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Abstract

We present Growing Polygons, a novel visualization tech-
nique for the graphical representation of causal relations and
information flow in a system of interacting processes. Us-
ing this method, individual processes are displayed as parti-
tioned polygons with color-coded segments showing depen-
dencies to other processes. The entire visualization is also
animated to communicate the dynamic execution of the sys-
tem to the user. The results from a comparative user study
of the method show that the Growing Polygons technique
is significantly more efficient than the traditional Hasse di-
agram visualization for analysis tasks related to deducing
information flow in a system, for both small and large exe-
cutions. Furthermore, our findings indicate that the correct-
ness when solving causality tasks is significantly improved
using our method. In addition, the subjective ratings of the
test subjects rank the method as superior in all regards, in-
cluding usability, efficiency, and enjoyability.
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tems]: User Interfaces; 1.3 [Computer Methodologies]: Com-
puter Graphics
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1 Introduction

It is part of human nature to not simply accept things as
they are, but to search for reasons and to try and answer
the question “why?”. Thus, the concepts of cause and effect
have always fascinated human beings, and lie at the core of
modern science. In order to fully understand the workings
of a system, a scientist often needs to ascertain its under-
lying mechanisms by observing their visible effects. Or, as
Aristotle puts it in Physics I1.3 [Aristotle 350 B.C.]:
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Since we believe that we know a thing only when
we can say why it is as it is—which in fact means
grasping its primary causes (aitia)-plainly we
must try to achieve this [...] so that we may know
what their principles are and may refer to these
principles in order to explain everything into which
we inquire.

Humans are particularly apt at inferring the cause for
simple physical processes merely by tracing its effects back-
wards, for instance by backtracking the path of a moving bil-
liard ball on a pool table to identify the cue ball that struck
it. However, as the number of action-reaction pairs grows,
the human mind reaches a point when it is no longer able to
cope. Continuing with the analogy above, fully comprehend-
ing the interactions, or causal relations, of all sixteen balls
moving on the billiard table is impossible to do in real-time.

One way to allay this problem is to employ some kind
of graphical visualization that presents the information in
a more digestible format suitable for offline study. Sim-
ple directed-acyclic graphs (DAGs) or Hasse diagrams (also
known as time-space diagrams) offer an intuitive view of
these causal relations, but are unsuitable for studying the
node dependencies and information flow in a system, es-
pecially when the number of nodes and interactions grow.
A more non-traditional visualization technique is Growing
Squares [Elmqvist and Tsigas 2003], which uses colors, tex-
tures, and animation to provide a graphical representation of
the information flow in the system. This method addresses
the major issues associated with Hasse diagrams, but instead
suffers from a number of weak points; the original Grow-
ing Squares technique uses a simple color coding scheme for
processes that does not scale well with system size, and the
relative timing of process events is not readily visible using
this visualization.

In this paper, we present a new visualization technique
called Growing Polygons that attacks the problem of ef-
fective causality visualization using animation, colors, and
patterns to provide an accessible overview of a system (see
Figure 1). The basic idea is to assign each node in a sys-
tem of n processes a color and a triangular sector in an
n-sided polygon, and have each such process polygon grow
and be subsequently filled with the colors of the processes
influencing it. Since both the color and position of each pro-
cess sector are invariant, distinguishing between individual
processes is easier than for Growing Squares and the visual-
ization is therefore more scalable. Internal markings on the
process polygons serve as “age rings” which allow the user
to assess the relative ordering of events. This visualization
technique has been implemented in our application platform
for causality visualization, allowing us to compare Growing
Polygons with existing methods.

The design of Growing Polygons method was largely
guided by the information we collected using a focus group
of distributed systems researchers at the onset of the Grow-
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Figure 1: Growing Polygons visualization with 20 processes.

ing Squares project. Thus, the new method builds on the
philosophy of the original one, but attempts to solve the
specific problems associated with the Growing Squares tech-
nique. Identifying these problems was mainly done through
the comments and observations of the subjects during our
previous user study. We conducted a new user study to
evaluate whether or not the Growing Polygons method is an
improvement over the existing visualizations, and our results
are very positive: the new method is significantly faster and
more efficient than Hasse diagrams for both sparse and dense
data sets when performing tasks related to information flow
in a system (i.e. not only for sparse sets as for the Growing
Squares method). We also observed that subjects have a
much higher correctness ratio using our technique to solve
tasks than when using Hasse diagrams. Furthermore, the
subjective ratings of the subjects show that the new method,
just as the original Growing Squares method, is perceived as
more efficient as well as easier and more enjoyable to use
than Hasse diagrams.

