2R regular bits. It di�ers from
the original construction on two points. First, a check is added to detect that the end of the
bit array is reached without reading a 1 in any of the bits, in which case a default value (z�1)
is returned. Second, instead of using a while loop to zero some registers, a �xed programmed
sequence of writes is used (see Section 2.1).

Suppose the writer would use the following code

while v 6= 0 do v := v � 1 ; Write(Sv; 0) ;

to zero all registers Sv�1; : : : ;S0 that `lie below' the written value v. Consider the following

15

Reader:

Writer:

Legend: High-level action Low level sub action

Write(Sa; 0)

Write(Sa; 0) Write(Sc�1; 0) Write(S0; 0)

R1 (returns a)

(Sees Sa = 1)

R2 (returns b)

(Sees Sa = 0)

R3 (returns c)

Figure 3: The danger of using a while loop.

scenario (see also Figure 3), where a corrupted write writes 0 to Sa at the time of the error,
but holds v = c > a in its local state. After this write, it starts writing 0 to all Sc�1; : : : ;S0,
writing 0 again to Sa some time later. Furthermore, assume that at the time of the error
for some b, a < b < c with Sb = 1, we have Sj = 0 for all j 6= a with 0 � j < b. Then
a read R3 started after the corrupted write (on the z-ary register) will read Si = 0 for all
i < c and hence will return a value v3 � c. A read R1 started just after the error will read
Si = 0 for all i < a, may read Sa = 1 (because the corrupted write is writing this register
concurrently), and therefore may return v1 = a. Another read R2 started just after R1 will
also read Si = 0 for all i < a, may read Sa = 0 (because the corrupted write is writing this
register concurrently), and then will continue reading Si = 0 for all a < i < b, until it �nds
Sb = 1 and thus returns v2 = b. These three reads return three di�erent values v1, v2 and v3,
while there are only two feasible writes W? (the initial write) and W 0 (the corrupted write)
for these reads. This contradicts the 0-stabilizing regularity of the register.

4.2.1 Proof of correctness

Let hA;!i be an arbitrary run over the regular z-ary register. By Prot. 4.2 this induces an
order! on the actions on the regular bits S0; : : : ;Sz�1. Because there is only a single writer,
we can number all the writes consecutively, writingW i for the write with index count(W) = i.
Then W 0 is the corrupted write if it exists, and we set the index of W? (the initialising write
of the z-ary register) to �1. Let us write R(Sv) for the read of Sv by read R, and let us write
W (Sv) for the write to Sv by a write W . We de�ne the index of W (Sv) to equal the index
of W . Note that this way, indices of consecutive writes to such a subregister may di�er by
more than 1. For non-corrupted reads R of a subregister Sv de�ne �(R) to be the largest
index i such that W i (of Sv) is feasible for R and we have val(W i) = val(R). This so-called
reading-function is well de�ned because by 0-stabilizing regularity of Sv, such write always
exists.

We now �x an assignment of val(W) for all write actions W and show that given this

16

assignment, all non-corrupted reads return values written by feasible writes. For W? =W�1

we set val(W?) to the minimal v such that val(W?(S
v)) = 1, setting val(W?) = z � 1 if no

such v exists. Suppose there is a corrupted write W 0. Let Sa be the �rst register written
by this write. Then set val(W 0) to the minimal v such that val(W 0(Sv)) = 1 if v � a, and
val(W?(S

v)) = 1 if v > a, setting val(W 0) = z � 1 if no such v exists. This way, val(W 0)
equals the value read by an non-interfered read starting after W 0. For all other writes W (v)
set val(W (v)) = v.

