
Growing Squares: Animated Visualization of Causal Relations

Niklas Elmqvist∗ Philippas Tsigas†

Department of Computing Science

Chalmers University of Technology

SE-412 96 Göteborg, Sweden

Abstract

We present a novel information visualization technique for
the graphical representation of causal relations, that is based
on the metaphor of color pools spreading over time on a
piece of paper. Messages between processes in the system
affect the colors of their respective pool, making it possi-
ble to quickly see the influences each process has received.
This technique, called Growing Squares, has been evaluated
in a comparative user study and shown to be significantly
faster and more efficient for sparse data sets than the tradi-
tional Hasse diagram visualization. Growing Squares were
also more efficient for large data sets, but not significantly
so. Test subjects clearly favored Growing Squares over old
methods, naming the new technique easier, more efficient,
and much more enjoyable to use.

CR Categories: D.1.3 [Programming Techniques]: Con-
current Programming; D.2.5 [Software Engineering]: Testing
and Debugging; H.5.1 [Information Systems]: Multimedia
Information Systems—Animations; H.5.2 [Information Sys-
tems]: User Interfaces; I.3 [Computer Methodologies]: Com-
puter Graphics

Keywords: causal relations, information visualization, in-
teractive animation

1 Introduction

The notion of cause and effect is pervasive in human thinking
and plays a significant role in our perception of time. Soft-
ware systems, in particular parallel and distributed ones, are
permeated by this causality, and the human mind is espe-
cially well-suited to detect instances of this concept. For
instance, we can all easily trace a rolling billiard ball back
to the ball that struck it and set it in motion. However, as
the number of actions and reactions in a system grows, it
quickly becomes difficult to follow and gain an understand-
ing of its general flow. Accordingly, a billiard table where all
16 balls are moving is impossible to comprehend fully in real-
time. Traditional visualizations, notably directed acyclic

∗elm@cs.chalmers.se
†tsigas@cs.chalmers.se

graphs (DAGs) and Hasse diagrams (also called time-space
diagrams), can allay this problem somewhat, but become
inefficient as a system grows due to their fine granularity;
users can see the individual relations, but not get a good
picture of the system as a whole.

This paper presents a novel visualization technique based
on animation, colors and patterns to provide an alternate
graphical representation of causality in a system that fa-
cilitates quick overview. By representing each process (i.e.
active entity) in the system as a color-coded square, laid out
in a suitable way, we intuitively “grow” each process as time
progresses and have the events that causally relate them af-
fect their coloring, somewhat akin to how color pools would
spread out on a piece of paper (see Figure 1). We have de-
veloped a visualization framework for causal relations that
allows us to compare the Growing Squares method with tra-
ditional Hasse diagrams (see Figure 2). In addition, this
framework allows the user to select different visualizations
of causal relations on the fly.

A formative evaluation, using a focus group consisting of
researchers working on distributed systems, was conducted
at the onset of the project in order to identify the tasks as-
sociated with causal relations and shape the design of the
visualization. Furthermore, a user study was performed at
the end to ensure the validity of our findings. Our results
show that the Growing Squares method is significantly faster
and more efficient than Hasse diagrams for sparse data sets,
and more efficient also for dense data sets, but not signifi-
cantly so. In addition, test subjects clearly favored Growing
Squares over Hasse diagrams for all analysis tasks performed.
Overall, the subjective ratings of the test subjects showed
that the Growing Squares method is easier, feels more effi-
cient, and is more enjoyable to use than Hasse diagrams.

In modern usage, the notion of causality is associated
with the idea of something (the cause) producing or bring-
ing about something else (its effect). In general, the term
“cause” has a broader sense, equivalent to an explanatory
or reasoning tool. Identifying causal relations in a complex
system can be the first step towards understanding the un-
derlying mechanisms that determines the system’s laws. As
such, causal relations cover a wide variety of software do-
mains where causality might be of importance.

More specifically, causal relations play a central role in
parallel and distributed software development; they are
used extensively in collecting and analyzing data needed to
evaluate the correctness and the performance of such pro-
grams. Visualization and debugging environments for paral-
lel and distributed software commonly offer animated views
of causal relations. The extensive use of causal relations in
these fields comes from the fact that in such software sys-
tems, only partial views of the complete set of programs can
be taken at any time. Causally consistent views are the only
way to construct a complete view of a whole distributed or
parallel software system. For example, causal relations are



Figure 1: Growing Squares visualization with 20 processes.

Figure 2: The CausalViz application.

used (i) in distributed database management to determine
consistent recovery points; (ii) in distributed software sys-
tems for determining deadlocks; (iii) in distributed and par-
allel debugging for detecting global predicates and detect-
ing synchronization errors; (iv) in monitoring and anima-
tion of distributed and parallel programs to determine the
sequence in which events must be processed so that cause
and effect appear in the correct order; and (v) in parallel
and distributed software performance to determine the crit-
ical path abstraction: the longest sequential thread, or chain
of dependences, in the execution of a parallel or distributed
program. Effective visualization of causal relations will be
of benefit to all these activities.

The next section presents a theoretical treatment of causal
relations in general, immediately followed by related work.
Then, we describe the Growing Squares visualization tech-
nique and the user study we conducted to evaluate it. Re-
sults, discussion and conclusions follow at the end.

