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Abstract

Counting networks form a new class of distributed, low-contention data structures,
made up of interconnected balancers and are suitable for solving a variety of multiprocessor
synchronization problems that can be expressed as counting problems. A linearizable
counting network guarantees that the order of the values it returns respects the real-
time order they were requested. Linearizability signi�cantly raises the capabilities of the
network, but at a possible price in network size or synchronization support. In this work we
further pursue the systematic study of the impact of timing on linearizability for counting
networks, along the line of research recently initiated by Lynch et al. in [18]. We consider
two basic timing models, the instantaneous balancer model, in which the transition of
a token from an input to an output port of a balancer is modeled as an instantaneous
event, and the periodic balancer model, where balancers send out tokens at a �xed rate.
We also consider lower and upper bounds on the delays incurred by wires connecting the
balancers. We present necessary and su�cient conditions for linearizability in the form of
precise inequalities that not only involve timing parameters, but also identify structural
parameters of the counting network, which may be of more general interest. Our results
extend and strengthen previous impossibility and possibility results on linearizability in
counting networks [13, 18].
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1 Introduction

In the counting problem, a number of concurrent processors repeatedly assign themselves succes-
sive values from a given range, such as memory addresses or destinations on an interconnection
network. A solution is said to be linearizable [14] if the order of the assigned values reects the
real-time order in which they were requested. Linearizable counting provides the ground for a
number of concurrent solutions to signi�cant multiprocessor synchronization problems, such as
time-stamp generation, multi-version database handling, scheduling of multi-threaded compu-
tations, implementation of data structures, dynamic load balancing, and bu�er management
(see, e.g., [7, 9, 11, 23]).

A counting network [3] is a highly concurrent data structure used to implement a counter.
Roughly speaking, a counting network is a directed graph whose nodes are simple computing
elements called balancers, and whose edges are called wires. A request for a counter value is
represented by a token, which enters on one of the network's input wires, propagates through
the network asynchronously by traversing a sequence of balancers, and leaves on an output
wire. Counting networks are among the very few counting techniques that are known to be
scalable, since they minimize contention (\hot-spots") as concurrency increases by distributing
memory accesses, thus increasing parallelism and throughput (see, e.g., [3, 6, 12, 22, 21]).

In order to enhance the design of concurrent counting techniques, so that they both are
scalable and support e�ective speci�cation and analysis of MIMD shared memory algorithms
|that rely on linearizability for correctness| it would be desirable to construct linearizable
counting networks. Alternatively, it would be useful to study the possibility of using additional
software constructs in order to extend a given counting network to become linearizable [13],
or the conditions under which implemented counting networks always exhibit a linearizable
behavior [18].

In this work we pursue the latter approach, following a direction pointed by a recent water-
shed paper [18], which studied linearizability properties of uniform counting networks relatively
to timing assumptions on tra�c speed. We further continue the systematic study of the impact
of timing assumptions on linearizability for counting networks. More speci�cally, we study
the boundaries between linearizable and non-linearizable behaviors of any counting network
with respect to speed variations of its tokens and balancers, in a hope to provide practitioners
with additional formal tools to support decision making in the phase of design. We provide
necessary and su�cient conditions for a counting network to be linearizable, in the form of
precise inequalities expressed in terms of speci�c graph-theoretic parameters and their relation
to variations in tra�c speed.

In more detail, we consider two basic timing models for balancer implementations in ei-
ther shared memory or message passing. In both models, we follow Lynch et al. [18] and
consider (non-zero) lower and upper bounds cmin and cmax, respectively, on the time it takes
a token to traverse a wire from balancer to balancer. In the instantaneous balancer model,
introduced and studied by Lynch et al. [18], the transition of a token from an input to an
output port of a balancer is modeled as an instantaneous event. As pointed out also in [18],
this is equivalent to the cmin and cmax bounds including the traversal of a node, but the output
being determined at the instant of the token arrival. However, in some implementations of
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Figure 1: Pictorial summary of the results for the instantaneous balancer mobel

balancers there may be restrictions due to bandwidth or clock rates. In shared memory imple-
mentations of balancers memory accesses to variables implementing the balancers may require
a constant number of steps to be completed due to restrictions in bandwidth, while in message
passing implementations, processors that use messages to \simulate" the balancers may have
access to clocks running at a bounded or �xed rate (see, e.g., [3, 12, 21, 22]). We model these
\non-instantaneous" implementations by introducing a new timing model, called the periodic
balancer model, assuming a constant period at which a balancer forwards tokens to its out-
puts. This assumption is motivated by periodic constraints commonly used in many real-time
problems (especially in scheduling real-time tasks on multiprocessors [15, 17]), and resembles
a timing model for periodic processes studied by Rhee and Welch [20]. The periodic balancer
model is more realistic in that it models balancer delay to be proportional to the number of
tokens concurrenttly traversing a balancer; this modeling is aligned with the concept of stalls
introduced and used by Dwork et al. [6] in their elegant framework for analyzing contention
in counting networks. We use rmin and rmax to denote the minimum and maximum balancer's
periods, respectively, over all balancers in the network.

