
Technical Report no. 2002-02

NOBLE: A Non-Blocking Inter-Process Communication Library 1

Håkan Sundell Philippas Tsigas

Department of Computing Science
Chalmers University of Technology and Göteborg University

SE-412 96 Göteborg, Sweden

Göteborg, 2002

1Performed within the network for Real-Time research and graduate Education in Sweden (ARTES), supported by the Swedish Foun-
dation for Strategic Research (SSF)



Technical Report in Computing Science at
Chalmers University of Technology and Göteborg University

Technical Report no. 2002-02
ISSN: 1650-3023

Department of Computing Science
Chalmers University of Technology and Göteborg University
SE-412 96 Göteborg, Sweden

Göteborg, Sweden, 2002



Abstract

Many applications on shared memory multi-processor
machines can benefit from the exploitation of parallelism
that non-blocking synchronization offers. In this paper, we
introduce a library support for multi-process non-blocking
synchronization called NOBLE. NOBLE provides an inter-
process communication interface that allows the user to se-
lect synchronization methods transparently to the one that
suits best for the current application. The library provides a
collection of the most commonly used data types and proto-
cols in a form, which allows them to be used by non-experts.
We describe the functionality and the implementation of
the library functions and illustrate the library programming
style with example programs. The examples show that us-
ing the library can considerably reduce the runtime on dis-
tributed shared memory machines.

1 Introduction

Software implementations of synchronization constructs
are usually included in system libraries. The design of a
good synchronization library can be challenging and many
efficient implementations for the basic synchronization con-
structs (locks, barriers and semaphores) have been proposed
in the literature. Many such implementations have been
designed with the aim to lower the contention when the
system is in a high congestion situation. These imple-
mentations give different execution times under different
contention instances. But still the time spent by the pro-
cesses on the synchronization can form a substantial part of
the program execution time [KarLMS91, MelS91, MicS98,
NikP99, ZahLE91]. The reason for this is that typical syn-
chronization is based on blocking that unfortunately results
in poor performance. This is because blocking produces
high levels of contention on the memory and the intercon-
nection network, and more significantly, because it causes
convoy effects: if one process holding a lock is preempted,
other processes on different processors waiting for the lock
will not be able to proceed. Researchers have introduced
non-blocking synchronization to address the above prob-
lems.

There has been much advocacy arising from the the-
ory community for the use of non-blocking synchroniza-
tion primitives rather than blocking ones, in the design of
inter-process communication mechanisms for parallel and
high performance computing. This advocacy is intuitive
and many researchers have for more than two decades de-
veloped efficient non-blocking implementations for several
shared data objects. Despite this, the scientific discover-
ies on non-blockingsynchronization have not have migrated
much into practice, even though synchronization is still the

bottleneck in many applications. The lack of a standard li-
brary of non-blocking synchronization of shared data ob-
jects commonly used in parallel applications has played a
significant role for this slow migration.

NOBLE offers a library support for multi-process non-
blocking synchronization for shared memory systems. NO-
BLE has been designed in order: I) to provide a collection
of shared data objects in a form which allows them to be
used by non-experts, II) to offer an orthogonal support for
synchronization where the application can change synchro-
nization implementations with minimal changes, III) to be
easy to port to different multi-processor systems, IV) to be
adaptable for different programming languages and V) to
contain efficient known implementations of its shared data
objects.

The rest of the paper is organized as follows. Section 2
outlines the basic features of NOBLE and the implementa-
tion and design steps that have been taken to support these
features. Section 3 illustrates by a way of an example the
use of the features of NOBLE in a practical setting. Section
4 presents run-time experiments using NOBLE that show
the performance benefits of non-blocking synchronization.
Finally, Section 5 concludes this paper.

2 Design and Features of NOBLE

When designing NOBLE we identified a number of char-
acteristics that had to be covered from our design in order
to make NOBLE easy to use and usable by a wide range of
practitioners. We designed NOBLE to have the following
features:

� Usability-Scope - NOBLE provides a collection of
fundamental shared data objects that are widely used
in parallel and real-time applications.

� Easy to use - NOBLE provides a simple interface that
allows the user to use the non-blocking implementa-
tions of the shared data objects the same way the user
would have used lock-based ones.

