
The International Journal of Virtual Reality, 2009, 8(X):Y-Z 1

Abstract— Recent developments in occlusion management for

3D environments often involve the use of dynamic transparency, or
“virtual X-ray vision”, to promote target discovery and access in
complex 3D worlds. However, there are many different approach-
es to achieving this effect and their actual utility for the user has
yet to be evaluated. Furthermore, the introduction of semi-
transparent surfaces adds additional visual complexity that may
actually have a negative impact on task performance. In this
paper, we report on an empirical user study investigating these
human aspects of dynamic transparency. Our implementation of
the technique is an image-space algorithm built using modern
programmable shaders to achieve real-time performance and
visually pleasing results. Results from the user study indicate that
dynamic transparency provides superior performance for
perceptual tasks in terms of both efficiency and correctness.
Subjective ratings are also firmly in favor of the method.

Index Terms—About four key words or phrases in alphabetical
order, separated by commas.

I. INTRODUCTION
The ability to utilize the full 3D space as a canvas for
information-rich [2] visualization applications is a mixed
blessing—while 3D space on the one hand supports an order of
magnitude of more layout opportunities for visual elements than
2D space, designers are on the other hand faced with a number
of new challenges arising from the nature of 3D space that do
not occur in 2D. More specifically, they must consider the
visibility of objects when users wish to discover relevant
objects, as well as their legibility when the user wants to access
information encoded in a particular object [3]. For instance,
whereas objects that do not intersect can never occlude each
other in 2D space, this can occur in 3D space depending on the
viewpoint and the relative position between the objects.
Controlling the impact of this effect is known as occlusion
management [4]. Dynamic transparency, also known as virtual
X-Ray [4], has recently been proposed as a solution to this
problem. The method achieves this by turning intervening
surfaces semi-transparent as the user moves through the 3D
world (see Figure 1 for an example).

Manuscript Received on 24 November 2008.
E-mail: elm@purdue.edu
This is an extended version of a paper that appeared at the IFIP INTERACT
2007 conference held September 10–14, 2007 in Rio de Janeiro, Brazil [1].

However, this approach may instead introduce additional
visual complexity and reduce the user’s depth perception. Fur-
thermore, the actual utility of these techniques remains
unknown. In this paper, we evaluate the usefulness of dynamic
transparency for solving visual tasks in both abstract and
realistic environments. Note that dynamic transparency cannot
be realized using the standard model for transparency, and no
real-time performance algorithm exists in the literature that
fulfills all of our requirements. Therefore, we also present an
algorithm for dynamic transparency that performs occlusion
detection in the image space with real-time rendering
performance. The effect is somewhat akin to the “X-ray vision”
of a superhero.
 We performed the evaluation by constructing two application
examples depicting common scenarios within the visualization
problem domain: an abstract 3D environment of simple
geometric primitives similar to information visualization
applications, and a 3D virtual walkthrough application for a
complex building environment. We then conducted a controlled
experiment in these two scenarios where we compared the time
and correctness performance of subjects solving tasks using our
technique to solving tasks while not using it.

The contributions of this paper are the following: (i) a model
for dynamic transparency that captures a natural way of
achieving high efficiency for perceptual tasks; (ii) an efficient
image-space algorithm for dynamic transparency using
programmable graphics hardware; and (iii) results from our
formal user evaluation studying the impact of dynamic
transparency on time performance and correctness for visual
tasks involving discovery, access, and spatial relation of objects
in 3D environments.

An earlier version of this work previously appeared at the
INTERACT 2007 conference in Rio de Janeiro, Brazil [1]. The
present article represents a consolidation of the whole research
project, including an extended theoretical framework for
dynamic transparency, a survey of existing dynamic transpar-
ency techniques, and all of the implementation details and study
results that could not be included in the conference paper. In
addition, this article incorporates all of the comments and
feedback we have received on the work since its original
conference presentation.

 Dynamic Transparency for 3D Visualization:
Design and Evaluation
Niklas Elmqvist1, Ulf Assarsson2 and Philippas Tsigas2

1 School of Electrical and Computer Engineering, Purdue University, West Lafayette, USA
2 Department of Computer Science and Engineering, Chalmers University of Technology, Gothenburg, Sweden 1

The International Journal of Virtual Reality, 2009, 8(X):Y-Z 2

II. RELATED WORK
Bowman et al. define the concept of information-rich virtual
environments (IRVEs) [2], a combination of information visual-
ization within the framework of virtual environments, yet many
of the challenges [3] presented in their work are directly
applicable to any kind of 3D visualization application. The
theoretical model for our technique is partly inspired by their work

II.1 Non-Photorealistic Rendering

Dynamic transparency techniques sacrifice some visual realism
to increase the user’s potential understanding of a 3D scene. In
that sense, these techniques can be regarded as
non-photorealistic rendering (NPR). Here, the emphasis lies on
conveying important structural or semantic information about a
3D scene or visualization, not necessarily a high-quality visual
appearance.

NPR has in recent years become a popular research area in
computer graphics; examples include painterly rendering [5],
hatching [6], and edge and silhouette extraction [7]. Although
typically not employed directly for visualization, the approach
has found use in computer-generated technical illustrations.
Gooch et al. [8], [9] describe the use of NPR-based silhouette
extraction and tone shading techniques for automatic and
interactive technical illustrations. Nienhaus and Döllner [10]
present the Blueprints method, which employs edge extraction
and depth layering to outline and enhance both visible and
occluded features of 3D models. Freudenberg et al. [11]
introduce another tone-based NPR primitive that may be useful
in this context.

II.2 Transparency

The general linear model for transparency in computer graphics
was introduced by Kay and Greenberg [12]. However,
transparent surfaces must be rendered in depth order to achieve
correct results. Everitt [13] discusses the depth peeling
image-space algorithm for achieving this on modern graphics
hardware based on the virtual pixel map concepts introduced by
Mammen [14] and the dual depth buffers by Diefenbach [15].
The Blueprints [10] technique mentioned earlier uses depth
peeling to outline perceptually important geometrical features

of complex models using transparency and edge detection.
However, depth peeling is a computationally demanding
method and interactive frame rates can only be achieved for a
relatively low depth complexity. Even simple test scenes can
have a depth complexity of over 15 (counting only front faces).
This is currently much too high for real-time rendering using
depth peeling, both regarding speed and memory cost, since
each layer corresponds to a frame buffer.

Diepstraten et al. introduce view-dependent transparency
[16] where NPR transparency techniques are employed for
interactive technical illustrations. However, Diepstraten
employs a fixed two-pass depth peeling step to uncover only the
two foremost layers of transparent surfaces. Objects that are
hidden by more than two layers of surfaces will remain hidden.

The use of alpha blending for exposing hidden content in
windowing systems is well-known (e.g. [17]) but may result in
loss of depth cues and legibility. Gutwin et al. [18] explore a
dynamically adapting transparency mechanism based on the
distance to the mouse cursor to avoid this. Multiblending [19] is
a more advanced blending approach where many different
image processing techniques are applied separately to different
classes of graphical components. Ishak and Feiner [20] takes
this a step further by introducing a content-aware transparency
mechanism that dynamically adapts opacity depending on the
importance of various parts of a window. Smooth gradients are
employed to emphasize the continuity of the transparent objects
and give some depth information. In addition, their system
supports a magic lens-like [21] focus filter.

Semi-transparency is also commonly used in 3D games and
virtual environments to allow users to see through occluding
surfaces. Chittaro and Scagnetto [22] investigate this practice
and conclude that see-through surfaces are more efficient than
normal 3D navigation but not as efficient as bird’s-eye views.

II.3 Cut-Away and Break-Away Views

One popular technique for traditional paper-based technical
illustrations is called cut-away views, where parts of the
depicted object are cut away to reveal interior objects that
would otherwise be hidden. Diepstraten et al. present their work
on computer-based cut-away illustrations [23], where a small
set of rules are presented to generate an effective model for

Fig. 1. Dynamic transparency uncovering an engine inside a jeep. (The left picture shows standard 3D rendering, the right picture shows the scene with dynamic
transparency active.)