We study, in particular, uniform and non-uniform counting networks; in uniform net-
works [18], each node lies on some path from inputs to outputs, and all paths from inputs to
outputs have constant lengths. Our study introduces and identi�es two crucial graph-theoretic
parameters of a counting network, the �rst one being called its inuence radius and denoted
irad; roughly speaking, the inuence radius is de�ned to be the length of the maximumdisjoint
part between two maximal paths from an inner node of the network to any two output nodes,
and captures the maximum degree of inuence two output nodes can receive in common. The
second parameter that our study identi�es and uses is the shallowness of the network, which
is the length of the shortest directed path from any of its inputs to any of its outputs (i.e. the
opposite of the depth of the network). It turns out that the inuence radius or the shallow-
ness of the network together with its depth determine in a precise, quantitative way whether a
counting network is linearizable under various timings. Our speci�c results and their relation
to previous work are as follows.

Necessary conditions For the instantaneous balancer model, we show that any uniform
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counting network of depth d is not linearizable if cmax=cmin > 1+ d=irad . Besides, by applying
in any case of uniform counting networks, this result, for the case of di�racting trees [22], where
irad = d = log n, constitutes an alternative proof of an impossibility result of Lynch et al. [18,
Theorem 4.1].

For the limit case where cmax tends to in�nity, corresponding to completely asynchronous
tra�c, our impossibility result shows that in�nite depth (hence, in�nite size) is a necessary
condition for linearizability in uniform counting networks { this constitutes an alternative proof
of an impossibility result of Herlihy et al. [13, Theorem 5.1].

Moreover, our previous necessary condition justi�es a method proposed in [18, Corollary
3.12] for turning any counting network of depth d such that cmax=cmin = k, for any constant
k > 2, into a linearizable network of depth O(d); the method prepends each of the network's
inputs with a simple path consisting of d k single-input single-output balancers. This can be
seen as a mechanism for safeguarding the appropriate ratio d=irad.

We next turn to the periodic balancer model, for which we show the equivalent necessary
condition for linearizability, which depends on the inuence radius of the network and the
product of fan-outs of balancers along a crucial path from inputs to outputs. The proof of
this condition follows the same structure as the one for the instantaneous balancer model, but,
because of the more delicate timing assumptions in the periodic balancer model, it requires
substantially more careful timing arguments.

Su�cient condition We show that any counting network (i.e. uniform or not) of depth
d and shallowness s is linearizable if cmax=cmin � 2s=d; this essentially says that the less
\equilateral" the network is, the smaller are the variations in token speeds under which it can
retain linearizability. This result is an important generalization and extention of the result by
Lynch et al. which was tight for uniform networks, to the non-uniform cases; i.e. specialized
in the case of uniform counting networks, where s = d, it yields that cmax=cmin � 2 is su�cient
for linearizability | the condition shown in [18].

Our results, which for the instantaneous balancer model are depicted in Figure 1, agree
well with and provide a complement to known results [13, 18] on linearizability properties of
counting networks, while they extend them signi�cantly, in the ways explained in the previous
paragraphs. Essentially, they imply that given a (uniform) counting network, we can determine
tra�c classes for which the network is linearizable or not by simply computing its depth and its
shallowness or its inuence radius, respectively. More important, our necessary and su�cient
conditions together imply that, in general, linearizability may not be dictated by local condi-
tions [18, Sections 3 and 4], but, rather, by conditions which need to involve graph-theoretic
parameters describing the structure of the network. We remark that our impossibility results
are shown using very simple, lock step and round-robin executions, which are expected to be
common in practice. Besides, our proof techniques may be of independent interest.

We proceed by formally de�ning counting networks and the model of computation in Sec-
tion 2. Sections 3 and 4 contain our necessary and su�cient conditions, respectively, for lin-
earizable counting networks. We conclude in Section 4, with a discussion of our results and
some open problems.
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Figure 2: A (2,3)-balancer: symbolic and node representations

2 Preliminaries

Our de�nitions for balancing networks are standard and follow those in [1, 2, 3, 8, 10, 13, 18].
For self-containment, we de�ne in this section, all terms used throughout the paper.

A (fin; fout)-balancer, or balancer for short, is a computing element receiving tokens on fin
input wires, and sending out tokens to fout output wires (see Figure 2); fin and fout are called
the fan-in and fan-out of the balancer, respectively. Tokens arrive on the balancer's input
wires at arbitrary times and are output on its output wires. Intuitively, a balancer resembles
a toggle mechanism which, given a stream of input tokens, alternately forwards them to its
output wires, from top to bottom; thus, a balancer e�ectively balances the number of tokens
that have been output on its output wires. We denote by xi, i 2 [fin], the number of tokens
ever received on the i-th input wire of a balancer, and by yj, j 2 [fout], the number of tokens
ever sent on its j-th output wire. (Throughout the paper, we will often abuse notation and
use xi (resp., yi) as both the name of the i-th input wire (resp., output wire) and the number
of tokens received (resp., sent) on the wire.) The state of a balancer at a given time is the
collection of tokens on its input and output wires partitioned per input or output wire. In the
initial state all wires contain no tokens. (For clarity we assume that all tokens are distinct.) A
state of a (fin; fout)-balancer is quiescent if

Pfin�1
i=0 xi =

Pfout�1
i=0 yi; that is, the number of tokens

that entered the balancer is equal to the number of tokens that left it. The following formal
properties are required for a (fin; fout)-balancer.

