
Wait-free Programming for General Purpose Computations on Graphics
Processors

Phuong Hoai Ha
University of Tromsø

Department of Computer Science
Faculty of Science, N-9037 Tromsø, Norway

phuong@cs.uit.no

Philippas Tsigas
Chalmers University of Technology

Department of Computer Science and Engineering
SE-412 96 Göteborg, Sweden

tsigas@cs.chalmers.se
Otto J. Anshus

University of Tromsø
Department of Computer Science

Faculty of Science, N-9037 Tromsø, Norway
otto@cs.uit.no

Abstract

The fact that graphics processors (GPUs) are today’s
most powerful computational hardware for the dollar has
motivated researchers to utilize the ubiquitous and power-
ful GPUs for general-purpose computing. Recent GPUs
feature the single-program multiple-data (SPMD) multicore
architecture instead of the single-instruction multiple-data
(SIMD). However, unlike CPUs, GPUs devote their transis-
tors mainly to data processing rather than data caching and
flow control, and consequently most of the powerful GPUs
with many cores do not support any synchronization mech-
anisms between their cores. This prevents GPUs from being
deployed more widely for general-purpose computing.

This paper aims at bridging the gap between the lack
of synchronization mechanisms in recent GPU architec-
tures and the need of synchronization mechanisms in par-
allel applications. Based on the intrinsic features of recent
GPU architectures, we construct strong synchronization ob-
jects like wait-free and t-resilient read-modify-write objects
for a general model of recent GPU architectures without
strong hardware synchronization primitives like test-and-
set and compare-and-swap. Accesses to the wait-free ob-
jects have time complexity O(N), whether N is the num-
ber of processes. Our result demonstrates that it is possi-
ble to construct wait-free synchronization mechanisms for
GPUs without the need of strong synchronization primitives
in hardware and that wait-free programming is possible for
GPUs.

1 Introduction

Graphics processors (GPUs) are emerging as powerful
computational co-processors for general purpose computa-
tions. The demands of graphics as well as non-graphics ap-
plications have driven GPUs to be today’s most powerful
computational hardware for the dollar [16]. Since GPUs are
specialized for computation-intensive highly-parallel appli-
cations (e.g. graphics rendering), unlike CPUs, GPUs de-
vote more transistors to data processing rather than data
caching and flow control. Current GPUs are capable of
about ten times as many GFLOPS1 as current CPUs. GPU
computational power doubles every ten months (surpassing
the Moore’s Law for traditional microprocessors) whereas
CPU computational power doubles every seventeen months.
These facts have motivated researchers to utilize the ubiq-
uitous and powerful GPU for general-purpose computing
such as physics simulations, data mining and signal pro-
cessing [16]. Moreover, unlike previous GPU architec-
tures, which are single-instruction multiple-data (SIMD),
recent GPU architectures (e.g. Compute Unified Device
Architecture (CUDA) [1]) are single-program multiple-data
(SPMD). The latter consists of multiple SIMD multiproces-
sors of which each, at the same time, can execute a different
instruction. This extends the set of general-purpose appli-
cations on GPUs, which are no longer restricted to follow
the SIMD-programming model.

However, the recent GPU architecture also creates chal-
lenges on synchronization between its SIMD multiproces-
sors (or SIMD cores). Since the GPU is designed to de-

1Giga FLoating point Operations Per Second

vote transistors to computation rather than data caching and
flow control, most of the current powerful GPUs with many
cores (e.g. NVIDIA Tesla series with up to 64 cores and
GeForce 8800 series with 16 cores) do not support strong
synchronization primitives like test-and-set and compare-
and-swap [1]. Due to lack of synchronization mechanisms
between the SIMD cores, the SIMD cores cannot safely
communicate with each other through shared memory [1].
On the other hand, most of the parallel applications need
some synchronization mechanism to synchronize their con-
current processes. The fact prevents the GPU from being
deployed more widely.

The paper aims at bridging the gap between the lack of
synchronization mechanisms in the GPU architecture and
the need of synchronization mechanisms in parallel applica-
tions. Based on the intrinsic features of recent GPU archi-
tectures, we first generalize the architectures to an abstract
model of a chip with multiple SIMD cores sharing a mem-
ory (cf. Section 2). Each core can process M threads (in
a SIMD manner) in one clock cycle. Each thread of a core
accesses the shared memory using (atomic) read/write op-
erations. Then, we construct wait-free and t-resilient syn-
chronization objects [4, 10] for this model. The wait-free
and t-resilient objects can be deployed as building blocks in
parallel programming to help parallel applications tolerate
crash failures and gain performance [13, 15, 19, 20].

We observe that due to SIMD architecture each SIMD
core with M hardware threads can read/write M mem-
ory locations in one atomic step. Using the M -register
read/write operations we construct a wait-free (long-lived)
read-modify-write (RMW) objects in the case the number
N of cores is not greater than (2M − 2) (cf. Section 4).
In the case N > (2M − 2), we construct (2M − 3)-
resilient RMW objects using only the M -register operations
and read/write registers (cf. Section 5). It has been proved
that (2M − 3) is the maximum number of crash failures
that a system with M -register assignments and read/write
registers can tolerate while ensuring consensus for correct
processes2 [5, 10]. Therefore, from a fault-tolerant point
of view, these wait-free/resilient objects are the best we
can achieve. To the best of our knowledge, research on
constructing wait-free and (2M − 3)-resilient long-lived
RMW objects using only M -register read/write operations
and read/write registers has not been reported previously.

In order to construct the wait-free/resilient long-lived
RMW objects for this model, there are challenges to be han-
dled. First, unlike short-lived wait-free/resilient consensus
objects [5, 10] in which the object variables are used once
during the object life-time, long-lived wait-free/resilient
consensus objects must allow processes to re-use the object
variables so as to keep the object size bounded. This implies
that the long-lived objects must include a wait-free/resilient

2Correct processes are processes that do not crash in the execution.

memory management mechanism [11, 14] inside them-
selves. Another challenge is that processes concurrently
accessing a wait-free/resilient long-lived read-modify-write
object must agree on a proposal that contains all responses
to the object operations suggested by the processes. There-
fore, unlike the process proposal in the consensus object,
the process proposal in the RMW object is unable to be
stored within one register. Since M -register assignment can
atomically write M values to M memory locations only
if each value can be stored in one register, the RMW ob-
ject must handle the proposal-size issue while tolerating the
same number of crash failures (2M − 3) as the consensus
object.

The main contribution of this paper is to design a set
of universal synchronization objects capable of empowering
the programmer with the necessary and sufficient tools for
wait-free programming on graphics processors. The techni-
cal contributions of this paper are threefold:

• We develop a wait-free long-lived consensus object
for N = (2M − 2) processes using only M -register
read/write operations and read/write registers. The
consensus algorithm has time complexity O(N) (cf.
Section 3). The time complexity is better than the time
complexity O(N2) of the well-known short-lived con-
sensus algorithm using M -register assignments [10].
The short-lived consensus algorithm needs to construct
a directed graph of processes in the second phase, lead-
ing to the time complexity O(N 2).

