
Randomized Naming Using Wait-Free Shared Variables�

Alessandro Panconesiy

Freie Universit�at Berlin

Marina Papatrianta�louz

Max Planck Institut

Philippas Tsigasx

Max Planck Institut

Paul Vit�anyi{

CWI & Universiteit van Amsterdam

Abstract

A naming protocol assigns unique names (keys) to every process out of a set of commu-

nicating processes. We construct a randomized wait-free naming protocol using wait-free

atomic read/write registers (shared variables) as process intercommunication primitives.

Each process has its own private register and can read all others. The addresses/names

each one uses for the others are possibly di�erent: Processes p and q address the register

of process r in a way not known to each other. For n processes and � > 0, the protocol

uses a name space of size (1 + �)n and O(n logn log logn) running time (read/writes to

shared bits) with probability at least 1 � o(1), and O(n log2 n) overall expected running

time. The protocol is based on the wait-free implementation of a novel �-Test&SetOnce

object that randomly and fast selects a winner from a set of q contenders with probability

at least � in the face of the strongest possible adaptive adversary.

Keywords: Naming problem, Symmetry breaking, Unique process ID, Asynchronous

distributed protocols, Fault-tolerance, Shared memory, Wait-free read/write registers,

Atomicity, Test-and-set objects, Randomized algorithms, Adaptive adversary.

�This work was performed during a stay of AP, MP, and PT at CWI, Amsterdam.
ySupported by an ERCIM Fellowship. Address: Freie Universit�at Berlin, Institut f�ur Informatik, Takustr.

9, 14195 Berlin, Germany; Email: ale@inf.fu-berlin.de)
zPartially supported by a NUFFIC Fellowship and the European Union through ALCOM ESPRIT Project

Nr. 7141. Address: Max Planck Institut f�ur Informatik, Im Stadtwald, 66123 Saarbr�ucken, Germany; Email:

ptrianta@mpi-sb.mpg.de)
xPartially supported by NWO through NFI Project ALADDIN under contract number NF 62-376 and

by the European Union through ALCOM ESPRIT Project Nr. 7141. Address: Max Planck Institut f�ur

Informatik, Im Stadtwald, 66123 Saarbr�ucken, Germany; Email: tsigas@mpi-sb.mpg.de)
{Partially supported by NWO through NFI Project ALADDIN under contract number NF 62-376 and by

the European Union through NeuroCOLT ESPRIT Working Group Nr. 8556. Address: CWI, Kruislaan 413,

1098 SJ Amsterdam, The Netherlands; Email: paulv@cwi.nl)

1

1 Introduction

A naming protocol concurrently executed by each process out of a subset of n processes selects

for the host process a unique name from a common name space. The name space should be

small, preferably of size n. The processes may or may not have a name to start with. If they

do, the resulting variant of the naming problem is called the renaming problem.

In a distributed or concurrent system, distinct names are useful and sometimes mandatory

in a variety of situations including mutual exclusion, resource allocation, leader election and

choice coordination. In such cases a naming protocol can be put to good use. When processes

are created and terminated dynamically|a common occurrence in distributed and concurrent

systems|the name space may grow while the number of processes remains bounded. A

renaming procedure is used to size down the name space. Examples of network protocols

that crash on duplicate names or perform more e�ciently for small name ranges are found in

[23] and [26]. A naming protocol is also useful in allocation of identical resources with a name

as a permit to a resource. Since our algorithms are wait-free (see below) they are also highly

fault-tolerant. Managing the assignment of resources to competing processes corresponds to

a repetitive variant of the naming problem [6]. In the sequel we also write \key" for \name"

and \key range" for \name space."

Interprocess Communication: We use interprocess communication through shared

memory and allow arbitrarily initialized shared memory (dirty memory model) as in [19].

Shared memory primitives such as wait-free atomic read/write registers [17, 18] are widely

used in the theory of distributed algorithms [12]. A deterministic protocol executed by n

processes is wait-free if there is a �nite function f such that every non-faulty process terminates

its protocol executing a number � f(n) of steps regardless of the other processes execution

speeds (or crash failures). In other words, a wait-free solution is (n � 1)-resilient to process

crash failures. A randomized protocol is wait-free if f(n) upper bounds the expectation of the

number of steps, where the expectation is taken over all randomized system executions against

the worst-case adversary in the class of adversaries considered (in our results the adaptive

adversaries). Our constructions below use single-writer multi-reader wait-free atomic registers

as constructed in [25, 18] and used in [7, 8, 15]. We also write \shared variable" for \register."

Anonymous Communication Model: Every register can be written by exactly one

process and can be read by all other processes|this way the writing process can send messages

to the other processes. If the processes use a common index scheme for other processes

registers (an initial consistent numbering among the processes as it is called in [7, 8, 15]),

then optimal naming is trivial by having every process rank its own number among the other

values and choose that rank-number as its key. To make the problem nontrivial, every process

has its own private register and can read all other registers but the processes use possibly

di�erent index schemes. That is, processes p and q each address a register owned by process

r in a possibly di�erent way not known to each other. This may happen in large dynamically

changing systems where the consistency requirement is di�cult or impossible to maintain [19]

2

or in cryptographical systems where consistency is to be avoided. In this model we cannot

use the consensus protocols of [4, 5, 14] or the test-and-set implementation outlined in [2].

Symmetric Shared Memory: Another way to prevent trivial ranking is using the

symmetric shared memory model. A shared memory is symmetric if it consists of a set of

identical processes communicating through a pool of shared variables each of which is read

and written by all processes [16, 10].

Complexity Measures: The computational complexity of distributed deterministic al-

gorithms using shared memory is commonly expressed in number and type of intercommuni-

cation primitives required and the maximum number of sequential read/writes by any single

process in a system execution. Local computation is usually ignored. We use wait-free

atomic read/write registers as primitives. Such primitives must be ultimately implemented

wait-free from single-reader single-writer wait-free atomic read/write bits (that in turn are

implementable from mathematical versions of hardware \
ip-
ops" [17]). The most e�cient

such implementations use [18] to reduce a multiuser multivalue register to single-reader single-

writer multivalue registers, and [17] to reduce the latter to single-reader single-writer bits.

To standardize complexity and to make comparisons to other algorithms unambiguous we

express time- and space complexity in terms of read/writes to the elementary shared bits.

Randomization: The algorithms executed by each process are randomized by having

the process
ip coins (access a random number generator). In our randomized algorithms the

answers are always correct|each process always gets a unique key|but with small proba-

bility the protocol takes a long time to �nish. We use the customary assumption that the

coin
ip and subsequent write to shared memory are separate atomic actions. To express the

computational complexity of our algorithms we use (i) the worst-case complexity with prob-

ability 1� o(1), or (ii) the expected complexity, over all system executions and with respect

to the randomization by the processes and the worst-case scheduling strategy of an adaptive

adversary.