1. Safety property: In any state,
Pfin�1

i=0 xi �
Pfout�1

j=0 yj (a balancer never creates tokens).

2. Liveness property: Given any �nite number of tokens m =
Pfin�1

i=0 xi that have been input
to a (fin; fout)-balancer, the balancer reaches within a �nite amount of time a quiescent
state, i.e.

Pfin�1
i=0 xi =

Pfout�1
j=0 yj = m (a balancer never \swallows" tokens).

3. Step property: In any quiescent state, 0 � yi � yj � 1 for any pair i and j such that
0 � i < j � fout � 1; that is, the output has the step property.

A (win; wout)-balancing network is a collection of interconnected balancers; such a network is
associated with a directed graph G, with three kinds of nodes: win source nodes, x0; : : : xwin�1,
and wout sink nodes, y0; : : : xwout�1 which represent the input and output wires of the network,
and a �nite number of inner nodes, which represent the balancers of the network. The edges of
the graph are the wires of the network's balancers, the fin incoming and fout outgoing edges of a
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node being the corresponding (fin; fout)-balancer's input and output wires, respectively; the sink
and source nodes have degree 1. We denote by eG the non-directed version of G. Throughout
the paper we consider acyclic networks. The size of a balancing network is the total number of
its balancers. For any wire z in a balancing network, its depth, denoted depth(z), is de�ned to
be zero if z is an input wire of the network and maxi2[fin] depth(zi) + 1 if z is the output wire
of a balancer with input wires z0; z1; : : : ; zfin�1. For any balancer b in a balancing network,
its depth, denoted depth(b), is the maximal wire depth over all of its input wires. The depth
d of a balancing network is the maximal depth over all of its balancers. Each maximal set of
balancers having the same depth l is called the level l of the network.

A balancing network is uniform [18] if each node of the network lies on some path from
inputs to outputs, and all paths from inputs to outputs have the same length. Note that for
any balancer b in a uniform balancing network, depth(b) = dist(x; b) for any source node x in
G. The con�guration of a balancing network at a given time is de�ned as the tuple of states of
its component balancers at that time. For a con�guration �, denote by state�(b) the state of
balancer b in �. A con�guration is initial if all component states are initial. A con�guration
of a balancing network is quiescent if

Pwin�1
i=0 xi =

Pwout�1
j=0 yj; that is, the number of tokens

that entered the network is equal to the number of tokens that left it. The safety and liveness
properties of a balancing network follow naturally from its de�nition and the safety and liveness
properties of a balancer.

A (win; wout)-counting network is a (win; wout)-balancing network for which, in any quiescent
state, 0 � yj � yk � 1, for any pair of indices j and k such that 0 � j < k � w � 1; that
is, the output of a counting network has the step property. Each one of the wout outputs of a
balancing network is connected to an atomic counter (sink node), identi�ed with the name of
the respective wire. The tokens exiting the network through wire yj, are consecutively assigned
the integers j; j + w; j + 3w; : : :. The integer assigned to a token T by a counter is called the
returned value, or value for short, of the token, and is denoted by val(T ).

We briey describe below our model of multiprocessor computation, following [4, 14, 19]. We
model computations of the system as sequences of (atomic) events, or events for short. Each
event is either a balancer transition event, denoted by transhT; bi, representing transition of
token T through balancer b, or a wire transition event, denoted by transhT; b1; b2i representing
transition of token T through a wire connecting an output of b1 to an input of b2. An execution
E of a balancing network is a (possibly in�nite) sequence of alternating con�gurations and
events �0; e1; �1; e2; �2; : : : , where �0 is the initial con�guration.

Let cmin and cmax, such that 0 < cmin � cmax < 1, be the minimum and maximum time,
respectively, that it takes for a token to traverse a link of the network. In the asynchronous
model, the ratio cmax=cmin is unbounded, while in the completely synchronous it equals 1. A
balancer b passes input tokens to its outputs at a constant rate, denoted by r(b), (0 � r(b) <1).
Denote rmin = min r(b) and rmax = max r(b), where the minimum and maximum are taken over
all balancers. In the instantaneous balancer model [18] all r(b) = 0, and the upper and lower
bounds of traversing a node may be included in the bounds cmin; cmax, the output of the node
being determined at the instant of the token arrival. In the periodic balancer model all r(b) > 0,
i.e. there are no bounds on the time that it takes for a token to traverse a node.
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A timed event is a pair (t; e), where t, the \time", is a nonnegative real number, and e is an
event. A timed sequence is an in�nite sequence of alternating con�gurations and timed events
�0; (t1; e1); �1; (t2; e2); �2; : : : ; (tj; ej); �j; : : : ; where the times are nondecreasing and unbounded.
A timed sequence E is a timed execution provided that �0; e1; �1; : : : ; ej; �j; : : : is an execution
and the following all hold:

1. (Balancer transition time)
(a) if the jth event is (tj; transhT; b1; b2i) and there are no input tokens in state�j�1

(b2),
then there exists a k > j with tk = tj + r(b2) such that the kth event is (tk; transhT; b2i);
(b) if the jth event is (tj; transhT; bi) and there exists an input token T 0 in state�j�1

(b),
then there exists a k > j with tk = tj + r(b) such that the kth event is (tk; transhT 0; bi);

2. (Wire transition time)
(a) (Lower bound) if the jth event is (tj; transhT; b1i), then there is no k > j with
tk < tj + cmin such that the kth event is (tk; transhT; b1; b2i) for any balancer b2;
(b) (Upper bound) if the jth event is (tj; transhT; b1i), then there exists a k > j with
tk � tj + cmax such that the kth event is (tk; transhT; b1; b2i) for some balancer b2.

Finally, the original de�nition of linearizability proposed by Herlihy and Wing [14] is adopted
to counting networks in the natural way (cf. [13]). Given a timed execution E, for any token
T , de�ne tin(T; E) to be the least t such that (t; transhT; b1; b2i) is an event in E, and tout(T; E)
to be the greatest t such that (t; transhT; bi) is an event in E. We say that token T1 precedes

token T2 in E if tin(T1; E) < tout(T2; E); we write T1
E
! T2 to denote this precedence. A timed

execution E of a balancing network is linearizable if for every pair of tokens T1 and T2 such that

T1
E
! T2, it holds that val (T1; E) < val (T2; E). A balancing network is linearizable if each of its

timed executions is linearizable.

3 Necessary Conditions

Consider an arbitrary uniform counting network G and its undirected version eG. For any
pair of sink nodes yj and yk, where 0 � j; k � wout � 1, let dist(yj; yk) denote the length
(measured as the number of edges) of a shortest path in eG connecting yi and yj (there is
at least one simple path connecting them, since eG is connected); each such shortest path
is called a geodesic between yj and yk and denoted by (yj; yk). Notice that for uniform
networks, the length of any geodesic is even; hence, there exists on each geodesic (yj; yk) a
node v such that dist(v; yj) = dist(v; yk) = dist(yj; yk)=2; call v a closest common ancestor
of yj and yk. The inuence radius between yj and yk, denoted irad(yj; yk), is the distance
between yj (or yk) and a closest common ancestor of yj and yk; notice that in uniform networks
irad(yj; yk) = dist(yj; yk)=2. Notice also that if two nodes u and v are both closest common
ancestors for the same pair of sink nodes depth(u) = depth(v). The inuence radius of the
network, denoted irad, is the maximum inuence radius among any pair of its sink nodes.

Sections 3.1 and 3.2 present necessary conditions for linearizability for uniform networks,
in the instantaneous and periodic balancer models, respectively. in terms of timing and the
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depth and inuence radius of the network. In all proofs of necessary conditions, we use a timed
execution in which tokens propagate through the network in lock step, and each token traverses
any link after delay exactly cmin and each balancer propagates tokens at a rate 1=rmin. It is
called a fast, synchronous timed execution.

3.1 Instantaneous Balancer Model

We prove the following theorem:

Theorem 3.1 In the instantaneous balancer model, a linearizable, uniform counting network
does not exist if

cmax

cmin

>
d

irad
+ 1:

Proof. Assume, by way of contradiction, that a linearizable, uniform (win; wout)-counting
network G exists while cmax=cmin > d=irad + 1.

The following is an informal outline of the proof. We start with a fast, synchronous timed
execution of G in which two distinguished tokens exit G through two antipodal sink nodes. By
\retiming", we slow down the token receiving the least value, while maintaining the propagation
of the other token through G, thus, the latter token receives the same value after \retiming".
The \retimed" timed execution is further \augmented" to include a su�cient number of tokens
fed in the network after the \fast" tokens exit it, and performing a fast traversal. The assump-
tion on the timing parameters implies that at least one of the additional tokens will bypass the
\slow" token of the previous timed execution and attain the value it received before retiming.
This value is smaller than that of one of the \fast"tokens, contradicting linearizability. We now
present the details of the formal proof.

Consider an arbitrary pair of antipodal sink nodes yj and yk, where 0 � j < k � wout;
thus, dist(yj; yk) = 2 irad . Let E be a timed execution in which we feed the network with
k + 1 tokens T0; : : : ; Tk, each Ti, 0 � i � k, entering the network through source node xi
and executing in lockstep in the maximum speed (1=cmin). Consider the network after it
reaches a quiescent state; the output will have the step property and henceforth yi equals 1
for i = 0; : : : k and 0 for all other i < wout. Let T� and T| be the tokens that exit the network
from yk and yj, respectively. Tokens T| and T� in E traverse the network through the paths
�(T|; E) = b|;0; b|;1; : : :; b|;d�1 and �(T�; E) = b�;0 ; b�;1 ; : : :; b�;d�1, respectively.