2 Causal Relations

A causal relation is the relation that connects or relates two
items, called events, one of which is a cause of the other.
Obviously, for an event to cause another, it is not sufficient
that the second merely happens after the first. However, it
is well accepted to state that this is necessary, and temporal
order can be relied on to explain the asymmetrical direction
of causal relations1. All events connected in the causal rela-
tion are part of a set of processes, labelled P1, . . . , PN , each
of which can be thought of as a disjoint subset of the set of
all events in a system. Events performed by the same pro-
cess are assumed to be sequential; if not, we can split the
process into sub-processes. Thus, it is convenient to index
the events of a process Pi in the order in which they occur:
Ei = ei

1, e
i
2, e

i
3, . . .

For our purposes, it suffices to distinguish between two
types of events; external and internal events. Internal events
affect only the local process state. An internal event on pro-
cesses Pi will causally relate to the next event on the same
process. External events, on the other hand, interconnect
events on different processes. Each external event can be
treated as a tuple of two events: a send event, and a corre-
sponding receive event. A send event reflects the fact that
an event, that will influence some other event in the future,
took place and its influence is “in transit”; a receive event
denotes the receipt of an influence-message together with the
local state change according to the contents of that message.
A send event and a receive event are said to correspond if the
same message m that was sent in the send event is received
in the receive event.

We now formally define the binary causal relation → over
all the events of the system E (→ ⊆ E × E) as the
smallest transitive closure that satisfies the following prop-
erties [Lamport 1978]:

1. If ek
i , el

i ∈ Ei and k < l, then ek
i → el

i.

2. If ei = send(m) and ej = receive(m), then ei → ej

where m is a message.

When e → e′, we say e causally precedes e′ or e caused e′.
Causal relations are irreflexive, asymmetric, and transitive.

3 Related Work

The traditional way to visualize causal relations are Hasse
or time-space diagrams. Figure 9 shows an example of a
time-space diagram for a system comprised of five processes,
where the progress of each process is described by a directed
horizontal line, the process line. Time is assumed to move
from left to right. Events are symbolized by dots on the
process lines, according to their relative order of occurrence.
Messages are shown as arrows connecting send events with
their corresponding receive events. Visualizations of causal
relations in the form of such time-space diagrams are cur-
rently quite standard in visualization and debugging plat-
forms for parallel and distributed systems, and the number
of such platforms is too large to allow mentioning them all.
One of the first of the new generation of visualization tools
to include the time-space diagram was the Voyeur [Socha

1It has been argued that not even this is necessary, and that
both simultaneous causation and “backwards causation” (effects
preceding their causes) are at least conceptually possible. This, on
the other hand, causes problems when considering the asymmetric
nature of causal relations.



et al. 1989] system, which provided a framework for defin-
ing various animation views for parallel algorithms. The
TOPSYS [Bemmerl and Braum 1993] environment includes
various standard concurrency visualizations integrated with
the debugging and performance analysis tools of the sys-
tem, with time-space visualization being one of them. Go-
ing one step further, the conceptual visualization model of
VADE [Moses et al. 1998] system is based on the causal re-
lation notion. Also of interest is LYDIAN [Koldehofe et al.
1999], an educational visualization system, which by default
constructs the time-space diagram for every algorithm im-
plemented in the system. Kraemer and Stasko [1998] de-
scribe the essential characteristics of toolkits for visualiza-
tion of concurrent executions, and introduce their own sys-
tem, called Parade. For the purpose of our study, the Hasse
visualization used in Figure 9 is very similar to the time-
space visualization view from the ParaGraph system [Heath
1990; Heath and Etheridge 1991] and its adaption in the
PVaniM tool [Topol et al. 1998], as well as the Feynman or
Lamport views from the Polka animation library [Stasko and
Kraemer 1993].

Ware et al. [1999] presented a new visualization construct
called a visual causality vector (VCV) that represents the
perceptual impression of a causal relation and employed ani-
mation to emphasize this relation in a directed acyclic graph.
Three different VCVs were introduced based on different
metaphors: the pin-ball metaphor, where the VCV is a ball
that moves from the source to the destination node, striking
the destination and making it oscillate; the prod metaphor,
where the VCV is a rod that extends from the source to
prod the destination; and finally a wave metaphor, where the
VCV accordingly is an animated wave that moves towards
the destination node. However, while these constructs are
certainly an improvement over a simple DAG representation
of causal relations, they do nothing to battle the complex-
ity of large systems with many nodes and relations. In fact,
Ware’s primary contribution is the investigation of timing
concerns for the perception of causality for users, not the
visualization technique per se. It might still be interesting
to incorporate Ware’s VCVs into our system in some form.

4 Growing Squares

As described above, there is surprisingly little work on visu-
alizations of causal relations besides various implementations
of Hasse diagrams, a fact which is especially curious in light
of the shortcomings of Hasse diagrams for understanding a
distributed system. The fine granularity of Hasse diagrams
defeat their use as overview tools, and they transfer the bur-
den of maintaining transitive relations to the user herself.
This means that a user studying the information flow in a
distributed systems visualized using a Hasse diagram might
potentially have to backtrace every single message and pro-
cess in order to get a clear picture of the influences in the
system.