� Easy to Adapt - No need for changes at the application
level are required by NOBLE and different implemen-
tations of the same shared data objects are supported
via a uniform interface.

� Efficient - Users will have to experience major im-
provements in order to decide to replace the existing
trusted code with new synchronization methods. NO-
BLE has been designed to be as efficient as possible.

� Portable - NOBLE has been designed to support gen-
eral shared memory multi-processor architectures and
offers the same user interface on different platforms,
although the actual implementations might differ.



� Adaptable for different programming languages.

2.1 Usability-Scope

NOBLE provides a collection of non-blocking imple-
mentation of fundamental shared data objects in a form
that allows them to be used by non-experts. This collec-
tion includes most of the shared data objects that can be
found in parallel applications, i.e. stacks, queues, linked
lists, snapshots and buffers. NOBLE contains the most
efficient realizations known for its shared data objects,
[AllEHPST99, Har01, SunT00, SunTZ00, TsiZ99, Val95].

2.2 Easy to use

NOBLE provides a precise and readable specification for
each shared data object implemented. The user interface of
the NOBLE library is the defined library functions that are
described in the specification. At the very beginning the
user has only to include the NOBLE header at the top of the
code (#include <Noble.h> ).

In order to make sure that none of the functions or struc-
tures that we define causes any name-conflict during the
compilation or the linking stage, only the functions and the
structures that have to be visible to the user of NOBLE are
exported. All other names are invisible outside of the li-
brary. The names that are exported start with the three-letter
combination NBL. For example the implementation of the
shared data object Queue isstruct NBLQueue in NO-
BLE.

2.3 Easy to Adapt

NOBLE offers a set of different implementations for
many shared data objects realized in NOBLE. The user can
select the implementation that better suits the application
needs. The selection is done at the moment of creation of
the shared data object. For example for theQueue shared
data object there are several different creation functions for
the different implementations offered by NOBLE, their us-
age is described below. NOBLE also offers a simple inter-
face to standard lock-based implementations of all shared
data objects provided.

NBLQueue *NBLQueueCreateLF(int nrOf-
Blocks); /* Create a Queue using the
implementation LF */

NBLQueue *NBLQueueCreateLF2(); /*
Create a Queue using the implementation
LF2 */

In all other steps of use of the shared data object, the pro-
grammer does not have to remember or to supply any infor-
mation about the implementation (synchronization method)

used. This means that all other functions regarding opera-
tions on the shared data objects have only to be informed
about the actual instance of the shared data object. The lat-
ter gives a unified interface to the user: all operations take
the same number of arguments and have the same return
value(s) independently of the implementation:

NBLQueueFree(handle);
NBLQueueEnqueue(handle,item);
NBLQueueDequeue(handle);

All names for the operations are the same regardless of
the actual implementation type of the shared data object,
and more significantly the semantics of the operations are
also the same.

2.4 Efficiency

The only information that is passed to the library dur-
ing the invocation of an operation is just ahandle to a pri-
vate data structure. Henceforth, any information concerning
the implementation method, that is used for this particular
shared data object instance, had to be inside this private data
structure. For fast redirection of the program flow to the
correct implementation, function pointers are used. Each
instance of the data structure itself contains a set of func-
tion pointers, one for each operation that can be applied on
it:

typedef struct NBLQueue {
void *data;
void (*free)(void *data);
void (*enqueue)(void *data

,void *item);
void *(*dequeue)(void *data);

} NBLQueue;

The use of function pointers inside each instance, allows
us to produce in-line redirection of the program flow to the
correct implementation. Instead of having one central func-
tion that redirects, we define several macros that redirect di-
rectly from the user-level. From the user’s perspective this
usually makes no difference, these macros can be used in
the same way as pure functions:

#define NBLQueueFree(handle) (handle-
>free(handle->data))

#define NBLQueueEnqueue(handle,item)
(handle->enqueue(handle->data,item))

#define NBLQueueDequeue(handle)
(handle->dequeue(handle->data))