We �rst prove the following claim:

Claim 4.3 Let R be a read reading Sw+1. If �(R(Sw)) > 0 then �(R(Sw)) � �(R(Sw+1)).
If W i with i � 1 is a write such that W i ! R, then for all registers Sv read by R, we have
�(R(Sv)) � i

Proof. If R reads Sw+1, then val(R(Sw)) = 0. If �(R(Sw)) = i > 0 then val(W i(Sw)) = 0
and hence (by Prot. 4.2 and the fact that W i for i > 0 is not corrupted) W i must write to
Sw+1 as well. Now by W i(Sw) 6 R(Sw) and W i(Sw+1)! W i(Sw) and R(Sw)! R(Sw+1) we
get W i(Sw+1)! R(Sw+1) and hence i � �(R(Sw+1)) which proves the result.

The second part easily follows using induction and the observation that W i ! R implies
�(R(S0)) � i. /

Theorem 4.4 Protocol 4.2 implements a 0-stabilizing 1W2R z-ary regular register using z
0-stabilizing 1W2R regular binary registers.

Proof. According to Def. 2.6 we have to show that in every run hA;!i over the register
all non-corrupted reads return the value written by a feasible write. Protocol 4.2 is trivially
wait-free.

Consider a read R with val(R) = v. Then R reads Sv and val(R(Sv)) = 1, unless v = z�1.
Let �(R(Sv)) = i. Then W i 6 R. If val(R(Sv)) = 0 (and hence v = z � 1), by the protocol,
either i = �1 or i = 0 (because only W 0 or W? can possibly write 0 to Sz�1).

If i > 0 then val(W i) = v | because W i wrote 1 to Sv in this case. If i = 0, the
construction of the writer is such that even the corrupted write W 0 writes a 1 to at most one
register, and if it does, it will not later overwrite this 1. Therefore also val(W 0) = v. And if
W 0 writes Sz�1 with val(W 0(Sz�1)) = 0 then it also writes 0 to all other registers and hence
val(W 0) = z � 1 by de�nition.

In both cases, W i is not a feasible write for R only if there exists a W j such that W i !
W j ! R (and so i < j and in particular j > 0). But then by Claim 4.3 �(R(Sv)) � j > i, a
contradiction.

The only case that remains is i = �1. By Claim 4.3, then �(R(Sw)) equals 0 or �1 for
all w < v (or else �(R(Sv)) > �1). Now there are two cases.

If �(R(Sw)) = �1 for all w < v, then val(W�1(Sw)) = 0 for w < v. Hence v = val(W�1)
and so val(R) = val(W�1). Moreover, R 6 W i for i � 0 (or else �(R(Sw)) � 0 for some w)
so W�1 is feasible for R.

If �(R(Sw)) = 0 for some w < v, then we have W 0(Sw) 6 R(Sw) Consider the �rst
register Sa written by W 0. Clearly w � a. Moreover, if w < a, then using R(Sw) ! R(Sa)
and W 0(Sa) ! W 0(Sw) we have W 0(Sa) ! R(Sa) and hence �(R(Sa)) = 0. We have by
assumption that �(R(Sv)) = i = �1, so R continues to read past register Sa. Then it

17

reads 0 from Sa, and hence val(W 0(Sa)) = 0. Because W 0 always writes 0 to all registers
except perhaps the �rst it writes, val(W 0(Si)) = 0 for all i < a as well. For all w with
a < w � v we have �(R(Sw)) = �1. Hence val(R) = v corresponds to the minimal v such
that val(W 0(Sv)) = 1 if v � a, and val(W?(S

v)) = 1 if v > a, setting val(W 0) = z � 1 if no
such v exists. In other words, val(R) = val(W 0). Finally note that R 6 W i for i � 1 (or else
�(R(Sw)) � 1 for some w), so W 0 is feasible for R. /

This completes our proof of correctness for Protocol 4.2

4.3 A 1-stabilizing nWnR z-ary atomic register

Protocol 4.3 presents the adaptation of the Vit�anyi-Awerbuch [VA86, AKKV88] multi-writer
atomic register construction from 1W1R multi-valued regular registers, into a wait-free 1-
stabilizing nWnR z-ary atomic register using n2 wait-free 0-stabilizing 1W2R 1-ary regular
registers.