Previous Work: The agreement problem in the deterministic model of computation

(shared memory or message passing) is unsolvable in the presence of faults [11, 13, 20]. Sur-

prisingly, [6] showed that the renaming problem, which requires a nontrivial form of interpro-

cess \agreement," is solvable in the message passing model. Their solution is t-resilient|up to

t crash failures are tolerated|and uses a name space of size only n+t, but it takes exponential

time (in n). This protocol was later transformed in [7] to two solutions for the asynchronous,

shared memory model that are wait-free and achieve running times of (n + 1)4n and n2 + 1

and key range sizes of 2n � 1 and (n2 + n)=2, respectively. Recently, [9] demonstrated a

wait-free long-lived shared memory implementation for renaming k out of n processes, using

O(k3) steps and achieving key range size O(k2). For a deterministic, wait-free solution in the

asynchronous, shared memory model a key range of size 2n� 1 is necessary [15].

The above results use asymmetric shared memory in the form of single-writer multi-

reader wait-free atomic read/write registers and each \step" reads or writes one such register.

Moreover, the global address of each register is known to all.

3

There is a plethora of other work on the naming problem using shared memory cited in

[19, 16, 10]. We discuss what is relevant to this paper. In [16] it is shown that using bounded

symmetric shared memory, both a deterministic solution and a randomized wait-free solution

against an adaptive adversary (Appendix A) are impossible. They give a wait-free randomized

unbounded symmetric shared memory solution against a fair adaptive adversary with a key

range of size n and a logarithmic expected number of rounds|time units during which every

process makes at least one step|assuming logn-bit registers. They show that unbounded

memory is also necessary against an adaptive adversary. They also give an O(log n) expected

time solution with key range size n against a fair oblivious adversary using O(n) shared

memory consisting of logn-bit registers. Independently, [10] gave a randomized solution in

the bounded symmetric memory model with key range size n running in expected O(n6) time

against a fair oblivious adversary using O(n4) shared atomic multiwriter, multireader bits.

To summarize: For asynchronous bounded shared memory, in the asymmetric case de-

terministic wait-free solutions are expensive (in terms of achievable key range) and in the

symmetric case both deterministic wait-free solutions and randomized wait-free solutions as-

suming an adaptive adversary are impossible. The remaining case is treated below.

Present Results: We show that randomization can yield wait-free, inexpensive solutions

in terms of time, space, and key range for asynchronous asymmetric bounded shared memory

models (single-writer multi-reader wait-free atomic shared registers). We use the anonymous

communication model were processes have no initial names (equivalently, have no global

consistent indexing of the other processors). Our construction requires several algorithms

that in the end give a randomized wait-free naming algorithm. We assume the adaptive

adversary (the strongest adversary).

Our �rst algorithm is the implementation of an �-Test&SetOnce object: a one-shot test-

and-set that guarantees that among the q � n competing processes invoking it, there will be

a unique winner with probability �, where � is a parameter that can be chosen arbitrarily

close to 1. The object is safe; that is, at most one process can be a winner. When invoked

by q (out of n) processes, it uses O(log q) 1-writer n-reader shared bits per process. The

running time is O(n log q) read/writes on such bits. These properties are shown in Theo-

rem 1. In our applications we typically have q = O(log n) with high probability. Using

more complex primitives, the object can be implemented by: (a) using n copies of 1-writer

n-reader O(log log q)-bit read/write registers with running time of O(n log q) read/writes on

these registers, or (b) a single n-writer n-reader 1-writer-per-component n-component com-

posite register with log log n-bit components (snapshot memory [3, 1]) with running time

O(log q) read/writes per process on the composite register.

The second algorithm is a wait-free naming algorithm, Segment , using �-Test&SetOnce

objects. Given any � > 0, Segment uses a name space of size (1+�)n, where n is the number

of processes. The protocol is always correct in the sense that all non-faulty processes receive

distinct names. The running time is a random variable whose value is O(n logn log logn)

bit operations with high probability. By \high probability" we mean that the probability

4

that the running time exceeds the above value is o(1), a quantity that tends to 0 as n grows,

Lemma 3. In fact, we prove that the maximum running time among all non-crashing processes

is O(n log n log logn) bit operations with probability 1 � o(1). It is still possible that the

expectation of the running time over all coin
ip sequences is in�nite. Our next Theorem 2

shows that with a minor modi�cation a proof similar to that of Lemma 3 demonstrates that

the expected running time of the modi�ed protocols of the involved processes can be bounded

by O(n log2 n) and hence Segment is \wait-free."

The paper is organized as follows. Section 2 and Appendix A spell out our assumptions

and our model of computation. Appendix B shows that the simple approach doesn't work

and motivates the introduction of the �-Test&SetOnce object in Section 3. This object is

used in Section 4 to obtain the naming protocol.

2 Preliminaries

Processes are sequentially executed �nite programs with bounded local variables communicat-

ing through single-writer, multi-reader bounded wait-free atomic registers (shared variables).

The latter are a common model for interprocess communication through shared memory as

discussed brie
y in Section 1. For details see [17, 18] and for use and motivation in distributed

protocols see [7, 8, 15].

2.1 Shared Registers, Anonymous Communication, Atomicity

Every read/write register is owned by one process. Only the owner of a register can write it,

while all the other processes can read it. In one step a process can either: (i) read the value of a

register, (ii) write a value to one of its own registers, or (iii)
ip a local coin (invoke a random

number generator that returns a random bit), followed by some local computation. The

communication is anonymous: While each process has its own private register and can read

all others, the addresses/names each one uses for the others are possibly di�erent: Processes

p and q each address the register of process r in a way not known to each other.

We require the system to be atomic: every step of a process can be thought to take place

in an indivisible instance of time and in every indivisible time instance at most one step by

one process is executed. The atomicity requirement induces in each actual system execution

total orders on the set of all of the steps by the di�erent processes, on the set of steps of

every individual process, and on the set of read/write operations executed on each individual

register. The state of the system gives for each process: the contents of the program counter,

the contents of the local variables, and the contents of the owned shared registers. Since

processes execute sequential programs, in each state every process has at most a single step

to be executed next. Such steps are enabled in that state. There is an adversary scheduling

demon that in each state decides which enabled step is executed next, and thus determines

the sequence of steps of the system execution. There are two main types of adversaries: the

5

oblivious adversary that uses a �xed schedule independent of the system execution, and the

much stronger adaptive adversary that dynamically adapts the schedule based on the past

initial segment of the system execution. Our results hold against the adaptive adversary|the

strongest adversary possible.

The computational complexity of a randomized distributed algorithm in an adversarial set-

ting and the corresponding notion of wait-freeness require careful de�nitions. To not distract

the reader we delegated the rigorous novel formulation of adversaries as restricted measures

over the set of system executions to the Appendix A. We believe it is interesting in its own

right and will be useful elsewhere. For now we assume that the notions of system execution,

wait-freeness, adaptive adversary, and expected complexity are familiar. A randomized dis-

tributed algorithm is wait-free if the expected number of read/writes to shared memory by

every participating process is bounded by a �nite function f(n), where n is the number of

processes. The expectation is taken over the probability measure over all randomized system

executions against the worst-case adaptive adversary.