The Growing Squares visualization technique was de-
signed to help the user quickly get an overview of the causal
relations in a system by making use of animation, color and
patterns in an intuitive way. The visual metaphor of the
technique is that of “pools” of color spreading on a piece of
paper as time progresses, each color and pool representing a
specific process or node in the system. Messages in the sys-
tem are shown as “channels” from one pool to another. Each
color pool will start growing at the time its corresponding
process is started, and accordingly stop growing when the
process stops executing events. The channels representing

messages from one process to another naturally carries the
color of its source with it, resulting in the destination pool
receiving this color as well. However, like age rings on a tree,
the color of the new influencing process will only be present
in the destination process starting from when the message
is received.

Figure 3 gives an example of a system with two processes,
P0 and P1, colored blue and white, respectively. The color
pools are represented as 2D squares which grow over time.
At a certain time t, P0 sends a message to P1 (denoted by the
arrow in the figure), establishing a causal relation between
P1 and P0. For all times t′ > t, the color pool of process
P1 now shows this influence from the blue P0 by means of a
checkered pattern combining the two colors.

1P
P0

Figure 3: Simple example of the Growing Squares technique
with two processes.

In order to visualize the transitive property of the causal
relation (see the previous section), a similar color pattern
scheme is used. In Figure 4, process P1 is sending a message
to P2 (colored red) after having been influenced by a message
from P0. Now, both the color of the source process (white
from P1 itself) and any of its existing influences at the time
of sending the message (blue from P0) are transferred to
P2, making its texture from this time and onwards be a
checkered pattern of all of the three colors. It is now easy
to see that P2 is causally related to both P0 and P1.

1P P2P 0

Figure 4: Transitivity property of causal relations using
Growing Squares.

Multiple influences from the same source process will in-
crease the amount of the source process’s color in the texture
of the destination process. Even if the checkered pattern
makes it difficult to see the exact ratio, this fact can never-
theless be used as a visual indication that multiple influences
have occurred.

Having foregone a traditional timeline, the Growing
Squares method is dependent on animation to allow the
user to view the entire execution of the system under study.
Starting at t = 0, the user can advance the time in the
system to observe the system execution in chronological or-
der, or choose to view the situation at specific points in
time. This is another radical difference from Hasse diagrams;
Hasse diagrams are static in nature and do not benefit much



from animation, whereas Growing Squares are dynamic and
rely on animation to present the full data set to the user.

Figure 10 (also the color plate) shows an example sequence
consisting of 5 processes in a distributed system visualized
using the Growing Squares technique (this is the same sys-
tem shown using a Hasse diagram in Figure 9). The state
of the visualization is here shown for each discrete time unit
(in practice, the animation is fluid and continuous between
the time steps) starting at t = 1 and ending at t = 5, the
end of the execution. Processes are laid out in a clock-wise
fashion with P0 at the top. Screenshot (a) at t = 1 shows
how P1 sends a message to P0, starting it (it has zero size
up until this time), and (b) at t = 2 depicts the two colors
(green and black) in the process square of P0. In the same
screenshot, P4 sends a message to P1, causing P1 in (c) at
t = 3 to hold influences from both P4 as well as indirectly
from P3 (i.e. an example of the visualization of transitivity
in the Growing Squares visualization). In (d) at t = 4, two
messages originating from the otherwise isolated P2 reach P0

and P4, its blue color showing in the outer square of these
two processes in snapshot (e) at t = 5.

4.1 Design Decisions

In order for the Growing Squares visualization to be effec-
tive, users must be able to easily distinguish between the
individual process colors in the system under study. Select-
ing a suitable color scale is thus an important aspect of the
method, and we investigated the use of perceptually uniform
color scales such as LOCS [Levkowitz and Herman 1992;
Levkowitz et al. 1992] for this purpose. However, we found
that the continuous nature of LOCS was not well-suited to
our problem since it made distinguishing between adjacent
colors difficult, and the scale itself included an inordinate
amount of dark colors. Instead, we opted for a simple color
scale with the individual colors uniformly distributed over
the RGB spectrum.

One of the central features of the presented visualization
technique is that it draws process squares with the checkered
patterns containing all the colors of the processes that have
influenced the process. If the number of influences is large,
the on-screen space allocated for each color will be very small
and thus hard to distinguish (see [Wyszecki and Stiles 1991]
for in-depth information on color perception). In order to
still allow the visualization to be effective, we need a zoom
function that allows the user to effortlessly view the graphi-
cal representation at different magnification levels. We have
implemented a simple continuous zoom mechanism for this
purpose; in the future, it may be extended to borrow tech-
niques from the Pad [Perlin and Fox 1993] zoomable user
interface and its descendants [Bederson et al. 1996; Beder-
son et al. 2000].

It might be argued that using circles instead of squares
would have been more in keeping with the metaphor of color
pools spreading on a piece of paper. Our original intention
was also to use circles, but we ultimately chose squares for a
number of reasons: (i) the larger area of squares facilitates
color recognition better than circles, (ii) the layout of pro-
cess squares into grids is easier (no wasted space), and (iii)
squares are faster to render and easier to texture map (be-
sides, we felt it was more logical to have checkered squares
rather than checkered circles).

The Growing Squares visualization makes use of anima-
tion to display the dynamic execution of the system under
study. While it certainly is possible to maintain all mes-
sage arrows and just draw the visualization at full time, this

would result in many of these messages coinciding (as in
Hasse diagrams) and thus being hard to separate from other
messages, as well as being impossible to associate with a spe-
cific time. Animation solves these issues in a natural way.