To make this construction self-stabilizing the values have become part of the labels used to
determine the most recently written value. In the original construction this is not necessary
because any value stored with a tag, processor id pair always corresponds to the value written
by that processor during that invocation. Moreover, every label written in the propagation
phase is read back and used in the next write. This prevents a corrupted write from injecting
two di�erent bad values in the register (one by the corrupted subwrite and the other by
the erroneous value of the current label to be written). Finally, the propagation phase only
terminates if the validation phase has made certain that all registers that have to be written
indeed contain the same value. Clearly this check is super
uous for almost all cases, except
when we consider corrupted actions. In that case, the check ensures that if the corrupted
action writes any register at all, then it will continue writing registers until all registers
contain the same value (see 4.5).

The main diÆculty | and di�erence | in the proof of correctness exists in showing that
the �rst few actions of a processor behave in line with Def. 2.4. We prove correctness of the
protocol below.

In the protocol, V is the domain of values read and written by the multi-writer register.
The construction uses n2 regular 0-stabilizing registers Sij written by processor i and read by
processor i and j. These registers store a label consisting of an unbounded tag, a processor id
with values in the domain f1; : : : ; ng, and a value in V. Labels are lexicographically ordered
by �, and ? is the minimal label.

The sequential speci�cation of an atomic register simply states that a write updates the
state to be the value written, whereas a read returns the state of the register. Let hA;!i be
a complete run of the above protocol.

Lemma 4.5 Let A 2 A be an action executed by processor i. If A writes at least one register
Sij for some j, then at the end of A we have (8j; k :: Sij = Sik)

Proof. Looking at Protocol 4.3, we see that every write to a register is (eventually) followed
by a call to Validate i(v) which only returns true (allowing the action to terminate) if (8j ::
Sij = v). /

Now remove from A all actions that do not write a single register as a subaction. This can
only a�ect corrupted actions | all other actions write at least n registers. We will show that

18

S11 : : : Snn: 0-stabilizing 1W2R
regular: IN � f1; : : : ; ng � V
(with �elds tag , id , and val)

For i 2 f1; : : : ; ng:
function ReadCur i() : V
cur : IN � f1; : : : ; ng � V ;

cur := ? ;
cur := max(cur ;Read i(S1i)) ;
cur := max(cur ;Read i(S2i)) ;
...

cur := max(cur ;Read i(Sni)) ;
return cur ;

operation Read i() : V
cur : IN � f1; : : : ; ng � V

cur := ReadCur i() ;
Propagate i(cur) ;
return cur :val ;

function Validate i(v : V) : ftrue; falseg
return (Read i(Si1) = v

^ Read i(Si2) = v
...
^ Read i(Sin) = v) ;

function Propagate i(v : V)
repeat Writei(Si1; v) ; v := Read i(Si1) ;

Writei(Si2; v) ; v := Read i(Si2) ;
...

Writei(Sin; v) ; v := Read i(Sin) ;
until Validate i(v)

operation Writei(v : V)
cur ;new : IN � f1; : : : ; ng � V

cur := ReadCur i() ;
new := hcur :tag + 1; i; vi ;
Propagate i(new) ;

Protocol 4.3: A 1-stabilizing nWnR z-ary atomic register.

the resulting run hA;!i is linearisable to hA;)i. The corrupted actions we remove can all
be considered reads returning arbitrary values, and can be ordered before all other actions
in hA;)i.

Now de�ne for A 2 A, label(A) as the label written by the last subwrite performed by
A. For all correct reads R, label(R) corresponds to the value returned by the read, and for
all correct writes W , label(W) corresponds to the value written. Then the following is an
immediate corollary of Lemma 4.5 (recall that we have removed all corrupted actions from
the run that do not write any register)

Corollary 4.6 For all A 2 A performed by i, we have (8j :: Sij = label(A)) immediately
after termination of A.