2.2 Obvious Strategy Doesn't Work

In Appendix B we analyze a naming strategy that �rst comes to mind and show it doesn't

work out in the sense that f(n) bounding the expected number of read/writes to shared

memory is at least exponential. Namely, as soon as there is more than one process claiming

a key the adversary can make all such processes fail. This problem can be resolved by a

test-and-set mechanism that ensures a winner among a set of claiming processes. However,

existing constructions such as [2] require all processes to have a consistent numbering|the

model is not anonymous. As pointed out in the introduction, this would render the naming

problem trivial: just rank the numbering and choose your rank as a key, see also [7, 8, 15].

To resolve this problem we introduce a probabilistic �-Test&SetOnce object that selects a

winner with high probability and doesn't require a consistent initial numbering among the

processes.

3 Probabilistic �-Test&SetOnce Object

An �-Test&SetOnce object shared by n processes is a probabilistic, wait-free object with

the following functionality: For every 0 � � < 1 we can construct the object such that

when it is concurrently invoked by any subset of the user processes it selects a winner with

probability � �. If there are q � n processes competing for the same object, then the

maximum number of shared bit accesses performed by any process has expectation O(n log q).

Typically, q := O(logn) so that the expectation is O(n log logn).

The object is based on the following property of the geometric distribution. Suppose there

are q random variables Xi identically and geometrically distributed, Pr[Xi = k] = (1� p)pk.

Then, with \good probability" there will be a unique maximum, Xi > Xj for some i and all

6

j 6= i.

3.1 Synchronous Algorithm

Consider n processes numbered 1 through n and an n�1 matrix A = (ai;j) (1 � i � 1; 1 �

j � n). Processes p1; p2; : : : ; pq (q � n) enter the competition which is expressed by initially

setting a1;pi := 1 for 1 � i � q and �lling the remainder of A with zero entries. The game

is divided into rounds k := 1; 2; : : :. In each round, every process that is still in the game

independently
ips an identical coin with probability s of success and s � 1 of failure. In

each round k, every process pi with ak;pi = 1
ips its coin. If pi's coin
ip is successful then

it steps forward (sets ak+1;pi := 1) else it backs-o� (resets al;pi := 0 (1 � l � k) and exits).

In each round there are three mutually-exclusive possible outcomes: (i) exactly one process

steps forward and all others back-o�|the process is declared the winner and the game ends;

(ii) all processes back-o�, in which case the game ends with no winner; (iii) more than one

process steps forward, in which case the game continues, until one of the two aforementioned

events occurs.

Let f(q) denote the probability that the game ends with a winner for an initial number

q of competing processes. The exact behavior of f(q) seems hard to analyze. Fortunately,

the next lemma gives an easy proof of a statement that is good enough for our purposes. We

de�ne f(0) = 0 and f(1) = 1.

Lemma 1 Let 0 < s < 1. Then

(i) f(2) = 2s=(1 + s) and

(ii) for all q � 2, f(q) � f(2).

Proof. Suppose that after the �rst coin
ip, k out of q initial processes step forward. Since

the number of rows available for the game is unbounded, the probability of having a winner

at this point is exactly f(k). Let X be a random variable denoting the number of processes

that step forward. Then, the probability of the game ending with a winner is:

f(q) =
qX

k=0

f(k) Pr[X = k]

Recalling that f(0) = 0 and f(1) = 1, this equation can be rewritten as:

f(q) = Pr[X = 1] + f(q) Pr[X = q] +
q�1X
k=2

f(k) Pr[X = k] (1)

The probability of having exactly k out of q processes stepping forward to the next row is

given by

Pr[X = k] =

q

k

!
sk(1� s)q�k (2)

7

For the case q = 2, these two equations give

f(2) = s2f(2) + 2s(1� s) (3)

which implies the �rst part of the lemma.

We prove the second part of the lemma by induction. The base case, f(2) � f(2), is

trivial. For the inductive step, assume that f(k) � f(2) for all 2 � k < q. Using (1) and (2),

it follows from the induction hypothesis that

f(q) =
Pr[X = 1] +

Pq�1
k=2 f(k) Pr[X = k]

1� Pr[X = q]

�
Pr[X = 1] + f(2)

Pq�1
k=2 Pr[X = k]

1� Pr[X = q]

=
Pr[X = 1] + f(2)(1� Pr[X = 0]� Pr[X = 1]� Pr[X = q])

1� Pr[X = q]

� f(2):

The last inequality is equivalent to

Pr[X = 1]� f(2)(Pr[X = 0] + Pr[X = 1]) � 0

which can be veri�ed using (2) and (3). 2

The next lemma shows that, with high probability, the game ends very quickly with a winner.

Lemma 2 Let 1 � q � n. Then, the probability that there is a winner within r rows is at

least f(2)� nsr.

Proof. Let Wr be the event that there is a winner within r rows. Then for q = 1

Pr[Wr] = 1. For other values of q

Pr[Wr] = Pr[there is a winner]� Pr[there is a winner after r rows]

� f(q)� Pr[some process makes it for at least r rows]

� f(2)� qsr

� f(2)� nsr:

2

An important corollary of this lemma is that, by choosing s and r appropriately, the

probability of having a winner within O(log q) rows can be set arbitrarily close to 1. In

other words, in�nitely many rows are not needed (but simplify the analysis). If we want a

probability of success of � = 1� � we need to satisfy

2s

1 + s
� nsr � 1� �:

By setting s = 1 � �=2 the number of rows needed would be only r � (2=�) log(n=�). For

instance, for � = :9 we would need r � 20(log n + 4) and for � = :99 we would need

r � 200(log n+ 7).

8

3.2 Asynchronous Implementation

Let the entries of matrix A correspond to the states of 1-writer n-reader bits and let there

be only r rows, so A is an r � n matrix. The j-th bit of each array can be written only by

process j but can be read by all processes.

De�nition 1 When a process steps forward from row k � 1 to row k it �rst sets its private

bit at row k to 1 and then reads the other bits of row k. If they are all 0 the process is said

to be lucky at row k.

Even though in an asynchronous system a process cannot determine whether it reached a

certain row alone or whether slower processes will eventually reach the same row, it su�ces

that it can determine whether it is lucky: the geometric distribution ensures that a process

that has not backed-o� after many rows (say k � log n) is, with high probability, the only

one left. Trivially, to be lucky at row k (1 � k � r) is necessary to be a winner and, as we

will show, to be lucky at row r is su�cient to be a winner.

Theorem 1 For every 0 < s < 1, the �-TasOnce protocol implements a �-Test&SetOnce

object that selects a unique winner among a set of invoking processes with probability at least

� := 2s=(1 + s)� o(1) (provided no processes crash) and never selects more than one winner.