As discussed above, causal relations play a vital role in
understanding how any kind of complex system works, es-
pecially those involving several concurrent processes inter-
acting with each other. Our interest originates mainly from
the viewpoint of distributed and parallel computing, where
causal relations are used extensively for example (i) in dis-
tributed database management to determine consistent re-
covery points; (ii) in distributed software systems for deter-
mining deadlocks; (iii) in distributed and parallel debugging
for detecting global predicates and detecting synchroniza-
tion errors; (iv) in monitoring and animation of distributed
and parallel programs to determine the sequence in which
events must be processed so that cause and effect appear
in the correct order; and (v) in parallel and distributed soft-
ware performance to determine the critical path abstraction:
the longest sequential thread, or chain of dependencies, in
the execution of a parallel or distributed program. Improv-
ing the graphical visualization of causal relations will thus
benefit all these activities.

The structure of this paper is as follows: We first describe
the existing work in the field, followed by a brief formal def-
inition of causal relations. Then, we describe the Growing
Polygons method, including details on design and implemen-
tation, and present the user study we conducted. The final
sections of this paper deals with the results we obtained and
our interpretation of them.

2 Related Work

There has been surprisingly little work performed in the
area of causal relation visualization, and the prevalent vi-
sualization method is still the traditional Hasse (also know
as time-space) diagram. In this diagram, we assign the time
parameter to one of the coordinate axes (usually the z axis)
and distribute processes along the other axis. Horizontal
lines in the diagram are used to denote the life time of in-
dividual processes, events (both internal and external) are
marked using dots on the line, and arrows between them
represent messages sent and received by the processes in-
volved. This straightforward method is currently found in
many platforms for visualization and debugging, especially
those aimed at parallel and distributed systems. In fact,
too many such platforms exist for us to mention them all;
examples include [Socha et al. 1989; Bemmerl and Braum
1993; Moses et al. 1998; Koldehofe et al. 1999; Kraemer and
Stasko 1998; Heath 1990; Heath and Etheridge 1991; Topol
et al. 1998; Stasko and Kraemer 1993].

While Hasse diagrams certainly are in widespread use,
they have a number of deficiencies that lower their useful-
ness for realistic systems. First of all, a Hasse diagram offers
only local dependency information for each process and not
the transitive closure of all interactions involving it, mak-
ing it difficult to gain an overview of the overall information
flow in the system; in essence, the user is forced to manu-
ally backtrace every single message and process affecting a
specific process to find its dependencies. Second, the fine
granularity of the visualization makes Hasse diagrams diffi-
cult to use for large systems of ten or more involved nodes;
the amount of intersecting message arrows simply becomes
overwhelming for complex executions. And third, Hasse di-
agrams are intrinsically static in nature and thus make little
use of the interactiveness of the computer medium; anima-
tion and creative use of color are likely to be useful tools in
this kind of visualization.

Of more specific interest is our previous work on the Grow-
ing Squares [Elmqvist and Tsigas 2003] visualization tech-
nique that abandons the traditional timeline of Hasse dia-
grams and instead uses a metaphor of growing 2D squares
to represent processes in the system. The interior of each
square is color-coded to signify the influences it has received
from other process squares, and the whole visualization is
animated to show the dynamic execution of the system over
time. The purpose of Growing Squares is to provide an easily
accessible overview of the information flow in the system, in-
cluding the causal dependencies of each process. By studying
the colors in the patterned square of each process, users can
at any time deduce the influences the process has received
from other processes. This visualization has been shown to
be significantly more efficient than Hasse diagrams for small
systems, but regrettably not so for larger systems. How-
ever, the subjective ratings of users clearly name Growing
Squares as superior to Hasse diagrams in every regard, and
indicate that the method addresses most of the weaknesses
of traditional visualizations.