We are going to partition A into a set R of actions that behave as reads and a set W of
actions that behave as writes. To this end, de�ne

F = fA 2 A j count(A) � 1g ;

R� = fA 2 A j count(A) > 1 and A is a readg ; and

W� = fA 2 A j count(A) > 1 and A is a writeg :

Then F corresponds to the set of actions that, according to Def. 2.4, may behave arbitrary.
We further subdivide F into actions FW that seem to behave as a write and actions FR
that seem to behave as a read, making sure that no two apparent writes write the same

19

label (because the remainder of the proof, especially the de�nition of the reading function �
depends on this).

De�ne for a set of actions F , label(F) = flabel(F) j F 2 Fg. Set � = label(F)nlabel(W�),
the set of labels not written by a real write in W�, and let FW be an arbitrary subset of F
such that

(F1) label(FW) = �,

(F2) For all A;B 2 FW , if label(A) = label(B) then A = B, and

(F3) For all A 2 FW and B 2 F , if label(A) = label(B) then tI(A) < tI(B).

Now set FR = F n FW and de�ne W =W� [FW and R = R� [FR.
Note that we can construct a set FW satisfying these conditions by considering in turn

all actions in F ordered by their unique invocation times, and adding to FW every action
whose label is not yet in FW .

Lemma 4.7 If A! B then label(A) � label(B). If B 2 W� this inequality is strict.

Proof. Let A be performed by processor i and B be performed by processor j. By Corol-
lary 4.6, after A we have Sij = label(A). If A! B, either B reads label(A) from Sij (because
it is a 0-stabilizing register) or a later subwrite to Sij by some action C of i is a feasible write
to the subread of Sij of B. In the �rst case, because B picks the maximum of the values read,
label(A) � label(B)

In the second case label(C) � label(B) and there is a sequence of actions C1, C2 etc.
executed by i between A and C, i.e. A = C0 ! C1 ! C2 : : : ! C. By Corollary 4.6, after
Ci we have Sii = label(Ci) as well. Because Ci+1 reads Sii, we have label(Ci) � label(Ci+1).
We conclude label(A) � label(C) and therefore label(A) � label(B).

In either case, if B is a write, then it increases the tag by one and hence label(A) <
label(B). /

The next lemma basically shows that every read returns a value written by some write.
Uniqueness of this write is established in Lemma 4.9.

Lemma 4.8 For all R 2 R there exists a W 2 W such that label(W) = label(R) and
W 6 R.

Proof. Consider actions A executed by processor i and actions B executed by processor j.
Let W (A;B) be the last subwrite to Sij by action A, and let R(B;A) be the �rst subread
from Sij by action B. De�ne A ,! B i� label(A) = label(B) and W (A;B) 6 R(B;A). Note
that for all A;B with count(�) > 1 we cannot have both A ,! B and B ,! A because all
reads by A and B precede their writes (See Protocol 4.3). In other words, A ,! B if B
could have copied its label from A. Clearly A ,! B implies A 6 B. Similarly A ! B and
label(A) = label(B) implies A ,! B, because then W (A;B) 6 R(B;A).

Now let R 2 R be arbitrary, and pick a B 2 A such that B ,! R and for no A 2 A,
A ,! B. If no such B exists, set B = R. If B 2 W we are done, so assume B 2 R.

Suppose count(B) > 1. Then there is an operation C on the same processor with
count(C) = 1 and C ! B. If label(C) = label(B) then C ,! B, while if label(C) < label(B)

20

(the only other possible case according to Lemma 4.7) then the contents of the register from
which B obtains label(B) | note that since B is a read it writes the maximal label it reads |
has changed after C read that same register. This register then is written by an operation D
with label(D) = label(B) before B reads it. Then D ,! B. This contradicts the assumption
that there is no A such that A ,! B.