Another design aspect of the Growing Squares visualiza-
tion is finding suitable layout methods for arranging the in-
dividual processes. Many such layout strategies exist. For
instance, if the data set represents the execution of a dis-
tributed algorithm in a network, the geographical location
of the individual nodes can be used to position the squares
in the visualization. Other alternatives include simple grid
and circular layouts (see Figure 1) which may serve to min-
imize the amount of coinciding message arrows to greater
or lesser extent. Beyond these simple layout schemes, there
exists a wide array of advanced graph layout algorithms that
could be incorporated into our scheme [Battista et al. 1999].
In this paper, we chose to ignore this aspect and selected
a simple circular layout scheme that has the advantage of
avoiding message arrows coinciding with each other or pass-
ing over processes; in the future, we might look into making
use of a graph layout library such as [Alberts et al. 1997] in
the system.

4.2 Analysis Tasks

At the onset of our investigation into visualization of causal
relations, we organized a formative evaluation of these con-
cepts using a focus group consisting of researchers from our
university working on distributed systems. The purpose of
this evaluation was to determine the analysis tasks a causal
relation visualization should support. The discussion in the
focus group unearthed many perceptions on causal relations
from professionals in the field, and were instrumental in tai-
loring the design of the visualization technique to the types
of analyses typically performed using the causality concept.

Our main finding was that users in general want to use
causality visualizations for gaining an overview of a dis-
tributed system. Here, we loosely define overview as a self-
contained graphical representation providing the informa-
tion context necessary for quickly understanding the basic
trends of the data. We refer to these types of analysis tasks
as overview tasks. Furthermore, users indicated that un-
derstanding the information flow and influence relationships
in a system is the most important activity performed when
analyzing a distributed system, and the Growing Squares
visualization was accordingly designed specifically with this
purpose in mind.

Here follows a short description of the most common over-
view tasks, derived from our formative evaluation, performed
when analyzing distributed systems, along with an account
of how our technique aids the user in performing them.

4.2.1 Duration Analysis

The duration (or lifetime) of a process tells how much CPU
time the process has consumed, and processes with a long
life also tend to have a large influence in the system. Grow-
ing Squares affords fast and easy recognition of the set of
processes that have the longest lifetimes simply by compar-
ing relative sizes at the end of the execution. Accurately
determining the single process with the longest duration is
more difficult, however.

4.2.2 Influence Analysis

The number of messages a process sends to other processes
can be used as a measure of the relative importance of the



Figure 5: 3D Growing Pyramids visualization with 5 pro-
cesses.

process, since each message will exert some (unknown) in-
fluence on the recipient. Our technique is especially well-
suited to helping the user quickly get a feeling for the most
influential processes as well as the processes that have been
influenced the most. Again, accurate determination of the
single most influential process is difficult (especially for large
systems where process colors tend to look similar).

4.2.3 Inter-Process Causal Relations

In some cases, it is necessary to check whether there is a
causal relation between two processes Pi and Pj , i.e. whether
there exists events ei ∈ Ei and ej ∈ Ej so that ei → ej .
However, due to the transitive nature of the causal relation,
this may often be difficult using Hasse diagrams since it may
be necessary to recursively trace back all messages received
by Pj to see whether any of them originate from Px. Our
method directly shows the influences a process has, includ-
ing transitivity information, so it is only a matter of seeing
whether the color of Pi exists in Pj ’s square.

4.3 Extension to 3D

One of the drawbacks of the Growing Squares technique is
that it does not offer accurate information on the starting
times for the respective processes. The size of the square can
be used to compare the relative life times of different pro-
cesses, but one needs to use the animation controls to deduce
which of them started first. To address this problem, we have
designed a straightforward extension of Growing Squares to
3D where the time parameter is mapped to the vertical axis
(see Figure 5). Thus, processes now grow on the Y axis
as well, creating pyramids instead of squares (the technique
is accordingly called Growing Pyramids). However, for the
purposes of this paper, we focus strictly on the 2D version
of the technique.

4.4 Implementation

In order to test the Growing Squares technique and to subse-
quently be able to perform a user study on its effectiveness,
we have implemented a general application for the visualiza-
tion of causal relations called CausalViz (see Figure 2). The
application is implemented in C++ on the Linux platform

and uses the Gtk+/Gtk– widget toolkits for user interface
components as well as OpenGL for graphical rendering.

4.4.1 System Architecture

The architecture of the CausalViz application (see Figure 6)
is based around a single partially ordered set (poset) repre-
senting the execution data under study. A number of visu-
alization components observe this set and present graphical
representations of the data (potentially allowing for the set
to change during run-time). There currently exists three dif-
ferent visualizations, i.e. traditional Hasse diagrams, the 2D
Growing Squares, and the prototype 3D Growing Pyramids.

Central in the system architecture is the application man-
ager that creates all the other components, manages the
graphical user interface (GUI), and performs loading of data
files into the application (stored in a general XML format for
partially ordered sets). In order to allow for the animation
of events in the visualizations, there also exists a general an-
imation manager thread that the visualization components
can use to smoothly interpolate values in the poset with re-
spect to time.

Poset Animation
Manager

2D SquareVizHasseViz 3D PyramidViz

controls

GUIXML

usesrenders

creates

renders/uses

Application Manager

Figure 6: CausalViz system architecture.