The International Journal of Virtual Reality, 2009, 8(X):Y-Z 3

interactive technical visualization. Cut-away views are not
view-dependent, however, and thus do not qualify as a dynamic
transparency method.

In the same paper, the authors also present break-away views,
where interior objects are made visible through the surface of
containing objects through image-space holes. This technique is
simplified by semantic knowledge of inside and exterior
objects, and the fact that the break-away view is realized by a
single hole. Their approach is to compute the convex hull of
interior objects in a pre-processing step and use it as a clipping
volume when rendering. However, this strategy does not handle
the case when several targets line up and occlude each other.

Looser et al. [24] describe a 3D magic lens implementation
for Augmented Reality that supports information filtering of a
3D model using the stencil buffer, allowing the user to utilize a
looking glass to see through the exterior of a house and into its
interior, for instance. This approach relies on the 3D model
having semantically differentiated parts.

Coffin and Höllerer [25] present a similar technique with
active interaction where the user is controlling a CSG volume
that is dynamically subtracted from the surrounding world
geometry, again using the stencil buffer. This work does not rely
on any semantic target information at all and facilitates
exploratory interaction. However, the depth of the volume
cutout is limited and user-controlled, and no depth cues from the
world geometry are retained other than the cutout border area.

II.4 Importance-Driven Rendering

A generalization of cut-away views, importance-driven ren-
dering assigns importance values to individual objects in a 3D
scene and renders a final image that is a composite of not only
the geometrical properties of the objects, but also their relative
importance. This can be used to achieve various effects for ex-
pressing spatial and semantic information about the scene;
Viola et al. employ it for importance-driven volume rendering
[26] (IDVR) to actively reduce inter-object occlusion. How-
ever, Viola’s implementation does not support real-time per-
formance, which is vital for interactive visualization applicat-
ions.

In follow-up work, Viola et al. [27] present a model for
attention-driven volume rendering, deriving characteristic
viewpoints and finding a transparency balance between context
and focused areas, but again lacking real-time performance.

II.5 General Occlusion Management

Our definition of dynamic transparency forms one specific
strategy for occlusion management [4], the control of 3D views
and worlds to reduce the impact of inter-object occlusion on
visual perception tasks. Dynamic transparency mainly utilizes
the image space by changing the transparency level of occluding
distractors, but there exist a large number of additional
strategies. Examples include approaches using view space [28],
[29], object space [30], [31], and temporal space [32],
guaranteed visibility [33], etc.

III. GENERAL DYNAMIC TRANSPARENCY
Dynamic transparency is based on the idea of guaranteeing the
visibility of important targets regardless of occluding distract-

ors. This is done by dynamically changing the transparency of
intervening surfaces and objects. In this section, we present a
model for the dynamic transparency approach. See Elmqvist [4]
for a more in-depth treatment of general occlusion management.

III.1 Model

We represent the 3D world U by a Cartesian space (x, y, z) ∈ R3.
Objects in the set O are volumes within U (i.e. subsets of U)
represented by boundary surfaces (typically triangles). The
user’s viewpoint v = (M, P) is represented by the view and
projection matrices M and P.

An object can be flagged either as a target, an informat-
ion-carrying entity, or a distractor, an object with no intrinsic
information value for the current task. Importance flags can be
dynamically changed as the user task changes. Occluded
distractors pose no threat to any analysis tasks performed in the
environment, whereas partially or fully occluded targets do,
resulting in potentially decreased performance and correctness.
The surfaces defining an object volume have a transparency
(alpha) function α(x) ∈ [0, 1]. A line segment r passing through
a surface at point p is not blocked if α(p) < 1 and the cumulative
transparency value αr of the line segment is less than one.
Passing through a surface increases the cumulative transparency
of the line segment accordingly (multiplicatively or additively,
depending on the transparency model).

III.2 Visual Tasks

The occlusion problem occurs in the following three visual
perception tasks:
• Target discovery: finding targets t ∈ O in the environment;
• Target access: retrieving graphically encoded information

associated with each target; and
• Spatial relation: relating the spatial location and orient-

ation of a target with its context.

More concretely, occlusion affects both the visibility and
legibility of objects in a 3D environment. This has an impact on
all of the above visual tasks.

III.3 Basic Mechanism

We define our model for dynamic transparency using four
axioms that alter the standard rendering of a 3D environment:
• Guaranteed target visibility: managing visibility of

targets;
• Entity selection: deciding which entities to turn semi-

transparent;
• Impenetrability: exceptions allowing for impenetrable

surfaces; and
• Self-occlusion: supporting object atomicity.

1) Guaranteed target visibility: All targets in the world U
should be visible from any given viewpoint v. This is the most
basic definition of dynamic transparency and it directly supports
the target discovery task. It stipulates that no targets should be
fully occluded from any viewpoint in the world. A target may
still be hidden from the user if it falls outside the current view.

2) Entity selection: An occluded object is made visible by
changing the transparency level of all occluding entities e ∈ E

The International Journal of Virtual Reality, 2009, 8(X):Y-Z 4

from opaque (α(e)=1) to transparent (α(e)= αT). This axiom
describes the mechanics of which objects should be turned
transparent to uncover occluded targets. The selection of the set
E is not specified. Depending on the application, this could be a
convex hull, circle, or ellipse that encloses the occluded object,
or a projection of the target’s outline on the viewing plane.

3) Impenetrability: Entities (objects, surfaces, or pixels) can be
made impenetrable and will never be made transparent. This
axiom provides a useful exception to the initial one—in some
cases, we may want to limit the extent of the dynamic trans-
parency mechanism using impenetrable surfaces (and objects).
For example, it may not make sense to turn walls bounding a
visualization transparent, or some parts of a visualization should
be seen as atomic until the viewer comes sufficiently close (a
little like semantic zooming [34] for dynamic transparency).

4) Self-occlusion: Targets are allowed to self-occlude. This is
another refinement of the previous axioms: dynamic
transparency operates on whole objects. Even if a part of a
target is occluded by other parts of itself, none of its surfaces
will be made transparent to show this.

III.4 Context and Granularity

The general idea behind dynamic transparency is simple: we can
reduce the impact of occlusion by dynamically changing the
transparency (alpha) value of individual entities occluding
(either partially or fully) a target object. This results in fewer
fully occluded objects in the environment and thus directly
affects the object discovery visual task.

However, it is important to remember that distractor objects,
while not vital for the current task, still provide context about
the 3D environment that is useful for many tasks. The level of
context and depth cues needed depends on the particular
application.

In order to support this, our model of dynamic transparency
can operate on several levels of granularity:
• Region-level: modify the transparency of a set of objects

(typically grouped by regions in the 3D world);
• Object-level: modify the transparency of entire objects

(e.g. vehicles, furniture, people);
• Surface-level: modify the transparency of individual 3D

surfaces (usually triangles) that make up objects; and
• Pixel-level: modify the transparency of individual pixels

that are rendered for each surface.
To give additional context, even occluding surface parts are

not made fully transparent, but are set to a threshold alpha value
αT in order to shine through slightly in the final image. There is a
tradeoff here: the use of semi-transparent occluders will make
object access difficult since intervening surfaces will distort
targets behind them. However, it is a necessity in order to
maintain the user’s context of the environment.

Object-level dynamic transparency is often easier to
implement for a particular application and is typically less
computationally expensive than surface-level or pixel-level
dynamic transparency, but for some applications this may be too
coarse a definition. In a 3D environment that includes a few
large distractors, a very small target will cause whole distractors

that happen to occlude it to be made transparent. The
appearance and disappearance of these distractors may be
confusing and disorienting for the user. On the other hand, in a
3D environment consisting of a large number of small objects
(both targets and distractors), an object-level implementation
may very well be sufficient.