The object can be invoked repeatedly until the key is assigned, provided no crashes occur. If

the object is invoked by q out of n processes the invocation uses O(n log q) 1-writer n-reader

atomic single bit registers and has worst case running time of O(n log q) read/writes of the

shared bits.

Proof. In Figure 1 every process p owns an array of atomic bits denoted by a[1::r; p]|one

bit for each row of the game. The i-th row a[i; 1::n] has one bit a[i; p] owned by process

p (1 � p � n). Initially, in line 1 of Figure 1, the process checks whether the object is

currently occupied by other processes trying to grab the key or whether initial memory is

dirty (possibly by a previous competition). If so, then it exits reporting a failure by way of

line 9. Line 9 resets all bits a[i; p] (1 � i � r) owned by the process to 0 to clean its \own"

possibly dirty memory for future tries. (Of course, this needs to be done only once at the start

of each process and we can add a line of code to this e�ect.) Lines 2 through 8 implement the

following algorithm: Determine if you are lucky at the current row. If yes, then step forward

with probability 1, otherwise with probability s. The value of s is the same for all processes.

A process wins if it is lucky at row r, otherwise it fails. We will show below that at most one

process can win and hence that the protocol is safe. Before exiting by reporting a failure, the

protocol \cleans up" its private bit array (line 9). This is done to make the object reusable if

no process wins and no crashes occur so that eventually every non faulty process gets a name.

From a probabilistic point of view it is immaterial whether the coins are
ipped syn-

chronously or asynchronously. Because the coin
ips are independent, the rate at which

processes back o� remains essentially unchanged which is the key to the probabilistic analysis

9

of the asynchronous process. Another main ingredient in the proof is a simple upper bound

on the number of lucky processes per row. Notice also that if a process is actually the winner

at some row|all other processes backed o�|from then on it will step from one row to the

next with probability 1.

The relevant properties of the protocol are: Liveness: every non faulty process executes

the protocol for a bounded number of steps, regardless of other processes speeds or crash

failures; safety: at most one process wins; and, if the number of rows is O(log q) then the

probability that among q � n competing processes there is a winner is �|a parameter that

can be set arbitrarily close to 1. 1

Claim 1 (Liveness) �-TasOnce is wait-free and uses at most 2n(r+1)+ r read/writes to

1-writer, n-reader shared bits.

Proof. A process p invoking the protocol either backs o� immediately, executing at most

2n+ r steps, or joins the competitition. Then, it either will win executing at most 2n(r + 1)

steps or back o� and lose executing at most 2n(r + 1) + r steps. 2

In the remainder of the section we consider a system of q � n processes executing the

protocol of Figure 1, and executions for this system such that no crashes occur and show that

in this case a process gets a key|and hence it is captured|with probability �.

Claim 2 Let B be the set of processes that back o� during an execution and let b := jBj. For

each row, the number of lucky processes is at most b + 1 and at most one of them is outside

B.

Proof. A process which does not exit right away after executing line 1 is called a com-

peting process. For every row row (1 � row � r), every still competing process p �rst sets

a[row; p] := 1 by executing WRITE(a[row; p]; 1) in line 3 of the protocol, and subsequently

reads the other bits in the row by executing the loop of line 4. Suppose by way of contradic-

tion that two process p and p0 do not back o� and both are lucky at row row. We can assume

that p executes its WRITE(a[row; p]; 1) before p0 executes its WRITE(a[row; p0]; 1). Since

p and p0 are not backing o�, these bits will stay 1. But the order of atomic events is

WRITE(a[row; p]; 1) < WRITE(a[row; p0]; 1) < READ(a[row; p0])

which contradicts that p0 is lucky because a[row; p] = 1 by the time p0 reads it. 2

Consequently, among the processes that do not back o�, at most one can be lucky at a

certain row. As for the processes which do back o�, all of them could be lucky. Consider for

1In the case of crashes we need not bother to estimate the probability. This is because the adversary is

forced to \sacri�ce" processes: for every invokation either some process crashes or one process wins the game

with probability � � 1. Given enough objects, all non-faulty processes will sooner or later get a key. The

problem, discussed below, is how to make this happen fast for all processes using as few objects as possible.

10

fShared Declarationsg

param r: int ; fnumber of rows for the game = O(log qg

param s: in (0; 1) ;

var a[1; 1]; : : : ; a[r; n] shared array of boolean ; fa[1::r; p] is owned by process p g

procedure �-TasOnce(p): boolean ; fp is the invoking processg

var i; row: int ;

var tmp[1::n]: array of boolean ;

begin

1: for i 2 f1::ng do

tmp[i] := READ(a[1; i]) ;

if tmp[i] = 1 then row := r; goto L2 � fgame started/memory dirtyg

od ;

2: row := 0 ; fjoin the gameg

3 (L1): row := row + 1 ; WRITE(a[row; p]; 1) ; fstep forwardg

4: for i 2 f1::ng � fpg do tmp[i] := READ(a[row; i]) ; od ; fcheck contention at row g

5: if tmp(i) = 0 for all i 6= p then fif alone at rowg

6: if row = r then return(Success) else goto L1 � ;

else

7: if row = r then goto L2 ;

8: else goto (L1,L2) with probability (s; 1� s) � ;

9 (L2): while row > 0 do WRITE(a[row; p]; 0)) ; row := row � 1 ; od ; fback-o�g

10: return(Failure) ;

end

Figure 1: Protocol �-TasOnce for q out of n processes (p is the invoking process)

instance processes b1; b2 and b3 standing at row row and suppose that the adversary freezes

the �rst two. It is possible for b3 to step ahead and to be lucky at row row + 1 and that

eventually b3 and all other processes ahead of b1 and b2 back o�. Doing this they all reinitialize

their bits to zero (line 9 of the protocol in Figure 1). Afterwards, b2 could be unfrozen by the

adversary and be lucky at row row + 1 and back o� later. And so on.

Claim 3 (Safety) At most one process can win.

Proof. A process that is lucky at row r will not back-o�. In particular it will not clean up

its row of bits (line 9 of the protocol). Hence, having two lucky processes at row r contradicts

Claim 2. 2

Claim 4 Consider the set of executions such that no process crashes occur and such that the

bits of the �-Test&SetOnce object are initialized correctly to 0. Then, the success probability

11

of �-TasOnce with q � n invoking processes is at least

� :=
2s

1 + s
� (n+ q) sr:

Proof. Intuitively, the aim of the adversary is to prevent a process from winning. We

will bound the probability that the adversary succeeds by increasing its power. Since we

assume that no crashes occur, there are only two ways for the adversary to prevent a win

from occurring: Either two or more processes reach row r or all processes back o� prior to

row r. We make \two copies" of the game and allow the adversary to play both. That is,

we consider two objects, each invoked by the same number of processes; in one game the

adversary will try to maximize the probability that the �rst of the two \spoiling" events

occurs and in the other it tries to maximize the probability of the second \spoiling" event.

The adversary succeeds if it wins at least one of the two games. Clearly, this is an upper

bound on the probability that it succeeds by playing just one game.