2.5 Portability

The interface to NOBLE has been designed to be the
same independently of platform. Internal library dependen-
cies are not visible outside of the library. Application calls
to the library look exactly the same with respect to the NO-
BLE library when moving to another platform. The imple-
mentations that are contained in NOBLE, use hardware syn-
chronization primitives (Compare-And-Swap, Test-And-
Set, Fetch-And-Add, Load-Link/Store-Conditional), that
are widely available in many commonly used architectures.
Still, in order to achieve the same platform independent
interface, NOBLE has been designed to provide an inter-
nal level abstraction of the hardware synchronization prim-
itives. All hardware dependent operations that are used in
the implementation of NOBLE, are reached using the same
(abstraction) method:

#include "Platform/Primitives.h"

This file depends on the actual platform. However, a
set of implementations (with the same syntax and seman-
tics) of the different synchronization primitives needed by
the implementations have to be provided for the different
platforms. These implementations are only visible inside
NOBLE and there are no restrictions on the way they are
implemented.

NOBLE at this point has been successfully implemented
on the Sun Sparc platform as well on the Intel Win32 plat-
form. An implementation for the Silicon Graphics Origin
2000 platform is under construction.

2.6 Adaptable for different programming lan-
guages

NOBLE is realized in C and therefore easily adaptable to
other popular programming languages that support import-
ing functions from C libraries.

C++ is directly usable with NOBLE. The basic structures
and operation calls of the NOBLE shared data objects have
been defined in such a way that real C++ class functionality
can also be easily achieved by using wrap-around classes,
with no loss of performance.

class NOBLEQueue {
private:

NBLQueue* queue;
public:

NOBLEQueue(int type) {if(type==
NBL_LOCKFREE) queue=
NBLQueueCreateLF();
else ... }

˜ NOBLEQueue() {NBLQueueFree(queue);}
inline void Enqueue(void *item)

{NBLQueueEnqueue(queue,item);}
inline void *Dequeue() {return

NBLQueueDequeue(queue);}
};

Because of the inline statements and the fact that the
function calls in NOBLE are defined as macros, the func-
tion calls of the class members will be resolved in the nearly
exactly same way as in C, with almost no performance slow-
down.

3 Examples

In this section we give an overview of NOBLE by way
of an example:a shared stackin a multi-threaded program.
First we have to create the stack using the appropriate create
functions for the implementation that we want to use for this
data object. We decided to use the implementationLF that
requires to supply the maximum size of the stack as an input
to the create function. We selected 10000 stack-elements
for the maximum size of the stack:

stack=NBLStackCreateLF(10000);

wherestack is a globally defined pointer variable:
NBLStack *stack;

Whenever we have a thread that wants to invoke a stack
operation the appropriate function has to be called:

NBLStackPush(stack, item);

or
item=NBLStackPop(stack);

When our program does not need the stack any more we
can do some cleaning and give back the memory allocated
for the stack:

NBLStackFree(stack);

In case that we decide later on to change the implemen-
tation of thestack that our program uses, we only have to
change one single line in our program. For example if we
want to change from theLF implementation to theLB im-
plementation we only have to change the line:

stack=NBLStackCreateLF(10000);

to
stack=NBLStackCreateLB();



Experiment Operation 1 Operation 2 Operation 3 Operation 4 Operation 5

Queue Enqueue 50% Dequeue 50%
Stack Push 50% Pop 50%

Snapshot Update/Scan 100%
Singly Linked List First 10% Next 20% Insert 60% Delete 10%

Queue - Low Enqueue 25% Dequeue 25% Sleep 50%
Stack - Low Push 25% Pop 25% Sleep 50%

Snapshot - Low Update/Scan 50% Sleep 50%
Singly Linked List - Low First 5% Next 10% Insert 30% Delete 5% Sleep 50%

Table 1. The distribution characteristics of the random operations

0

10000

20000

30000

40000

50000

60000

0 5 10 15 20 25 30

E
xe

cu
tio

n 
T

im
e 

(m
s)

Processors

Single Linked List with High Contention

LOCK-FREE VALOIS
LOCK-FREE HARRIS

LOCK-BASED

Figure 1. Experiment with singly linked lists
and high contention on SUN Enterprise 10000

4 Experiments

We have performed a significant number of experiments
in order to measure the performance benefits that can be
achieved from the use of NOBLE. Since lock-based syn-
chronization is known to usually perform better than non-
blocking synchronization when contention is very low, we
used the following micro-benchmarks in order to be as fair
as possible:

� High contention - The concurrent threads are contin-
uously invoking operations, one after the other to the
shared data object, thus maximizing the contention.