Surface-level and pixel-level dynamic transparency typically
retain increasingly more context since distractors are made
transparent per-surface and per-pixel, respectively. In the
example above, only a few triangles or a few pixels of the large,
occluding distractor would be made transparent to show the
small target. For applications like this, this functionality may be
vital in order to retain important contextual information.

III.5 Operation Modes

Dynamic transparency can be used in either an active or a
passive mode. Passive mode is when dynamic transparency is
performed on the whole view visible to the user; all occluded
objects are revealed automatically without the user having to do
anything. This may cause quite a severe impact on the visual
quality of the scene, however, and make it difficult for the user
to gain an understanding of its layout and structure.

In active mode, on the other hand, the user controls a
searchlight (essentially a 3D magic lens [21]) on the image
plane of the scene specifying on which parts of the world
dynamic transparency should be active. This is a less obtrusive
mode of operation than passive mode and has less impact on the
visual quality of the scene, but on the other hand requires direct
manipulation and active discovery by the user.

III.6 Layer Control

The standard dynamic transparency mechanism, as described
above, will peel away all intervening surface layers to reveal
occluded targets in a scene. However, in some cases, we may
want to control the maximum number of layers to be peeled
away by the mechanism. By introducing this capability to the
specification of dynamic transparency, we allow for special
classes of visualizations, such as the one-layer depth technical
illustrations discussed in Diepstraten et al. [16], [23].

IV. DYNAMIC TRANSPARENCY FOR VISUALIZATION
We are interested in the use of dynamic transparency for
occlusion management in 3D visualization applications. This
imposes a number of additional requirements on dynamic
transparency implementations. Here follows a list of these,
including their motivations:
R1. View-dependent: The technique should be dynamic, guar-

anteeing target visibility regardless of viewpoint since we
cannot control the user’s movement.

R2. Unlimited depth: A particular visualization application
may have many targets or distractors lining up, requiring us
to be able to handle uncovering targets that are hidden by a
potentially large number of distractors.

R3. Pixel-level granularity: No assumptions can be made on
the 3D environments of the visualizations, so we need
pixel-level dynamic transparency to guarantee visibility in
all situations.

The International Journal of Virtual Reality, 2009, 8(X):Y-Z 5

R4. Polygonal 3D representations: We handle only polygonal
3D representations with no particular semantic information
for objects beyond target and distractor information. The
visualization applications we are concerned with have these
properties—we disregard volume representations.

R5. Real-time performance: Visualization applications require
interactive performance, so the dynamic transparency
mechanism must allow for real-time rendering.

R6. Passive mode: We cannot require our users to manually
control the technique since this will cause them to run the
risk of missing important targets. Therefore, we stipulate
that the technique must support passive mode.

R7. Context and depth cues: A dynamic transparency method
must maximize the contextual information for each uncov-
ered target and minimize the impact of decreased depth per-
ception. Otherwise, users will have difficulties interpreting
the visualization.

In this section, we discuss how existing dynamic transparency
techniques fulfill these requirements. Furthermore, we look into
two particular issues that are of special importance to the em-
ployment of dynamic transparency in 3D visualization:
increased visual complexity and decreased depth cues.

IV.1 Existing Techniques

As discussed in the related work (Section II), there exist a
number of dynamic transparency techniques in the literature.
Not all of these are suitable for use in visualization applications,
however. In this section we will review the most important of
these techniques in light of the requirements outlined above.

First of all, the four axioms presented in Section III cannot be
fulfilled with standard transparency even if graphics hardware
would support correct per-pixel sorting with transparency
blending in back-to-front order, which it does not. We cannot
simply make distractors covering targets transparent, since we
want objects to self-occlude. That is, objects should still be
rendered as solids with only the front-most surfaces visible.
Back faces, insides, and self-occluded parts of closed surfaces
of an object should not be rendered. This cannot be solved with
simple back-face culling and depth culling.

Object-wise, the depth culling should only pass the frontmost
surface elements per pixel. If these elements occlude a target or
the close proximity of a target, they should be correctly blended
in back-to-front order with a user-specified alpha in front of the
target and fading to no transparency at a specific number of
pixels from the target.

Table I reviews the existing dynamic techniques discussed
earlier in this paper and summarizes whether they fulfill our
requirements for use in visualization applications.

In general, standard transparency-based techniques (Section
IIB) are insufficient for visualization purposes. Either they do
not provide unlimited depth (R2), or doing so results in
non-real-time performance (R5). Furthermore, none of them are
targeted towards occlusion management in visualization, so
they provide little or no context and depth information (R7).
Some transparency techniques are designed only for 2D
representations (R4).

Cut-away and break-away views (Section II-C) come closer
to the mark by removing intervening surfaces on a per-pixel

level. However, most techniques in this class are not well-suited
for general visualization applications because they do not
support unlimited depth layers; typically, they cannot handle the
situation when targets line up in front of other targets (in this
case, we must ensure that the furthermost target is always
visible). Also, many provide poor context and depth infor-
mation (R7) and require that users have prior knowledge of the
features they are looking for—if not, the user is forced to
conduct an exhaustive visual and possibly spatial search.

Finally, while importance-driven rendering in theory is
perhaps the most powerful approach to dynamic transparency,
the only existing implementation (IDVR [26]) is targeted at
volume and not polygonal representations (R4) and does not
provide real-time performance (R5).

IV.2 Visual Complexity

The dynamic transparency mechanism reduces occlusion by
making distractors semi-transparent on-demand in order to
expose hidden targets. However, doing so will have an impact
on the visual realism and complexity of the resulting image. The
image will look less realistic than without dynamic transparency
(after all, being able to see through walls and objects is different
from our normal vision), and there may also be an increased
amount of information in the image (what used to be an empty
corridor may now become a mosaic of objects contained in the
offices adjoining the corridor).

We are interested in empirically evaluating exactly how much
impact this increased visual complexity will have user perfor-
mance in visualization applications. While dynamic transpar-
ency in theory will be of great benefit to visualizations, we want
to study whether there is a drawback in practice.

IV.3 Depth Cues

Occlusion is an important depth cue when perceiving a 3D
scene, so dynamic transparency may clearly have an impact on
the way users understand the world. For visualization
applications, depth ordering is clearly vital when trying to
understand the spatial structure of the 3D environment.
Implementations of dynamic transparency must ensure that
occlusion is not eliminated entirely, or they end up with
situations where distant objects occlude nearby objects,
so-called reverse occlusion.

Fortunately, human perception relies on many more cues be-
sides occlusion to disambiguate depth, such as stereopsis,
motion parallax, relative size, atmospheric perspective, texture
gradient, etc [35]. Even if we weaken the occlusion cue, other
depth cues will help the viewer to correctly perceive the 3D
scene. Nevertheless, we want to empirically examine this.

IV.4 Classification

Dynamic transparency for visualization is an instance of the
virtual X-Ray [4] design pattern for 3D occlusion management.
Using the terms of this taxonomy, the approach has the
following properties:
• Primary purpose: discovery
• Disambiguation strength: containment
• Depth cues: low
• View paradigm: single view

The International Journal of Virtual Reality, 2009, 8(X):Y-Z 6

• Interaction: passive (or active depending on operation

mode)
• Target invariances: location and geometry (appearance

distorted)
More specifically, the purpose of dynamic transparency is to

aid users in discovering objects. Its disambiguation strength is
very high, up to objects contained inside other objects, but this
comes at the cost of low depth cues. The technique is based on a
single view paradigm. Both passive and active interaction is
supported. Target location and geometry are retained, but
appearance may be distorted due to alpha blending, even for
uncovered targets.

V. IMAGE-SPACE DYNAMIC TRANSPARENCY
Since none of the previously presented methods fulfill our
requirements, we here present a new algorithm for 3D dynamic
transparency: image-space dynamic transparency.

An important observation that follows from our model of
occlusion from the previous section is that occlusion can be
detected in the image space by simply shooting a ray through the
scene for every pixel that is rendered and checking the order it
intersects objects in the scene. In modern graphics hardware,
this essentially amounts to detecting whenever we are
overwriting pixels in the color buffer or discarding pixels due to
depth testing. Thus, programmable fragment shaders are
perfectly suited for realizing dynamic transparency.