4.4.2 Hasse Visualization

In order to provide a comparative measure to our new
method, we implemented the traditional Hasse visualization
technique in the CausalViz application. Many such imple-
mentations exist, for instance the time-space diagram from
the ParaGraph system [Heath 1990; Heath and Etheridge
1991] and its adaptation in the PVaniM tool [Topol et al.
1998], as well as the the Feynman or Lamport views from
the Polka algorithm animation library [Stasko and Kraemer
1993]. Figure 9 is a screenshot of our implementation.

4.4.3 Poset Management

System execution traces are stored in a general XML file
format for partially ordered sets. Here, a process Pi is rep-
resented by the subset Ei ⊆ E of all the events in the system
belonging to the process and a set of messages M . Messages
are partial orderings between events in different subsets (pro-
cesses), and can thus be represented by pairs of events, i.e.
M ⊆ E ×E. It is then up to the application to compute the
minimal transitive closure for the poset.



In the CausalViz application, the transitive closure is com-
puted using a modified topological sort [Cormen et al. 2001].
The objective of the algorithm is two-fold: (i) to derive the
transitivity information for each event (i.e. the processes
which have influenced it so far) and (ii) to assign the event
to a discrete time slot. This is done by greedily consuming
sequential events in each subset (i.e. process) of the poset
until reaching an event with unresolved dependencies (i.e.
a partial ordering to a previously unvisited event). When
this happens, the algorithm moves on to the next process
to continue from where it last left off. This is repeated un-
til all events in the system have been visited. The current
influence of each event is easily maintained and updated dur-
ing this process, and illegal cyclic dependencies are trivially
detectable by checking whether the algorithm has cycled
through all process without visiting any new events.

5 User Study

Our hypothesis was that the Growing Squares technique is
faster and more efficient at quickly providing an overview
of the causal relations in a distributed system, and that the
new technique scales better with system size than traditional
methods. To test this, we conducted a formal comparative
user study of the old Hasse diagram visualization and our
new Growing Squares technique. The focus of this user study
was to evaluate user performance of the “overview tasks”,
tasks associated with general comprehension of how a sys-
tem works that were derived from our formative evaluation.
We also wanted to get a subjective assessment of the two
methods.

5.1 Subjects

Twelve users, four of which were female, participated in this
study. All users were carefully screened to have good com-
puter skills and basic knowledge of distributed systems and
general causal relations. In particular, knowledge of Hasse
diagrams was required. Subject ages ranged from 20 through
50 years old, and all had normal or corrected-to-normal vi-
sion.

5.2 Equipment

The study was run on a high-end Intel Pentium III 866 MHz
laptop with 256 MB of memory and a 14-inch display. The
machine was equipped with a NVidia Geforce 2 GO graphics
accelerator and ran Redhat Linux 7.2.

5.3 Procedure

The experiment was a two-way repeated-measures analysis
of variance (ANOVA) for independent variables “visualiza-
tion type” with two levels (Hasse diagrams versus Grow-
ing Squares), and “data density”, also with two levels. The
two levels of data density were “sparse” and “dense” with 5
processes sending 15 messages and 30 processes sending 90
messages, respectively. The visualization type was a within-
subjects factor, as was the data density. Each subject re-
ceived the various task sets in different order to avoid sys-
tematic effects of practice.

The same set of four different data sets were used for all
subjects. Two were geared at the sparse case with 5 pro-
cesses and 15 messages (one for each visualization type),
and two for the dense case with 30 processes and 90 mes-
sages (see Table 1). The traces were all generated using a

Data Density Processes Messages

Sparse 5 15
Dense 30 90

Table 1: Experimental design. Both density and visualiza-
tion factors were within subjects for all 12 subjects.

heuristic algorithm to avoid users taking advantage of special
knowledge about real system traces. In the case of deducing
inter-node causal relations, care was taken to ensure that
the complexity of this was equivalent for both task sets of
each density.

The evaluation procedure consisted of repeating overview
tasks using Hasse diagrams and Growing Squares for first the
sparse and then the dense data densities. The order of the
visualization types was different for each subject to minimize
the impact of a learning effect. The repeated tasks for each
density and visualization type is summarized in Table 2.
Prior to starting work on each task set, subjects were given
the chance to adjust the window size and placement to their
liking. Subjects were informed that they should solve the
tasks quickly and focus on using the visualization to get an
overview of the system trace. The completion of each task
was separately timed, except for the tasks Causality 1-3,
which were timed together.

Since we were targeting overview tasks, it was not neces-
sary for subjects to find a precise answer to each exercise.
Instead, it was deemed sufficient if subjects named one of
the processes in the top 20 %2 for each category; i.e. for 30
processes, it was enough to pick one of the six processes that
were most the influential, long-lived or influenced ones for
the answer to be counted as correct. Only the Causality 1-3
tasks required a totally accurate answer.

After having performed each task set for a density and
visualization type, subjects were asked to give a subjective
rating of the efficiency, ease-of-use, and enjoyability of the vi-
sualization technique. When all of the tasks were completed,
the subjects responded to a final questionnaire comparing
the two visualization techniques based on the previously-
stated criteria.

Each evaluation session lasted approximately one hour.
Subjects were given a training phase of ten minutes to fa-
miliarize themselves with the CausalViz application and the
two visualization techniques. During this time, subjects were
instructed in how to use the visualizations to solve various
simple tasks.

