
Integrating Non-blocking
Synchronisation in Parallel
Applications: Performance

Advantages and Methodologies

Philippas Tsigas Yi Zhang
Chalmers University of Technology

Yi Zhang Chalmers University of Technology 2

Outline
Synchronisation in shared memory
multiprocessor systems.
Performance of synchronisation.
Using non-blocking synchronisation in
parallel applications.
Conclusions.

Yi Zhang Chalmers University of Technology 3

Synchronisation in Shared
Memory Systems

Shared memory multiprocessor systems
UMA
NUMA

Synchronisation
Mutual Exclusion
Non-blocking Synchronisation
(lock-free, wait-free)

Yi Zhang Chalmers University of Technology 4

Performance and Synchronisation

Synchronisation contributes a significant part
in the computation time of parallel
applications.
Network contention

Access to shared memory
Spinning on shared memory
Cache coherent protocols

Lock convoys

Yi Zhang Chalmers University of Technology 5

Yi Zhang Chalmers University of Technology 6

Previous Work: Non-blocking
Synchronisation in General
Synchronisation:

An alternative approach for synchronisation.
Protect shared objects without using mutual
exclusion.

Evaluation:
Micro-benchmarks shows better performance
than mutual exclusion in real or simulated
multiprocessor systems.

Yi Zhang Chalmers University of Technology 7

Our Results

The identification of the basic locking operations that
parallel programmers use in their applications.
The efficient non-blocking implementation of these
synchronisation operations.
The architectural implications on the design of non-
blocking synchronisation.
Comparison of the lock-based and lock-free
versions of the respective applications

How performance of parallel applications is
affected by the use of non-blocking
synchronisation rather than lock-based one?

Yi Zhang Chalmers University of Technology 8

Applications

a collection of sparse matrix kernels.Spark98

Evaluates forces and potentials that occur over
time between water molecules.

Water

renders 3D volume data into an image using a
ray-casting method.

Volrend

computes the equilibrium distribution of light in a
scene using the radiosity method.

Radiosity

simulates eddy currents in an ocean basin.Ocean

Yi Zhang Chalmers University of Technology 9

Removing Locks in Applications

Most locks are
SimpleLock.

Many critical
sections contain
shared floating-point
variables.
Large critical
sections.

CAS and LL/SC can be used
to implement non-blocking
version.
Floating-point primitives are
needed. A Double-Fetch-
and-Add implementation is
proposed here.
Efficient Non-blocking
bsp_tree and queue
implementations are used.

Yi Zhang Chalmers University of Technology 10

Volrend

Yi Zhang Chalmers University of Technology 11

SPARK98

Yi Zhang Chalmers University of Technology 12

Radiosity

Yi Zhang Chalmers University of Technology 13

Ocean

Yi Zhang Chalmers University of Technology 14

Water-spatial

Yi Zhang Chalmers University of Technology 15

Water-nsquared

Yi Zhang Chalmers University of Technology 16

Experimental Results:
Speedup

58P

58P

58P
58P

32P
24P24P

Yi Zhang Chalmers University of Technology 17

Conclusions
Non-blocking synchronisation performs as well, and
often better than the respective blocking
synchronisation.
For certain applications, the use of non-blocking
synchronisation yields great performance
improvement.
Irregular applications benefit the most from non-
blocking synchronisation.
Efficient methods for removing locks in parallel
application are presented.

Yi Zhang Chalmers University of Technology 18

Future Work
Experiments with more applications.
Understanding in more detail how non-
blocking synchronisation benefits
applications.
Deriving more efficient and general methods
to transfer mutual exclusion to non-blocking.

Yi Zhang Chalmers University of Technology 19

Non-blocking Synchronisation
Lock-free

Definition:
If several processes concurrently invoke
operations on the same object, although some of
them might halt or fail, some processes is
guaranteed to completes their operation in a finite
number of their own steps

Allows individual processes to starve
Usually implemented as Read-Modify-Write
retry loop

Yi Zhang Chalmers University of Technology 20

Non-blocking Synchronisation

Wait-free synchronisation
All concurrent operations
can proceed independently
of the others.
Every process always
finishes the protocol in a
bounded number of steps,
regardless of interleaving
No starvation

	Integrating Non-blocking Synchronisation in Parallel Applications: Performance Advantages and Methodologies
	Outline
	Synchronisation in Shared Memory Systems
	Performance and Synchronisation
	Previous Work: Non-blocking Synchronisation in General
	Our Results
	Applications
	Removing Locks in Applications
	Volrend
	SPARK98
	Radiosity
	Ocean
	Water-spatial
	Water-nsquared
	Experimental Results: Speedup
	Conclusions
	Future Work
	Non-blocking SynchronisationLock-free
	Non-blocking Synchronisation