Consider the �rst case and focus on the subset C of processes that do not back-o�. The

adversary can bring one process p to row r with probability 1. What is the probability that

another process p0 2 C reaches row r? (Processes not in C do not reach row r by de�nition.)

By Claim 2, at each row at most one process in C can be lucky. Therefore p0 reaches row

r only if there is a sequence of coin tosses that brings some process p1 from row 1 to row

2, another process p2 from row 2 to row 3, and so on. These processes might be the same

or di�erent but, in any case, the probability of these consecutive successes is sr. Hence the

probability that the adversary spoils the game in this case is

Pr[some pi 6= p reaches row r] �
X
i

Pr[pi reaches row r] = qPr[p0 reaches row r] = qsr:

Consider now the other case. Since we assume that no crashes occur, all participating pro-

cesses must toss their coins until they either back o� or reach row r. How long it takes is

immaterial because the coin
ips are independent. Since we are interested in the probability

that they all back o� before row r it is disadvantageous for the adversary to have some of

the processes stepping forward with probability 1. Indeed, these probability 1 events only

increase the number of forward steps of some processes. Hence, the probability of having no

winner can be bounded as in the synchronous game, namely by 1� f(2) + nsr. 2

Setting r := log q the theorem is proven. 2

The analysis above uses 1-writer n-reader 1-bit registers as intercommunication primitives.

Of course, if we use more complex primitives then the complexity �gures decrease.

Corollary 1 For every 0 < s < 1, there is an implementation of an �-Test&SetOnce object

that succeeds with probability at least � := 2s=(1+ s)� o(1) (provided no processes crash) and

invoked by q out of n processes it uses n copies of 1-writer n-reader O(log log q)-bit shared

read/write variables and its running time is O(n log q) read/writes of shared variables.

12

Proof. We can replace each array a[1::r; p] of �-TasOnce by a single O(log log q)-bit

variable which is used as a counter which counts up to r = c log q, and simplify the protocol

in the obvious way. 2

In [3] the notion of \composite register" or \snapshot object" is constructed from multi-

user wait-free atomic read/write registers. A composite register is useful to obtain a \snap-

shot" of the states of a set (or all) shared variables in a system. It is a wait-free read/write

register R = (R1; : : : ; Rm) where each Ri can be written by some process (without chang-

ing Rj (j 6= i)) and each process can atomically read all of (R1; : : : ; Rm). Since the atomic

accesses are linearly ordered by de�nition each read by a process gives it a snapshot of the

contents of all shared variables R1; : : : ; Rm.

Corollary 2 For every 0 < s < 1, there is an implementation of an �-Test&SetOnce object,

that succeeds with probability at least � := 2s=(1+ s)� o(1) (provided no processes crash) and

for q out of n processes it uses a single n-writer n-reader 1-writer-per-component n-component

composite register with log log n-bit components and its running time is O(log q) read/writes

on the composite register.

Proof. The array of counters of the previous corollary can be replaced by a composite

register, aka snapshot object, as de�ned in [3, 1]. This improves the complexity �gures and

would simplify the protocol, given the availability of a snapshot object implementation. 2

4 A Wait-free Naming Protocol

We base our wait-free randomized naming protocol on the �-Test&SetOnce object. There are

n competing processes p1; : : : ; pn and the key space consists of m �-Test&SetOnce objects|

one for each key.

4.1 Simple but Too Hard to Analyze Strategy

At �rst glance a simple strategy (as in Appendix B) may su�ce: Each process repeatedly

invokes an object selected uniformly at random, until it succeeds in getting a key (and no

other process can get that key). On average, we expect �m objects to �re correctly in the

sense that they assign their key to one of the invoking processes. By choosing m := n=(��)

to take care of random
uctuations, we can ensure that every process eventually gets a key.

The running time of this simple strategy seems hard to analyze. At any point in time,

there will be a set of still competing processes to be matched with a set of available keys.

The number of available objects determines the probability of getting a key (the randomly

selected object must at least be available). In turn, this probability determines the number

of rounds needed for the slowest process before it gets a key. The problem is that the number

of empty objects at any given round depends on what the adversary does; processes can be

13

param n: int ; fnumber of processesg

param �: real ; fspecify key-range g

var m; ls: shared int ; f key range m := d(1 + 3�)neg

f segment size ls := bc � log ncg

procedure nameSegment(): int 2 f0::mg

var start; key; l: int 2 f0::mg ;

var succeed: boolean ;

begin

start := random 2 f1::mg ;

l := bstart=lscls + 1 ; fbeginning of segment g

key := start ; succeed := 0 ;

repeat fPhase 1: try to get key within segmentg

key := ((key + 1)mod ls) + l ;

succeed := (�-TasOncekey(p) = Success) ; fCompete for keyg

until succeed = 1 or key = start ;

while succeed = 0 do fPhase 2: linear searchg

key := (key + 1)mod m ;

succeed := (�-TasOncekey(p) = Success) ;

od ;

return(key) ;

end

Figure 2: Protocol Segment for process p

stopped or let go to occupy an object. It is not clear to us how to frame all possible adversarial

strategies.

4.2 Trickier but Easy to Analyze Strategy Segment

By imposing just a little bit of structure on the way the objects can be invoked it is possible

to come up with a simple and e�cient protocol Segment amenable to a clean analysis. Set

m :=
n

��
;

where � is the reliability of the �-Test&SetOnce object and � is a parameter which will take

care of random
uctuations. We will show below that � � (1�2�) for some other parameter �

to be determined later, where � can be taken arbitrarily small (but must be �xed). Therefore,

by setting � = 1� �, we have m � (1 + 3�)n. We divide the key space into segments, each of

length

ls = c lnn

14

where c is a constant to be speci�ed later and \ln" denotes the natural logarithm. We think of

each segment as a ring of objects, where the i-th and the (i+ls)-th objects in a segment are the

same. The protocol is shown in Figure 2 and is as follows. Each process selects a random key

start 2 f1; : : : ;mg; this automatically determines a segment whose initial position we denote

by l. The processes will then start invoking keys by \walking" around the segment, that is,

a process will �rst try to get a key by invoking the �-Test&SetOnce object corresponding to

its �rst random choice start; then, if necessary, it will invoke the next (modulo ls) object in

the ring, and so on, until it gets back to the starting point start. As we shall see, with high

probability, every process will get a key before reaching this point. In the extremely unlikely

event that some process will not �nd a key in its segment, the whole key range is scanned

repeatedly until a key is found (Phase 2 of the protocol). This will ensure that all processes

eventually get a name.

Lemma 3 For every 0 < �; � < 1, protocol Segment solves the naming problem for n

processes using m = n=(��) �-Test&SetOnce objects. The protocol is safe and correct. With

probability 1� o(1), the running time is O(n log n log logn) read/writes to 1-writer, n-reader

shared atomic bits.