However, correct blending of transparency is
order-dependent, and thus our algorithm, as well as most
algorithms for transparent objects, requires the objects to be
rendered in back-to-front order. This is a classical problem,
since current graphics hardware cannot do the sorting for us
(although suggestions for solutions exist [36]). Usually, depth
sorting is performed on triangle-level. In our algorithm, for
non-intersecting objects, it is sufficient to sort on object-level
for normal objects that are opaque by default. For intersecting
objects, sorting must be performed on a per-triangle-level.
Intersecting objects are however rare and usually non-physical.
Objects fully contained within other objects, like objects in a
suitcase or nested Russian dolls, can be correctly treated by
specifying a fixed sort order (explained below).

V.1 Algorithm Overview

Our algorithm has the following basic rendering loop structure:
1) Sort the scene in back-to-front order (Painter’s algorithm).
2) All objects are blended into the frame buffer using the

alpha-channel, which defaults to 1 (opaque).
3) Blend targets into the framebuffer using a special alpha

map that is rendered to an off-screen buffer.
Given our axioms and the requirements specified previously

in this paper, the algorithm needs to fulfill these criteria:
• All parts of objects (target or distractor) in front of a target

object should be transparent.
• Object should be rendered as solids, i.e. only the

front-most surfaces should be visible. Thus, the objects
cannot be rendered using transparency in an ordinary
sense. Back-facing triangles, or more distant front-facing
triangles, should not be visible through transparent
frontmost triangles.

• There should be a gradual transition from no transparency
to a predefined transparency in an n-pixel outline region
around each target object.

• Some surfaces may be flagged to be impenetrable.
Algorithm 1 shows this algorithm in pseudocode.

V.2 Rendering Order

We divide the scene into groups. By default, a group contains
one object. All groups are sorted with respect to their center
point, which is precomputed once. The sorting metric is the
signed distance to the group from the eye along the view vector.
This is better than sorting by only the distance from the eye,
because the former corresponds better to how the z-buffer

Table 1: Visualization requirements for existing dynamic transparency techniques.

Technique R1 R2 R3 R4 R5 R6 R7
depth-peeling [13] – –
Blueprints [10] – –
view-dependent transparency [16]

2D dynamic transparency [18] – – –
multiblending [19] – – – –
content-aware free-space transparency [20] –

see-through surfaces [22] – – –

interactive cut-away views [16] – – –
interactive break-away views [16] – –
3D Magic Lenses in AR [24] – –

interactive perspective cut-away views [25] – – –
importance-driven volume rendering [26] – –

Algorithm 1. Main rendering algorithm.

Input: set of groups G
Output: correctly rendered dynamic transparency scene

1 BubbleSort(G), taking advantage of frame coherence
2 for all groups g ∈ G do
3 for all objects o ∈ g do
4 if o is a target then
5 renderTargetObject()
6 else
7 renderDistractorObject()

The International Journal of Virtual Reality, 2009, 8(X):Y-Z 7

works. We use bubble sort, since frame coherency brings the
resorting down to an average cost corresponding to O(n).

If some objects are known never to have target objects behind
them, like floors, ceilings, and outer walls, those objects can
safely be rendered to the frame buffer first. This mechanism is
also used for impenetrable surfaces.

In certain cases, like for Russian dolls, the sort order between
the dolls should be from the innermost to the outermost. A fixed
rendering order between the dolls is then user-defined by
putting them into the same group with a predefined rendering
order, for instance by the order of appearance in the group. In
other words, the innermost doll should be rendered first and the
outermost doll last. This results in correct transparency, since
only the frontmost triangles of the dolls are visible (unlike for
classic transparency). This mechanism gives the user a tool to
specify which objects should be regarded as solids.

V.3 Object Rendering

Initial requirements for rendering both targets and distractors
are that (i) the alpha buffer is initiated to 1 for each pixel at the
start of each frame, (ii) rendering is done back-to-front on object
level, and (iii) the alpha buffer contains the desired blending
factor (transparency) at each pixel. Given these preconditions,
we render distractor objects in the following way:

1) Render object to the z-buffer to mask out front faces.
2) Blend object to the color buffer.
The first step selects the frontmost surfaces of the object. The

second blends these surfaces to the frame buffer, with blending
using the alpha values stored in the frame buffer. These alpha
values are 1 by default and less in front of, and in an n-pixel
region around, target objects.

In contrast, target objects are rendered in the following way:
1) Render step 1 and 2 as for distractor objects.
2) Render alpha mask, i.e. multiplicatively blend an alpha

mask (Figure 2) to the alpha channel of the frame buffer.
The final step ensures that the rendered target is visible by

creating a mask that essentially protects the target from being
fully overdrawn by subsequently rendered objects.

V.4 Alpha Mask

As discussed in the general model of dynamic transparency,
targets are made visible by changing the transparency level of a
selection of the distracting entities occluding the target. In our
image-space implementation, we perform entity selection on a
per-pixel level. This is done using an alpha mask that modulates
target pixels with the intervening distractor pixels.

Multiplying a constant alpha value to the pixels covered by
the target object is easily done by simply rendering the object to
the alpha-channel only and using a color with the alpha value set
appropriately. Creating the alpha mask is a little trickier.

The alpha mask can be any type of shape exposing the
underlying target, such as an ellipse or circle. We have exper-
imented with all of these shapes (see Figure 2). The drawback
with circles is that a bounding circle for an oblong object will
cause a high degree of wasted space being exposed. The same is
true for an axis-aligned ellipse, and even an object-aligned
ellipse will be problematic for a large cross shape.

Due to these reasons, we instead choose the expanded outline
of the object with a transparency gradient as the alpha mask

shape. To achieve this, we render to two external off-screen
buffers alternately to create a border around the target object

(a)

(b)

(c)

with a smooth transition to full opacity. The resolution can be
allowed to be quite low; we use a size of 128 × 128. See
Algorithm 2 for pseudocode for the alpha mask algorithm and
refer to Algorithm 3 for the fragment shader code.

We found that it often looks better to have the transition from
full opacity to a low start alpha value α0 for the gradient outline,
while keeping a higher threshold opacity αT for pixels occluding
the target. This maximizes both context and discovery.

Figure 3 shows a more complex example with an
ellipse-shaped alpha mask uncovering a tank hidden by a tree.

V.5 Performance

Table II shows the performance of three example applications
with and without dynamic transparency active (an abstract
environment, an architectural walkthrough, and the Jeep
visualization example in Figure 1). The test was performed on
an Intel Pentium 4 desktop computer with 1 GB of memory
running Microsoft Windows XP and equipped with an NVidia
Geforce 7800 GTX graphics adapter. As can be seen from the

Fig 2. Alpha mask creation for an occluded target being made visible using
dynamic transparency. (a) Circle. (b) Ellipse (axis-aligned). (c) Outline.

The International Journal of Virtual Reality, 2009, 8(X):Y-Z 8

measurements, only the Jeep application is fillrate-limited (the
bottleneck seems to be buffer switching). For the Walkthrough
application, we are performing dynamic transparency on 50
complex objects, so 11 FPS is acceptable, if not quite real-time.

Input: target object o, mask width n, two buffers B1 and B2.
Output: 128 × 128 alpha mask blended to the frame buffer.
1 Enable buffer B1.
2 Render the target object o to the alpha channel only, setting

the alpha values to αT , the threshold transparency for objects
in front of target objects.

3 Set buffer B1 as texture.
4 Enable rendering to buffer B2.
5 for each layer {1 ...n} of mask do
6 Render buffer-sized quad with the fragment shader

specified in Algorithm 3.
7 Set the rendered buffer as texture and enable rendering

to the other buffer. Each iteration adds one pixel-wide
layer of the transition.