• We develop a wait-free long-lived RMW object for
N = (2M − 2) processes using only M -register
read/write operations and read/write registers. Ac-
cesses to the RMW object have time complexity O(N)
(cf. Section 4). This result implies that it is possi-
ble to construct wait-free synchronization mechanisms
for GPUs without the need of strong synchronization
primitives in hardware.

• We develop a (2M − 3)-resilient long-lived RMW ob-
ject for an arbitrary number N of processes using only
M -register read/write operations and read/write regis-
ters (cf. Section 5).

The rest of this paper is organized as follows. Section
2 presents a general model of a chip with multiple SIMD-
cores on which the new wait-free/resilient objects are devel-
oped. Section 3 presents the wait-free long-lived consensus
object for N = (2M − 2) processes. Section 4 presents the
wait-free RMW object for N = (2M − 2) processes. Sec-
tion 5 presents the (2M − 3)-resilient RMW object for an
arbitrary number N of processes. Section 6 suggests a so-
lution to make the round number bounded. Finally, Section
7 concludes this paper.

2 The Model

Inspired by emerging media/graphics processing unit ar-
chitectures like CUDA [1] and Cell BE [18], the abstract
system model we consider in this paper is illustrated in
Fig. 1. The model consists of N SIMD-cores sharing
a shared memory and each core can process M threads
(in a SIMD manner) in one clock cycle. For instance,
the GeForce 8800GTX graphics processor, which is the
flagship of the CUDA architecture family, has 16 SIMD-
cores/SIMD-multiprocessors, each of which processes up
to 16 concurrent threads in one clock cycle.

SIMD core SIMD core SIMD core...

Shared Memory

Figure 1. The abstract model of a chip with
multiple SIMD-cores

Since powerful media/graphics processing units with
many cores (e.g. NVIDIA Tesla series with up to 64
cores and GeForce 8800 series with 16 cores) do not sup-
port strong synchronization primitives like test-and-set and
compare-and-swap [1], we make no assumption on the ex-
istence of such strong synchronization primitives in this
model. In this model, each of the M threads of one SIMD
core can read/write one memory location in one atomic step.
Due to SIMD architecture, each SIMD core can read/write
M different memory locations in one atomic step or, in
order words, each SIMD core can execute M_READ and
M_ASSIGNMENT (atomic) operations.

Different cores can concurrently execute different user
programs and a process, which sequentially executes in-
structions of a program on one core, can crash due to the
program errors. The failure category considered in this
model is the crash failure: a failed process cannot take
another step in the execution. This model supports the
strongly t-resilient formulation in which the access proce-
dure at some port3 of an object is infinite only if the access
procedures in more than t other ports of the object are finite,
nonempty and incomplete in the object execution [5].

Terminology Synchronization objects are conventionally
classified by consensus number, the maximum number of
processes for which the object can solve a consensus prob-
lem [10]. An n-consensus object allows n processes to pro-
pose their values and subsequently returns only one of these

3An object that allows N processes to access concurrently is considered
having N ports.

values to all the n processes. A short-lived (resp. long-
lived) consensus object is a consensus object in which the
object variables are used once (resp. many times) during
the object life-time. An object implementation is wait-free
if any process can complete any operation on the object in
a finite number of steps regardless of the execution speeds
of other processes [10, 12, 17]. An object implementation
is t-resilient if non-faulty processes can complete their op-
erations as long as no more than t processes fail [6, 8].

3 Wait-free Long-lived Consensus Objects
Using M_assignment for N = 2M − 2

In this section, we consider the following consensus
problem. Each process is associated with a round num-
ber before participating in a consensus protocol. The round
number must satisfy Requirement 3.1. The problem is
to construct a long-lived object that guarantees consensus
among processes with the same consensus number (or pro-
cesses within the same round) using M_ASSIGNMENT op-
eration. Since i) the adversary can arrange all N processes
to be in the same round and ii) the M_ASSIGNMENT op-
eration has consensus number (2M − 2), we cannot con-
struct any wait-free objects that guarantee consensus for
more than (2M −2) processes using only the operation and
read/write registers [10], or N ≤ (2M − 2) must hold. The
constructed wait-free long-lived consensus object will be
used as a building block to construct wait-free read-modify-
write objects in Section 4.

Requirement 3.1. The requirements for processes’ round
number:

• a process’ round number must be increasing and be
updated only by this process,

• processes get a round number r only if the round (r−
1) has finished, and

• processes declare their current round number in
shared variables before participating in a consensus
protocol.

At this moment, round numbers are assumed to be un-
bounded for the sake of simplicity. Solutions to make the
round numbers bounded are presented in Section 6.

In the rest of this section, we presents a wait-free long-
lived consensus (LLC) object for N = (2M − 2) processes
using M_ASSIGNMENT operations. The LLC object is de-
veloped from the short-lived consensus (SLC) object using
M_ASSIGNMENT in [10]. The LLC object will be used to
achieve an agreement among processes in the same round.
Unlike the SLC object, variables in the LLC object that are
used in the current round can be reused in the next rounds.
The LLC object, moreover, must handle the case that some
processes (e.g. slow processes) belonging to other rounds

try to modify the shared data/variables that are being used
in the current round.

Algorithm 1 LONGLIVEDCONSENSUS(bufi: proposal)
invoked by process pi

ROUND[1...N] : contains current round numbers of N processes.
ROUND[i] is written by only process pi and can be read by all N pro-
cesses. ROUND[i] must be set before pi calls this LONGLIVEDCON-
SENSUS procedure.
REG[][]: 2-writer registers. REG[i][j] can be written by pro-
cesses pi and pj . For the sake of simplicity, we use a virtual array
2WR[1..M][1..M] that is mapped to REG of size M(M−1)

2
as follows

2WR[i][j] =

REG[i][j] if i > j

REG[j][i] if i < j

1WR[1...M][0...1]: 1-writer registers. 1WR[i] can be written by only
process pi.

Input: a unique proposal bufi for pi and pi’s round number
ROUND[i]

Output: a proposal or ⊥
1L: gId ← b i

M−1
c // Divide processes into 2 groups of size (M − 1)

with group ID gId ∈ {0, 1}
// Phase I:Find an agreement in pi’s group with indices {gId(M −
1) + 1, · · · , gId(M − 1) + M − 1}

2L: first ← FIRSTAGREEMENT(bufi, gId) // first is the proposal of
the earliest process of group gId in pi’s round

3L: if first =⊥ then
4L: return ⊥ // pi’s round had finished and a new round started
5L: end if

// Phase II: Find an agreement with the other group with indices
{(¬gId)(M − 1) + 1, · · · , (¬gId)(M − 1) + M − 1}

6L: winner ← SECONDAGREEMENT(first, gId)
7L: if winner =⊥ then
8L: return ⊥ // pId’s round had finished and a new round started
9L: end if
10L: return winner

The algorithm of the wait-free LLC object using
M_ASSIGNMENT is presented in Algo. 1. Before a pro-
cess pi invokes the LONGLIVEDCONSENSUS procedure,
pi’s round number must be declared in the shared variable
ROUND[i]. The procedure returns i) ⊥ if pi’s round had
finished and a newer round started or ii) one of the proposal
data proposed in pi’s round.