We conclude that count(B) � 1 and hence B 2 F . This implies label(B) 2 label(F). So
either there exists a W 2 W� such that label(W) = label(B) = label(R), or label(B) 2 � and
by (F1) there exists a W 0 2 FW with label(W 0) = label(B) = label(R). In the �rst case, by
Lemma 4.7, W 6 R as required. In the second case, since B 2 F we must have by (F3),
tI(W

0) < tI(B). Then as B ,! R implies B 6 R, this in turn implies W 0 6 R. /

The next lemma shows that di�erent write actions write di�erent labels. Together with
the previous lemma this establishes that the maximal label read by a read action uniquely
determines the write action that wrote the value this read returns.

Lemma 4.9 For all W;W 0 2 W if label(W) = label(W 0) then W =W 0.

Proof. There are three cases

W;W 0 2 W�: By Prot 4.3 W and W 0 must be executed by the same processor (or else their
id -�elds di�er). If label(W) = label(W 0), and using Lemma 4.7, neither W ! W 0 nor
W 0 ! W . Hence W =W 0.

W 2W�;W 0 2 FW : Then label(W) =2 � by de�nition of �, and label(W 0) 2 � by (F1). This
is a contradiction.

W;W 0 2 FW : If label(W) = label(W 0), then by (F2) we have W =W 0.
/

De�ne for a particular run hA;!i a reading function � : R 7! W by �(R) =W if label(R) =
label(W) and W 2 W. This is a proper de�nition by the next lemma.

Lemma 4.10 For all R 2 R, �(R) is de�ned and unique, R 6! �(R), and R returns the
value written by �(R).

Proof. That �(R) is de�ned andR 6! �(R) follows from Lemma 4.8. That it is unique follows
from Lemma 4.9. If �(R) 2 W�, then (stretching notation somewhat) label(�(R)):val equals
the value written by �(R). If �(R) 2 FW we de�ne the (arbitrary) value written by �(R) to
equal label(�(R)):val /

We now show that every run hA;!i with the above reading function � is atomic. De�ne
for W 2 W its clan [W] by

[W] = fWg [fR 2 R j �(R) =Wg ;

and let � = f[W] jW 2 Wg be the set of all clans. De�ne !0 over � by

[W]!0 [W 0] ()
�
9A 2 [W]; B 2 [W 0] :: A! B

�
:

Lemma 4.11 For all W 2 W and A;B 2 [W] we have label(A) = label(B). Also ifW 6=W 0,
then for all A 2 [W]; B 2 [W 0] we have label(A) 6= label(B).

21

Proof. The �rst part follows from the de�nition of [W] and �(R). The second part follows
from Lemma 4.9. /

Lemma 4.12 !0 is an acyclic partial order over �.

Proof. Suppose not. Then there exists a chain

[W1]!
0 [W2]!

0 � � � !0 [Wm]!
0 [W1]

with m > 1, and Wi 6= Wj if i 6= j. This implies that for all i with 1 � i � m there exist
actions Ai; Bi 2 [Wi] such that Ai ! Bi+1 (where m + 1 = 1). By Lemma 4.7 and 4.11
label(Ai) � label(Bi+1) = label(Ai+1). We conclude that label(A1) = label(A2), contrary to
Lemma 4.11. /

Applying these lemmas and the results of [AKKV88] we arrive at the following theorem.

Theorem 4.13 Protocol 4.3 implements a 1-stabilizing nWnR z-ary atomic register using
n2 stabilizing 1W1R 1-ary regular registers.

Proof. De�ne a total order) over A extending ! as follows. First extend !0 over � to a
total order)0 (according to Lemma 4.12, this is possible). Now for A 2 [W] and B 2 [W 0]
let A) B if [W])0 [W 0] (a). This extends ! because if A! B, then by the de�nition of
!0, [W] !0 [W 0] and thus [W])0 [W 0]. For A;B 2 [W] �x an arbitrary extension) of !
such that for the only writer W 2 [W] we have for all other C 2 [W] that W) C (b). This
is an extension of ! because by Lemma 4.10, C 6! W .