8 Increase the border alpha value αB in the shader
incrementally starting from α0 to 1.0.

9 Disable buffer and activate standard color buffer.
10 Multiplicatively blend the screen-size buffer texture to the

color buffer (alpha values). Note that resolutions may differ,
but linear filtering quite efficiently hides zooming artifacts.

11 Render the target region again to avoid jaggedness at the
border of the target object due to differences in resolution
between the color and mask buffers. (Line 2).

Input: border alpha αB, frame buffer F, screen position P
Output: alpha value αP for pixel at position P
1 bool IsBorderPixel ← false
2 for each neighbor N of position P do
3 IsBorderPixel ← F(N).Alpha != 1.0 or

IsBorderPixel

4 IsBorderPixel ← (F(P).Alpha == 1.0) and
IsBorderPixel

5 output IsBorderPixel ? αB : 1.0

Application #polys Screen

resolution
Standard

(FPS)
DynTrans

(FPS)
Abstract 13k 800 x 600

1280x1024
87
87

33
33

Walkthrough 464k 800x600 40 11
 1280x1024 40 11
Jeep 115k 800x600 300 140
 1280x1024 188 90
Table 2: Performance for three example applications.

VI. USER STUDY
From a purely theoretical viewpoint, it seems clear that dynamic
transparency will make it significantly easier to discover and
access targets in a 3D environment. However, as mentioned in
Section IV, the method has two important side-effects:
increased visual complexity, and reduced depth perception.

While we have designed our image-space implementation to
minimize these, we cannot be sure of how well it will perform in
practice. Therefore, we conducted a controlled experiment
comparing the image-space dynamic transparency technique to
unaided 3D navigation.

In other words, our primary motivation for this user study is
not to prove the superiority of our technique over other dynamic
transparency techniques, but rather to measure the usefulness of
dynamic transparency and verify that it has no significant
weaknesses. While it might have been interesting to compare
our technique to other approaches, the fact is that no existing
dynamic transparency technique is designed for visualization
use and thus does not support all of our requirements outlined in
Section IV.

VI.1 Predictions

Despite the possibility of dynamic transparency having a neg-
ative impact on user performance, we formulate the following
optimistic predictions (in relation to unaided 3D navigation with
no access to dynamic transparency):
P1. Dynamic transparency will allow for faster performance.

Certainly, we believe that our dynamic transparency
implementing will help participants to use less time for
solving visual perception tasks.

P2. Dynamic transparency will not cause decreased accuracy.
We claim that the increased visual complexity and loss of
depth information introduced by dynamic transparency will
not have a significant impact on the accuracy of parti-
cipants solving visual perception tasks. In fact, for some
tasks (such as object discovery), dynamic transparency will
allow for better accuracy.

P3. Dynamic transparency will not cause decreased static
depth perception. The depth cues retained in our dynamic
transparency implementation will not result in significantly
reduced depth perception for a static 3D scene.

VI.2 Participants

We recruited 16 paid subjects for the study (3 female, 13 male).
The subjects were drawn primarily from the undergraduate
student pool at our university and were screened to have at least
basic computer knowledge. Subject ages ranged from 20 to 35
years of age. All subjects had normal or corrected-to-normal
vision, and no participants reported color-blindness.

VI.3 Apparatus

The experiment was conducted on an Intel Centrino Duo laptop
computer equipped with 2048 MB of memory running the
Microsoft Windows XP operating system. The display was a
17inch widescreen LCD display running at 1920 × 1200
resolution and powered by an NVidia Geforce 7800 GO
graphics card. Input devices were a standard Microsoft mouse
and the laptop keyboard.

VI.4 Scenarios

We designed the study to include two widely different sce-
narios: an abstract 3D world and a virtual walkthrough in a 3D
building, and four different tasks. In this way, we aimed to be
able to measure not only basic target discovery, but also the
more complex visual tasks of access and spatial relation.

Algorithm 3. Fragment shader.

Algorithm 2. Rendering the alpha mask.

The International Journal of Virtual Reality, 2009, 8(X):Y-Z 9

Abstract 3D World: The first scenario (ABSTRACT) was intended
to portray an abstract 3D visualization application and consisted
of a cubic 3D volume of size 100 × 100 × 100 filled with n = 200
objects of randomized position and orientation (see Figure 4 for
a screenshot). The objects were simple 3D primitives: spheres,
cones, boxes, and torii. Objects were allowed to intersect but not
full enclose each other. A random ratio of 10% to 20% of the
objects were flagged as targets and the remainder as distractors.
Distractor objects were randomly assigned green and blue color
component values, while targets were set to a pure red color and
made visible using dynamic transparency.

The user view was fixed at a specific distance from the center
of the environment cube so that no object could fall outside of
the view frustum, and could be freely orbited around the focus
point to afford view from all directions. Orbiting was performed
by left-dragging the mouse.

Virtual Walkthrough: The second scenario (WALKTHROUGH) was
a little more complex in nature and designed to mimic a real 3D
walkthrough visualization application more closely. Here, a
one-level floor plan was randomly generated from a simple 16 ×

16 grid, creating walls, floors and ceiling as well as ensuring that
all rooms were connected with all of its adjacent neighbors
through doorways (see Figure 6 for an example). A number of n
= 50 objects were generated and placed in the environment, and
all objects are made visible through the walls using dynamic
transparency. The 3D objects chosen for this scenario were
more complex 3D models, including pets, vehicles, and
furniture, yet were easily distinguishable from each other.

The user started each instance in the center of the
environment and navigated using 3D game-like controls
involving the mouse and keyboard (mouse to pan the camera
around the vertical axis, arrow keys to move, no strafing
allowed). The view was constrained to floor level with only yaw
(no pitch or roll control) and there was no collision detection
with walls or objects.

VI.5 Tasks

Tasks were designed to exercise all three visual perception tasks
(Section III-B), and differed for the two scenario types. For the
abstract 3D world, participants performed the following tasks:
T1 Count the number of targets (red objects) [discovery]
T2 Identify pattern formed by the targets (red cones)

[relation]

For task T1, all red objects were targets and were to be
counted. For T2, on the other hand, only red cones were targets.
There existed red objects in other shapes (exposed using
dynamic transparency), but these were distractors and were not
part of the global pattern to be identified.

The pattern was one of the five capital letters C, K, R, X, and
Y, rasterized in a 5 × 7 horizontal grid of the same scale as the
environment and rotated in an arbitrary fashion around the
vertical axis (Figure 5). The subject was informed of the
possible letters prior to performing the task, but not the exact
renderings.

Fig. 3. Ellipse alpha mask for a tank 3D model occluded by a tree.

=

Fig 5. The five patterns used in task T2.

Fig 4. ABSTRACT application with dynamic transparency active.

The International Journal of Virtual Reality, 2009, 8(X):Y-Z 10

For the walkthrough, subjects performed the following tasks:

T3 Find the unique target [discovery]
T4 Count the number of targets [discovery, relation]

For T3, one of the objects in the environment was unique and
the user was asked to find this target. The current target was
shown in the upper left corner of the screen. After finding the
target, the user proceeded to mark its location on a 2D floor plan
of the environment (seen from above). Figure 7 gives a
screenshot.

For the counting task (T4), a random number of the objects in
the environment were of the same type and the user was asked to
count the occurrences. The current object type was again shown
in the upper left corner of the screen. After having estimated that
all occurrences were found, the subject entered the amount into
the application.

VI.6 Experimental Design

The study used a 2 × 2 within-subjects design. The order of the
conditions was counterbalanced using a Latin square: each level
of each factor ocurred an equal number of times in every
position in the sequence. In summary, the factors were the
following:
• Dynamic transparency: active or inactive
• Scenario: abstract or walkthrough

The tasks for each condition depended on the scenario. With

16 participants and 3 trials per condition, there were 384 tasks
recorded in total. The experimental system automatically
collected completion time and a correctness measure for each
task. This measure depended on the actual task:
• relative error: target count error divided by the total

number of targets (T1, T4);
• correctness: correctness measure (true/false) (T2); and
• error distance: distance between participant answer and

actual target position (T3).
Abstract scenarios were dynamically generated using a

random generator for each trial. Walkthrough scenarios were
static, but since all conditions were counterbalanced, any
differences in complexity between individual scenarios
cancelled each other.