Unfortunately, the Growing Squares technique has a num-
ber of issues of its own. First and foremost, since the method
is dependent on a simple color coding for each process in
a system, it is often very difficult to distinguish individual
processes in a large system due to the similarity of the col-
ors. This problem is exacerbated by the fact that Growing
Squares presents the influences of a single process as colored
pixels in a checkered pattern on each square, meaning that
each influence can become arbitrarily small due to limited



screen space (this problem is partially solved using a con-
tinuous zoom mechanism, however). And finally, a Growing
Squares visualization does not explicitly communicate the
absolute timing of events or process startup or shutdown;
this must be manually deduced by studying the animated
execution of the system.

3 Causal Relations

A causal relation is the relation that connects or relates two
items, called events, one of which is a cause of the other. All
events connected in the causal relation are part of a set of
processes, labelled P, ..., Py, each of which can be thought
of as a disjoint subset of the set of all events in a system.
Events performed by the same process are assumed to be
sequential; if not, we can split the process into sub-processes.
Thus, it is convenient to index the events of a process F; in
the order in which they occur: E; = e, e5, €5, ...

For our purposes, it suffices to distinguish between two
types of events; external and internal events. Internal events
affect only the local process state. An internal event in pro-
cess P; will causally relate to the next event on the same
process. External events, on the other hand, interconnect
events on different processes. Each external event can be
treated as a tuple of two events: a send event, and a corre-
sponding receive event. A send event reflects the fact that
an event, that will influence some other event in the future,
took place and its influence is “in transit”; a receive event
denotes the receipt of an influence-message together with the
local state change according to the contents of that message.
A send event and a receive event are said to correspond if the
same message m that was sent in the send event is received
in the receive event.

We now formally define the binary causal relation —
over all the events of the system E (—C E X E) as the
smallest transitive closure that satisfies the following prop-
erties [Lamport 1978]:

1. Ifel, e} € E; and k <[, then e}, — el.

2. If €’ = send(m) and e’ = receive(m), then e’ — ¢’
where m is a message.

When e — €', we say e causally precedes e’ or e caused e’.
Causal relations are irreflexive, asymmetric, and transitive.

4 Growing Polygons

Visualizing the causal relations in a system consisting of n
processes using the Growing Polygons technique is done by
placing n-sided polygons (so-called process polygons) rep-
resenting the individual processes on the sides of a large
n-sided polygon (the layout polygon). Instead of using a lin-
ear timeline, like for Hasse diagrams, the time parameter
is mapped to the size of each process polygon so that they
grow from zero to maximum size as time proceeds from the
start to the end of the execution, just like in the Growing
Squares technique. The visualization is animated to allow
the user to study the dynamics of the execution, and the
discrete time steps are shown as dashed or greyed-out “age
rings” in the interior of each polygon. In addition to this,
each process polygon is divided into triangular sections, with
every process in the system being assigned a color and a spe-
cific sector in the polygon. This sector also corresponds to
the side where the process polygon is positioned on the large

Figure 2: Growing Polygons visualization with n = 3 (i.e.
the process polygons are triangles).

layout polygon. Whenever the process represented by a par-
ticular polygon is active, the appropriate time segments of
the associated sector in the polygon will be filled in with the
process color. Messages between processes in the system are
shown as arrows travelling from the source polygon to the
destination, and will activate the corresponding sector in the
destination polygon with the color of the source process. In
other words, a message sent from process A to process B
will contaminate A’s sector in B starting from the time the
message was received.

Figure 2 shows an example of a simple 3-process system
(consisting of processes Py, P1, and P») where each process is
represented by a triangle partitioned into three sections, and
with the process triangles positioned on the sides of a larger
layout triangle. For each process triangle, the process’s own
sector has been marked with a thick black outline, and the
internals of each polygon has also been segmented to show
the discrete time steps of the execution. In addition, the
processes have been assigned the colors red, green, and blue,
respectively. In this example, we see how Py sends a message
to P1 at t = 0 that reaches the destination process at time
t = 1, establishing a causal relation between the two nodes.
Notice how for all times ¢ > 1, Py’s sector within P;’s process
triangle is now filled, signifying this influence. By studying
the polygons at ¢t = tend, i.e. the end of the execution, we
can get a clear picture of the flow of information within the
system.

