
1

The Synchronization Power of Coalesced Memory
Accesses

Phuong Hoai Ha, Philippas Tsigas, and Otto J. Anshus

Abstract—Multicore architectures have established themselves
as the new generation of computer architectures. As part of the
one core to many cores evolution, memory access mechanisms
have advanced rapidly. Several new memory access mechanisms
have been implemented in many modern commodity multicore
architectures. By specifying how processing cores access shared
memory, memory access mechanisms directly influence the syn-
chronization capabilities of multicore architectures. Therefore, it
is crucial to investigate the synchronization power of these new
memory access mechanisms.

This paper investigates the synchronization power of coalesced
memory accesses, a family of memory access mechanisms in-
troduced in recent large multicore architectures such as the
Compute Unified Device Architecture (CUDA). We first define
three memory access models to capture the fundamental features
of the new memory access mechanisms. Subsequently, we prove
the exact synchronization power of these models in terms of their
consensus numbers. These tight results show that the coalesced
memory access mechanisms can facilitate strong synchronization
between the threads of multicore architectures, without the need
of synchronization primitives other than reads and writes. In the
case of the contemporary CUDA processors, our results imply
that the coalesced memory access mechanisms have consensus
numbers up to sixty four.

Index Terms—Memory access models, consensus, multicore
architectures, inter-process synchronization.

I. INTRODUCTION

One of the fastest evolving multicore architectures is the
graphics processor. The computational power of graphics pro-
cessors (GPUs) doubles every ten months, surpassing Moore’s
Law for traditional microprocessors [2]. Unlike previous
GPU architectures, which are single-instruction multiple-data
(SIMD), recent GPU architectures (e.g. Compute Unified De-
vice Architecture (CUDA) [3]) are single-program multiple-
data (SPMD). The latter consists of multiple SIMD multi-
processors of which each, at the same time, can execute a
different instruction. This extends the set of applications on
GPUs, which are no longer restricted to follow the SIMD-
programming model. Consequently, GPUs are emerging
as powerful computational co-processors for general-purpose
computations.

Along with their advances in computational power, GPUs
memory access mechanisms have also evolved rapidly. Several
new memory access mechanisms have been implemented in

A preliminary version of this paper appeared in the Proceedings of the 22nd
International Symposium on Distributed Computing (DISC) [1].

P. H. Ha and O. J. Anshus are with the Department of Com-
puter Science, Faculty of Science, University of Tromsø, Norway. Email:
{phuong,otto}@cs.uit.no.

P. Tsigas is with the Department of Computer Science and Engineering,
Chalmers University of Technology, Sweden. Email: tsigas@chalmers.se.

current commodity graphics/media processors such as CUDA
[3] and Cell BE architecture [4]. For instance, in CUDA,
single-word write instructions can write to words of different
size and their size (in bytes) is no longer restricted to be a
power of two [3]. Another advanced memory access mecha-
nism implemented in CUDA is the coalesced global memory
access mechanism. The simultaneous global memory accesses
by threads of a SIMD multiprocessor, during the execution
of a single read/write instruction, are coalesced into a single
aligned memory access if the simultaneous accesses follow the
coalescence constraint [3]. It is well-known that by specifying
how processing cores access shared memory, memory access
mechanisms directly influence the synchronization capabilities
of multicore architectures. Therefore, it is crucial to investigate
the synchronization power of the new memory access mecha-
nisms.

Research on the synchronization power of memory ac-
cess operations (or objects) in conventional architectures has
received a great amount of attention in the literature. The
synchronization power of memory access objects/mechanisms
is conventionally determined by their consensus-solving abil-
ity, namely their consensus number [5], [6]. The consensus
number of an object type is either the maximum number of
processes for which wait-free consensus can be solved using
only objects of this type and registers, or infinity if such a
maximum does not exist. An object is universal in a system
of n processes if and only if it has consensus number n or
higher. For hard real-time systems, it has been shown that any
object with consensus number n is universal for an arbitrary
number of processes running on n processors [7]. For systems
that allow processes to simultaneously access m objects of
type T in one atomic operation (or multi-object operation),
where T has a consensus number at least two, upper and
lower bounds on the consensus number of the multi-object
type called Tm have been provided [8], [9], [10]. In the
case of registers (which have consensus number one), the
m-register assignment, which allows processes to write to
m arbitrary registers atomically, has been proven to have
consensus number (2m − 2), for m > 1 [5]. Using the
m-register assignment, we can construct (2m − 3)-resilient
read-modify-write objects [11]. An object implementation is t-
resilient if non-faulty processes can complete their operations
on the object as long as no more than t processes fail [12],
[13].