VI.7 Procedure

Every task set was preceded by a training session lasting up to
five minutes where the subject was instructed in the current task

and was allowed to explore the scenario as well as ask
questions. Each task set consisted of three trials per condition.
During the execution of the actual task set, only general
questions were allowed. A session lasted up to 60 minutes.

After finishing the test, participants were asked to fill out a
post-test questionnaire about their subjective ratings. As part of
this questionnaire, they were also asked to perform a static depth
perception test from the WALKTHROUGH scenario (Figure 8).
This test asked subjects to arbitrate between the visible objects
to state which object was closest to the current viewpoint.

VII. RESULTS
Analysis of the collected measurements indicates that both our
hypotheses are correct: subjects are more efficient (i.e. use less
time) and more correct when performing visual search tasks
using dynamic transparency than without.

VII.1 Completion Time

Overall, the average completion time with inactive dynamic
transparency was 65.17 (s.d. 27.75) seconds, compared to 28.69
(s.d. 11.02) with active dynamic transparency. Analysis using a
one-way analysis of variance (ANOVA) shows that this was
also a significant difference (F(1,15) = 49.54,p < .001). Each of
the individual tasks also showed significantly shorter average
completion times for active dynamic transparency compared to
inactive dynamic transparency down to p < .05. See Table III
and Figure 9 for a summary.

Task Standard DynTrans F p
T1 56.26 (38.72) 40.44 (20.99) 7.54 *
T2 22.30 (16.20) 15.80 (10.21) 5.28 *
T3 62.78 (35.63) 23.21 (12.01) 22.98 **
T4 140.0 (61.75) 40.80 (24.16) 48.61 **

* = p < 0.05, ** = p < 0.01
Table 3. Average completion time for all four tasks (standard deviations).

VII.2 Correctness

For the counting tasks (task T1 and T4), we defined correctness
in terms of average relative error, i.e. the ratio between the
absolute error and the total number of targets for all trials. The
absolute error was the absolute difference between the sum of
the targets and the sum of the subject answers for the trials.
Overall, for task T1 and T4 combined, the average relative error
was .100 (s.d. .141) when dynamic transparency was inactive
compared to .027 (s.d. .045) when it was active. One-way
ANOVA shows that this is also a significant difference (F(1, 15)
= 6.28, p = .024).

Task 1 in particular showed average relative error of .042
(s.d. .046) for inactive dynamic transparency and .017 (s.d.
.018) for active. This too was significant (F(1,15) = 4.74, p =
.046). Task 4 showed .123 (s.d. .184) and .034 (s.d. .074)
average relative error, respectively, not a significant difference
(F(1,15) = 4.12, p = .061).

For task 2, we define correctness as whether or not the subject
identified the pattern as the correct one. This figure was .963
(s.d. .109) for no dynamic transparency and .963 (s.d. .150) for
active. This is obviously not a significant difference (Friedman
test, p =1.0).

Fig 6. Example floor plan for the WALKTHROUGH application.

The International Journal of Virtual Reality, 2009, 8(X):Y-Z 11

Fig 8. Static depth perception image for dynamic transparency. Participants
were asked to arbitrate between the following objects: white table and bike;
sofa and director’s chair; white table and dog.

Finally, for task 3, we define correctness as the average
Euclidean distance (in world units) from the real position of the
target and the point marked on the map by the subject for each
trial. With dynamic transparency inactive, this average distance
was 16.99 (s.d. 14.44), as opposed to 16.21 (s.d. 8.88). This
difference is not significant (F(1,15) = .068, p = .797), and
indicates that the spatial understanding of the subjects was not
negatively affected by the use of dynamic transparency.

Fig 9. Average completion times for all tasks (error bars show standard
deviation).

VII.3 Subjective Ratings

Figure 10 summarizes subjective ratings of dynamic trans-
parency compared to unaided 3D navigation for each scenario.
These were all significant differences using Friedman Tests (p <
.05). Overall, unaided navigation had a mean rating of 1.52 (s.d.

.59) as opposed to 3.09 (s.d. .38) for dynamic transparency.
This difference is significant (Friedman Test, p < .01).

Overall preference for dynamic transparency as opposed to
standard vision was .94 (s.d. .25), with one participant
indicating a neutral preference.

Static depth perception across all participants gave an
average of 2.94 (s.d. .25) out of 3 correct answers. The average
self-reported depth perception on a scale from 0 to 4 was 2.75
(s.d. .45). Thus, participants generally felt they still had
acceptable depth perception even with transparency active.

Fig 10. Average subjective rating for both applications (error bars show
standard deviation).

VIII. DISCUSSION
The results from our user study can be summarized as follows:
• The completion time for all tasks was significantly shorter

for participants using dynamic transparency than unaided
3D navigation.

• Participants were significantly more accurate for some
tasks using dynamic transparency. In no task was unaided
3D navigation more accurate.

• Static depth perception was high for dynamic
transparency, and self-reported depth perception was
acceptable.

These findings in turn all confirm our predictions P1, P2, and
P3. In the following sections, we will try to explain and
generalize these results. We will also briefly discuss limitations
and uses for dynamic transparency in practice as well as our
future work.

Fig. 7. First-person view of the WALKTHROUGH application with dynamic transparency inactive (left) and active (right).

The International Journal of Virtual Reality, 2009, 8(X):Y-Z 12

VIII.1 Explaining the Results

The results from the user study confirm all of our predictions. In
other words, our image-space dynamic transparency implem-
entation fulfilled our goals for the technique without falling prey
to the potential weaknesses of decreased depth perception and
increased visual complexity. Furthermore, the subjective results
indicate a strong preference for dynamic transparency.

As has been emphasized several times in this paper, occlusion
is an important depth cue that humans use to determine the
spatial relation of objects in our environment. The introduction
of dynamic transparency can then cause “reverse occlusion”, i.e.
the phenomenon that distant objects all of a sudden occlude
nearby objects instead. In our implementation, we took care to
avoid this extreme, but it is clear that depth perception is still
weakened. How did participants manage to achieve such good
accuracy results, on a par with unaided 3D navigation?

The explanation for this lies in the redundancy in depth infor-
mation. As discussed earlier, human perception relies on many
more factors besides occlusion to disambiguate depth; examples
include stereopsis, motion parallax, atmospheric perspective,
texture gradient, etc. Even if we weaken the occlusion cue, other
depth cues will help the viewer to perceive the 3D scene
correctly (for instance, in Figure 8, relative positioning and size
plays a large role in aiding depth perception).

VIII.2 Generalizing the Results

In light of the general model for dynamic transparency pre-
sented in this paper, it is interesting to investigate whether the
results we collected for our implementation also generalize to
the whole class of dynamic transparency techniques. The
image-space algorithm described in this paper does not make
use of any special functionality to achieve these results, so any
other dynamic transparency implementation that conforms to
the requirements in Section IV should see the same results.

Our choice of scenarios for the user study may also affect
how we can apply these results to other situations. The intention
behind the user study design was to capture an ecologically
valid selection of application domains. However, it can be
argued that a wider selection of perhaps three or four scenarios
taken from real visualization applications would have
constituted a better design. We leave this extended analysis for
future work.

Furthermore, there is a limit where the findings from the
study do not hold. Add enough objects, or make the scene
complex enough, and the visual complexity and lack of depth
information will make dynamic transparency impractical. We
can only claim generalizability for the same order of object
complexity and quantity that we involved in the user study,
but—limitations of the scenario 3D environments non-with-
standing—we believe these to be good approximates of real
visualization applications.

The shape of the alpha mask may also have an impact on the
results. In our study, we only used the outline alpha mask, but it
is conceivable that different shapes may yield different results.
Given that other shapes are useful for particular applications, it
would be interesting for future studies to investigate this effect.