As we ascertained earlier, causal relations are transitive,
so if A — B and B — C, then A — C. Figure 2 also shows
how this is expressed in the Growing Polygons visualization.
At time t = 2, process P» receives a message from P;. P;
has already been influenced by Py in the previous interaction
(in other words, there is already a causal relation between
Py and Pp). Thus, the process triangle of P> now signifies
causal influences in all of its process sectors, including the
transitive dependency to Py, not just the direct dependency
to P; which sent the actual message.

The simple execution in Figure 2 also gives information



about the absolute lifecycles of the three processes. By
studying the filled segments of each process triangle’s own
sector, we note that only process Py executed from the start
to the end of the system trace; processes P; and P» were
kickstarted by external messages at times t = 1 and ¢ = 2,
respectively. In fact, unlike the Growing Squares technique,
the new method allows users to deduce the exact timing of
all events in a system since the age rings in the interior of
each polygon are fixed to specific times.

Just like the Growing Squares technique, the Growing
Polygons technique offers a view of the transitive closure of
the node dependencies and influences, facilitating analysis of
global information flow in the system (and not just locally,
as for Hasse diagrams). The visualization is animated and
can thus also avoid many of the message intersection prob-
lems of Hasse diagrams. In addition to this, by assigning not
only a color but also a specific sector to each process, the
Growing Polygons method largely remedies the difficulties
of distinguishing colors that plagues the Growing Squares
technique. Thus, the new method is considerably more scal-
able than the old one since it is now enough that two similar
colors are not placed in adjacent sectors for a user to be able
to separate them.

Now let us try a full example to see the Growing Polygons
visualization in action. Figure 5 shows a sequence of screen-
shots taken at the discrete time steps of the execution of a
5-process system of causal relations (in the real visualiza-
tion, these images are smoothly animated). The processes
are laid out in clockwise order with P, at the top right. In
(a), at t = 1, we see that all processes except Py are execut-
ing and sending messages (the process sector of Py is empty).
However, a message from P; is just about to reach P, and
will activate it starting from this point in time. Screen-
shot (b) shows the subsequent situation at ¢ = 2, where
Py now has begun executing and exhibits a causal depen-
dence to the green process (Pp) that started it, and where
Py similarly shows a dependence to Ps; (Ps’s process sec-
tor in P4’s process polygon is filled in from time step 1 and
onwards). Moving to ¢ = 3 in (c), we see more causal de-
pendencies appearing in the process polygons of the various
nodes, the transitive dependencies in both P; (cyan from Ps)
and Ps (green from P ) being of special interest. We can also
observe that process P» appears to have stopped executing
since it is no longer filling up its own process sector. Image
(d) displays the situation one time step later (¢ = 4), where
the two messages from the inactive P> finally reach Py and
Py respectively, and image (e) shows the final situation at
t = 5, with the causal dependencies in the system plainly
visible.

4.1 Analysis Tasks

The design of the Growing Polygons technique was largely
guided by input gained from discussions we conducted with a
focus group of researchers of distributed systems working at
our department. These discussions allowed us to identify the
typical analysis tasks a user is interested in when studying a
distributed system, and were vital in tailoring our visualiza-
tion to these tasks. Below follows a short overview of these
analysis tasks.

4.1.1 Lifecycle Analysis

The lifecycle of individual processes are often of great in-
terest when analyzing a system of causal relations. This
includes aspects such as the duration of a process as well
as its starting and stopping times (both in isolation as well

as in relation to other processes), aspects that are vital in
understanding how a system works.

4.1.2 Influence Analysis

The analysis of influences and dependencies in a distributed
system was found to be one of the most important analysis
tasks when studying the flow of information in a system. De-
signing, debugging, or trying to grasp the underlying mech-
anisms of a distributed system or algorithm all involve this
task.