Now, \perturb" E to create another timed execution E 0 of G in the following way: let the
same k + 1 tokens enter the network from the same input nodes as in E and keep the same
timing as in E until T| goes through balancer b|;d�irad ; then slowdown only T| to the minimum
speed 1=cmax until it exits the network. Now T| and T� traverse the network through the paths
�(T|; E 0) = b0|;0 ; b0|;1 ; : : : ; b0|;d�1 and �(T�; E 0) = b0�;0 ; b0�;1 ; : : : ; b0�;d�1, respectively.
Notice that by the construction of E 0, b0|;l = b|;l for 0 � l � d� irad.

Lemma 3.2 There is no directed path in G from b0|;d�irad+1 to any node of �(T�; E).

Proof. Since the traversal of b|;d�irad by T| is not retimed in E 0, it follows that b0|;d�irad+1 =
b|;d�irad+1. Clearly, there is no directed path from b|;d�irad+1 to any b�;i with 0 � i � d�irad+1.
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The existence of a path from b|;d�irad+1 to some b�;i with i > d � irad + 1 would imply that
dist(yk; yj) < 2 irad , a contradiction, since yk; yj are antipodal. 2

Lemma 3.3 In E 0 each balancer is visited by the same number of tokens as in E.

Proof. Since the total number of tokens entering the network in E 0 is the same as in E, the
lemma holds for each balancer at level 0. By a simple inductive argument using the liveness
property of the balancers in the network, it holds for all levels. 2

Lemma 3.4 �(T�; E 0) = �(T�; E).

Proof. We use induction on the number of levels. It holds that b�;0 = b0�;0. Assume that for
all l, 0 � l < d, it is b�;l = b0�;l; from lemma 3.3 it is known that b0�;l in E

0 is traversed by the
same number of tokens as in E; none of these tokens is T| (this follows from lemma 3.2 and
the fact that until level d � irad the timing is the same in both executions). Moreover, from
the construction of E 0 all the tokens but T| are not retimed in E 0. Hence, T� follows the same
output port after traversing b�;l as in E. This shows that T� will go to the same balancer of
level l + 1 as in E, i.e. b0�;l+1 = b�;l+1, q.e.d. 2

Lemma 3.5 r = val(T|; E 0) < k.

Proof. Since the network is counting, after a quiescence state is reached, the output must
have the step property. Since only k + 1 (k < wout) tokens enter the network and since, by
lemma 3.4, T� exits from the k-th output node, T| must exit from a node with a lower index.

2

We now perturb E 0 to obtain a timed execution E 00 of G which is not linearizable. Let

Fout =
d�1Y
i=0

fout(b
0

|;i)

i.e. Fout is the product of the fan-outs of all the balancers on �(T|; E 0). Let a set of tokens �,
where j�j = Fout, enter the network from source node x| mod win

, in time d cmin + � (recall that
d cmin is the time that T� exits the network; � is an arbitrarily small constant) and propagate
in the the network in lockstep and at maximum speed (1=cmin). We will prove that there is at
least one token T� 2 � that will follow the same path �(T|; E 0), which T| followed in E 0, and
that will bypass T| before T| exits the network.

Lemma 3.6 For each l, 0 � l � d� 1, at least
Qd�1

i=l+1 fout(b
0
|;i) tokens have exited balancer b0|;l

and have been forwarded to b0|;l+1 (or the equivalent sink node if l = d� 1) by time d cmin + �+
(l + 1)cmin in E 00.

Proof. We show this by induction on the number of levels. All Fout tokens of � go through
b0|;0. Since they execute in lockstep, by time d cmin + � + cmin, a fraction 1=fout(b0|;0) of them
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(i.e.
Qd�1

i=1 fout(b
0
|;i) tokens) have exited balancer b0|;0 and have been forwarded to b0|;1, which

proves the base case. Assume that the lemma holds for all l, 0 � l < d � 1. Then at leastQd�1
i=l+1 fout(b

0
|;i) tokens are through balancer b0|;l by time d cmin + �+ (l+ 1) cmin, ready to enter

b0|;l+1. A fraction 1=fout(b0|;l) of these tokens are output on the same port of b0|;l+1 that T| is
output in E 0 and are, hence, forwarded to b0|;l+2. Since all delays in link traversals involving
these tokens are equal to cmin, it follows that by time d cmin + � + (l + 2)cmin they will have
been forwarded to b0|;l+2, thus showing the lemma for l + 1, as well. 2

Lemma 3.6 shows that by time 2 d cmin+� at least one token in � will exit the network from
the sink node yr, where T| exits from in E 0. The tokens in � enter the network immediately
after T� exits and, hence T� precedes them in E 00. At the time that T� exits, T| still has irad (1�
cmin=cmax) links to traverse before exiting the network, for which it will need irad (cmax� cmin)
time units. The tokens in � need d cmin time units to traverse the network. If d cmin <
irad (cmax � cmin) (which is equivalent to the condition assumed, that cmax=cmin > d=irad + 1)
then T| will be bypassed by at least one T� 2 �, which will be the �rst to exit from yr and
will thus get val(T�; E 00) = r; from lemma 3.5 it is known that r < k. Since T� has exited the
network before the tokens in � entered, it follows that it will again, as in E 0, exit from wire

yk and get val(T�; E 00) = k. But now T�
E 00

! T�, hence the fact that r < k implies that the
linearizability condition is violated. 2

3.2 Periodic Balancer Model

We prove the following theorem:

Theorem 3.7 In the periodic balancer model, a linearizable, uniform counting network does
not exist if there exists a path to an output node with fan-out product Fout such that

irad rmax + irad cmax > [irad + d (2wout + Fout � 1)] rmin + (irad + d) cmin

Proof. Assume, by way of contradiction, that a linearizable, uniform counting network G
exists while the condition of the theorem holds. We construct a timed execution of G which
is not linearizable. The structure of the proof is similar to the one of theorem 3.1 for the
instantaneous balancer model, but, because of the more delicate timing assumptions in the
periodic balancer model, it requires substantially more careful timing arguments.