Note that the aforementioned CUDA coalesced memory
accesses are neither the atomic m-register assignment [5] nor
the multi-object types [8], [9], [10]. They are not the atomic
m-register assignment since they do not allow processes

2

to atomically write to m arbitrary memory words; instead,
processes can atomically write to m memory words only if
the m memory words are located within an aligned size-
bounded memory portion (i.e. memory alignment restriction)
(cf. Section II). The CUDA coalesced memory accesses are
not the multi-object type since their base object type T is the
conventional memory word, which has consensus number one.

This paper investigates the consensus number of the new
memory access mechanisms implemented in current graphics
processor architectures. We first define three new memory
access models to capture the fundamental features of the
new memory access mechanisms. Subsequently we prove the
exact synchronization power of these models in terms of
their respective consensus number. These tight results show
that the new memory access mechanisms can facilitate strong
synchronization between the threads of multicore architectures,
without the need of synchronization primitives other than reads
and writes.

We first define a new memory access model, the svword
model where svword stands for the size-varying word access,
the first of the two aforementioned advanced memory access
mechanisms implemented in CUDA. Unlike single-word as-
signments in conventional architectures, the new single-word
assignments can write to words of size b (in bytes), where b can
vary from 1 to an upper bound B and b is no longer restricted
to be a power of 2 (e.g. built-in type float3 in [3]). By carefully
choosing b for the single-word assignments, we can partly
overlap the bytes written by two assignments, namely each of
the two assignments has some byte(s) that is not overwritten
by the other overlapping assignment (cf. Figure 1(a) for an
illustration). Note that words of size d must always start at
addresses that are multiples of d, which is called alignment re-
striction as defined in the conventional computer architecture.
The alignment restriction prevents single-word assignments in
conventional architectures from partly overlapping each other
since the word-size is restricted to be a power of two. This
observation has motivated us to develop the svword model.

Inspired by the coalesced memory accesses, the second of
the aforementioned advanced memory access mechanisms, we
define two other models, the aiword and asvword models, to
capture the fundamental features of the mechanism. In CUDA,
the global shared memory is considered to be partitioned into
segments of equal size and aligned to this size. Simultaneous
memory accesses to the same segment by threads of a SIMD
multiprocessor (or half-warp in CUDA terms [14]), during the
execution of a single read/write instruction, can be coalesced
into a single memory access. The coalescence happens even if
some of the threads do not actually access memory (cf. Figure
5-1 in [3] or Figure 1(c)). This allows a SIMD multiprocessor
(or a process) to atomically write to multiple memory locations
(within a segment) that are not at consecutive addresses.
Accesses to the same segment by different processes are
executed sequentially.

We generally model this mechanism as an aligned-
inconsecutive-word access, aiword, in which the memory is
aligned to A-unit words and a single-word assignment can
write to an arbitrary non-empty subset of the A units of
a word. Note that the single-aiword assignment is not the

atomic m-register assignment [5] due to the memory alignment
restriction1. Our third model, asvword, is an extension of the
second model aiword in which aiword’s A memory units
are now replaced by A svwords of the same size b. This
model is inspired by the fact that the read/write instructions of
different coalesced global memory accesses can access words
of different size [3].