Now) is a total order over all actions A such that for all R 2 R we have �(R)) R by
Lemma 4.10 and (b). Moreover, there does not exists a W 2 W such that �(R)) W) R,
because by (a) and the fact that R =2 [W] by Lemma 4.11, either W) [�(R)] or R) [W].
Hence W) �(R) or R) W .

We conclude that all reads R return the value written by the most recently preceding
write in the sequential execution hA;)i. /

5 Conclusions and Further research

Our results are a �rst, but important, step towards exploring the relation between self-
stabilization and wait-freedom in the construction of shared objects. This is a new area
of research and there are still a lot of interesting questions in this new area that remain
unanswered. First of all, this paper is a proposal for a reasonable and general de�nition
of self-stabilizing wait-free shared objects. The impossibility proofs and the constructions
presented here are evidence for the viability of our approach. They show that our de�nitions
are neither trivial nor impractical, but further research is necessary to assess their true value.
In particular, the question is whether shared memory objects exist that only have k-stabilizing
implementations for k > 1 (or even k > 0).

Second, we would like to prove or conjecture that single reader safe bits are in general
not strong enough to implement a self-stabilizing regular register.

Third, the construction of the 1-stabilizing nWnR atomic register uses unbounded time-
stamps to invalidate old values. We would like to know whether this is necessarily so, or

22

if the space requirements of a k-stabilizing atomic register can be bounded. Moreover, we
would like to know whether we can close the gap between Protocol 4.3 and Theorem 3.3. I.e.,
whether it is possible either to construct a 1-stabilizing nWnR atomic register using single
reader 0-stabilizing regular registers, or to construct a 0-stabilizing nWnR atomic register
using 0-stabilizing 1W1R regular registers.

Fourth, the rami�cations of { so far { having only 1-stabilizing atomic registers available
for communication in self-stabilizing protocols should be investigated further.

Finally, following the work of Aspnes and Herlihy [AH90], it is an interesting venture to
classify, based on their sequential speci�cation, all k-stabilizing shared memory objects that
can be constructed from k0-stabilizing atomic registers, and to provide a general method to
do so. In particular, we would be interested to know whether there are general methods to
decrease the stabilization delay of a shared memory object from k to k0 < k.

Acknowledgements

It's a pleasure to thank Moti Yung for his encouragement in this work. We are grateful referee
R and the other anonymous referees for their accurate and insightful comments, and to the
MPI and the CWI for their hospitality during mutual visits.

Due to unforseen circumstances we were not able to publish our initial results [HPT95]
in a thorough and more polished form any earlier. We apologise for this delay and the
inconveniences it may have caused.

References

[ALR88] A. Lynch nancy, and R.Tuttle, M. An introduction to input/output au-
tomata. CWI Quarterly 2, 3 (1988), 219{246.

[AAD+90] Afek, Y., Attiya, H., Dolev, D., Gafni, E., Merritt, M., and Shavit,

N. Atomic snapshots of shared memory. In 9th Ann. Symp. on Principles of
Distributed Computing (Quebec City, Qu., Canada, 1990), ACM Press, pp. 1{13.

[AGMT92] Afek, Y., Greenberg, D. S., Merritt, M., and Taubenfeld, G. Comput-
ing with faulty shared memory. In 11th Ann. Symp. on Principles of Distributed
Computing (Vancouver, B.C., Canada, 1992), ACM Press, pp. 47{58.

[AMT93] Afek, Y., Merritt, M., and Taubenfeld, G. Benign failure models for
shared memory. In 7th Int. Workshop on Distributed Algorithms (Lausanne,
Switzerland, 1993), A. Schiper (Ed.), Lect. Not. Comp. Sci. 725, Springer-Verlag,
pp. 69{83.

[AH93] Anagnostou, E., and Hadzilacos, V. Tolerating transient and permanent
failures. In 7th Int. Workshop on Distributed Algorithms (Lausanne, Switzerland,
1993), A. Schiper (Ed.), Lect. Not. Comp. Sci. 725, Springer-Verlag, pp. 174{188.

