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Outline
Synchronisation in shared memory 
multiprocessor systems.
Performance of synchronisation.
Using non-blocking synchronisation in 
parallel applications.
Conclusions.
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Synchronisation in Shared 
Memory Systems

Shared memory multiprocessor systems
UMA
NUMA

Synchronisation
Mutual Exclusion
Non-blocking Synchronisation
(lock-free, wait-free)
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Performance and Synchronisation

Synchronisation contributes a significant part 
in the computation time of parallel 
applications.
Network contention

Access to shared memory
Spinning on shared memory
Cache coherent protocols

Lock convoys
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Previous Work: Non-blocking 
Synchronisation in General
Synchronisation:

An alternative approach for synchronisation.
Protect shared objects without using mutual 
exclusion.

Evaluation:
Micro-benchmarks shows better performance 
than mutual exclusion in real or simulated 
multiprocessor systems.
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Our Results

The identification of the basic locking operations that 
parallel programmers use in their applications.
The efficient non-blocking implementation of these 
synchronisation operations.
The architectural implications on the design of non-
blocking synchronisation.
Comparison of the lock-based and lock-free 
versions of the respective applications

How performance of parallel applications is 
affected by the use of non-blocking 
synchronisation rather than lock-based one?
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Applications

a collection of sparse matrix kernels.Spark98

Evaluates forces and potentials that occur over 
time between water molecules.

Water

renders 3D volume data into an image using a 
ray-casting method.

Volrend

computes the equilibrium distribution of light in a 
scene using the radiosity method.

Radiosity

simulates eddy currents in an ocean basin.Ocean
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Removing Locks in Applications

Most locks are 
SimpleLock.

Many critical 
sections contain 
shared floating-point 
variables.
Large critical 
sections.

CAS and LL/SC can be used 
to implement non-blocking 
version.
Floating-point  primitives are 
needed. A Double-Fetch-
and-Add implementation is 
proposed here.
Efficient Non-blocking 
bsp_tree and queue 
implementations are used.
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Volrend
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SPARK98
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Radiosity
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Ocean
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Water-spatial
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Water-nsquared
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Experimental Results: 
Speedup

58P

58P

58P
58P

32P
24P24P
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Conclusions
Non-blocking synchronisation performs as well, and 
often better than the  respective blocking 
synchronisation.
For certain applications, the use of non-blocking 
synchronisation yields great performance 
improvement.
Irregular applications benefit the most from non-
blocking synchronisation.
Efficient methods for removing locks in parallel 
application are presented.
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Future Work
Experiments with more applications.
Understanding in more detail how non-
blocking synchronisation benefits 
applications.
Deriving more efficient and general methods 
to transfer mutual exclusion to non-blocking.
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Non-blocking Synchronisation
Lock-free

Definition:
If several processes concurrently invoke 
operations on the same object, although some of 
them might halt or fail,  some processes is 
guaranteed to completes their operation in a finite 
number of their own steps

Allows individual processes to starve
Usually implemented as Read-Modify-Write 
retry loop
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Non-blocking Synchronisation

Wait-free synchronisation
All concurrent operations 
can proceed independently 
of the others.
Every process always 
finishes the protocol in a 
bounded number of steps, 
regardless of interleaving
No starvation
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