The contributions of this paper can be summarized as
follows:
• We develop a general memory access model, the svword

model, to capture the fundamental features of the size-
varying word accesses. In this model, a single-word as-
signment can write to a word comprised of b consecutive
memory units, where b can be any integer between 1 and
an upper bound B ≥ 2. We prove that the single-svword
assignment has consensus number exactly 3 when B ≥ 5,
consensus number 2 when B ∈ {3, 4}, and consensus
number 1 when B = 2. We also introduce a technique
to minimize the size of (proposal) values in consensus
algorithms, which allows a single-word assignment to write
many values atomically and handle the consensus problem
for several processes (cf. Section IV).

• We develop a general memory access model, the aiword
model, to capture the fundamental features of the coa-
lesced memory accesses. The second model is an aligned-
inconsecutive-word access model in which the memory is
aligned to A-unit words and a single-word assignment can
write to an arbitrary non-empty subset of the A units of a
word. We present a wait-free consensus algorithm for N =
bA+1

2 c processes using only single-aiword assignments and
subsequently prove that the single-aiword assignment has
consensus number exactly N = bA+1

2 c (cf. Section V).
• We develop a general memory access model, asvword, to

capture the fundamental features of the combination of
the size-varying word accesses and the coalesced memory
accesses. The third model is an extension of the second
model aiword in which aiword’s A units are A svwords of
the same size b, b ∈ {1, B} (cf. Section VI). We prove that
the consensus number of the single-asvword assignment is
exactly N , where

N =





AB
2

, if A = 2tB, t ∈ N∗ (positive integers)
(A−B)B

2
+ 1, if A = (2t + 1)B, t ∈ N∗

bA+1
2
c, if B = tA, t ∈ N∗

(1)

In the case of the contemporary CUDA processors (with
compute capability 1.2 and higher) in which A = 32 and
B = 4, the consensus number of the asvword model is sixty
four.
The rest of this paper is organized as follows. Section II

presents the three new memory access models. Sections IV, V
and VI present the exact consensus numbers of the first, second
and third models, respectively. Finally, Section VII concludes
this paper.

1In this paper, we use term “single” in single-*word assignment when we
want to emphasize that the assignment is not the multiple assignment [5].

3

II. MODELS

A. General descriptions

Before describing the details of each of the three new
memory access models, we present the common properties
of all these three models. The shared memory in the three
new models is sequentially consistent [15], [16], which is
weaker than the linearizable one [17] assumed in most of
the previous research on the synchronization power of the
conventional memory access models [5]. Processes are asyn-
chronous. The new models use the conventional 1-dimensional
memory address space. In these models, one memory unit is
a minimum number of consecutive bytes/bits which a basic
read/write operation can atomically read from/write to. These
memory models address individual memory units. Memory is
organized so that a group of d consecutive memory units called
word can be stored or retrieved in a single basic write or read
operation, respectively, and d is called word size. Words of size
d must always start at addresses that are multiples of d, which
is called alignment restriction as defined in the conventional
computer architecture.

B. The first model svword

The first model is a size-varying-word access model (sv-
word) in which a single read/write operation can atomically
read from/write to a word consisting of b consecutive memory
units, where b, called svword size, can be any integer between
1 and an upper bound B. The upper bound B is the maximum
number of consecutive units which a basic read/write operation
can atomically read from/write to. Svwords of size b must
always start at addresses that are multiples of b due to the
memory alignment restriction. We denote b-svword to be
an svword consisting of b units, b-svwrite to be a b-svword
assignment and b-svread to be a b-svword read operation.
Reading a unit U is denoted by 1-svread(U) or just by U
for short. This model is inspired by the CUDA graphics
processor architecture in which basic read/write operations can
atomically read from/write to words of different size (cf. built-
in types float1, float2, float3 and float4 in [3], Section 4.3.1.1).
Figure 1(a) illustrates how 2-svwrite, 3-svwrite and 5-svwrite
can partly overlap their units with addresses from 14 to 20,
with respect to the memory alignment restriction.

C. The second model aiword

The second model is an aligned-inconsecutive-word access
model (aiword) in which the memory is aligned to A-unit
words and a single read/write operation can atomically read
from/write to an arbitrary non-empty subset of the A units of
a word, where A is a constant. Aiwords must always start at
addresses that are multiples of A due to the memory alignment
restriction. We denote A-aiword to be an aiword consisting of
A units, A-aiwrite to be an A-aiword assignment and A-airead
to be an A-aiword read operation. Reading only one unit U
(using airead) is denoted by U for short. In the aiword model,
an aiwrite operation executed by a process cannot atomically
write to units located in different aiwords due to the memory
alignment restriction.