A process pi proposes its data by passing its proposal
data to the procedure. Like the SLC object in [10], when
the proposal data is unique for each process and can be
stored in a register, the LLC object can work directly on
the proposal data. However, when the proposal data is ei-
ther not unique for each process or larger than the regis-
ter size, which makes M_ASSIGNMENT no longer able to
atomically write M proposal data, our LLC object works on
the references to (or addresses of) the proposal data with the
condition that processes allocate their own memory to con-
tain their proposal data. In this case, applications using the
LLC object must ensure that processes, after achieving an
agreed reference ref , read the correct proposal data match-
ing ref . Even though processes get the same reference ref

via the LLC object, the data to which the reference refers
may change, making processes get different data.

Like the SLC algorithm [10], the LLC algorithm divides
the group of (2M − 2) processes into two fixed equal sub-
groups of (M−1) processes (line 1L). In the first phase, the
invoking process pi finds the proposal of the earliest process
of its group in its current round (line 2L). Then in the sec-
ond phase, pi uses the agreement achieved among its group
in the first phase as its proposal for finding an agreement
with its opposite group in its round (line 6L).

Note that pi’s round number is unchanged when pi is
executing the LONGLIVEDCONSENSUS procedure. If pi’s
round already finished, the procedure returns ⊥ since pi is
not allowed to participate in a consensus protocol of a round
to which it doesn’t belong (lines 4L and 8L).

Algorithm 2 FIRSTAGREEMENT(bufi: proposal; gId: bit)
invoked by process pi

Output: ⊥ or the proposal of the earliest process in pi’s round
1F: M_ASSIGNMENT({1WR[i][gId], 2WR[i][α +

1], · · · , 2WR[i][α + M − 1]}, {bufi, · · · , bufi}), where
α = gId(M − 1)

2F: first← i // Initialize the winner first of pi’s group to pi

3F: for k in α + 1, · · · , α + M − 1 do
4F: {first, ref} ← ORDERING(first, k, gId) // Find the earliest

process first of pi’s group in pi’s round
5F: if first =⊥ then
6F: return ⊥ // pId’s round had finished and a new round started
7F: end if
8F: end for
9F: return ref // first’s proposal in pi’s round

The FIRSTAGREEMENT procedure (cf. Algo. 2) simply
scans all members of pi’s group to find the earliest process
using the ORDERING procedure (cf. Algo. 5). The ORDER-
ING procedure receives as input two processes and returns
the preceding one together with its proposal in pi’s round.
Since the preceding order is transitive, the variable first

after the for-loop is the first process of pi’s group in pi’s
round.

The SECONDAGREEMENT procedure (cf. Algo. 3) is
an innovative improvement of the abstract idea in the SLC
algorithm [10]. The SLC algorithm suggests the idea of
constructing a directed graph between two groups each of
(M − 1) processes with property that there is an edge from
Pl to Pk if Pl and Pk are in different groups and the formers
assignment precedes the latter’s (or the former precedes the
latter for short). Constructing such a directed graph has time
complexity O(M2) since each member of one group must
be checked with (M − 1) members of the other group.

However, the SECONDAGREEMENT procedure finds an
agreement with time complexity only O(M). The idea is
that we can find a process pw in a group G0 that precedes
all members of the other group G1 without the need of such
a directed graph. Such a process is called source. Since all
members of G1 are preceded by pw, they cannot be sources.

Algorithm 3 SECONDAGREEMENT(first: proposal; gId:
bit) invoked by process pi

1S: M_ASSIGNMENT({1WR[i][¬gId], 2WR[i][β +
1], · · · , 2WR[i][β + M − 1]}, {first, · · · , first}), where
β = (¬gId)(M − 1)

2S: winner ← i // Initialize the winner winner to pi

3S: w_gId← gId // Initialize the winner’s group ID w_gId

4S: pivot[w_gId]← i // Set pivots for both groups to check all members
of each group in a round-robin manner

5S: pivot[¬w_gId]← β+1 // The smallest index in winner’s opposite
group

6S: next← pivot[¬w_gId]
7S: repeat
8S: previous← winner

9S: {winner, ref} ← ORDERING(winner, next,¬w_gId)
10S: if winner =⊥ then
11S: return ⊥ // pId’s round had finished and a new round started
12S: else if winner 6= previous then
13S: w_gId ← ¬w_gId // winner now belongs to the other

group
14S: next← previous

15S: end if
16S: next← the next member index in next’s group in a round-robin

manner.
17S: until next = pivot[¬w_gId] // All members of winner’s opposite

group have been checked
18S: return ref // The reference to winner’s proposal in round roundi

All sources must be members of pw’s group G0, which sug-
gest the same proposal, their agreement achieved in the first
phase. Therefore, all processes in both groups will achieve
an agreement, the agreement of pw’s group.

The SECONDAGREEMENT procedure utilizes the tran-
sitive property of the preceding order to achieve the better
time complexity O(M). Fig. 2 illustrates the procedure.
Assume that process pi belongs to group 0, which is marked
as p0

i in the figure. The procedure sets a pivot index for each
group (e.g. pivot0 = p0

i and pivot1 = p1
1) and checks mem-

bers of each group in a round-robin manner starting from
the group’s pivot (lines 4S and 5S). In the figure, p0

i , which
is the temporary winner (line 2S), consecutively checks the
members of group 1: p1

1, p
1
2 and p1

3, and discovers that it
precedes p1

1 and p1
2 but it is preceded by p1

3. At this point,
the temporary winner winner is changed from p0

i to p1
3 and

p1
3 starts to checks the members of group 0 starting from

p0
i+1 (lines 12S-14S). Then, p1

3 discovers that it precedes
p0

i+1 but it is preceded by p0
i+2. At this point, the tempo-

rary winner winner is again changed from p1
3 to p0

i+2. p0
i+2

continues to check the members of group 1 starting from p1
4,

the index before which p0
i stopped, instead of starting from

pivot1 = p1
1 (lines 12S-14S). It is clear from the figure that

p0
i+2 precedes p1

1 and p1
2 (or p0

i+2 p1
1 and p0

i+2 p1
2 for

short) since p0
i+2 p1

3 p0
i and p0

i precedes both p1
1 and

p1
2. Therefore, as long as the temporary winner (e.g. p0

i+2)
checks the pivot of its opposite group again, it can ensure
that it precedes all the members of its opposite group (line
17S) and becomes the final winner. Therefore, the proce-

dure needs to check at most (2M − 2) times, leading to the
time complexity O(M). This argument also leads to the
following lemma.

Group 0

Group 1

...

pivot1 = p1
1

p1
3

p0
i+2

p1
j

pivot0 = p0
i

p1
2

p0
i+1

p1
4

Figure 2. Illustration for the SECONDAGREE-
MENT procedure, Algo. 3

Lemma 3.1. The process winner 6=⊥ whose ref is re-
turned by SECONDAGREEMENT precedes all processes of
the other group.
Proof. Let the final winner (6=⊥) be W . Since the OR-
DERING procedure returns the earlier process between two
processes winner and next in the same round roundi (cf.
Lemma 3.3), the final winner W precedes all processes that
are checked in the repeat-until loop (lines 7S - 17S). What
we need to prove is that all processes in the other group
¬w_gId have been checked in the loop. Indeed,

• if the winner has never been changed (i.e.
winner = previous all the time), the next member
of the group ¬w_gId in a round-robin manner (line
16S) will be checked against winner until the repeat-
until loop makes a complete round via all members of
the group ¬w_gId (line 17S).