6 Results

After having conducted the user study, we analyzed the re-
sulting test data. The results can be divided into two parts;
the objective performance measurement, and the subjective
ratings of the test subjects.

6.1 Performance

The mean times of performing a full task set (i.e. four tasks)
using the Hasse diagrams and the Growing Squares visual-
izations were 416.58 (s.d. 268.99) and 334.79 (s.d. 230.86)

2This number was somewhat arbitrarily chosen, partly because
it was felt to be an acceptable margin of error, and partly because
20 % out of 5 processes for the sparse data set translates to finding
the single correct process for each task.



Task Comments Measure

Duration
Find the process with the
longest duration.

Time

Influence 1
Find the process that has
had the most influence on
the system.

Time

Influence 2 Find the process that has
been influenced the most.

Time

Causality 1-3
Is process x causally related
to process y?

Time

Q1
Rate the visualization w.r.t.
ease-of-use (1=very hard,
5=very easy).

Likert

Q2
Rate the visualization
w.r.t. efficiency (1=very
inefficient, 5=very efficient).

Likert

Q3
Rate the visualization w.r.t.
enjoyability (1=very boring,
5=very enjoyable).

Likert

Table 2: Repeated tasks for each density and visualization
type.

seconds respectively. This, however, is not a significant dif-
ference (F (1, 11) = 2.54, p = .139). The main effect for den-
sity was strongly significant (F (1, 11) = 30.99, p < .001),
with means for the sparse and dense conditions of 222.96
(s.d. 77.24) and 528.42 (s.d. 272.94) seconds. Figure 7
summarizes the mean task results for the two visualizations
across the two densities; error bars show one standard de-
viation above and below the mean. The figure also shows
that the mean time for the task set was higher for the Hasse
method across all densities. For the sparse conditions the vi-
sualization type was significant (F (1, 11) = 15.82, p = .002),
with mean values of 259.50 (s.d. 75.23) and 186.42 (s.d.
62.46) seconds for the Hasse and Growing Squares visualiza-
tions. The Growing Squares method also gave better results
for dense conditions; the mean times in Hasse and Grow-
ing Squares were 573.67 (s.d. 302.96) versus 483.17 (s.d.
243.94) seconds. This, however was not a significant differ-
ence (F (1, 11) = 1.03, p = .332).

The subjects’ comments revealed that one of the reasons
for the absence of a statistically significant difference be-
tween visualizations in the dense condition was because of
color similarities. Much time was spent by subjects match-
ing colors to each other and looking up process numbers in
the color legend.

Subjects made little use of the animation controls in the
Growing Squares visualization except to play it through once
at the beginning of each task to gain a picture of the data
set. Only a few of the subjects actively moved the timeline
back and forth to solve various subtasks, and most preferred
to leave the time setting at the end of the execution.

The fixed (circular) layout algorithm used in the user
study turned out to be limiting when it came to compar-
ing the size (i.e. duration) of individual processes. Users
remarked that it would have been useful to be able to click
and drag processes to arbitrary positions to facilitate com-
parison as well as to group processes into semantic clusters

(i.e. clusters of the same perceived type).

Figure 7: Mean task completion times for all tasks across
the Hasse and Growing Squares methods and across levels
of density. Error bars show standard deviations.

6.2 Subjective Ratings

The subjects consistently rated Growing Squares above
Hasse diagram with respect to efficiency, ease-of-use and en-
joyment. The mean response values to the five point Likert-
scale questions are summarized in Figure 8. The complete
data analysis table is presented as Table 4.

The subjects’ responses to the efficiency question (Q2,
Table 4) showed a higher rating for the Growing Squares
visualization than Hasse diagrams in both sparse (means
3.83 (s.d. .39) and 2.75 (s.d. .97)) and dense data densities
(means 3.13 (s.d. .68) and 1.58 (s.d. .67)). Both higher
rating readings were significant (Friedman Tests, p = .0209
for the sparse case and p = .0039 for the dense case). The
subjects’ response to the ease-of-use question (Q1, Table 4)
also showed a higher rating for the Squares visualization
in both sparse (means 3.92 (s.d. .67) and 2.67 (s.d. .89))
and dense data densities (means 2.79 (s.d. .78) and 1.46
(s.d. .66)). Both higher rating readings were significant
(Friedman Tests, p = .0094 for the sparse case and p = .0015
for the dense case). The subjects’ response to the enjoyment
question (Q3, Table 4) also showed a higher rating for the
Squares visualization in both sparse (means 3.92 (s.d. .79)
and 3.00 (s.d. .43)), and dense data densities (means 3.25
(s.d. .85) and 1.92 (s.d. .67)). Both higher rating readings
were significant (Friedman Tests, p = .0094 for the sparse
case and p = .0015 for the dense case).

Figure 8 shows, not surprisingly, that the density of the
data set strongly influenced the subjects’ responses to each
question for both visualizations. This difference is reliable
for all but the enjoyability question (Friedman Tests). The
subjects’ response to this question (Q2, Table 4) when us-
ing the Growing Squares visualization shows a higher rating
when small data sets are considered (means 3.92 (s.d. .79)
for sparse sets and 3.25 (s.d. .75) for large sets), but on the
other hand, this is not a significant difference (p > .05).