Fix again any pair of antipodal sink nodes yj and yk (i.e. dist(yj; yk) = 2 irad), where
0 � j < k � wout � 1. Let E be a fast, synchronous timed execution with k + 1 tokens, where
each Tl, 0 � l � k, enters the network through source node xl, each balancer outputs one token
per rmin time, and all links incur a delay of cmin. By the step property for counting networks,
when G reaches a quiescent con�guration, yl = 1 for 0 � l � k and 0 otherwise. Let T| and T�
be the tokens that exit B through the sink nodes yj and yk, respectively, so that val (T|; E) = j
and val (T�; E) = k. Assume that in E, T| and T� traverse the network through the paths
�(T|; E) = b|;0; b|;1; : : :; b|;d�1 and �(T�; E) = b�;0 ; b�;1 ; : : :; b�;d�1, respectively.
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Notice that T� encounters d balancers while traversing the network. Since E involves k+1 �
wout tokens, T� will wait at most woutrmin time to traverse each of the d balancers, and cmin

time to traverse each of the d links to exit completely the network, so that

Fact 3.1 tout(T�; E) � dwout rmin + d cmin

We \perturb" E to obtain another timed execution E 0 of G so that each event occurring in
E no later than event transhT|; b|;d�irad i is not retimed, while later events are retimed so that
each balancer and link encountered by T| in E 0 outputs one token per rmax time, and incurs a
cmax delay, respectively. Assume that in E 0, T| and T� traverse the network through the paths
�(T|; E 0) = b0|;0 ; b0|;1 ; : : :; b0|;d�1 and �(T�; E 0) = b0�;0 ; b0�;1; : : :; b0�;d�1, respectively.

Notice that, by the construction of E 0, b0|;l = b|;l for 0 � l � d� irad. Also, since traversal of
b|;d�irad by | in E is not retimed in E 0, | follows the same output wire after traversing b|;d�irad

in either E or E 0; hence, b0|;d�irad+1 = b|;d�irad+1. Hence, since yj and yk are antipodal, it holds
that dist(b0|;irad+1; yk) > irad � 1. Hence, it follows that:

Claim 3.8 There is no directed path in G from b0|;d�irad+1 to any node of �(T�; E).

We continue to show:

Lemma 3.9 �(T�; E 0) = �(T�; E)

Proof. Since tokens propagate through G in lock step, and no event occurring earlier than
the traversal of the level d � irad is retimed in E 0, it follows that for each l, 0 � l � d � irad,
b0�;l = b�;l. We proceed to show by induction on l, where d� irad+1 � l � d�1, that b�;l = b0�;l.
For the base case where l = d� irad +1, notice that since traversal of b�;d�irad by T� in E is not
retimed in E 0, T� follows the same output wire after traversing b�;d�irad in either E or E 0; hence,
b0�;d�irad+1 = b�;d�irad+1. Assume inductively that b0�;l = b�;l, where d� irad +1 � l < d�1, and
consider the balancer b0�;l+1. Since the execution is lock step, all not retimed in E 0 tokens will
reach b0�;l as before; also, by Claim 3.8, no retimed token will reach b�;l. It follows that each
token visiting b�;l in E 0 will follow the same link out of b�;l as in E; in particular, this implies
that b0�;l+1 = b�;l+1, as needed. 2

Since only k + 1 � wout tokens are involved in E 0 and G is a counting network, the step
property immediately implies:

Claim 3.10 r = val (T|; E 0) < k

We now \perturb" E 0 to obtain a third timed execution E 00 of G which is not linearizable. Let

Fout =
d�1Y
r=0

fout(b
0
|;r)

that is, Fout is the product of fan-outs of balancers in �(T|; E 0). In E 00, new tokens eT1; eT2; : : : ; eTFout
enter the network B through source node x| mod win

strictly after T� exits it in execution E 0.
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Since tout(T�; E 0) � dwout rmin + d cmin, which holds due to lemma 3.9 and the fact that T� is
again fast in E 0, for any arbitrarily small constant � > 0, for each l, 1 � l � Fout,

tin( eTl; E 00) = tout(T�; E
0) + � � wout rmin + d cmin + �

All additional tokens traverse the network in FCFS order, each balancer they encounter outputs
one token per rmin time, and all link traversals involving them are equal to cmin. We prove:

Lemma 3.11 For each l, 0 � l � d � 1, at least
Qd�1

r=l+1 fout(b
0
|;r) tokens have exited balancer

b0|;l in E
00 and have been forwarded to balancer b0|;l+1 (or an atomic counter if l = d� 1) by time

dwout rmin + d cmin + �+ (l + 1) [(Fout + wout) rmin + cmin]

Proof. By induction on l. For the base case, where l = 0, notice that by construction of E 00Qd�1
r=0 fout(b

0
|;r) (= Fout) tokens enter balancer b0|;0 by time dwout rmin + d cmin + �. A fraction

1=fout(b0|;0) of them (i.e.
Qd�1

r=1 fout(b
0
|;r) tokens) will exit balancer b0|;0 and be forwarded to

balancer b0|;1. Since E 00 involves Fout + k + 1 � Fout + wout tokens in total, and b0|;0 outputs
one token per time rmin, while each wire incurs cmin delay to each token in this execution, it
will take at most (Fout + wout) rmin + cmin time for the last of these tokens to exit b0|;0 and be
forwarded to b0|;1, which proves the base case.

Assume inductively that the claim holds for any integer l, where 0 � l < d � 1, that is at
least

Qd�1
r=l+1 fout(b

0
|;r) tokens have exited balancer b

0
|;l in E

00 and have been forwarded to balancer
b0|;l+1 by time dwout rmin+ d cmin+ �+(l+1) [(Fout+wout) rmin+ cmin]. A fraction 1=fout(b0|;l+1)

of them (i.e.
Qd�1

r=l+2 fout(b
0
|;r) tokens) will be forwarded from b0|;l+1 to b0|;l+2. Since E 00 involves

Fout+k+1 � Fout+wout tokens in total, and b0|;l+1 outputs one token per time rmin, while each
wire incurs cmin delay to each token, it will take at most (Fout + wout) rmin + cmin time for the
last of these tokens to exit b0|;l+1 and be forwarded to b0|;l+2, which proves that the lemma holds
for l+ 1, as well. 2

By Lemma 3.11, at least one token (say eT ) has been forwarded to exit yj by time

tout( eT; E 00) � 2 d cmin + (2 dwout + Fout) rmin + � :

By construction of E 00, T| is \fast" in E 00 till it passes b0|;d�irad
, and \slow" afterwards. Hence,

even if T| never waits at a balancer en route due to other tokens concurrently traversing the
same balancer, it holds that

tout(T|; E
00) � (d� irad) (rmin + cmin) + irad (rmax + cmax)

Hence, the di�erence tout(T|; E 00)� tout( eT; E 00) is greater than
irad rmax + irad cmax � [d (2wout + Fout � 1) + irad] rmin � (d + irad) cmin

which is positive as we assumed. Hence, eT exits from yj before T| in E
00 and receives val ( eT; E 00) =

r. Since T� has exited the network before the additional Fout tokens entered, it follows that
it will again, as in E 0, exit from wire yk and get val(T�; E 00) = k. Since by claim 3.10 k > r,

linearizability implies that eT E 00

! T�, a contradiction. 2
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4 Su�cient Conditions

In this section, we present our su�cient condition for linearizability in counting networks, which
is an important generalization and extention of the respective result in [18] | which was tight
for uniform networks | for the case of non-uniform networks, too. Consider any arbitrary
(win; wout)-counting network G (uniform or not), and let its shallowness, s = mini;j dist(xi; yj)
(i.e. the \opposite" of its depth); that is, s is the length of the shortest directed path in G. We
prove:

Theorem 4.1 In the instantaneous balancer model, a counting network is linearizable if

cmax

cmin

�
2 s

d
:

Proof. Assume, by way of contradiction, that there exists a counting network G of depth d and
shallowness s which is not linearizable for cmax=cmin � 2 s=d. By de�nition of linearizability,

there exists a timed execution E of G such that for a pair of tokens T� and T�, T�
E
! T�, while

val (T�; E) > val (T�; E).
We start with some auxiliary de�nitions. Following [18], we associate with each balancer

b and token T in a timed execution, auxiliary history variables Hb(t) and HT (t), respectively,
which formalize the \knowledge" that b and T have, respectively, at time t about other tokens
in the network. Formally, at time 0, Hb(0) = ; and HT (0) = T . Each time a token traverses a
balancer, the knowledge of the two is combined; formally, if a token T traverses a balancer b at
time t, then Hb(t) = HT (t) = Hb(t�)[HT (t�), where t� is the time of occurrence of the timed
event immediately preceding this in the timed execution. For a token T traversing G through
the path b0 ; b2; : : :; bd�1, de�ne the history sequence numbers S0

T ; : : : ; S
d�1
T , where Si

T is
the number of tokens that have been through bi by the time instant ti in which it crosses bi in
the timed execution.

Let yk be the output node through which T� exits G in E. The proof of [18, Lemma 3.1]
does not rely on uniformity; hence, it applies to non-uniform networks as well, to yield:

Claim 4.2 If T� is the ath token to exit G through yk, then, jHT�(tout(T�; E))j � w (a�1)+k+1.