• if the winner has ever changed to a member W̃ of
the other group ¬w_gId, W̃ will continue to check the
next member after the previous winner previous in a
round-robin manner (lines 14S and 16S) until either all
members of W̃ ’s opposite group have been checked
within the loop or a member of W̃ ’s opposite group
precedes W̃ . That means in each iteration, regardless
of whether winner is changed or not, the next member
in one of the two groups will be checked in a round-
robin manner, starting from the group pivot (lines 4S
and 5S). Since members of each group is checked con-
secutively and the loop finishes when the pivot of a
group G̃ is checked again, all members of the group
G̃ are checked when the loop finishes. The fact that
the final winner W belongs to the other group G 6= G̃

when the loop finishes implies that all members of W’s
opposite group have been checked in the loop.

We now show that values of shared variables (e.g. 2WR

and 1WR) used by the FIRSTAGREEMENT and SECONDA-
GREEMENT procedures belong to pi’s round, and thus the
correctness of the LLC algorithm comes directly from the
SLC correctness proof in [10]. The shared variables are
read in the ORDERING procedure (Algo. 5). The procedure
ensures that the values read from the shared variables be-
long to pi’s round by checking that the processes writing to
the shared variables are in pi’s round both before and after
reading the variables (lines 1O and 6O).

Particularly, pi invokes the CHECKROUND procedure
(cf. Algo. 4) to check whether processes first and k are
still in pi’s round before and after it reads the shared vari-
ables 2WR[first][k], 1WR[first][gId] and 1WR[k][gId]
(lines 1O, 5O and 6O). The CHECKROUND(first, k) pro-
cedure returns i) ⊥ if pi’s round has finished (line 4H), ii)
first if process pfirst is in pi’s round and pk’s round has
finished (line 6H) or iii) pi’s round if both pfirst and pk are
in pi’s round (line 8H). These result from the Lemma 3.2.

Lemma 3.2. In the CHECKROUND procedure (Algo. 4),
from line 5H, roundfirst = roundi and roundk ≤
roundfirst.

Proof. Since i) processes’ round numbers are increasing
(cf. Requirement 3.1, item 1), ii) first is initialized to i

before pi calls ORDERING (lines 2F in Algo. 2 and 2S in
Algo. 3) and iii) roundi is unchanged while pi is execut-
ing LONGLIVEDCONSENSUS (cf. Requirement 3.1, items
1 and 3), roundfirst ≥ roundi in the CHECKROUND pro-
cedure. Therefore, from line 5H, roundfirst = roundi

and thus roundk ≤ (roundi =) roundfirst (otherwise,
the procedure returned early at line 4H).

Algorithm 4 CHECKROUND(first, k: process index) in-
voked by process pi

Output: ⊥, first or pi’s round number.
1H: roundi ← ROUND[i] // Get pi’s round
2H: M_READ({roundfirst, roundk}, {ROUND[first], ROUND[k]})
3H: if roundi < roundfirst or roundi < roundk then
4H: return ⊥ // pi’s round has finished.
5H: else if roundfirst > roundk then
6H: return first // roundi = roundfirst and roundk has finished

⇒ Ignore k.
7H: else
8H: return roundk // roundi = roundfirst = roundk⇒ Return

the round number
9H: end if

Lemma 3.3. The ORDERING procedure returns
• ⊥ only if pi’s round (or roundi for short) has fin-

ished.

Algorithm 5 ORDERING(first, k: index; gId: bit) invoked
by process pi

Output: {⊥,⊥} or {index, proposal}
1O: checkR1 ← CHECKROUND(first, k)
2O: if checkR1 =⊥ then
3O: return {⊥,⊥} // roundi has finished.
4O: end if
5O: 2wrfirst,k ← 2WR[first][k]; 1wrfirst ← 1WR[first][gId];

1wrk ← 1WR[k][gId]
6O: checkR2 ← CHECKROUND(first, k)
7O: if checkR2 =⊥ then
8O: return {⊥,⊥}
9O: end if
10O: if checkR1 = first or checkR2 = first then
11O: return {first, 1wrfirst} // roundi = roundfirst and

roundk has finished⇒ Ignore k.
12O: end if

// roundi = roundfirst = roundk and 2wrfirst,k , 1wrfirst

and 1wrk are values in round roundi

13O: if 2wrfirst,k = 1wrk then
14O: return {first, 1wrfirst}
15O: else
16O: return {k, 1wrk}
17O: end if

• a pair {index, proposal} in which proposal is
pindex’s proposal in pi’s round and index is either
the preceding between first and k in the case that
both are being in pi’s round, or first in the case that
roundk has finished and roundfirst = roundi.

Proof. The first part of this lemma is clear from the OR-
DERING pseudocode. The procedure returns ⊥ iff CHECK-
ROUND (Algo. 4) returns ⊥ (lines 3O and 8O). CHECK-
ROUND returns ⊥ only if roundi has finished (line 4H).

Now we prove the second part of the lemma. The
procedure returns a pair {index, proposal} only at lines
11O, 14O and 16O. Since i) CHECKROUND is executed
both before and after variable 1WR[first][gId] are read
(lines 1O, 5O and 6O), ii) CHECKROUND doesn’t return
⊥ at lines 3O and 8O only if roundfirst = roundi (cf.
Lemma 3.2) and iii) roundi is unchanged while pi is ex-
ecuting LONGLIVEDCONSENSUS (cf. Requirement 3.1,
items 1 and 3), the value 1wrfirst returned at line 11O is
the value of 1WR[first][gId] within roundi. Note that
1WR[first][gId] is written only by process pfirst.

Similarly, the values 2wrfirst,k and 1wrk used from line
13O are the values of 2WR[first][k] and 1WR[k][gId]
within roundi. Indeed, the fact that CHECKROUND doesn’t
return ⊥ nor first both before and after the values are read
(lines 1O, 5O, 6O) ensures that the values are read within
roundi (cf. Algo. 4). Therefore, 1wrfirst returned at lines
11O and 14O, and 1wrk returned at line 16O are the pro-
posals of processes first and k in roundi.

We prove the last part of the lemma. It is clear from the
ORDERING and CHECKROUND pseudocodes that the OR-
DERING procedure returns first at line 11O only if roundk

has finished and roundfirst = roundi (cf. line 6H, Algo.
4).

In the case roundi = roundfirst = roundk (i.e
from line 13O), since i) first is initialized to i and ii)
1WR[i][gId] and 2WR[i][k] are atomically updated to pi’s
proposal in roundi before pi calls ORDERING (lines 1F, 2F
in Algo. 2 and 1S, 2S in Algo. 3), if 2wrfirst,k = 1wrk,
the process k has come after the process first and overwrit-
ten 2WR[first][k]. Therefore, first is the preceding and
is returned (line 14O). Otherwise, k is the preceding and is
returned (line 16O). Note that the proposal data is unique
for each process.

Lemma 3.4. The time complexity of the LONGLIVEDCON-
SENSUS procedure is O(N).