VIII.3 Limitations to Dynamic Transparency

One fundamental limitation with dynamic transparency lies in
the selection of targets and distractors for the passive mode of
operation. The model requires semantic knowledge of which
objects are targets and which are distractors. In some
applications, this dichotomy may be known in advance, but
other more general applications may want to let the user make
this selection. It is not clear exactly how to allow for this
interaction. In this regard, the active mode of operation is more
powerful because it turns this decision into a direct manipula-
tion task. On the other hand, active dynamic transparency gives
rise to a new range of issues, such as choosing the depth or the
number of layers uncovered by the dynamic transparency magic
lens. The relative efficiency of these two modes should be
evaluated in future studies.

The model for dynamic transparency described in this paper
is clearly very useful for many visualization tasks. However, it is
important to remember that dynamic transparency, for all of its
virtues, has a direct impact on the visual realism of a 3D scene.
Walls, vehicles, and other objects with semi-transparent holes in
them simply do not look realistic, so in a sense we sacrifice
some realism to achieve these benefits. As discussed in this
paper, this sacrifice may be even more tangible: scenes become
more “visually busy” and understanding the structure of the
scene may become exceedingly difficult.

As an example of this, some subjects in our study had the
interesting behavior of “respecting” the world less with dynamic
transparency active. When it was inactive, they would use the

Fig. 11. Applying the image-based dynamic transparency algorithm to units in a 3D real-time strategy game.

The International Journal of Virtual Reality, 2009, 8(X):Y-Z 13

doors in the virtual walkthrough rather than going through
walls. However, with dynamic transparency active, they would
not hesitate to pass through walls. While this is an informal
observation, this behavior might indicate that the impact that
dynamic transparency has on visual realism causes the world to
become less believable to the users, thus making them ignore
the implicit rules of the environment.

VIII.4 Applications for Dynamic Transparency

Beyond the visualization aspects that this paper focuses on, the
concept of dynamic transparency can be applied to a broad
range of other domains. Examples include simulation, training,
and command and control applications, among others.

In particular, the method could be useful in computer games,
where we may want to temporarily suspend graphical realism by
removing intervening objects in order to improve game play.
Figure 11 shows an example from a mockup 3D strategy game,
rendered in real-time using our algorithm (Figure 3 shows the
same scene with an ellipse-shaped alpha mask). The
player-controlled tank hiding under the cover of the forest is
made visible through the foliage of the trees in order to help the
user see the friendly units. Also see Figure 12 for another
example of a game-like scenario with an F-15 fighter aircraft
hidden inside a hangar being exposed to the player using
dynamic transparency.

VIII.5 Future Work

We envision improving our model for dynamic transparency
with a more general interest-based importance scale, allowing
users and applications to dynamically specify the relative im-
portance of individual parts of 3D objects to a very high degree
(possibly along the lines of the IDVR [26] importance model).
We will continue working on techniques for reducing the impact
of occlusion in 3D environments, including the automatic
generation of view-dependent animated exploding diagrams as
well as the generation of occlusion-free grand tours of a 3D
environment. We are also interested in pursuing similar avenues
for providing superhuman vision capabilities in visualization
applications. These occlusion management techniques could be
useful for 3D user interface development [37].

IX. CONCLUSIONS
We have presented an evaluation of the use of dynamic trans-
parency for managing occlusion of important target objects in
3D visualization applications. In the absence of existing
real-time algorithms for dynamic transparency that are suitable
for interactive visualization, we have further devised an
image-space algorithm and implementation realizing the model.
The algorithm uses the standard framebuffer as a cumulative
alpha buffer, rendering the scene back-to-front and blending in
alpha masks of target objects to allow for see-through surfaces.
Our evaluation consisted of a comparative user study measuring
efficiency and correctness gains from using the technique as
opposed to standard 3D navigation controls. Our results clearly
show that having access to dynamic transparency yields
significantly more efficient (faster) performance. Users are
typically also more correct with the technique than without.

ACKNOWLEDGMENT

The authors would like to thank Per A. Jonasson for valuable
insights into superhero X-ray vision, as well as the members of
the IIR group at Georgia Tech for their comments on the
intermediate stages of this work. We also thank the people who
have offered feedback on this work since its initial presentation
at the INTERACT conference in Rio de Janeiro, Brazil.

REFERENCES
[1] N. Elmqvist, U. Assarsson, and P. Tsigas, “Employing dynamic trans-

parency for 3D occlusion management: Design issues and evaluation,” in
Proceedings of INTERACT, ser. LNCS, C. Baranauskas, P. Palanque, J.
Abascal, and S. D. J. Barbosa, Eds., vol. 4662. Springer, 2007, pp.
532–545.

[2] D. A. Bowman, C. North, J. Chen, N. F. Polys, P. S. Pyla, and U. Yilmaz,
“Information-rich virtual environments: theory, tools, and research
agenda,” in Proceedings of the ACM Symposium on Virtual Reality
Software and Technology, 2003, pp. 81–90.

[3] N. F. Polys and D. A. Bowman, “Design and display of enhancing
information in desktop information-rich virtual environments: challenges
and techniques,” Virtual Reality, vol. 8, no. 1, pp. 41–54, 2004.

[4] N. Elmqvist and P. Tsigas, “A taxonomy of 3D occlusion management
techniques,” in Proceedings of the IEEE Conference on Virtual Reality,
2007, pp. 51–58.

[5] A. Hertzmann, “Painterly rendering with curved brush strokes of multiple
sizes,” in Proceedings of the ACM Conference on Computer Graphics
(SIGGRAPH ’98), 1998, pp. 453–460.

[6] E. Praun, H. Hoppe, M. Webb, and A. Finkelstein, “Real-time hatching,”
in Proceedings of the ACM Conference on Computer Graphics
(SIGGRAPH 2001), 2001, pp. 581–581.

[7] T. Isenberg, B. Freudenberg, N. Halper, S. Schlechtweg, and T.
Strothotte, “A developer’s guide to silhouette algorithms for polygonal
models,” IEEE Computer Graphics and Applications, vol. 23, no. 4, pp.
28–37, 2003.

[8] A. Gooch, B. Gooch, P. Shirley, and E. Cohen, “A non-photorealistic
lighting model for automatic technical illustration,” in Proceedings of the
ACM Conference on Computer Graphics (SIGGRAPH ’98), 1998, pp.
447–452.

[9] B. Gooch, P.-P. J. Sloan, A. Gooch, P. Shirley, and R. F. Riesenfeld,
“Interactive technical illustration,” in Proceedings of the ACM
Symposium on Interactive 3D, 1999, pp. 31–38.

[10] M. Nienhaus and J. Döllner, “Blueprints: Illustrating architecture and
technical parts using hardware-accelerated non-photorealistic rendering,”
in Proceedings of Graphics Interface, 2004, pp. 49–56.

[11] B. Freudenberg, M. Masuch, and T. Strothotte, “Real-time halftoning: A
primitive for non-photorealistic shading,” in Proceedings of the 13th
Eurographics Workshop on Rendering. Eurographics Association, 2002,
pp. 227–232.

[12] D. S. Kay and D. P. Greenberg, “Transparency for computer synthesized
images,” in Computer Graphics (SIGGRAPH ’79 Proceedings), 1979,
pp. 158–164.

[13] C. Everitt, “Interactive order-independent transparency,” NVIDIA Cor-
poration, 2001, see http://developer.nvidia.com.

[14] A. Mammen, “Transparency and antialiasing algorithms implemented
with the virtual pixel maps technique,” IEEE Computer Graphics and
Applications, vol. 9, no. 4, pp. 43–55, July 1989.

[15] P. J. Diefenbach, “Pipeline rendering: Interaction and realism through
hardware-based multi-pass rendering,” Ph.D. thesis, Computer Graphics,
University of Pennsylvania, 1996.

[16] J. Diepstraten, D. Weiskopf, and T. Ertl, “Transparency in interactive
technical illustrations,” Computer Graphics Forum, vol. 21, no. 3, pp.
317–325, 2002.