Proof. We show that, with high probability, all processes in a segment will be captured|

they will �nd their key or crash inside the segment. Therefore, every �-Test&SetOnce object

is invoked O(ls) = O(logn) times with high probability as well. Consequently, we can apply

Theorem 1 with q := O(log n). For non-faulty processes this means that they will �nd the key

within the segment. First, we show that the processes distribute evenly among the segments.

Let

Ps = (# processes in segment s):

Then,

Pr[process p selects s] =
ls
m

= c��
lnn

n
and

�s := E[Ps] =
X
p

Pr[process p selects s] = c�� lnn

Since the segments are chosen independently we can invoke the Cherno�-bounds to estimate

the tails of the Binomial distribution in the following form (see for example [22]):

Pr[jPs � �sj > ��s] � 2e��
2�s=3 = 2n��

2c��=3

By setting

c �
6

���2
(4)

we can ensure that

Pr[Ps > (1 + �)�s, for some s] �
X
s

Pr[Ps > (1 + �)�s] � 2nn��
2c��=3 <

2

n
(5)

15

so that the probability that some segment receives more that (1+�)�s processes is 2=n = o(1).

We also need to ensure that every segment captures all of its processes. Here we need to

take care of the adversary. Basically the problem is as follows. Whenever an object is invoked,

the adversary may or may not crash a process during its object invocation; when this happens

we say that the object is corrupt. Consider the case when one process walks around the whole

segment without �nding a key. When this happens all objects in the segment are invoked. If a

is the number of corrupt objects then, each of the (ls�a)-many non-corrupt objects succeeds

with probability � independently of other objects. In other words, we are considering ls � a

Bernoulli trials with probability of success equal to �, where \success" means that some of the

invoking processes is given a key. Notice that for small values of ls� a, large deviations from

the mean are more likely. Therefore, it is advantageous for the adversary to crash processes,

thereby corrupting objects, in the hope that some of the segments will not capture all of its

processes (while our aim is to ensure that all segments will capture their processes). We now

show that with an appropriate choice of the constant c this almost surely never happens.

With the above notation, and recalling our de�nition of captured, the expected number

of captured processes is at least

a+ �(ls � a):

\At least" because for each corrupt object the adversary must crash at least one process. By

the Cherno� bounds, the true number of captured processes is at least

a+ (1� �)�(ls � a):

with probability at least

1� 2 exp
n
��2�(ls � a)=3

o
:

We know that with high probability each segment has at most Ps = (1+ �)c�� lnn processes.

A straightforward computation shows that Ps � a+ (1 � �)�(ls � a) for every a � 0 as long

as

� =
1� �

1 + �
� 1� 2�:

What is left to verify is that, no matter how a is chosen by the adversary, all segments

capture their processes with high probability. To this end, notice that a � Ps and therefore

ls�a � ls�Ps, which implies that the probability that a segment fails to capture its processes

is at most

2 exp
n
��2�(ls � Ps)=3

o
a bound which is independent of the adversary. A straightforward computation shows that

this exceptional probability is at most 2=n2 provided that

c �
6

(2� �)��3

Since there are m=ls < n segments, the probability that some segment fails is 2=n = o(1). To-

gether with Equation 5, this gives that with probability 1�o(1) each process �nds a key within

16

O(log n) object invocations. (Similarly, every object is invoked O(ls) = O(logn) times with

probability 1� o(1).) By Theorem 1 every object invocation has running time O(n log logn)

reads/writes to 1-writer, n-reader 1-bit atomic registers. Thus, the maximum running time

among all non-crashing processes isO(n log n log log n) bit operations with probability 1�o(1).

But is the protocol safe: does every process obtain a distinct key under every circum-

stance? If a process fails to �nd a key in its segment it scans the whole key space until a key

is found. We saw in Section 3 that the �-Test&SetOnce objects are safe, they never give the

key to more than one process. Since there are more objects than processes and non-corrupt

objects can be invoked repeatedly until they assign the key, sooner or later every correct

process will �nd a key (with probability 1). The lemma is proven. 2

Lemma 3 does not imply that the average running time over all coin
ip sequences of

outcomes used by the processes involved (the expected running time) is O(n logn log logn)

bit operations|the expected running time may still be in�nite. This expectation has to be

bounded to meet our de�nition of \wait-freeness" in Appendix A.

To achieve a bounded expected running time we need to use O(n log n) bit operations

per object invocation, rather than O(n log logn). To see the problem, recall that Theorem 1

states that the object succeeds with probability �, provided O(n log q) bits are used, where

q is the number of competing processes. If q = �(n) then O(n logn) bits must be used (or

otherwise the bound given by Lemma 2 becomes worthless). Although a very unlikely event,

it is entirely possible that linearly many processes fail in their segment and start scanning

the whole key space. In such cases, the average running time will be high because it would

take an exponentially long time before each of the scanning processes gets a key. But if we

are willing to use O(n log n) bits per �-Test&SetOnce object, the average running time will

still be only O(n log2 n) bit operations.

Theorem 2 For every 0 < �; � < 1, protocol Segment solves the naming problem for

n processes using m = n=�� �-Test&SetOnce objects. The protocol is wait-free, safe and

correct. The expected running time is O(n log2 n) read/writes to 1-writer, n-reader shared

atomic bits.

Proof. As we saw in the proof of Lemma 3, the probability that a process has to resort

to scanning the whole key space is o(1). If we denote by a the total number of corrupt keys,

then by the time the process has scanned the whole space there have been m� a > 3�n non

corrupt objects, each �ring independently with probability �. Then, with probability at least

1� 2 expf��2��ng

(a bound independent of a) at least (1 � �)�(m � a) � n � a object are assigned a key,

implying that each of the m � a correct processes receives a (unique) key. De�ne pkn :=

2 expf��2��kn=3g. Then, with probability at most p2n a second scan is needed, and so on.

17

The average running time, in bit operations, is at most

O(n log2 n)(1� o(1)) + o(1)n
X
k>0

k

pkn
= O(n log2 n):

It is clear that the above together with Claim 3 and Claim 1 imply that protocol Segment

is a wait-free solution for the process naming problem even in the average sense. The theorem

is proven. 2

Remark 1 In practice the protocol will be much faster for most of the keys, because the

expected number of processes per object after the �rst random object is selected is n=m < 1.

Also, a very large fraction of the processes will need just one invocation to get a key; well-

known results on martingale inequalities state that when n processes select a random key out

ofm keys, the fraction of keys chosen by some process is very nearly n(1�e�m=n) > n(1�1=e).

Hence, with high probability, very nearly �n(1 � 1=e) processes will get a key after just one

invocation of an �-Test&SetOnce object.

Remark 2 Similar results hold if we implement the �-Test&SetOnce object with 1-writer n-

readerO(log log n)-bit shared read/write variables or n-writer n-reader 1-writer-per-component

n-component composite registers with log logn-bit components (as in Corollaries 1, 2).

Acknowledgment

We thank the referees for their constructive comments which resulted in a substantial im-

provement of the presentation.