We now \perturb" E to obtain a timed execution E 0 which contains only the tokens in
HT�(tout(T�; E)) following the same timing in traversing G. Since no events were retimed and
we only removed tokens about which T� did not \know" in E, token T� still exits G through yk
at time tout(T�; E 0) = tout(T�; E) in E 0. Note also that since in E T� enters G after T� has exited,
T� is not in HT�(tout(T�; E)); hence, T� is not participating in E 0. Now consider the token T�
for which val (T�; E 0) = val (T�; E). By construction, tin(T�; E 0) = tin(T�; E). Since T� \knows"
about T� at the time it is exiting G, and this information must have been propagated through
G from some input wire to yk, it must have traversed at least s wires. Hence, T� must have
entered G by time s cmin before in the latest. Hence, it follows:

Claim 4.3 tin(T�; E) = tin(T�; E
0) � tout(T�; E)� s cmin = tout(T�; E

0)� s cmin
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The rest of the proof shows that T� must have been bypassed in E by some faster token,
which, in turn, has similarly been bypassed by some other faster token; repeating this argument
yields that T� was bypassed by T�; note that T� returns the same value that T� returns in E 0.
Next, we use the assumption cmax=cmin � 2 s=d to show that for this to be possible T� must

have entered G before T� exited it in E; this contradicts the assumption that T�
E
! T� and

completes the proof. These arguments are more formally presented in the following lemmas.
Let V be the set of balancers visited by tokens during E 0. Then,

Lemma 4.4 In E each balancer b 2 V processes at least the same number of tokens that it
processes in E 0.

Proof. Since the total number of tokens entering the network in E 0 is less than in E, the lemma
holds for each balancer at level 0. By a simple inductive argument using the safety property
which holds for all the balancers in the network, it holds for all levels. 2

Token T� during E
0 traverses the network through a sequence of balancers b0; : : : ; bl�1 along

path �(T�; E 0), by going through bi at the time instant denoted by t�i . We say that a token T�j
in E simulates steps of T� of E 0 on balancers bj1 ; : : : bjx of �(T�; E 0), if T�j goes through these
balancers in E and its history sequence numbers corresponding to them equal the respective
history sequence numbers of T� in E 0 (naturally, T� in E may simulate itself). From the previous
lemma we conclude that there exist tokens T�1; : : : ; T�", which in E simulate consecutive steps
of T� of E 0. Note that T�" = T�. The following lemma is essential for the completeness of the
proof of our theorem.

Lemma 4.5 For any T�j , which simulates in E steps of T� of E 0 on balancers bij ; : : : bix of
�(T�; E 0), the time t

�j
i that it goes through balancer bi 2 fbij ; : : : ; bixg is such that t

�j
i �

tin(T�; E) + depth(bij) cmax.

Proof. By induction on the length of the path �(T�; E 0). At the �rst wire T� simulates itself.
Tokens can not traverse links slower than 1=cmax and a token that is simulating T� must have
bypassed a token that was already simulating T�, which, must have bypassed before another
token that was simulating T�, and so on. This \chain" of bypasses ends with a token that is
simulating T� becaused it bypassed T� itself when crossing some balancer on �(T�; E 0). 2

From the last lemma we have that:

tin(T�; E) + s cmin � tout((T�; E) � tin(T�; E) + length(�(T�; E
0))

� tout(T�; E) � tin(T�; E) + d cmax

Combining the above with the inequality of claim 4.3 we have that:

tin(T�; E) � tout(T�; E) � 2 s cmin + d cmax :

For 2 s cmin � d cmax > 0, it follows that tin(T�; E) < tout(T�; E), contradicting the assumption

that T�
E
! T�. 2
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Theorem 4.1 essentially says that the less \equilateral" the network is, the smaller are the
variations in token speeds under which it can retain linearizability; specialized in the case
of uniform counting networks, where s = d, it yields that cmax=cmin � 2 is su�cient for
linearizability { a result shown in [18].

Discussion

We presented necessary and su�cient conditions for linearizability in counting networks, under
di�erent timing assumptions on balancers and wires. Although we do not yet have a complete
characterization of linearizability for the speci�c timing models we consider, our results demon-
strate how the possibility of achieving linearizability depends on both timing parameters of the
model and structural parameters of the network.

We remark that the proofs of our necessary conditions can be extended to apply to other
classes of balancing networks too, suggesting that it is not the requirement for the step property
that has been the main obstacle to implementing linearizable counting networks, but, rather,
the requirement for linearizability.

Our work leaves open several interesting problems. Can the necessary conditions be ex-
tended to non-uniform counting networks? An obvious open problem is to prove a su�cient
condition for linearizability in the periodic balancer model. It would also be interesting to
understand how much non-linearizable a counting network may be in case linearizability is
impossible; Lynch et al. [18, Theorem 4.4] take the �rst step in this direction by providing
a lower bound on the non-linearizability fraction for the special case of the bitonic counting
network. Our necessary conditions should yield similar results for any uniform network in the
models we studied. Does our su�cient condition for linearizability hold also for counting net-
works required to handle both tokens and antitokens [21]? A wide avenue for further research
includes formalizing other possible systems and timing variations, and studying the possibility
of linearizability in those models.
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