The final ranking questionnaire shows that most subjects
preferred the Growing Squares technique over Hasse dia-
grams with regard to ease of use, efficiency, and enjoyment
(Table 3). Overall, the results from this ranking are very



Figure 8: Responses to Q1-Q3 5-point Likert-scale questions across sparse and dense data densities for the Hasse and Growing
Squares methods.

Question Prefer GS?

Rank visualizations w.r.t. ease-of-use 92 %
Rank visualizations w.r.t. efficiency 83 %
Rank visualizations w.r.t. enjoyment 92 %

Table 3: Subject responses to ranking the two visualization.

favorable for the Growing Squares method.

7 Discussion

This work was motivated by our research effort to provide
new techniques for visualizing causal relations that gives a
clearer view of the information flow in a large distributed
systems than traditional visualizations. Our technique is
based on animation, colors and patterns in both 2D and 3D.
A formative evaluation at the onset of the project and a
user study at the end was conducted to validate our belief
in the new visualization. To summarize, the results from
the user study shows that the Growing Squares visualiza-
tion technique is consistently faster and more efficient than
Hasse diagrams. This difference, however, is not statistically
significant for the general case, although it is significant for
the sparse data set case.

The task completion times were consistently better for
Growing Squares than Hasse diagrams, but there was a large
variation on the times of different users. This came as a re-
sult of the different interpretation that subjects gave the def-
inition of an overview task; some users correctly used the two
methods with the intention of quickly gaining an overview of
the system trace, while others spent much time trying to get
a totally accurate answer. This problem is inherent in the
nature of overview tasks, and is hard to avoid; we suspect,
however, that we would have been able to prove significance
with more test subjects.

On a related note, while our results failed to prove that
our method scales better than Hasse diagrams, we firmly
believe that Growing Squares does indeed perform better
than traditional diagrams for large system traces. However,
as Figure 7 suggests, this is a constant factor of improve-
ment. For large systems some kind of hierarchical clustering
scheme need to be used to group sets of processes into pro-
cess groups. This technique would also benefit traditional
classic Hasse diagrams.

It might be argued that users in general pursue accurate
answers and not approximations. However, discussions with
our focus group suggest that the role of causal relation vi-

sualization is to provide the user with a quick overview, and
that accurate answers are best found using direct queries
and offline analyses, not graphical diagrams.

Our main design goal with the Growing Squares method
was to provide the user with an easily accessible map of
the information flow and influences in a distributed system.
Thus, the intention of the method was primarily for users
to study the state of the system at the end of its execu-
tion, and to use the animation only when specifics about
the dynamic execution was needed. Experiences from the
user study showed that this was also the way the majority
of the users employed the visualization, and that the ani-
mation aspect thus did not interfere with our objective of
providing an overview of the system under study.

All test subjects were well-familiar with Hasse diagrams
prior to carrying out the experiment whereas they knew
nothing of the Growing Squares visualization, yet performed
consistently better using the new technique in almost all
cases. This, we think, suggests that the Growing Squares
method is intuitive and easily accessible, and that the
method with practice might become significantly more ef-
ficient than Hasse diagrams. The subjective ratings also
support this belief. These clearly show that users prefer the
Growing Squares visualization over Hasse diagrams. In ad-
dition, the enjoyability rating of the visualization did not
decrease significantly as the data density increased.

The positive feedback that we have received from the
subjects suggests that these kinds of alternate visualization
methods of causal relations are indeed useful and worthwhile
avenues for future research. By combining them with tra-
ditional methods such as Hasse diagrams, users will be able
to use the strengths of different methods to solve different
problems. In addition, the ability to view systems of causal
relations from different perspectives will greatly aid in un-
derstanding the mechanics of the system.

8 Conclusions

The concept of causal relations is pervasive in human think-
ing and is a prime tool for determining the underlying princi-
ples of almost any system in most scientific fields. In the field
of software engineering, causal relations reside in the core of
the development process of parallel and distributed software
systems. Visualization environments for parallel and dis-
tributed software typically offer animations of causal rela-
tions represented as Hasse diagrams (time-space diagrams).
However, understanding complex causal relations is difficult,
and traditional visualization techniques such as Hasse dia-
grams offer poor and not direct overview. We have developed



Question Hasse diagrams Growing Squares Reliability
sparse dense sparse dense Hasse/GS Density

Q1. Rate the visualization w.r.t. ease-of-use. 2.67 (.89) 1.46 (.66) 3.92 (.67) 2.79 (.78) yes yes
Q2. Rate the visualization w.r.t. efficiency. 2.75 (.97) 1.58 (.67) 3.83 (.39) 3.13 (.68) yes yes
Q3. Rate the visualization w.r.t. enjoyability. 3.00 (.43) 1.92 (.67) 3.92 (.79) 3.25 (.75) yes yes/no†

† Density does not significantly influence the enjoyability of the Growing Squares animation.

Table 4: Mean (standard deviation) responses to 5-point Likert-scale questions. Reliability is defined as being significant at
the .05 level.

a new technique, called Growing Squares, that uses color
coding and a metaphor based on pools of color growing over
time to visualize causal relations in an intuitive fashion that
provides quick and direct overview of the information flow in
the system under study. User studies indicate that our tech-
nique is both faster and more enjoyable to use than Hasse
diagrams.