14 15 16 17 18 19 20
2-svwrite

5-svwrite

Units

3-svwrite

(a) The first model svword

... 10 11 12 13 14 15 ...98

aiword

Units

aiwrite2

aiwrite1

(b) The second model aiword

0 1 2 3 4 5 6 7

...
t0 t1 t2 t3 t4 t5 t6 t7t0 t1 t2 t3 t4 t5 t6 t7

8 9 10 11 12 13 14 15 ...

SIMD core 2

ThreadsThreads

SIMD core 1

aiword aiword

Memory locations

(c) The coalesced memory access

Fig. 1. Illustrations for the first model, size-varying-word access (svword), the
second model, aligned-inconsecutive-word access (aiword) and the coalesced
memory access.

Figure 1(b) illustrates the aiword model with A = 8 in
which the aiword consists of eight consecutive units with
addresses from 8 to 15. Unlike in the svword model, the
assignment in the aiword model can atomically write to
inconsecutive units of the eight units: aiwrite1 atomically
writes to four units 8, 11, 13 and 15; aiwrite2 writes to three
units 12, 13 and 15.

This model is inspired by the coalesced global memory
accesses in the CUDA architecture [3]. The CUDA architecture
can be generalized to an abstract model of a MIMD2 chip with
multiple SIMD cores sharing memory. Each core (or streaming
multiprocessor SM in CUDA terms) executes A identical
instructions (on different data) simultaneously, but different
cores can simultaneously execute different instructions. The
sequence of instructions that are being executed by one SIMD
core is called a process. Namely, each process consists of
A parallel threads that are running in a SIMD manner. The
process accesses the shared memory using the CUDA memory
access mechanism. In CUDA, the global shared memory is
considered to be partitioned into segments of equal size and
aligned to this size. Simultaneous memory accesses to the same
segment by threads of a SIMD core during the execution of
a single read/write instruction can be coalesced into a single
memory access. The coalescence happens even if some of the
threads do not actually access memory (cf. Figure 5-1 in [3] or
Figure 1(c)). This allows a SIMD core (or a process consisting
of A parallel threads running in a SIMD manner) to atomically
access multiple memory locations (within a segment) that are
not at consecutive addresses. Accesses to the same segment
by different processes are executed sequentially.

Figure 1(c) illustrates the coalesced memory access, where
A = 8. The left SIMD core can write atomically to four
memory locations 0, 3, 5 and 7 by letting only four of its eight
threads, t0, t3, t5 and t7, simultaneously execute a write oper-
ation (i.e. divergent threads). The right SIMD core can write
atomically to its own memory location 1 and shared memory
locations 3, 5 and 7 by letting only four threads t1, t3, t5
and t7 simultaneously execute a write operation. Note that the
CUDA architecture allows threads from different SIMD cores
to communicate through the global shared memory [18].

2MIMD: Multiple-Instruction-Multiple-Data

4

t0 t1 t2 t3 t4 t5 t6 t7 t0 t1 t2 t3 t4 t5 t6 t7

t0 t1 t2 t3 t4 t5 t6 t7 t0 t1 t2 t3 t4 t5 t6 t7

1514131211109876543210

0 1 2 3 4 5 6 7

Threads

SIMD core 1

Threads

SIMD core 3

Threads

SIMD core 2

Threads

SIMD core 4

b=1

b=2

8x1-asvword 8x1-asvword

8x2-asvword

Fig. 2. An illustration for the asvword model.