4.1.3 Inter-Process Causal Relations

Often, a practitioner studying a system of causal relations
needs to know whether two nodes, P; and Pj, in the system
are causally related, i.e. if there exists an event e" € E;
and an event e’ € E; such that e* — e’. Of course, this
causal relation can go through several levels of transitive
indirection, and is therefore quite difficult to spot manually
or when using Hasse diagrams.

4.2 Design Decisions

The Growing Polygons method does not suffer from the same
difficulties of distinguishing process colors as the Growing
Squares method since users now also has a process sector to
go by when they are using the visualization. Nevertheless,
for our method to work efficiently, adjacent process sectors
should not have similar colors, or users can easily mistake
one process for another. Thus, a continuous color spectrum
such as LOCS [Levkowitz and Herman 1992] is not suitable.
Instead, we opted for a straightforward non-continuous dis-
tribution of colors across the RGB spectrum.

While our new method does not exhibit the same conges-
tion of screen space that plagues Growing Squares, where a
much-influenced process square simply cannot convey all of
its influences in its limited screen space, there are instances
where even Growing Polygons fail at this. For example,
when visualizing a large system with many processes, the
angle (0 = 360/n) assigned to each process sector will be
small, making it difficult to distinguish events early on in
the execution. The same is also true if the time span of the
execution is long, since the layout algorithm will then have
to scale each time step to fit inside the allocated maximum
size of each polygon. To cope with these two situations,
the Growing Polygons visualization retains the simple con-
tinuous zoom mechanism of the Growing Squares technique,
allowing users to zoom in arbitrarily close in order to distin-
guish details in the visualization.

The decision to use animation in the Growing Polygons
technique was mainly grounded on the wish to avoid a maze
of cris-crossing message arrows (like in Hasse diagrams). At
the end of the system execution, no message arrows at all
are visible, facilitating easy study of the inter-process depen-
dendencies in the system. Animation allows the user to also
see the dynamic execution of the system in an intuitive way.

4.3 Implementation

We implemented the Growing Polygons method as a sep-
arate visualization class in CausalViz, our existing visual-
ization platform for general causal relations. CausalViz is
written in C++ on the Linux platform and features a mod-
ularized system architecture that facilitates easy extension
with new visualization classes. The application uses a gen-
eral XML file format for partially ordered sets, and can then



present multiple visualizations of the execution in separate
windows. This provided us with a simple way of comparing
our new method with existing visualizations, such as Hasse
diagrams and Growing Squares.

Our implementation of Growing Polygons uses OpenGL
for rendering as well as the existing continuous zoom mech-
anism built into CausalViz. However, to avoid users get-
ting lost inside the visualization (we observed this numer-
ous times when evaluating the Growing Squares method),
we constrained the 2D camera to the interior of the layout
polygon. In addition, we provide the users with a small
navigation window acting both as a key for mapping colors
and process sectors to process names, and as a shortcut for
quickly jumping to a specific process.

5 User Study

Our intention with the Growing Polygons technique was to
provide an efficient way of viewing the flow of information
and the node dependencies in a system of communicating
processes. In order to check whether our method performs
better than existing methods, we conducted a comparative
user study between Hasse diagrams and Growing Polygons.
The study involved test subjects that were deemed represen-
tative of the target audience, and consisted of having them
solve problems using the two techniques. Timing perfor-
mance and correctness were measured, as well as the subjec-
tive ratings of individual users.

5.1 Subjects

Twenty users, five of which were female, participated in this
study. All users were screened to have good computer skills
and at least basic knowledge of distributed systems and gen-
eral causal relations. Subject ages ranged from 20 through
50 years old, and all had normal or corrected-to-normal vi-
sion (one person claimed partial color blindness but was still
able to carry out the test). Ten of the subjects had par-
ticipated in our earlier user study of the Growing Squares
technique.

5.2 Equipment

The study was run on a high-end Intel Pentium III 866 MHz
laptop with 256 MB of memory and a 14-inch display. The
machine was equipped with a NVidia Geforce 2 GO graphics
accelerator and ran Redhat Linux 7.2.