Proof. The time complexity of CHECKROUND is O(1) and
thus the time complexity of ORDERING is also O(1). Since
FISRTAGREEMENT scans M = N+2

2 processes of pi’s
group to find the earliest one, its time complexity is O(N).
Since SECONDAGREEMENT checks at most N processes in
the repeat-until loop (cf. Fig. 2), its time complexity is also
O(N). Therefore, the time complexity of LONGLIVED-
CONSENSUS is O(N).

Lemma 3.5. For any wait-free consensus protocols using
only the M_ASSIGNMENT operation and read/write regis-
ters, the optimal space complexity is O(N 2).

Proof. It has been proved that in any wait-free consensus
protocols using only the M_ASSIGNMENT operation and
read/write registers, each pair of processes must have a reg-
ister that is written only by those two processes (cf. the
proof of Theorem 13 in [10]). Therefore, for N processes
there must be at least N(N−1)

2 registers, which means that
the optimal space complexity is O(N 2).

Lemma 3.6. The space complexity of the LLC object is
O(N2), the optimal.

Proof. From the set of variables used to construct the LLC
object (cf. Algo. 1), the space complexity of the LLC object
is obviously O(N2) due to array REG. Due to Lemma 3.5,
the space complexity of the LLC object is optimal.

4 Wait-free Read-Modify-Write Objects for
N = 2M − 2

In this section, we present a wait-free read-modify-
write (RMW) object for N = (2M − 2) processes using
M_ASSIGNMENT operations. Since the M_ASSIGNMENT
operation has consensus number (2M − 2), we cannot con-
struct any wait-free objects for more than (2M − 2) pro-
cesses using only this operation and read/write registers
[10]. The idea is to divide the execution of the RMW object

into consecutive rounds. Processes belonging to the same
round each suggests an order of these processes’ functions
to be executed on the object in that round, and then in-
vokes the LONGLIVEDCONSENSUS procedure in Section
3 to achieve an agreement among these processes. Since
each process executes one function on the RMW object at
a time, functions are ordered according to both the round in
which their matching processes participate and the agreed
order among processes in the same round.

Definition 4.1. A function is considered executed in a round
iff its result is made within that round.

Definition 4.2. A process is considered participating in a
round iff its function is executed in that round.

Definition 4.3. A round r is considered finished when all
participating processes of this round achieve agreement. At
that time, these participating processes finish the round r.

Definition 4.4. A function f is executed by a process p in a
round r iff f is included in p’s proposal and p is the winner
of the long-lived consensus protocol among the participat-
ing processes of the round r.

Algorithm 6 Data structures and variables used in Algo. 7
Proposal: record owner, round, response[1..N], toggle[1..N], value

end.
BUF [1...N]: record curBuf, PRO[0..1] of Proposal end. In
BUF [i], PRO[curBuf] is the current buffer for pi’s proposed data,
which is called PROi[curBuf] for short. PROi[¬curBuf] is pi’s
currently shared (read-only) buffer. Only pi can write to BUF [i]
WINNER[1...N] of Proposal: WINNER[i] contains the refer-
ence/address of the buffer containing the agreed proposal in the latest
round in which pi participates. Only pi can write to WINNER[i].
FUN [1...N]: FUN [i] contains the function most recently suggested by
process pi. Only pi can write to FUN [i].
COU [1...N]: COU [i] contains the latest round pi has finished. Only pi

can write to COU [i].
FASTSCAN(): scans a set of size less than 2M using the M -register
read/write operations. Its time complexity and space complexity are Θ(1)
[2]

Particularly, a process pi, which wants to execute a func-
tion f on the RMW object, invokes the RMW procedure
(Algo. 7) with function f as its parameter. The function,
together with a toggle bit, is written to a shared variable
FUN [i] so as to inform other processes (line 2). FUN [i]
is read-only for other processes pj , j 6= i. Processes, when
making a proposal, will scan all N elements of FUN to ex-
tract the functions that have not been executed yet based on
their toggle bit (lines 18 and 20). Since each process exe-
cutes one function on the RMW object at a time, the toggle
bit is sufficient to check if a process’ current function has
been executed (cf. Lemma 4.6).

In order to use the LONGLIVEDCONSENSUS procedure,
each process needs to manage its own round number, which

Algorithm 7 RMW(f: function) invoked by process pi

1: togglei ← ¬FUN [i].toggle

2: FUN [i]← {f, togglei}
3: for l in 1...2 do
4: coui ← FASTSCAN(COU); roundi ← max1≤j≤N coui[j] +

1; Let k be an index such that coui[k] = max1≤j≤N coui[j]
5: resk ← copy(WINNER[k])
6: if COU [resk.owner] 6= coui[k] and resk.toggle[i] = togglei

then
7: return resk.response[i] // The winner has started a new round

⇒ roundi has finished
8: else if COU [resk.owner] 6= coui[k] and resk.toggle[i] 6=

togglei then
9: continue // roundi has finished but FUN [i] of roundi hasn’t

been executed. Retry.
10: end if
11: if roundi ≤ resk.round and resk.toggle[i] = togglei then
12: return resk.response[i] // roundi has finished⇒ pi returns.

13: else if roundi ≤ resk.round and resk[i].toggle 6= toggle

then
14: continue // roundi has finished, but FUN [i] of roundi hasn’t

been executed. Retry.
15: end if

// roundi = resk.round + 1⇒ Compute pi’s proposal data
16: bufi ← &PROi[curBuf] // use bufi as the reference/address

of pi’s PRO[curBuf]
17: bufi ← copy(resk); bufi.round ← roundi; bufi.owner ←

i

18: funi ← FASTSCAN(FUN);
19: for j in 1...N do
20: if funi[j].toggle 6= bufi.toggle[j] then
21: bufi.toggle[j]← funi[j].toggle;
22: bufi.response[j] ← bufi.value; bufi.value ←

funi[j](bufi.value)
23: end if
24: end for

// long-lived consensus
25: winner ← LONGLIVEDCONSENSUS(bufi)
26: if winner =⊥ then
27: if l = 2 then
28: coui ← FASTSCAN(COU); Let k be an index such that

coui[k] = max1≤j≤N coui[j]
29: resk ← copy(WINNER[k])
30: return resk.response[i] // pi’s 2nd try and roundi fin-

ished⇒ response[i] must be ready.
31: else
32: continue // roundi was finished and a new round has started
33: end if
34: else if winner.toggle[i] 6= togglei then
35: continue // winner didn’t execute FUN [i]⇒ Retry one more

round
36: else
37: M_ASSIGNMENT({WINNER[i], COU [i]}, {winner, roundi})
38: if winner.owner = i then
39: BUF [i].curBuf ← ¬BUF [i].curBuf // pi is the win-

ner⇒ prepare a buffer for the next round
40: end if
41: return winner.response[i]
42: end if
43: end for

is increasing. At this moment, round numbers are assumed
to be unbounded for the sake of simplicity and solutions to
make round numbers bounded are presented in Section 6. A
process pi records the latest round it has finished in variable
COU [i], which is read-only to other processes pj , j 6= i

(line 37). The process pi, when invoking RMW, first scans
all N elements of COU to find the most recent round num-
ber roundi, the round it will belong to (line 4). This en-
sures that a process gets a round number r only if the round
(r − 1) has finished (cf. Lemma 4.1). The round number
then is written to a shared data PROi (lines 16 and 17),
where the data structure of PROi is described in Algo. 6.
These make the RMW procedure satisfy the requirement
for using the LONGLIVEDCONSENSUS procedure (cf. Re-
quirement 3.1).