D. The third model asvword

The third model is a coalesced memory access model
(asvword), an extension of the second model aiword, in which
aiword’s A units are now replaced by A svwords of the same
size b, b ∈ [1, B]. Namely, the second model aiword can be
considered a special case of the third model asvword where
B = 1. This model is inspired by the fact that in CUDA the
read/write instructions of different coalesced global memory
accesses can access words of different size. For instance,
CUDA with compute capability 1.0 or 1.1 supports the atomic
coalesced memory access to a segment of 16 words of size
4 bytes (resulting in a 64-byte segment) or to a segment of
16 words of size 8 bytes (resulting in an 128-byte segment)
(cf. Section 5.1.2.1 in [3]). This coalesced memory access
can be represented by the asvword model, where A = 16
and b ∈ {1, 2}. CUDA with compute capability 1.2 or higher
supports the atomic coalesced memory access to a segment of
32 words of size 1 byte (resulting in a 32-byte segment), to
a segment of 32 words of size 2 bytes (resulting in a 64-byte
segment), or to a segment of 32 words of size 4 bytes (resulting
in an 128-byte segment). This coalesced memory access can
be represented by the asvword model, where A = 32 and
b ∈ {1, 2, 4}.

Let Axb-asvword be the asvword that is composed of A
svwords each of which consists of b memory units. Axb-
asvwords whose size is A·b must always start at addresses that
are multiples of A · b due to the memory alignment restriction.
We denote Axb-asvwrite to be an Axb-asvword assignment and
Axb-asvread to be an Axb-asvword read operation. Reading
only one unit U (using Ax1-asvread) is denoted by U for short.
Due to the memory alignment restriction, an Axb-asvwrite
operation cannot atomically write to b-svwords located in
different Axb-asvwords. Since in reality A and B are a power
of 2, in this model we assume that either B = k · A, k ∈ N∗
(in the case of B ≥ A) or A = k · B, k ∈ N∗ (in the
case of B < A). For the sake of simplicity, we assume
that b ∈ {1, B} holds. A variant of the model in which
b = 2c, c = 0, 1, . . . , log2 B, and A,B are powers of 2, can be
established from this model (cf. Section VI). Since both Ax1-
asvwords and AxB-asvwords are aligned from the address base
of the memory space, any AxB-asvword can be aligned with
B Ax1-asvwords as shown in Figure 2.

Figure 2 illustrates the asvword model in which each dash-

dotted rectangle/square represents an svword and each red/solid
rectangle represents an asvword composed of eight svwords
(i.e. A = 8). The two rows show the memory alignment
corresponding to the size b of svwords, where b is 1 or 2 (i.e.
B = 2), on the same sixteen consecutive memory units with
addresses from 0 to 15. An asvwrite operation can atomically
write to some or all of the eight svwords of an asvword.
Unlike the aiwrite operation in the second model, which can
atomically write to at most 8 units (or A units), the asvwrite
operation in the third model can atomically write to 16 units
(or A·B units) using a single 8x2-asvwrite operation (i.e. write
to the whole set of eight 2-svwords, cf. row b = 2). For an
8x1-asvword on row b = 1, there are two methods to update it
atomically using the asvwrite operation: i) writing to the whole
set of eight 1-svwords using a single 8x1-asvwrite (cf. SIMD
core 1) or ii) writing to a subset consisting of four 2-svwords
using a single 8x2-asvwrite (cf. SIMD core 2). However, if
only one of the eight units of an 8x1-asvword (e.g. unit 14)
needs to be updated and the other units (e.g. unit 15) must
remain untouched, the only possible method is to write to the
unit using a single 8x1-asvwrite (cf. SIMD core 3). The other
method, which writes to one 2-svword using a single 8x2-
asvwrite, will have to overwrite another unit that is required
to stay untouched (cf. SIMD core 4).

III. PRELIMINARY RESULTS ON WAIT-FREE CONSENSUS

This paper uses the conventional terminology from bi-
valency arguments [13], [5], [19]. The configuration of an
algorithm at a moment in its execution consists of the value of
every shared object and the internal state of every process. A
configuration is univalent if all executions continuing from this
configuration yield the same consensus value and multivalent
otherwise. A configuration is critical if the next operation opi

by any process pi will carry the algorithm from a multivalent to
a univalent configuration. The operations opi are called critical
operations. The critical value of a process is the value that
would get decided if that process takes the next step after the
critical configuration.