5.3 Procedure

The experiment was a two-way repeated-measures analysis
of variance (ANOVA) for the independent variables “visual-
ization type” (Hasse diagrams versus Growing Polygons) and
“data density” (sparse versus dense). The sparse data den-
sity consisted of system executions involving 5 processes and
15 messages, while the dense data density involved 20 pro-
cesses and 60 messages (see Table 1). All subjects were given
the same four task sets split into the two density classes. The
system trace for each task set was generated using a simple
heuristic algorithm to avoid subjects taking advantage of
special knowledge about real distributed systems. In addi-
tion, care was taken to ensure that the complexity of both
system traces for a specific data density was roughly equiva-
lent by removing ambiguities and ensuring that the number
of indirect relations was the same.

The procedure consisted of solving two of the four task
sets using conventional Hasse diagrams, and the other two
using the Growing Polygons technique. Sparse task sets were
solved first, followed by the respective dense sets. In order
to minimize the impact of learning effects, half of the sub-
jects used the Hasse diagrams first, while the other half used
the Growing Polygons first. The task sets themselves con-
sisted of four tasks that were directly based on our previous
user study of Growing Squares; see Table 2 for an overview.
Subjects were given the opportunity to freely adjust win-
dow size and placement prior to starting work on each task
set. Furthermore, subjects were instructed to solve each task
quickly but thoroughly, and were allowed to ask questions
during the course of the procedure. Each individual task in a
task set was timed separately, except for the tasks Causality
1-3, which were timed together.

In order to avoid run-away times on troublesome tasks,
completion times were limited to 10 minutes (600 seconds).
If a test subject chose for some reason to skip a task, the
completion time for that task was set to this cap.

After each completed task set, each subject was given a
short questionnaire of three 5-point Likert-scale questions
asking for their personal opinion on the usability, efficiency,
and enjoyability of the visualization method they had just
used (see tasks Q1 to Q3 in Table 2). The purpose of this
questionnaire was to measure how users’ ratings of the vi-
sualizations changed depending on the data density. In ad-
dition, users also filled out a post-evaluation questionnaire
after having completed all of the task sets, where they were
asked to rank the two visualizations on the above criteria
(see Table 3).

Each evaluation session lasted approximately 45 minutes.
Prior to starting the evaluation itself, subjects were given a
training phase of up to ten minutes where they were given
instructions on how to use both visualization methods to
solve various simple tasks.

Data Density Processes Messages
Sparse 5 15
Dense 20 60

Table 1: Experimental design. Both density and visualiza-
tion factors were within subjects for all 20 subjects.

6 Results

The analysis of the results we obtained from the afore-
mentioned user study can be divided into the timing per-
formance, the correctness, and the subjective ratings of the
test subjects.

6.1 Performance

The mean times of solving a full task set (i.e. all four tasks)
using Hasse diagrams and the Growing Polygons visualiza-
tions were 433.90 (s.d. 378.59) and 251.85 (s.d. 174.88)
seconds respectively. This is also a statistically significant
difference (F'(1,19) = 20.118, p < .001). The main effect for
density was significant (F'(1,19) = 26.932, p < .001), with
means for the sparse and dense conditions of 191.80 (s.d.
87.57) and 493.95 (s.d. 359.35) seconds.

Figure 3 summarizes the mean task results for the two
visualizations across the two densities; error bars show the
standard deviation above and below the mean. The figure



Task Comments Measure

Find the process with the

longest duration. Time

Duration
Find the process that has

had the most influence on Time
the system.

Influence 1

Find the process that has

T
been influenced the most. e

Influence 2
Is process x causally related

Causality 1-3 to process y?

Time
Rate the visualization w.r.t.

Q1 ease-of-use (1=very hard,
S5=very easy).

Likert

Rate the visualization
Q2 w.r.t.  efficiency (1=very
inefficient, 5=very efficient).

Likert

Rate the visualization w.r.t.
Q3 enjoyability (1=very un-
pleasant, 5=very pleasant).

Likert

Table 2: Repeated tasks for each density and visualization
type.

Task Comments

PQ1 Rank the visualizations w.r.t. ease of use.