After getting a round number roundi, pi creates its own
proposal for the long-lived consensus protocol in roundi.
It finds one of the participating processes of the latest round
(e.g pk) and reads its result (e.g. WINNER[k]) (lines
4-5). The read value is checked to ensure that it is the
result of round (roundi − 1) (lines 6-14) (cf. Lemma
4.3). The result, which contains responses to functions that
have been executed up to round (roundi − 1), is copied
to pi’s proposal PROi so that if PROi.response[j] =
resk.response[j],∀j, the field PROi.response[j] is kept
unchanged. The same approach is used for the toggle field
of PROi (cf. the Proposal data structure in Algo. 6).
Only responses/toggle-bits corresponding to the processes
that have submitted a new function to FUN , are updated to
new values (lines 18-22). This approach results in an im-
portant property of our RMW procedure:

Property 4.1. For any process pi, if its current function f

has been executed in a round r, the response to f in any pro-
cess’ buffer is kept unchanged until pi submit a new function
to FUN [i].

Since pi submits a new function only when making an-
other invocation of the RMW procedure (line 2), this prop-
erty implies that if a process pi obtains a reference to a
buffer containing the response to pi’s function f in a round
r, it can later use this reference to get the correct response
to its function f even if that buffer has been re-used for a
proposal of later rounds r′ > r.

After creating a proposal bufi, an order of functions
to be executed on the RMW object in round roundi, pi

uses the long-lived consensus object developed in Section
3 to achieve an agreement among processes in roundi (line
25). If pi’s function has been executed in the agreement,
pi atomically writes the agreement winner and its round
roundi to WINNER[i] and COU [i] (line 37) before re-
turning the response winner.response[i] (line 41).

Each process pi has two buffers: the working buffer
PROi[curBuf] is used to create proposal data and the

shared buffer PROi[¬curBuf] is used to share the pro-
posal data that has been chosen by the consensus protocol.
If processes agree on pi’s proposal, pi prepares the working
buffer for the next round by triggering its curBuf bit (line
39).

One of the biggest challenges in designing the RMW
object using M_ASSIGNMENT operations is that pro-
posal data cannot be stored in one register whereas the
M_ASSIGNMENT operation can atomically write M val-
ues to M memory locations only if the values each can be
stored in one register. Our RMW object overcomes the
problem by ensuring Property 4.1 and using references to
proposal data, instead of proposal data, as inputs for the
LONGLIVEDCONSENSUS procedure. The consensus pro-
cedure returns an agreed address of a buffer containing a
proposal. If the proposal contains a response to pi’s func-
tion, the response will be kept unchanged until pi gets the
response and returns from the RMW procedure according
to Property 4.1. Therefore, processes still achieve an agreed
order of their functions executed on the RMW object al-
though the buffer may be re-used for later rounds.

4.1 Correctness proofs

Lemma 4.1. If no process has finished a round r, no pro-
cess can obtain a round number r′ ≥ (r + 1).

Proof. Since a process pi writes its current round roundi

to COU [i] (Algo. 7, line 37) only if roundi has finished
(i.e. an agreement among participating processes of roundi

has been achieved), a process pn obtain a round number
roundn = max1≤k≤N COU [k] + 1 (Algo. 7, line 4) only
if the round roundn − 1 has finished.

Lemma 4.2. The value resk used from line 11 is a correct
copy of presk.owner’s shared buffer.

Proof. The problem may happen is that when pi makes
a copy resk of WINNER[k] buffer (line 5), the buffer
has been re-used (or has become the working buffer)
for a later round. Note that WINNER[k] contains the
reference to the buffer containing proposal data due to
M_ASSIGNMENT’s register-size restriction. We prove the
lemma by contradiction.

Assume that this scenario happens. Let rounda be the
round at which WINNER[k] is updated with a reference
to rounda’s winning buffer Buffer1 that is being copied
by pi at line 5. Since i) WINNER[k] and COU [k] are up-
dated in one atomic step using M_ASSIGNMENT (line 37)
and ii) COU [k] is always increasing, coui[k] ≤ rounda.

Let po be the owner of Buffer1. Since Buffer1 is
now po’s currently working buffer in a round roundb, there
exists a smallest round rounde, rounda < rounde <

roundb, in which po was again the winner (line 39 is the

only place po switches its working and shared buffers).
Since COU [k] is updated with rounde (line 37) before
the buffer Buffer1 is switched from po’s shared buffer
to po’s working buffer in order to be reused (line 39),
COU [k] was changed to rounde before pi finishes copying
Buffer1. Since po’s round number is always increasing,
COU [o] ≥ rounde > rounda ≥ coui[k], which makes the
algorithm either return earlier (line 7) or retry to read the
value again (line 9), a contradiction to the hypothesis that
this resk value is used from line 11.

Lemma 4.3. The value resk used to make pi’s proposal
in round roundi (line 17, Algo. 7) is the result of round
(roundi − 1).

Proof. Due to Lemma 4.2, resk from line 11 is the result
of the latest round that pk has finished until the time pi

reads that value at line 5. That round number is recorded in
resk.round. Since i) from line 17 roundi > resk.round

(otherwise, the procedure returned at line 12 or retried at
line 14) and ii) resk.round ≥ coui[k](since the round
number is always increasing) and iii) coui[k] = (roundi −
1) (line 4), we have roundi > resk.round ≥ (roundi−1).
Therefore, resk.round = (roundi − 1) or, in other words,
resk used at line 17 is the result of round (roundi−1).

Lemma 4.4. After a process pi retries at line 9, 14, 32 or
35 in Algo. 7, pi’s function FUN [i] will be executed by the
winner of the next round at the latest.

Proof. Since i) pi declares its latest function in FUN [i]
before roundi finishes (lines 2 and 4) and ii) processes
obtain the round number (roundi + 1) only if roundi

has finished (cf. Lemma 4.1), processes participating in
round (roundi + 1) will definitely observe pi’s function
when scanning FUN at line 18. The winner of round
(roundi + 1) will realize that FUN [i] has not been exe-
cuted (line 20) since resk is the result of round roundi due
to Lemma 4.3. Hence, FUN [i] will be definitely executed
by the winner of round roundi + 1.

Therefore, if pi’s function has not been executed by the
winner of roundi and pi retries and participates in a round
roundj ≥ roundi + 1, pi will get the response to its func-
tion in roundj

Lemma 4.5. Every process pi will return with the response
to its function after at most 2 iterations (line 3, Algo. 7).

Proof. From Lemma 4.4, pi’s function will be executed at
the latest in the round roundj in which pi participates dur-
ing its second try. If pi returns at line 7, 12 or 41, the re-
turned value is the response to its function due to Property
4.1. However, it may happens that roundj has finished just
before the invocation of the LONGLIVEDCONSENSUS pro-
cedure (line 25), making the procedure returns ⊥ (line 26).

In this case, pi scans COU to get the result resk of a round
roundr ≥ roundj , and resk.response[i] contains the re-
sponse to pi’s function due to Property 4.1 (lines 28-30).
Therefore, pi will return with the response to its function
after executing at most 2 iterations.

Lemma 4.6. The RMW procedure is linearizable.