� Low contention - Each concurrent threads performs
other tasks between two consecutive operations to the
shared data object. The contention in this case is lower,
and quite often only one thread is using the shared data
object at one time.

0

2000

4000

6000

8000

10000

12000

14000

16000

0 5 10 15 20 25 30

E
xe

cu
tio

n 
T

im
e 

(m
s)

Processors

Single Linked List with Low Contention

LOCK-FREE VALOIS
LOCK-FREE HARRIS

LOCK-BASED

Figure 2. Experiment with singly linked lists
and low contention on SUN Enterprise 10000

In our experiments each concurrent thread performs
50000 randomly chosen sequential operations. Each experi-
ment is repeated 50 times, and an average execution time for
each experiment is estimated. Exactly the same sequential
operations are performed for all different implementations
compared. All lock-based implementations are based on
simple spin-locks using the TAS atomic primitive. For the
low contention experiments each thread randomly selects to
perform a set of 1000 to 2000 sequential writes to a shared
memory register with a new computed value. A clean-cache
operation was performed just before each sub-experiment.
The distributions characteristics of the random operations
for each experiment are shown in table 1.

The experiments were performed using different number
of threads, varying from 1 to 30. We performed our experi-
ments on a Sun Enterprise 10000 StarFire [Cha98] system.
At that point we could have access to 30 processors and
each thread could run on its own processor, utilizing full
concurrency. A set of experiments was also performed on a



0

1000

2000

3000

4000

5000

6000

0 5 10 15 20 25 30

E
xe

cu
tio

n 
T

im
e 

(m
s)

Threads

Single Linked List with High Contention - Win32, 2 Processors

LOCK-FREE VALOIS
LOCK-FREE HARRIS

LOCK-BASED

Figure 3. Experiment with singly linked lists
and high contention on Dual Pentium II

Compaq dual-processor Pentium II PC.
Because of space constraints only some of the results

from these experiments are shown here in figures 1 to 6,
the average execution time is drawn as a function of the
number of processes. From all the results that we collected
we could definitely conclude that NOBLE, largely because
of its non-blocking characteristics and partly because of its
efficient implementation, outperforms the respective lock-
based implementations significantly. For the singly linked
list, NOBLE was up to 64 times faster than the lock-based
implementation. The performance benefits from using NO-
BLE and lock-free synchronization methods in general in-
crease with the number of processors. For the experiments
with low contention, NOBLE still performs better than the
respective lock-based implementations, for high number of
processors NOBLE performs up to 3 times faster than the
respective lock-based implementations.

5 Conclusions

NOBLE is a library for non-blocking synchronization,
that includes implementations of several fundamental and
commonly used shared data objects. The library is easy to
use and existing programs can be easily adapted to use it.
The programs using the library, and the library itself, can
be easily tuned to include different synchronization mech-
anisms for each of the supported shared data objects. Ex-
periments show that the non-blocking implementations in
NOBLE offer significant improvements in performance, es-
pecially on multi-processor platforms. NOBLE currently
supports two platforms, the SUN Sparc and the Intel Win32
architectures. There is work under construction for support-
ing the Silicon Graphics Origin 2000 platforms.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 5 10 15 20 25 30

E
xe

cu
tio

n 
T

im
e 

(m
s)

Threads

Single Linked List with Low Contention - Win32, 2 Processors

LOCK-FREE VALOIS
LOCK-FREE HARRIS

LOCK-BASED

Figure 4. Experiment with singly linked lists
and low contention on Dual Pentium II

The first version of NOBLE has just been made avail-
able for outside use and can be used freely for the pur-
pose of research and teaching, it is available on the web
at http://www.cs.chalmers.se/˜noble. We hope that NOBLE
will narrow the gap between theoretical research and prac-
tical application.