Definition 3.1 (Wait-free consensus): Wait-free consensus
is a problem in which each process starts with an input value
from some set S, |S| ≥ 2, and must eventually produce an
output value so that the following properties are satisfied in
every execution:
• Agreement: the output values of all processes are identical;
• Validity: the output value of each process is the input value

of some process;
• Wait-freedom: each process produces an output value after

a finite number of steps.
Definition 3.2 (Consensus number): The consensus number

of an object type is either the maximum number of processes
for which wait-free consensus can be solved using only objects
of this type and registers 3, or infinity if such a maximum does
not exist.

Before proving the consensus number of single-*word as-
signments, we present the essential features of any wait-free

3A register supports only read and write operations.

5

consensus algorithm ALG for N ≥ 2 processes using only
single-*word assignments and registers, where *word can be
svword, aiword or asvword.

Lemma 3.1: Algorithm ALG must have a critical configu-
ration C∗, and the critical operations opi of processes pi with
different critical values must write to the same object O, which
consists of memory units.

Proof: We first prove that ALG must have a critical
configuration C∗ by contradiction. Suppose that ALG has no
critical configuration. Since ALG solves wait-free consensus
for N ≥ 2 processes with different input values, ALG’s initial
configuration C0 is multivalent due to ALG’s validity property
(cf. Definition 3.1). Since ALG has no critical configuration
due to the hypothesis, in any multivalent configuration Ci

(e.g. C0), there always exists an operation that carries ALG
from Ci to another multivalent configuration Ci+1. That means
there must exist a non-terminating execution, a contradiction
to ALG’s wait-freedom property (cf. Definition 3.1).

We now prove that the critical operations opi of processes
pi with different critical values must write to the same object
O by contradiction.

• Suppose that the critical operation opi of a process pi

is to read an object O and carries ALG from a criti-
cal configuration C∗ to an x-valent configuration. Since
configuration C∗ is critical, there must be a process pj

whose critical operation opj carries ALG from C∗ to a
y-valent configuration, y 6= x. The configuration C1 that
immediately follows the execution e1 = opi, opj continuing
from C∗, is x-valent since pi executes its critical operation
opi first. Similarly, the configuration C2 that immediately
follows the execution e2 = opj continuing from C∗, is y-
valent. Due to the hypothesis that opi only reads object O,
configurations C1 and C2 are indistinguishable to process
pj

4, a contradiction since C1 is x-valent and C2 is y-valent.
Therefore, the critical operations of processes with different
critical values must be write-operations.

• Suppose that in a critical configuration C∗ there are two
processes pi and pj whose critical operations opi and opj

are to write x and y, x 6= y, to different objects Oi and Oj ,
respectively. The configuration C1 that immediately follows
the execution e1 = opi, opj continuing from C∗, is x-valent
since pi executes its critical operation opi first. Similarly,
the configuration C2 that immediately follows the execution
e2 = opj , opi (i.e. reversing the order of opi and opj in e1),
is y-valent. Due to the hypothesis that opi and opj write
to different objects Oi and Oj , configurations C1 and C2

are indistinguishable to processes pi and pj , a contradiction
since C1 is x-valent and C2 is y-valent.

Definition 3.3: One-writer (resp. two-writer) unit, or 1W-
unit (resp. 2W-unit) for short, is a memory unit that is written
by only one critical operation (resp. two critical operations) in
a critical configuration.

4Two configurations c and c′ are indistinguishable to a process pj if the
internal state of process pj and the value of every shared object are the same
in c and c′ [20].