Proof. (Sketch) Assume that RMW(f) is invoked by pro-
cess pi. Within each round, participating processes achieve
an agreement on the order of their functions to be executed
using the LONGLIVEDCONSENSUS procedure and thus the
functions of the participating processes each takes effect at
one point within the execution of that round.

On the other hand, a function that has been executed in a
round will never be executed in later rounds. Indeed, since
i) a function and its toggle bit are atomically declared only
once at the beginning of RMW by its unique owner/process
(line 2) and ii) the value resk used to make pi’s proposal in
round roundi (line 17) is the result of round (roundi − 1)
(Lemma 4.3) and iii) executing a function and updating its
toggle bit in the result of a round by a process pi occur atom-
ically to other processes due to the way of constructing pi’s
proposal (lines 21-22), pi can check whether pj’s function
has been executed by just comparing FUN [j].toggle and
resk.toggle[i] (line 20).

Therefore, there is a unique point in the whole execution
(including many rounds) at which the function f takes ef-
fect. Since pi doesn’t invoke another RMW(f ′) before its
previous RMW(f) has been completed, the unique point is
the linearization point of the RMW(f).

Lemma 4.7. The RMW procedure is a wait-free read-
modify-write operation with the time complexity of O(N).

Proof. Since the time complexity of LONGLIVEDCON-
SENSUS is O(N) (Lemma 3.4) and RMW returns after
at most two iterations of its for-loop, the time complexity
of RMW is O(N). This also implies that RMW is wait-
free.

Lemma 4.8. The space complexity of the wait-free RMW
object is O(N2), the optimal.

Proof. From the set of variables used to construct the RMW
object (cf. Algo. 6), we see that the Proposal record has
space complexity O(N), leading to the space complexity
of the BUF and WINNER arrays is O(N 2). Since the
space complexity of the LONGLIVEDCONSENSUS proce-
dure, which is used in the RMW procedure (line 25, Algo.
7), is also O(N2) (cf. Lemma 3.6), the space complexity of
the RMW object is O(N2).

On the other hand, any general wait-free RMW object
(i.e. there is no restriction on function f) for N processes
can be used as a building block to construct a wait-free

(short-lived) consensus protocol for N processes with space
complexity O(1) (cf. the corresponding function f for the
consensus protocol in Algo. 8). Due to Lemma 3.5, the
space complexity of general wait-free RMW objects using
only the M_ASSIGNMENT operation and read/write regis-
ters is at least O(N2). This means the space complexity
O(N2) of the new wait-free RMW object (Algo. 7) is opti-
mal.

Algorithm 8 Function F(agreement) invoked by process
pi

Input: agreement must be initialized to ⊥ before the consensus proto-
col starts.

1: if agreement =⊥ then
2: return pi’s proposal;
3: else
4: return agreement;
5: end if

5 (2M−3)-Resilient Read-Modify-Write Ob-
jects for Arbitrary N

In this section, we present a (2M − 3)-resilient
object for an arbitrary number N of processes using
M_ASSIGNMENT operations. Since the operation has con-
sensus number (2M − 2), we cannot construct any objects
that tolerate more than (2M − 3) faulty processes using
only the M_ASSIGNMENT operation and read/write regis-
ters [5].

Let D = (2M − 2) and, without loss of generality, as-
sume that N = DK, where K is an integer. The idea is to
construct a balanced tree with degree of D. Processes start
from the leaves at level K and climb up to the first level
of the tree, the level just below the root. When visiting a
node at level i, 2 ≤ i ≤ K, a process pi calls the wait-free
LONGLIVEDCONSENSUS procedure (cf. Section 3) for its
D sibling processes/nodes to find an agreement on which
process will be their representative that will climb up to the
higher level.

The representative process of pi’s D siblings at level l

will participate in the wait-free LONGLIVEDCONSENSUS
procedure with its D siblings at level (l +1) and so on until
the representative reaches level 1 of the tree at which there
are exact D nodes. At this level, the D processes/nodes
invoke the wait-free RMW procedure for D processes (cf.
Section 4).

Processes that are not chosen to be the representative
stop climbing the tree and repeatedly check the final result
until their function is executed. After that they return with
the corresponding response.

Particularly, a process pi that wants to execute a func-
tion f on the resilient RMW object invokes the RESILIEN-
TRMW procedure with f as its parameter (cf. Algo. 9).

Algorithm 9 RESILIENTRMW(f : function) invoked by
process pi

1R: togglei ← ¬FUN [i].toggle

2R: FUN [i]← {f, togglei}
3R: if CANDIDATE(i) = true then
4R: return RMW(f); // Wait-free read-modify-write object for 2M−

2 candidate processes
5R: else
6R: // Repeatedly check results with exponential backoff
7R: repeat
8R: coui ← M_SCAN(COU); Let k be an index such that

coui[k] = max1≤j≤N coui[j]
9R: result← copy(WINNER[k])
10R: if result.toggle[i] 6= togglei then
11R: Backoff before checking again.
12R: end if
13R: until result.toggle[i] = togglei

14R: return result.response[i]
15R: end if

Algorithm 10 CANDIDATE(i: index) invoked by process pi

1C: coui ← M_SCAN(COU); roundi ← max1≤j≤N coui[j] + 1;
2C: bufi.round← roundi; bufi.owner ← i

3C: for l = K− 1 to 2 do
4C: winner ← LONGLIVEDCONSENSUSl(bufi) // Achieve an

agreement among pi’s D siblings at level l about who is their rep-
resentative. Returning the ID of the winning process

5C: if winner =⊥ or winner 6= i then
6C: return false;
7C: end if
8C: end for
9C: return true

The process checks whether it successfully climbs up to
level 1 by calling the CANDIDATE procedure (line 3R and
Algo. 10) and if so, it invokes the wait-free RMW proce-
dure for (2M − 2) siblings at level 1 (line 4R). Otherwise,
pi repeatedly reads the result to check if its function has
been executed as in the RMW procedure (lines 8R, 9R and
14R). In order to reduce the contention level on the shared
variables COU and WINNER, RESILIENTRMW delays
for a while between two consecutive reads using the backoff
mechanism [3].

The RMW procedure used in the RESILIENTRMW pro-
cedure is the same as the RMW procedure in previous sec-
tion except that i) RMW doesn’t initialize FUN [i] since
FUN [i] is initialized at line 2R and ii) the FASTSCAN
function, which takes a snapshot of 2M registers using
M_ASSIGNMENT operations with time complexity O(1),
is replaced by M_SCAN that takes a snapshot of arbitrary
N registers using M_READ and M_ASSIGNMENT opera-
tions with time complexity of O((N

M
)2) [2]. This leads to

the following lemma:

Lemma 5.1. For the correct processes4 that execute RMW,
the time complexity of their RESILIENTRMW is O(N 2) if

4Correct processes are processes that do not crash in the object execu-
tion.

M is a constant and is O(N log N) if the ratio N
M

is a con-
stant.

Proof. The time complexity of RMW using M_SCAN
with time complexity O((N

M
)2) is max{O((N

M
)2), O(N)}.

