Integrating Non-blocking
Synchronisation in Parallel
Applications: Performance

Advantages and Methodologies

Philippas Tsigas Yi Zhang
Chalmers University of Technology

Outline

e Synchronisation in shared memory
multiprocessor systems.

e Performance of synchronisation.

e Using non-blocking synchronisation in
parallel applications.

e Conclusions.

Yi Zhang Chalmers University of Technology

Synchronisation in Shared
Memory Systems

e Shared memory multiprocessor systems
e UMA
e NUMA

e Synchronisation
e Mutual Exclusion

e Non-blocking Synchronisation
(lock-free, wait-free)

Yi Zhang Chalmers University of Technology

Performance and Synchronisation

e Synchronisation contributes a significant part
in the computation time of parallel
applications.

e Network contention

Access to shared memory
Spinning on shared memory
Cache coherent protocols

e Lock convoys

Yi Zhang Chalmers University of Technology 4

Lock, Convoy

* Slowdown of one process may cause the whole system slowdown

Yi Zhang Chalmers University of Technology 5

Previous Work: Non-blocking
Synchronisation in General

Synchronisation:
e An alternative approach for synchronisation.

e Protect shared objects without using mutual
exclusion.

Evaluation:

e Micro-benchmarks shows better performance
than mutual exclusion in real or simulated
multiprocessor systems.

Yi Zhang Chalmers University of Technology 6

Our Results

How performance of parallel applications is
affected by the use of non-blocking
synchronisation rather than lock-based one?

e The identification of the basic locking operations that
parallel programmers use in their applications.

e The efficient non-blocking implementation of these
synchronisation operations.

e The architectural implications on the design of non-
blocking synchronisation.

e Comparison of the lock-based and lock-free
versions of the respective applications

Yi Zhang Chalmers University of Technology 7

Applications

Ocean simulates eddy currents in an ocean basin.

Radiosity | computes the equilibrium distribution of light in a
scene using the radiosity method.

Volrend renders 3D volume data into an image using a
ray-casting method.

Water Evaluates forces and potentials that occur over
time between water molecules.

Spark98 a collection of sparse matrix kernels.

Yi Zhang

Chalmers University of Technology 8

Removing Locks Iin Applications

e Most locks are e CAS and LL/SC can be used
SimpleLock. to implement non-blocking

version.

e Many critical e Floating-point primitives are
sections contain needed. A Double-Fetch-
shared floating-point ~ @nd-Add implementation is
variables. proposed here.

e Large critical e Efficient Non-blocking
sections. bsp tree and queue

Implementations are used.

Yi Zhang Chalmers University of Technology 9

Volrend

—— Lockbased —=— Nonblocking

1000

800

600

400

Time in ms

200

Yi Zhang

2 4 8 16 32 60

Number of Processors

Chalmers University of Technology 10

SPARK98

—— Lockbased — Reduced —=— Nonblocking
2500
2000 g\
1500 “‘“\\

1000 \\\\
500 \

1 2 4 8 16 24 28

Number of processors

Time in ms

Yi Zhang Chalmers University of Technology 11

Radiosity

—— Lockbased —— Nonblocking

120000
100000 F
80000 w\R
60000 RX%

40000 %KR%

20000 Eaﬁk‘h
o 1RELE%““*&==::t::::;

1 2 4 8 16 32 &0

Time inms

NMumber of Processors

Yi Zhang Chalmers University of Technology 12

Ocean

—— Lock-based —=— Nonblocking

30000 Jl\
25000

20000 \

15000 K\kh~

Time in ms

10000 RHRH‘H

5000 mﬁ}hiihﬁ%:::::a%,

1 2 4 8 16

Number of processors

Yi Zhang Chalmers University of Technology

32

13

(Y X)
‘XX X
‘XXX
eo0
- o0
Water-spatial :
—— Lockbased —=— MNonblocking
6000
5000 \
£ 4000 \
c
E 3000 \
i— 2000 \
1000 —
D I I I I
4 8 16 32 60

Yi Zhang

Number of Processors

Chalmers University of Technology 14

000
:.
Water-nsquared
—— Lockbased —=— MNonblocking
14000
12000 \
¢ 10000
E 8000 \
E 6000 \\\
= 4000
2000 \-\W_
0
1 2 4 8 16 32 60

Number of Processors

Yi Zhang Chalmers University of Technology 15

Experimental Results:
Speedup

@ Lock-based B Nonblocking

30

58P

25

20
58P

15

32P

24P 24P

Speedup

58P

Yi Zhang Chalmers University of Technology

16

Conclusions

e Non-blocking synchronisation performs as well, and
often better than the respective blocking
synchronisation.

e For certain applications, the use of non-blocking
synchronisation yields great performance
Improvement.

e Irregular applications benefit the most from non-
blocking synchronisation.

e Efficient methods for removing locks in parallel
application are presented.

Yi Zhang Chalmers University of Technology 17

Future Work

e Experiments with more applications.

e Understanding in more detail how non-
blocking synchronisation benefits
applications.

e Deriving more efficient and general methods
to transfer mutual exclusion to non-blocking.

Yi Zhang Chalmers University of Technology 18

Non-blocking Synchronisation
Lock-free

e Definition:

If several processes concurrently invoke
operations on the same object, although some of
them might halt or fail, processes is
guaranteed to completes their operation in a finite
number of their own steps

e Allows individual processes to starve

e Usually implemented as Read-Modify-Write
retry loop

Yi Zhang Chalmers University of Technology 19

Non-blocking Synchronisation

e Wait-free synchronisation
o All concurrent operations s i
can proceed independently == “m"f‘i_.
of the others. '1;‘""":"'.1'::: E;ij i
o Every process always K=
finishes the protocol in a

bounded number of steps,
regardless of interleaving

e No starvation

i il Y
ru&m' !!l ';

Yi Zhang Chalmers University of Technology 20

	Integrating Non-blocking Synchronisation in Parallel Applications: Performance Advantages and Methodologies
	Outline
	Synchronisation in Shared Memory Systems
	Performance and Synchronisation
	Previous Work: Non-blocking Synchronisation in General
	Our Results
	Applications
	Removing Locks in Applications
	Volrend
	SPARK98
	Radiosity
	Ocean
	Water-spatial
	Water-nsquared
	Experimental Results: Speedup
	Conclusions
	Future Work
	Non-blocking SynchronisationLock-free
	Non-blocking Synchronisation