A System Execution, Adversary, Computational Complexity

A system execution is an in�nite sequence E := c0s1c1 : : : of alternating steps si and states ci
satisfying that each si is enabled in state ci�1 and ci is the con�guration of the system after

the execution of si, for all i > 0. Technically, when a process halts it enters in�nitely many

times a distinguished idle state c1 through an idle step s1. All registers are initialized to

zero contents in the unique start state c0. If we initialize with \dirty shared memory" then

all registers can have arbitrary initial contents. The set of all system executions is denoted

by
.

An adversary is best explained by identifying it with a conditional probability density

function A(sicijEi�1) where Ei�1 := c0s1 : : : ci�1 is an initial segment of E , step si is enabled

in state ci�1, and ci is the state resulting from executing step si in state ci�1, for i >

0. Now A(sicijEi�1) is the probability that the initial execution segment Ei = Ei�1sici is

realized given that Ei�1 has happened. If the adversary is randomized itself then we haveP
s

P
cs A(scsjEi�1) = 1 with the summation taken over the di�erent enabled steps s in state

18

ci�1 and the states cs that can result from step s: a single state if s is not randomized and

more states if s is a randomized step (a coin
ip). If the adversary is deterministic then it

chooses deterministically a step s and
P

cs A(scsjEi�1) = 1.

Starting from E0 := c0 the adversary induces a measure A over all legal system executions

E de�ned by A(E) := limi!1A(Ei)
2 where A(Ei) := A(sicijEi�1)A(Ei�1) and Ei = Ei�1sici,

for i > 0. The adversary is \adaptive" since it schedules the process executing the next step

based on the complete knowledge of the initial segment of the system execution including the

random outcomes of past coin
ips. It can arbitrarily delay processes or even crash them by

not executing enabled steps of particular processes. Below we express the strongest adversary

(adaptive, with in�nite computing power, and so on) as a probability measure on the set of

executions as in [28]. Without loss of generality we assume that the only randomized steps

the protocols use are fair coin
ips.

De�nition 2 Assume the above notation. An adaptive adversary is a probability measure

A on
 satisfying:

1. A(E0) = 1, where E0 is the initial execution segment;

2. A(Ei) =
P

s;cA(Eisc), where the summation is over enabled steps s in state ci and the

state(s) c resulting from executing step s in state ci;

3. A(Eisch) = A(Eisct), for each coin-
ip step s with ch is the state resulting from ci when

the outcome of s is \heads" and ct is the state resulting from ci when the outcome of s

is \tails.".

The �rst two conditions|already implied by the notion of probability measure|are in-

cluded for completeness. The third condition ensures that the adversary has no control over

the outcome of a fair coin
ip: both outcomes are equally likely. This de�nition is readily

generalized to biased coins and multi-branch decisions. Now that adversaries have been de-

�ned, we can de�ne the expected length E(Ei; j) of process pj's �nal execution following a

�nite initial execution segment Ei. Let E be an in�nite execution starting with Ei. Let lEi;j(E)

be the number of non-idle steps of process pj following Ei in E .

De�nition 3 Assume the above notation. De�ne

E(Ei; j) =
1X
k=1

k �
A(fE 2 S : lEi;j(E) = kg)

A(Ei)
:

Since the summation includes the case k =1 the expected length is in�nite if (but not neces-

sarily only if) the set of in�nite histories in which an operation execution has in�nitely many

2With Ei denoting a �nite initial segment of an execution and
 the set of all in�nite executions E , the

traditional notation is \A(�Ei)" instead of \A(Ei)" where cylinder �Ei = fE 2 S : E starts with Eig. We use

\A(Ei)" for convenience.

19

events, has positive measure. The normalization w.r.t. Ei gives the adversary a free choice

of `starting' con�guration. The running time of a deterministic protocol is the maximum

number of non-idle steps, taken over all legal executions, executed by a non faulty process.

De�nition 4 An implementation of a concurrent object shared between n processes is wait-

free, if there is a �nite bound f(n) such that for all adversaries A and for all Ei; j, the expected

length E(Ei; j) � f(n).

B Simple Approach Does Not Work

A related observation was made with respect to the symmetric communication model in

[10]. In our case we use the Method of Bounded Di�erences (MOBD) [21]. Suppose we

have n independent random variables Xi each taking values in a �nite set Ai and let Y =

f(X1; : : : ;Xn) be a measurable function. If, for all vectors A and B di�ering only in the i-th

coordinate,

jf(A)� f(B)j � ci

then

Pr [jY � �j > ��] � 2e�2�
2�2=

P
i
c2
i (6)

where � = E[Y]. We will use this in a ball-and-bin scenario, where Xi denotes the bin where

ball i ends up and Y will measure things such as the number of bins with exactly k balls, the

number of bins with at least k balls, and the like. In these cases, it easy to see that ci = 1

for all i and the bound becomes

Pr [jY � �j > ��] � 2e�2�
2�2=n:

We have n processes and a name space of size m = (1 + c)n (0 � c � 1). For a naming

algorithm to be good, we want both c and the running time to be as small as possible.

The most obvious naming algorithm works as follows: Every process chooses uniformly

and independently a tentative random key and checks whether it is the only process claiming

that key. If so, the process secures the key. Otherwise, it tries another random key, and so

on.

To check whether a process is the only claimant for a key we use the following mechanism.

For each key k there is an array b[k; 1::n] where bit b[k; p] is owned by process p (1 � p � n).

All bits can be read by all processes. Upon choosing a speci�c key value k, a process sets its

own bit b[k; p] to 1 and subsequently reads the other bits of the array b[k; 1::n] to see whether

it is the only claimant, Figure 3. If a process was alone a Success is returned, otherwise a

Failure. Notice that the bit b[k; p] is reset to 0 in case of failure so that a process can try

again.

It is easy to verify that this solution is safe in the sense that no two processes ever get the

same key. It is more di�cult to see that its running time is unsatisfactory: for c < 1 there

20

param n: int ; fnumber of processesg

param c: real 2 (0; 1) ; fspeci�es key rangeg

var m: shared int ; f key range m := bn(1 + c)cg

var b[1::m; 1]; : : : ; b[1::m; n] shared array of boolean ;

feach b[1::m; p] is owned by process pg

procedure alone(key): boolean ; fkey = candidate nameg

begin

WRITE(b[key; p]; 1) ;

for i 2 f1::ng do

if READ(b[key; i])=1 then WRITE(b[key; p]; 0); return(Failure) � fnot aloneg

od ;

return(Success) ; faloneg

end

procedure simp-name(): int 2 f0::mg

begin

repeat key := random 2 f1::mg until alone(key) = 1; return(key) ;

end

Figure 3: A simple approach to naming: protocol for process p

are adversarial strategies that force some process to take exponentially many steps with high

probability. The problem is that the adversary knows the key k chosen by a process p before

p executes its subsequent WRITE(b[k; p]; 1) step. Therefore, the adversary can postpone the

execution of this step until some other process q chooses the same key k. At this point, the

adversary schedules the steps of p and q such that both of them don't secure key k.