PQ2 Rank the visualizations w.r.t. efficiency for solv-
ing the following tasks:
(a) Duration analysis
(b) Influence importance (most influential)
(c) Influence assessment (most influenced)
(d) Inter-node causal relations

PQ3  Rank the visualizations w.r.t. enjoyability.

Table 3: Post-evaluation ranking questions.

also shows that the mean time for the task set was higher for
the Hasse method across all densities. For the sparse con-
dition, the mean completion times were 234.40 (s.d. 87.09)
and 149.20 (s.d. 65.85) seconds for the Hasse and Growing
Polygons visualizations. The Growing Polygons method also
gave better results for dense conditions, with mean values of
616.05 (s.d. 550.60) seconds for the Hasse visualization ver-
sus 354.50 (s.d. 190.41) seconds for Growing Polygons. The
one exception where Hasse diagrams performed better than
Growing Polygons was for the Duration subtask across both
densities, with sparse set mean times of 25.75 (s.d. 10.39)
for Hasse diagrams versus 33.95 (s.d. 17.47) for Growing
Polygons, and for the dense set, 34.40 (s.d. 18.54) versus
72.35 (s.d. 36.06) seconds. This difference was also signifi-
cant (F'(1,19) = 26.943, p < .001).

6.2 Correctness

The mean correctness of solving a full task set (i.e. six tasks)
using Hasse diagrams and the Growing Polygons visualiza-
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600 600

Time (sec)

400 400

200 200
0 I I I 0

Hasse Polygons Hasse Polygons
Sparse Sparse Dense Dense

Figure 3: Mean task completion times for all tasks across
the Hasse and Growing Polygons methods and across levels
of density. Error bars show standard deviations.

tion was 4.375 (s.d. 1.148) versus 5.625 (s.d. 0.667) cor-
rect answers, respectively. This is a significant difference
(F(1,19) = 46.57, p < .001). For the sparse data set, the
mean correctness was 4.70 (s.d. 1.218) for Hasse diagrams
and 5.75 (s.d. 0.716) for Growing Polygons, versus 4.05 (s.d.
0.999) and 5.50 (s.d. 0.607) for the dense case. In fact, the
mean correctness of the Growing Polygons visualization is
significantly better than for Hasse diagrams for all individual
subtasks except for the Duration subtask, where Hasse per-
forms better with a correctness ratios of 0.975 versus 0.950
for Growing Polygons. This, however, is not a significant
difference (F(1,19) = 0.322, p = .577).

a o a ua O

Correct answers (mean, s.d)

o O

Hasse Polygons Hasse Polygons

Sparse Sparse Dense Dense

Figure 4: Mean correctness for all tasks across the Hasse
and Growing Polygons methods and across levels of density.
Error bars show standard deviations.



Question Hasse diagrams Growing Polygons Reliability

sparse dense sparse dense Hasse/GP
Q1. Rate the visualization w.r.t. ease-of-use. ~ 2.75 (.85) 1.90 (.91) 4.20 (.70) 3.75 (.79) yes
Q2. Rate the visualization w.r.t. efficiency. 2.40 (.88) 1.55 (.5b1) 4.20 (.62) 3.95 (.51) yes
Q3. Rate the visualization w.r.t. enjoyability. 2.95 (.39) 2.00 (.73) 4.20 (.62) 4.10 (.64) yes

Table 4: Mean (standard deviation) responses to 5-point Likert-scale questions. Reliability is defined as being significant at

the .05 level.

Task Comment GP Hasse Undec.

PQl1  Enjoyability 95 % 0 % 5 %

PQ2 (a) Duration 3% 40 % 25 %
(b) Importance 90 % 5% 5 %
(c) Assessment 95% 0% 5 %
(d) Causality 100% 0% 0%

PQ3  Enjoyment 100% 0% 0 %

Table 5: Subject responses to ranking the two visualizations.

6.3 Subjective Ratings

For the post-task questionnaire, the test subjects consis-
tently rated Growing Polygons above Hasse diagram in all
regards, including efficiency, ease-of-use and enjoyment. See
Table 4 for the complete data analysis table.