Lemma 3.2: In a critical configuration C∗ of ALG, critical
operation opi by each process pi must atomically write to

1) an one-writer unit ui written by pi and
2) two-writer units ui,j written by two processes pi and
pj , where pj’s critical value is different from pi’s, ∀j 6= i.
Proof: The proof is similar to the bivalency argument of

Theorem 13 in [5]. Due to Lemma 3.1, ALG must have a crit-
ical configuration C∗ and critical operations opi of processes
pi with different critical values must be write-operations. Let
x be pi’s critical value in the critical configuration C∗. Since
configuration C∗ is critical, there must be another process pj

whose critical value y is different from x. Let opj be pj’s
critical write-operation.
• We first prove that opi must write to an one-writer unit

by contradiction. Suppose that all opi’s units are overwrit-
ten by pj’s and other processes operations. The config-
uration C1 that immediately follows an execution e1 =
opi, opj , op

′
1, . . . , op′k continuing from C∗, where all opi’s

units are overwritten by (some of) other processes operations
opj , op

′
1, . . . , op

′
k, is x-valent since pi executes its critical

operation opi first. Similarly, the configuration C2 that
immediately follows execution e2 = opj , op

′
1, . . . , op

′
k (i.e.

removing opi from e1), is y-valent. Execution e2 corre-
sponds to the case that pi stops right before executing opi.
Due to the hypothesis that all opi’s units are overwritten
by opj , op

′
1, . . . , op

′
k, configurations C1 and C2 are indistin-

guishable to process pj , a contradiction since C1 is x-valent
and C2 is y-valent.

• We now prove by contradiction that opi must also write to
two-writer units written by pi and pj , where pj’s critical
value is different from pi’s, ∀j 6= i. Due to Lemma 3.1, opi

and opj must write to the same object, or there must be units
written by both opi and opj . Suppose that all units written
by both opi and opj are overwritten by other processes op-
erations. The configuration C1 that immediately follows an
execution e1 = opi, opj , op

′
1, . . . , op

′
k continuing from C∗,

where all units written by both opi and opj are overwritten
by (some of) other processes operations op′1, . . . , op

′
k, is

x-valent since pi executes its critical operation opi first.
Similarly, the configuration C2 that immediately follows
execution e2 = opj , opi, op

′
1, . . . , op

′
k (i.e. reversing the

order of opi and opj in e1) is y-valent. Due to the hypothesis
that all units written by both opi and opj are overwritten by
op′1, . . . , op

′
k, configurations C1 and C2 are indistinguish-

able to processes pi and pj , a contradiction since C1 is
x-valent and C2 is y-valent.

IV. CONSENSUS NUMBER OF THE svword MODEL

In this section, we first present a wait-free consensus algo-
rithm for 3 processes using only the single-svword assignment
with B ≥ 5 and registers. Then, we prove that we cannot
construct any wait-free consensus algorithms for more than
3 processes using only the single-svword assignment and
registers regardless of how large B is.

The new wait-free consensus algorithm SVW_CONSENSUS
is presented in Algorithm 1. The main idea of the algorithm is

6

Algorithm 1 SVW_CONSENSUS(bufi: proposal) invoked by
process pi, i ∈ {0, 1, 2}
PROPOSAL[0, 1, 2]: contains proposals of 3 processes. PROPOSAL[i] is only
written by process pi but can be read by all processes.
WR1 = set {u0, u1, u2} of units: initialized to ⊥ and used in the first phase.
WR1[0] and WR1[2] are units written only by p0 and p1, respectively. WR1[1] is
a unit written by both processes.
WR2 = set {v0, . . . , v4} of units: initialized to ⊥ and used in the second phase.
WR2[0], WR2[2] and WR2[4] are units written only by p0, p2 and p1, respectively.
WR2[1] and WR2[3] are units written by pairs {p0, p2} and {p2, p1}, respectively.
Input: process pi’s proposal value, bufi.
Output: the value upon which all 3 processes (will) agree.
1V: PROPOSAL[i] ← bufi; // Declare pi’s proposal

// Phase 1: Achieve an agreement between p0 and p1.
2V: if i = 0 or i = 1 then
3V: first ← SVW_FIRSTAGREEMENT(i); // first is a shared variable
4V: end if

// Phase II: Achieve an agreement between all three processes.
5V: winner ← SVW_SECONDAGREEMENT(i, firstref); // firstref is the ref-

erence to first
6V: return PROPOSAL[winner]