Since CANDIDATE invokes LONGLIVEDCONSENSUS with
time complexity O(D) at each of log N levels, the
time complexity of CANDIDATE is O((2M − 2) log N).
Therefore, the time complexity of RESILIENTRMW is
max{O((N

M
)2), O(N)} + O((2M − 2) log N). If M is a

constant, the time complexity becomes O(N 2). If N
M

=
α, where α is a constant, the the complexity becomes
O(N log N).

Lemma 5.2. The RESELIENTRMW object is (2M − 3)
resilient for an arbitrary number N of processes.

Proof. (Sketch) We will prove that correct processes always
return with the response to its function if at most (2M −
3) RESILIENTRMW accesses to the object fail (cf. the t-
resilient model in Section 2).

Since at most (2M − 3) processes fail, at least one of
(2M − 2) processes at level 1 is correct and successfully
executes the RMW procedure, ensuring that the final re-
sult exists. Due to Property 4.1, the responses to processes’
functions in the final result are kept unchanged until pro-
cesses submit a new function. Therefore, the response re-
turned at line 4R or 14R is the response to pi’s function.
That means every correct process pi will eventually get its
response and return via either repeatedly checking the final
result (line 14R) or executing the wait-free RMW proce-
dure at level 1 (line 4R).

6 Bounded round numbers

Active processes pi that are participating in the most
recent instance of the long-lived protocol need a mecha-
nism to distinguish them from slow/sleepy processes. The
bounded version of the long-lived protocol can be ob-
tained by replacing the unbounded round number with the
(bounded) leadership graph suggested in [9]. In the graph,
an incoming process pi invokes the ADVANCE operation to
become one of the leaders of the graph. Processes that are
current leaders belong to the most recent round whereas
processes that are no longer leaders are slow processes.
Therefore, the leadership graph can help distinguish ac-
tive processes from slow processes, satisfying the require-
ment of the long-lived protocol. Another approach to bound
the round number is to use the transforming technique pre-
sented in [7]. The technique can transform any unbounded
algorithm based on an asynchronous rounds structure into a
bounded algorithm in a way that preserves correctness and
running time.

7 Conclusions

In this paper, based on the intrinsic features of emerg-
ing media/graphics processing unit architectures we have
generalized the architectures to an abstract model of a chip
with multiple SIMD cores sharing a memory. For this gen-
eral model, which does not support strong synchroniza-
tion primitives like test-and-set and compare-and-swap, we
have developed a wait-free long-lived consensus object for
N = (2M − 2) cores, where M is the number of hard-
ware threads on each core. The time complexity of the new
consensus algorithm is O(N), which is better than the time
complexity O(N2) of the well-known short-lived consen-
sus algorithm on the same setting [10]. Using the long-lived
consensus object, we have developed a wait-free long-lived
read-modify-write (RMW) object for N = (2M − 2) with
time complexity O(N). In the case N > (2M − 2), we
have developed a (2M − 3)-resilient RMW object for an
arbitrary number N of cores.

The results presented in this paper provide a starting
point to bridge the gap between the lack of synchronization
mechanisms in recent GPU architectures and the need of
synchronization mechanisms in parallel applications. The
results show that wait-free programming is possible for
GPUs, extending the set of parallel applications that can uti-
lize the ubiquitous and powerful computational hardware.
Last but not least, the results demonstrate that it is possi-
ble to construct wait-free synchronization mechanisms for
GPUs without the need of strong synchronization primitives
in hardware, implying more transistors in GPUs can be de-
voted to data processing and intensive computing instead of
strong synchronization primitives.

References

[1] NVIDIA CUDA Compute Unified Device Architecture, Pro-
gramming Guide, version 1.0. NVIDIA Corporation, 2007.

[2] Y. Afek, H. Attiya, D. Dolev, E. Gafni, M. Merritt, and
N. Shavit. Atomic snapshots of shared memory. J. ACM,
40(4):873–890, 1993.

[3] A. Agarwal and M. Cherian. Adaptive backoff synchroniza-
tion techniques. In Procs. of the Annual Intl. Symp. on Com-
puter Architecture, pages 396–406, 1989.

[4] E. Borowsky and E. Gafni. Generalized flp impossibility
result for t-resilient asynchronous computations. In STOC
’93: Proceedings of the twenty-fifth annual ACM symposium
on Theory of computing, pages 91–100, 1993.

[5] T. Chandra, V. Hadzilacos, P. Jayanti, and S. Toueg. Gener-
alized irreducibility of consensus and the equivalence of t-
resilient and wait-free implementations of consensus. SIAM
Journal on Computing, 34(2):333–357, 2005.

[6] D. Dolev, C. Dwork, and L. Stockmeyer. On the mini-
mal synchronism needed for distributed consensus. J. ACM,
34(1):77–97, 1987.

[7] C. Dwork and M. Herlihy. Bounded round number. In Proc.
of Symp. on Principles of Distributed Computing (PODC),
pages 53–64, 1993.

[8] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility
of distributed consensus with one faulty process. J. ACM,
32(2):374–382, 1985.

[9] M. Herlihy. Randomized wait-free concurrent objects (ex-
tended abstract). In Proc. of Symp. on Principles of Dis-
tributed Computing (PODC), pages 11–21, 1991.

[10] M. Herlihy. Wait-free synchronization. ACM Transaction
on Programming and Systems, 11(1):124–149, 1991.

[11] M. Herlihy, V. Luchangco, P. Martin, and M. Moir. Non-
blocking memory management support for dynamic-sized
data structures. ACM Trans. Comput. Syst., 23(2):146–196,
2005.

[12] L. Lamport. Concurrent reading and writing. Commun.
ACM, 20(11):806–811, 1977.

[13] S. S. Lumetta and D. E. Culler. Managing concurrent access
for shared memory active messages. In Proc. of the Intl.
Parallel Processing Symp. (IPPS), page 272, 1998.

[14] M. M. Michael. Hazard pointers: Safe memory reclamation
for lock-free objects. IEEE Trans. Parallel Distrib. Syst.,
15(6):491–504, 2004.

[15] M. M. Michael and M. L. Scott. Relative performance of
preemption-safe locking and non-blocking synchronization
on multiprogrammed shared memory multiprocessors. In
Proc. of the IEEE Intl. Parallel Processing Symp. (IPPS,
pages 267–273, 1997.

[16] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris,
J. Krüger, A. E. Lefohn, and T. J. Purcell. A survey of
general-purpose computation on graphics hardware. Com-
puter Graphics Forum, 26(1):80–113, 2007.

[17] G. L. Peterson. Concurrent reading while writing. ACM
Trans. Program. Lang. Syst., 5(1):46–55, 1983.

[18] D. Pham and et.al. The design and implementation of a first-
generation cell processor. In Solid-State Circuits Confer-
ence, 2005. Digest of Technical Papers. ISSCC. 2005 IEEE
International, pages 184–185, 2005.

[19] P. Tsigas and Y. Zhang. Evaluating the performance of non-
blocking synchronization on shared-memory multiproces-
sors. In Proc. of the ACM SIGMETRICS Intl. Conf. on Mea-
surement and Modeling of Computer Systems, pages 320–
321, 2001.

[20] P. Tsigas and Y. Zhang. Integrating non-blocking synchroni-
sation in parallel applications: Performance advantages and
methodologies. In Proc. of the ACM Workshop on Software
and Performance (WOSP’02), pages 55–67, 2002.