The subjects’ response to the ease-of-use question (Ql,
Table 4) showed a higher rating for the Growing Polygons vi-
sualization than Hasse diagrams in both sparse (means 4.20
(s.d. .70) and 2.75 (s.d. .85), respectively) and dense data
densities (means 3.75 (s.d. .79) and 1.90 (s.d. .91)). Both
higher ratings were significant (Friedman Tests, p < .001
for the sparse case and p < .001 for the dense case). The
subjects’ responses to the efficiency question (Q2, Table 4)
showed a higher rating for the Growing Polygons visualiza-
tion in both sparse (means 4.20 (s.d. .62) and 2.40 (s.d. .88))
and dense data densities (means 3.95 (s.d. .51) and 1.55 (s.d.
.51)). Both higher ratings readings were significant (Fried-
man Tests, p < .001 for the sparse case and p < .001 for
the dense case). The subjects’ response to the enjoyment
question (Q3, Table 4) also showed a higher rating for the
Growing Polygons visualization in both sparse (means 4.20
(s.d. .62) and 2.95 (s.d. .39)), and dense data densities
(means 4.10 (s.d. .64) and 2.00 (s.d. .73)). Both higher
ratings were significant (Friedman Tests, p < .001 for the
sparse case and p < .001 for the dense case).

The results from the post-task summary questionnaire can
been found in Table 5, and clearly show that test subjects
regard the Growing Polygons technique as superior to Hasse
diagrams in all aspects except for duration analysis (task
PQ2 (a)). However, as can be seen from the this table, the
overall user rankings are very convincingly in favor of our
method.

7 Discussion

The results obtained from our user study quite comfortably
show that the Growing Polygons method is superior to Hasse
diagrams in terms of timing performance, correctness, and
the subjective opinion of the test subjects across all data
densities. The test subjects consistently ranked our tech-

nique before Hasse diagrams in all aspects except one. Our
findings show that users are significantly more efficient and
correct when using Growing Polygons to analyze the influ-
ences and check inter-process causal relations in a system
(both sparse and dense).

The only subtask where Hasse diagrams perform signif-
icantly better is duration analysis, where users were asked
to find the most long-lived process in the system. However,
while the correctness for this subtask is also better using
Hasse diagrams, this is not a significant difference. The fact
that Hasse diagrams perform better in this regard is not sur-
prising, given that the visual design of Hasse diagrams allows
for easy length comparison of the parallel process lines. This
fact is also reflected in the user rankings, where 40 % of the
subjects stated that they preferred Hasse diagrams whereas
only 35 % preferred Growing Polygons.

Our intention with the design of the Growing Polygons
technique was to provide a better alternative to causality
visualization than existing techniques. We used Hasse di-
agrams as the basis for our comparative user study on the
basis that it is still the standard way of visualizing causal re-
lations. However, our previous work on the Growing Squares
technique already improved on Hasse diagrams, so the ques-
tion is naturally where the Growing Polygons technique
stands in relation to Growing Squares. While we have not
performed a direct comparison between the two techniques,
it is rather clear that our new technique is superior to the
old one. First of all, we have achieved statistically significant
improvement over Hasse diagrams in all subtasks (except
the duration analysis subtask, which the Growing Squares
method also failed at) and across all densities, something
which the Growing Squares method did not manage for the
dense data sets. Second, the comments from the test sub-
jects who participated in the previous user study clearly indi-
cate that Growing Polygons is vastly superior to the Growing
Squares method.

8 Conclusions

We have presented a new visualization technique for the
graphical representation of causal relations in systems of in-
teracting processes. The method, called Growing Polygons,
has abandoned the linear timeline of conventional methods
such as Hasse diagrams, and instead represents processes
as n-sided polygons partitioned into triangular sectors that
grow from zero to full size over time. Each sector is assigned
to a specific process and given a unique color, and is filled in
for each process polygon that receives an influence from the
process it represents. We have performed a comparative user
study of Growing Polygons in relation to traditional Hasse
diagrams, and our results give conclusive evidence that our
method not only is more efficient and gives better correct-
ness, but that test subjects also tend to prefer our method



over Hasse diagrams.
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