Adversarial strategy: If step WRITE(b[key; p]; 1) is enabled for process p but the

adversary delays execution then we say that p is frozen. If a p has chosen k but has not yet

executed WRITE(b[k; p]; 1) we say that the process is claiming k. Let � = 1=(1 + c) so that

n = �m, and �x some � < �.

The adversary schedules all processes in turn to perform their �rst random choices. De�ne

event A as \at least �n keys are chosen by exactly two processes." A standard application of

the MOBD above shows that the probability that A does not occur is at most e�c1n, where c1
is a constant depending only on � and �. The adversary selects �n such keys and freezes the

set F1 of corresponding processes. The adversary schedules the operations of the remaining

processes until each of them claims one of the remaining keys and no such key is claimed by

more than one such process. (If more than one process claims one of these keys the adversary

schedules events such that all but one of them back o� and try again until they are unique

claimants for other keys.) At this point, there are at least (1 � 2�)n = (1 � 2�)�m keys

that are claimed by a unique process. Call these the red keys. Now the processes in F1 are

21

unfrozen. The adversary schedules their operations so that their �rst attempts fail and all of

them do a second tentative random key choice. De�ne event B as \�n red keys are claimed

by exactly one process in F1" and let F2 be the set of processes claiming those keys (each

such key is now claimed by exactly two processes). Then jF2j = jF1j and the adversary can

repeat the scenario with F2 substituted for F1. A tedious, but standard, application of the

MOBD shows that the probability that B does not occur is at most e�c2n, where, again, c2
is a constant depending only on � and �. Therefore, with high probability the adversary will

be able to force some process to try an exponential number of keys.

References

[1] Y. Afek, H. Attiya, D. Dolev, E. Gafni, M. Merritt, and N. Shavit, Atomic snapshots of

shared memory. J. Assoc. Comp. Mach., 40:4(1993), 873{890.

[2] Y. Afek, E. Gafni, J. Tromp, and P.M.B. Vit�anyi, Wait-free test-and-set In Proceedings

of the 6th International Workshop on Distributed Algorithms, vol. 647, Lecture Notes in

Computer Science, Springer-Verlag 1992, pp. 85{94.

[3] J. Anderson, Composite registers. Distributed Computing 6(1993), 141-154.

[4] J. Aspnes and M. Herlihy, Fast Randomized Consensus Using Shared Memory. Journal

of Algorithms 11(1990), 441-461.

[5] J. Aspnes and O. Waarts, Randomized Consensus in Expected O(n log2 n) Operations

Per Processor. In Proceedings of FOCS 1992, pp. 137-146.

[6] H. Attiya, A. Bar-noy, D. Dolev, D. Peleg, and R. Reischuk, Renaming in an Asyn-

chronous Environment. J. Assoc. Comput. Mach., 37:3(1990), 524{548.

[7] A. Bar-Noy and D. Dolev, Shared Memory vs. Message-passing in an Asynchronous

Distributed Environment. In Proceedings of the 8th ACM Symposium on Principles of

Distributed Computing, 1989, pp. 307{318.

[8] E. Borowsky and E. Gafni, Immediate Atomic Snapshots and Fast Renaming. In Pro-

ceedings of the 12th ACM Symposium on Principles of Distributed Computing, 1993,

pp. 41{52.

[9] H. Buhrman, J.A. Garay, J.H. Hoepman, and M. Moir, Long-Lived Renaming Made Fast,

In Proceedings of the 14th ACM Symposium on Principles of Distributed Computing,

1995, pp. 194{203.

[10] O. E�gecio�glu and A.K. Singh, Naming Symmetric Processes Using Shared Variables.

Distributed Computing, 8:1(1994), 1{18.

22

[11] M.J. Fischer, N.A. Lynch, and M.S. Paterson, Impossibility of Distributed Consensus

with One Faulty Processor. J. Assoc. Comput. Mach. 32:2(1985), 374{382.

[12] N.A. Lynch, Distributed Algorithms, Morgan Kaufmann, 1996.

[13] M. Herlihy, Wait-free synchronization. ACM Trans. Progr. Lang. Syst., 13:1(1991), 124{

149.

[14] M. Herlihy, Randomized Wait-Free Concurrent Objects. In Proc. 10th ACM Symp. Prin-

ciples Distrib. Comput., 1991, pp. 11{21.

[15] M. Herlihy and N. Shavit, The Asynchronous Computability Theorem for t-Resilient

Tasks. In Proc. 25th ACM Symp. Theory of Computing, 1993, pp. 111{120.

[16] S. Kutten, R. Ostrovsky, and B. Patt-Shamir, The Las-Vegas Processor Identity Problem

(How and When to Be Unique). In Proc. 2nd Israel Symp. Theor. Comput. Syst., IEEE

Computer Society Press, 1993.

[17] L. Lamport, On Interprocess Communication. Distributed Computing, 1:1(1986), 86{101.

[18] M. Li, J. Tromp, and P.M.B. Vit�anyi, How to Share Concurrent Wait-free Variables, J.

Assoc. Comput. Mach., 43:4(1996), 723{746.

[19] R.J. Lipton and A. Park, Solving the processor identity problem in O(n) space, Inform.

Process. Lett., 36(1990), 91{94.

[20] M.C. Loui and H.H. Abu-Amara, Memory Requirements for Agreement Among Unre-

liable Asynchronous Processes. Advances in Computer Research, vol. 4, JAI Press, Inc.

1987, pp. 163{183.

[21] C. McDiarmid, On the method of bounded di�erences. Surveys in Combinatorics,

J.Siemons ed., London Math. Society Lecture Note Series 141 (1989), 148{188.

[22] R. Motwani and P. Raghavan, Randomized Algorithms, Cambridge University Press,

1995.

[23] M.O. Rabin, The Choice Coordination Problem. Acta Informatica 17, (1982), 121{134.

[24] M. Saks, N. Shavit, and H. Woll, Optimal Time Randomized Consensus- Making Re-

silient Algorithms Fast in Practice. In Proc. SIAM-ACM Symp. Data-Struct. and Algor.,

1991, pp. 351-362.

[25] A.K. Singh, J.H. Anderson, and M.G. Gouda, The Elusive Atomic Register Revisited,

J. Assoc. Comput. Mach., 41:2(1994), 311{339.

[26] A. Tanenbaum, Computer Networks. Prentice-Hall, 1981.

23

[27] J. Tromp, How to Construct an Atomic Variable. In Proc. 3rd Int'l Workshop Distribut.

Algor., Lecture Notes in Computer Science, Vol. 392, Springer-Verlag, Heidelberg, 1989,

pp. 492{302.

[28] J. Tromp and P. Vit�anyi, Randomized Wait-Free Test-and-Set, CWI Tech. Report CS-

R9113, Amsterdam, March 1991, Submitted.

24