9 Future Work

The Growing Squares method described in this paper has
been used to analyze the execution of parallel and dis-
tributed systems, but the general nature of causal relations
allows the technique to be used for other purposes as well,
something which would be interesting to try. In addition,
we are investigating extensions and improvements to the
original scheme, including polishing of the prototype Grow-
ing Pyramids 3D extension, various layout algorithms, and
adding the possibility to click and drag processes around in
the visualization. Beyond these incremental improvements
we are also looking into alternate techniques of visualizing
causal relations, especially in 3D.

Acknowledgements

We would like to thank the researchers of Chalmers Univer-
sity of Technology who took part in the panel discussion at
the beginning of the project. Thanks to David Modjeska for
reviewing and commenting on the paper in its early stages.
We also thank the test subjects who participated in the user
study.

p

time

p

1

0

p
2

Figure 9: Hasse diagram visualization with 5 processes.

References

Alberts, D., Gutwenger, C., and Nher, P. M. S. 1997.
AGD–library: A library of algorithms for graph drawing.
In Proceedings of the Workshop on Algorithm Engineering
(WAE ’97), 112–123.

Battista, G. D., Eades, P., Tamassia, R., and Tollis,
I. G. 1999. Graph Drawing: Algorithms for the Visual-
ization of Graphs. Prentice Hall.

Bederson, B. B., Hollan, J. D., Perlin, K., Meyer,
J., Bacon, D., and Furnas, G. W. 1996. Pad++:
A zoomable graphical sketchpad for exploring alternate
interface physics. Journal of Visual Languages and Com-
puting 7 , 3–31.

Bederson, B. B., Meyer, J., and Good, L. 2000. Jazz:
An extensible zoomable user interface graphics toolkit in
Java. In Proceedings of the ACM Symposium on User
Interface Software and Technology (UIST 2000), 171–180.

Bemmerl, T., and Braum, P. 1993. Visualization of mes-
sage passing parallel programs with the TOPSYS parallel
programming environment. Journal of Parallel and Dis-
tributed Computing 18, 2 (June), 118–128.

Cormen, T. H., Lesierson, C. E., Rivest, R. L., and
Stein, C. 2001. Introduction to Algorithms, second ed.
MIT Press, Sept.

Heath, M. T., and Etheridge, J. A. 1991. Visualizing
the performance of parallel programs. IEEE Software 8,
5 (Sept.), 29–39.

Heath, M. T. 1990. Visual animation of parallel algorithms
for matrix computations. In Proceedings of the Fifth Dis-
tributed Memory Computing Conference, 1213–1222.

Koldehofe, B., Papatriantafilou, M., and Tsigas,
P. 1999. Distributed algorithms visualisation for ed-
ucational purposes. In Proceedings of the 4th Annual
SIGCSE/SIGCUE Conference on Innovation and Tech-
nology in Computer Science Education (ITICSE-99), 103–
106.

Kraemer, E., and Stasko, J. T. 1998. Creating an ac-
curate portrayal of concurrent executions. IEEE Concur-
rency 6, 1 (Jan./Mar.), 36–46.

Lamport, L. 1978. Time, clocks and the ordering of events
in distributed systems. Communications of the ACM 21,
7, 558–564.

Levkowitz, H., and Herman, G. T. 1992. Color scales for
image data. IEEE Computer Graphics and Applications
12, 1 (Jan.), 72–80.



Levkowitz, H., Holub, R. A., Meyer, G. W., and
Robertson, P. K. 1992. Color versus black and white in
visualization. IEEE Computer Graphics and Applications
12, 4 (July), 20–22.

Moses, Y., Polunsky, Z., and Tal, A. 1998. Algorithm
visualization for distributed environments. In Proceed-
ings IEEE Symposium on Information Visualization 1998,
IEEE, 71–78.

Perlin, K., and Fox, D. 1993. Pad: An alternative ap-
proach to the computer interface. In Proceedings of Com-
puter Graphics (SIGGRAPH 93), vol. 27, 57–64.

Socha, D., Bailey, M. L., and Notkin, D. 1989. Voyeur:
Graphical views of parallel programs. In Proceedings of
the ACM SIGPLAN/SIGOPS Workshop on Parallel and
Distributed Debugging, ACM SIGPLAN Notices 24, 206–
215.

Stasko, J. T., and Kraemer, E. 1993. A methodology
for building application-specific visualizations of parallel
programs. Journal of Parallel and Distributed Computing
18, 2 (June), 258–264.

Topol, B., Stasko, J. T., and Sunderam, V. 1998.
PVaniM: a tool for visualization in network computing
environments. Concurrency: Practice and Experience 10,
14 (Dec.), 1197–1222.

Ware, C., Neufeld, E., and Bartram, L. 1999. Visualiz-
ing causal relations. In Proceedings of IEEE Information
Visualization 99.

Wyszecki, G., and Stiles, W. S. 1991. Color Science:
Concepts and Methods, Quantitative Data and Formulae,
second ed. John Wiley & Sons.

(a)

(b)

(c)

(d)

(e)

Figure 10: Growing Squares visualization of the dynamic
execution of a 5-process distributed system.



Growing Squares: Animated Visualization of Causal Relations: Elmqvist, Tsigas

(a) (b)

(c) (d)

(e)

Color Plate: Growing Squares visualization of the dynamic execution of a 5-process distributed system.