[AH90] Aspnes, J., and Herlihy, M. P. Wait-free data structures in the asynchronous
PRAM model. In 2nd Ann. Symp. on Parallel Algorithms and Architectures
(Crete, Greece, 1990), ACM Press, pp. 340{349.

23

[AKKV88] Awerbuch, B., Kirousis, L. M., Kranakis, E., and Vit�anyi, P. M. B. A
proof technique for register atomicity. In 8th Conf. on Foundations of Software
Technology and Theoretical Computer Science (Pune, India, 1988), K. V. Nori
and S. Kumar (Eds.), Lect. Not. Comp. Sci. 338, Springer Verlag, pp. 286{303.

[Dij74] Dijkstra, E. W. Self-stabilizing systems in spite of distributed control. Com-
munications of the ACM 17, 11 (1974), 643{644.

[DW93] Dolev, S., and Welch, J. L. Wait-free clock synchronization. In 12th Ann.
Symp. on Principles of Distributed Computing (Ithaca, NY, USA, 1993), ACM
Press, pp. 97{108.

[GP93] Gopal, A. S., and Perry, K. J. Unifying self-stabilization and fault-tolerance.
In 12th Ann. Symp. on Principles of Distributed Computing (Ithaca, NY, USA,
1993), ACM Press, pp. 195{206.

[Her91] Herlihy, M. P. Wait-free synchronization. ACM Transactions on Programming
Languages and Systems 13, 1 (1991), 124{149.

[HW90] Herlihy, M. P., and Wing, J. M. Linearizability: A correctness condition for
concurrent objects. ACM Transactions on Programming Languages and Systems
12, 3 (1990), 463{492.

[HPT95] Hoepman, J.-H., Papatriantafilou, M., and Tsigas, P. Self-stabilization of
wait-free shared memory objects. In 9th Int. Workshop on Distributed Algorithms
(Le Mont-Saint-Michel, France, 1995), J.-M. H�elary and M. Raynal (Eds.), Lect.
Not. Comp. Sci. 972, Springer, pp. 273{287.

[IS92] Israeli, A., and Shaham, A. Optimal multi-writer multi-reader atomic reg-
ister. In 11th Ann. Symp. on Principles of Distributed Computing (Vancouver,
B.C., Canada, 1992), ACM Press, pp. 71{82.

[JCT92] Jayanti, P., Chandra, T. D., and Toueg, S. Fault-tolerant wait-free shared
objects. In 33rd Symp. on Foundations of Computer Science (Pittsburgh, PA,
USA, 1992), IEEE Comp. Soc. Press, pp. 157{166.

[Lam86] Lamport, L. On interprocess communication. Part I: Basic formalism, part II:
Algorithms. Distributed Computing 1, 2 (1986), 77{101.

[LV91] Li, M., and Vit�anyi, P. M. B. Optimality of wait-free atomic multiwriter
variables. Tech. Rep. CS-R9128, Stichting Mathematisch Centrum (CWI), Am-
sterdam, 1991.

[LAA87] Loui, M. C., and Abu-Amara, H. H. Memory requirements for agreement
among unreliable asynchronous processes. In Advances in Computing Research,
F. P. Preparata (Ed.), vol. 4. JAI Press, 1987, pp. 163{183.

[PT94] Papatriantafilou, M., and Tsigas, P. On self-stabilizing wait-free clock
synchronization. In 4th Scandinavian Workshop on Algorithm Theory (�Arhus,
Denmark, 1994), Lect. Not. Comp. Sci. 824, Springer Verlag, pp. 267{277.

24

[Sch93] Schneider, M. Self-stabilization. ACM Computing Surveys 25, 1 (1993), 45{67.

[VA86] Vit�anyi, P. M. B., and Awerbuch, B. Atomic shared register access by
asynchronous hardware. In 27th Symp. on Foundations of Computer Science
(Toronto, Ont., Canada, 1986), IEEE Comp. Soc. Press, pp. 233{243.

25

