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Outline

e Synchronisation in shared memory
multiprocessor systems.

e Performance of synchronisation.

e Using non-blocking synchronisation in
parallel applications.

e Conclusions.
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Synchronisation in Shared
Memory Systems

e Shared memory multiprocessor systems
e UMA
e NUMA

e Synchronisation
e Mutual Exclusion

e Non-blocking Synchronisation
(lock-free, wait-free)
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Performance and Synchronisation

e Synchronisation contributes a significant part
in the computation time of parallel
applications.

e Network contention

Access to shared memory
Spinning on shared memory
Cache coherent protocols

e Lock convoys
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Lock, Convoy

* Slowdown of one process may cause the whole system slowdown
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Previous Work: Non-blocking
Synchronisation in General

Synchronisation:
e An alternative approach for synchronisation.

e Protect shared objects without using mutual
exclusion.

Evaluation:

e Micro-benchmarks shows better performance
than mutual exclusion in real or simulated
multiprocessor systems.
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Our Results

How performance of parallel applications is
affected by the use of non-blocking
synchronisation rather than lock-based one?

e The identification of the basic locking operations that
parallel programmers use in their applications.

e The efficient non-blocking implementation of these
synchronisation operations.

e The architectural implications on the design of non-
blocking synchronisation.

e Comparison of the lock-based and lock-free
versions of the respective applications
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Applications

Ocean simulates eddy currents in an ocean basin.

Radiosity | computes the equilibrium distribution of light in a
scene using the radiosity method.

Volrend renders 3D volume data into an image using a
ray-casting method.

Water Evaluates forces and potentials that occur over
time between water molecules.

Spark98 a collection of sparse matrix kernels.
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Removing Locks Iin Applications

e Most locks are e CAS and LL/SC can be used
SimpleLock. to implement non-blocking

version.

e Many critical e Floating-point primitives are
sections contain needed. A Double-Fetch-
shared floating-point ~ @nd-Add implementation is
variables. proposed here.

e Large critical e Efficient Non-blocking
sections. bsp tree and queue

Implementations are used.
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SPARK98
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Radiosity
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Ocean
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Experimental Results:
Speedup
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Conclusions

e Non-blocking synchronisation performs as well, and
often better than the respective blocking
synchronisation.

e For certain applications, the use of non-blocking
synchronisation yields great performance
Improvement.

e Irregular applications benefit the most from non-
blocking synchronisation.

e Efficient methods for removing locks in parallel
application are presented.

Yi Zhang Chalmers University of Technology 17



Future Work

e Experiments with more applications.

e Understanding in more detail how non-
blocking synchronisation benefits
applications.

e Deriving more efficient and general methods
to transfer mutual exclusion to non-blocking.
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Non-blocking Synchronisation
Lock-free

e Definition:

If several processes concurrently invoke
operations on the same object, although some of
them might halt or fail, processes is
guaranteed to completes their operation in a finite
number of their own steps

e Allows individual processes to starve

e Usually implemented as Read-Modify-Write
retry loop
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Non-blocking Synchronisation

e Wait-free synchronisation
o All concurrent operations s i
can proceed independently == “m"f‘i_.
of the others. '1;‘""":"'.1'::: E;ij i
o Every process always K=
finishes the protocol in a

bounded number of steps,
regardless of interleaving

e No starvation

i il Y
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