Future work in the NOBLE project includes the exten-
sion of NOBLE with more implementations and new shared
data objects, as well, as porting NOBLE to platforms more
suitable for real-time systems.

References

[AllEHPST99] B. ALLVIN , A. ERMEDAHL, H. HANS-
SON, M. PAPATRIANTAFILOU , H. SUNDELL, PH.
TSIGAS. Evaluating the Performance of Wait-Free
Snapshots in Real-Time Systems.SNART’99 Real
Time Systems Conference, pages 196–207, Aug 1999.

[Cha98] A. CHARLESWORTH. StarFire: Extending the
SMP Envelope.IEEE Micro, Jan. 1998.

[Har01] T.L. HARRIS A Pragmatic Implementation of
Non-Blocking Linked Lists.Proceedings of the 15th
International Symposium of Distributed Computing,
October 2001.

[KarLMS91] A. KARLIN , K. L I, M. MANASSE AND

S.OWICKI . Empirical studies of competitive spinning
for a shared-memory multiprocessor.Proceedings of
the 13th ACM Symposium on Operating Systems Prin-
ciples, pp. 41-55, Oct. 1991.

[MelS91] J. M. MELLOR-CRUMMEY AND M. L. SCOTT.
Algorithms for Scalable Synchronization on Shared-



0

2000

4000

6000

8000

10000

12000

0 5 10 15 20 25 30

E
xe

cu
tio

n 
T

im
e 

(m
s)

Processors

Stack with High Contention

LOCK-FREE VALOIS
LOCK-BASED

Figure 5. Experiment with stacks and high
contention on SUN Enterprise 10000

Memory Multiprocessors.ACM Trans. on Computer
Systems, 9(1), pp. 21-65, Feb. 1991.

[MicS98] M. M. MICHAEL AND M. L. SCOTT. Non-
blocking Algorithms and Preemption-Safe Locking on
Multiprogrammed Shared Memory Multiprocessors.
Journal of Parallel and Distributed Computing 51(1),
pp. 1-26, 1998.

[NikP99] D. S. NIKOLOPOULOS AND T. S. PAP-
ATHEODOROU. A Quantitative Architectural Evalua-
tion of Synchronization Algorithms and Disciplines
on ccNUMA Systems: The Case of the SGI Ori-
gin2000Proceedings of the 1999 Conference on Su-
percomputing, ACM SIGARCH, pp. 319-328, 1999.

[SunT00] H. SUNDELL, P. TSIGAS. Space Efficient Wait-
Free Buffer Sharing in Multiprocessor Real-Time Sys-
tems Based on Timing InformationProceedings of the
7th International Conference on Real-Time Comput-
ing Systems and Applicatons (RTCSA 2000), pp. 433-
440, IEEE press, 2000.

[SunTZ00] H. SUNDELL, P. TSIGAS, Y. ZHANG. Simple
and Fast Wait-Free Snapshots for Real-Time Systems
Proceedings of the 4th International Conference On
Principles Of Distributed Systems (OPODIS 2000),
pp. 91-106, Studia Informatica Universalis, 2000.

[TsiZ99] P. TSIGAS, Y. ZHANG. Non-blocking Data Shar-
ing in Multiprocessor Real-Time Systems.Proceed-
ings of the 6th International Conference on Real-Time
Computing Systems and Applications (RTCSA’99),
IEEE press, pp. 247-254.

1000

1500

2000

2500

3000

3500

4000

4500

0 5 10 15 20 25 30

E
xe

cu
tio

n 
T

im
e 

(m
s)

Processors

Stack with Low Contention

LOCK-FREE VALOIS
LOCK-BASED

Figure 6. Experiment with stacks and low con-
tention on SUN Enterprise 10000

[Val95] J.D. VALOIS. Lock-Free Data Structures.PhD.
Thesis, Rensselaer Polytechnic Institute, Troy, New
York, 1995.

[ZahLE91] J. ZAHORJAN, E. D. LAZOWSKA AND D. L.
EAGER. The effect of scheduling discipline on spin
overhead in shared memory parallel systems.IEEE
Transactions on Parallel and Distributed Systems,
2(2), pp. 180-198, Apr. 1991.