[17] B. L. Harrison, G. Kurtenbach, and K. J. Vicente, “An experimental
evaluation of transparent user interface tools and information content,” in
Proceedings of the ACM Symposium on User Interface Software and
Technology 1995, 1995, pp. 81–90.

[18] C. Gutwin, J. Dyck, and C. Fedak, “The effects of dynamic transparency
on targeting performance,” in Proceedings of Graphics Interface, 2003,
pp. 105–112.

The International Journal of Virtual Reality, 2009, 8(X):Y-Z 14

 [19] P. Baudisch and C. Gutwin, “Multiblending: displaying overlapping

windows simultaneously without the drawbacks of alpha blending,” in
Proceedings of the ACM CHI 2004 Conference on Human Factors in
Computing Systems, 2004, pp. 367–374.

[20] E. W. Ishak and S. K. Feiner, “Interacting with hidden content using
content-aware free-space transparency,” in Proceedings of the ACM Sym-
posium on User Interface Software and Technology, 2004, pp. 189– 192.

[21] E. A. Bier, M. C. Stone, K. Pier, W. Buxton, and T. DeRose, “Toolglass
and Magic Lenses: The see-through interface,” in Computer Graphics
(SIGGRAPH ’93 Proceedings), 1993, pp. 73–80.

[22] L. Chittaro and I. Scagnetto, “Is semitransparency useful for navigating
virtual environments?” in Proceedings of the ACM Symposium on
Virtual Reality Software and Technology, 2001, pp. 159–166.

[23] J. Diepstraten, D. Weiskopf, and T. Ertl, “Interactive cutaway rendering,”
in Proceedings of Eurographics, 2003, pp. 523–532.

[24] J. Looser, M. Billinghurst, and A. Cockburn, “Through the looking glass:
the use of lenses as an interface tool for augmented reality interfaces,” in
Proceedings of GRAPHITE, 2004, pp. 204–211.

[25] C. Coffin and T. H öllerer, “Interactive perspective cut-away views for
general 3D scenes,” in Proceedings of the IEEE Symposium on 3D User
Interfaces, 2006, pp. 25–28.

[26] I. Viola, A. Kanitsar, and E. Gröller, “Importance-driven volume ren-
dering,” in Proceedings of the IEEE Conference on Visualization, 2004,
pp. 139–145.

[27] I. Viola, M. Feixas, M. Sbert, and E. Gröller, “Importance-driven focus of
attention,” IEEE Transactions on Visualization and Computer Graphics,
vol. 12, no. 5, pp. 933–940, Sept./Oct. 2006.

[28] N. Elmqvist and P. Tsigas, “View-projection animation for 3D occlusion
management,” Computers and Graphics, vol. 31, no. 6, pp. 864–876,
2007.

[29] R. Stoakley, M. J. Conway, and R. Pausch, “Virtual Reality on a WIM:
Interactive worlds in miniature,” in Proceedings of the ACM CHI’95
Conference on Human Factors in Computing Systems, 1995, pp. 265–
272.

[30] N. Elmqvist and M. E. Tudoreanu, “Occlusion Management in Immersive
and Desktop 3D Virtual Environments,” International Journal of Virtual
Reality, vol. 6, no. 2, pp. 21–32, 2007.

[31] H. Sonnet, M. S. T. Carpendale, and T. Strothotte, “Integrating expanding
annotations with a 3D explosion probe,” in Proceedings of the ACM
Conference on Advanced Visual Interfaces, 2004, pp. 63–70.

[32] C. Andújar, P.-P. Vázquez, and M. Fairén, “Way-finder: guided tours
through complex walkthrough models,” in Proceedings of Eurographics,
2004, pp. 499–508.

[33] M. S. T. Carpendale, D. J. Cowperthwaite, and F. D. Fracchia, “Distortion
viewing techniques for 3D data,” in Proceedings of the IEEE Symposium
on Information Visualization, 1996, pp. 46–53.

[34] K. Perlin and D. Fox, “Pad: An alternative approach to the computer in-

terface,” in Proceedings of the ACM Conference on Computer Graphics
(SIGGRAPH ’93), 1993, pp. 57–64.

[35] E. B. Goldstein, Sensation and Perception, 6th ed. Wadsworth-Thomson,
2002.

[36] L. Carpenter, “The A-buffer, an antialiased hidden surface method,”
Computer Graphics, vol. 18, no. 3, pp. 103–108, July 1984.

[37] D. A. Bowman, J. Chen, C. A. Wingrave, J. Lucas, A. Ray, N. F. Polys, Q.
Li, Y. Haciahmetoglu, J.-S. Kim, S. Kim, R. Boehringer, and T. Ni. “New
Directions in 3D User Interfaces,” International Journal of Virtual Rea-
lity, vol. 5, no. 2, pp. 3–14, 2006.

Niklas Elmqvist is an Assistant Professor in the School
of Electrical and Computer Engineering at Purdue Uni-
versity in West Lafayette, IN, USA. Having joined
Purdue in fall 2008, he was previously a Microsoft
Research postdoctoral researcher in the AVIZ team of
INRIA Saclay - Île-de-France located at Université
Paris-Sud in Paris, France. He received his Ph.D. in
December 2006 from the Department of Computer

Science and Engineering at Chalmers University of Technology in Gothenburg,
Sweden. His research specialization is information visualization, human-
computer interaction, and visual analytics. He is a member of the IEEE and the
IEEE Computer Society

Ulf Assarsson is an Assistant Professor in the Depart-
ment of Computer Science and Engineering at Chalmers
University of Technology in Göteborg, Sweden. His area
of research is computer graphics, focusing primarily on
real-time and non-real-time soft shadows as well as
raytracing and global illumination. He is a member of the
IEEE and the IEEE Computer Society.

Philippas Tsigas is an Associate Professor in the Depar-
tment of Computer Science and Engineering at Chalmers
University of Technology in Göteborg, Sweden. He is the
scientific leader of the Distributed Computing and
System research group and his research interests include
distributed and parallel computing and systems, as well as
general information visualization. He is a member of the
IEEE and the IEEE Computer Society.

Fig. 12. Simple 3D scene showing dynamic transparency alpha maps uncovering an F-15 fighter hidden inside a building.

	Introduction
	Related Work
	Non-Photorealistic Rendering
	Transparency
	Cut-Away and Break-Away Views
	Importance-Driven Rendering
	General Occlusion Management

	General Dynamic Transparency
	Model
	Visual Tasks
	Basic Mechanism
	Guaranteed target visibility: All targets in the world U should be visible from any given viewpoint v. This is the most basic definition of dynamic transparency and it directly supports the target discovery task. It stipulates that no targets should b...
	Entity selection: An occluded object is made visible by changing the transparency level of all occluding entities e ∈ E from opaque (α(e)=1) to transparent (α(e)= αT). This axiom describes the mechanics of which objects should be turned transparent to...
	Impenetrability: Entities (objects, surfaces, or pixels) can be made impenetrable and will never be made transparent. This axiom provides a useful exception to the initial one—in some cases, we may want to limit the extent of the dynamic transparency...
	Self-occlusion: Targets are allowed to self-occlude. This is another refinement of the previous axioms: dynamic transparency operates on whole objects. Even if a part of a target is occluded by other parts of itself, none of its surfaces will be made ...

	Context and Granularity
	Operation Modes
	Layer Control

	Dynamic Transparency for Visualization
	Existing Techniques
	Visual Complexity
	Depth Cues
	Classification

	Image-Space Dynamic Transparency
	Algorithm Overview
	Rendering Order
	Object Rendering
	Alpha Mask
	Performance

	User Study
	Predictions
	Participants
	Apparatus
	Scenarios
	Tasks
	Experimental Design
	Procedure

	Results
	Completion Time
	Correctness
	Subjective Ratings

	Discussion
	Explaining the Results
	Generalizing the Results
	Limitations to Dynamic Transparency
	Applications for Dynamic Transparency
	Future Work

	Conclusions
	Acknowledgment
	References