Algorithm 2 SVW_FIRSTAGREEMENT(i: bit) invoked by
process pi, i ∈ {0, 1}
Output: the preceding process of {p0, p1}
1SF: if i = 0 then
2SF: SVWRITE({WR1[0], WR1[1]}, {Lower, Lower}); // atomically write to

2 units
3SF: else
4SF: SVWRITE({WR1[1], WR1[2]}, {Higher, Higher}); // i = 1
5SF: end if
6SF: if WR1[(1− i) ∗ 2] =⊥ then
7SF: return i; // The other process hasn’t written its value
8SF: else if (WR1[1] = Higher and i = 0) or (WR1[1] = Lower and i = 1)

then
9SF: return i; // The other process comes later and overwrites pi’s value in

WR1[1]
10SF: else
11SF: return (1− i);
12SF: end if

to utilize the size-variation feature of the svwrite operation.
A b-svwrite operation can atomically write up to b values
to b consecutive memory units if each of the values can be
stored in one memory unit. Therefore, keeping the values
to be atomically written as small as possible will maximize
the number of processes for which b-svwrite can solve the
consensus problem. Unlike the wait-free consensus algorithm
using the m-word assignment by Herlihy [5], which requires
the word size to be large enough to accommodate a proposal
value, the new algorithm stores proposal values in shared
memory and uses only two bits (or one unit) to determine
the preceding order between two processes. This allows a
single-svword assignment to write atomically up to B (or
B
2 if units are single bits) ordering-related values. The new
algorithm utilizes process unique identifiers, which are an
implicit assumption in Herlihy’s consensus model [21].

The SVW_CONSENSUS algorithm has two phases. In the
first phase, two processes p0 and p1 will achieve an agreement
on their proposal values (cf. Algorithm 2). The agreed value,
PROPOSAL[first], is the proposal value of the preceding
process, whose SVWRITE (line 2SF or 4SF) precedes that of
the other process (cf. Lemma 4.1).

Due to the memory alignment restriction, in order to be
able to allocate memory for the WR1 variable (cf. Algorithm
1) on which p0’s and p1’s SVWRITEs can partly overlap, p0’s
and p1’s SVWRITEs are chosen as 2-svwrite and 3-svwrite,

Algorithm 3 SVW_SECONDAGREEMENT(i: index; firstref :
reference) invoked by process pi, i ∈ {0, 1, 2}
1SS: if i = 0 then
2SS: SVWRITE({WR2[0], WR2[1]}, {Lower, Lower});
3SS: else if i = 1 then
4SS: SVWRITE({WR2[3], WR2[4]}, {Lower, Lower});
5SS: else
6SS: SVWRITE({WR2[1], WR2[2], WR2[3]}, {Higher, Higher, Higher});

7SS: end if
8SS: if ((WR2[0] 6=⊥ or WR2[4] 6=⊥) and WR2[2] =⊥) or // The predicates

are checked in the writing order.
(WR2[0] 6=⊥ and WR2[1] = Higher) or
(WR2[4] 6=⊥ and WR2[3] = Higher) then

9SS: return first; // p2 is preceded by either p0 or p1. first is obtained by
dereferencing firstref .

10SS: else
11SS: return 2;
12SS: end if

respectively. The WR1 variable is located in a memory region
consisting of 4 consecutive units {u0, u1, u2, u3} of which u0

is at an address multiple of 2 and u1 at an address multiple of
3. This memory allocation allows p0 and p1 to write atomically
to the first two units {u0, u1} and the last 3 units {u1, u2, u3},
respectively (cf. Figure 3(a)). The WR1 variable is the set
{u0, u1, u2} (cf. the solid squares in Figure 3(a)), namely p1

ignores u3 (cf. line 4SF in Algorithm 2).
Subsequently, the agreed value will be used as the proposal

value of both p0 and p1 in the second phase in order to achieve
an agreement with the other process p2 (cf. Algorithm 3). Let
pfirst be the preceding process of p0 and p1 in the first phase.
The second phase returns pfirst’s proposal value if either p0

or p1 precedes p2 (line 9SS), or returns p2’s proposal value
otherwise.

Units written by processes’ SVWRITEs are illustrated in
Figure 3(b). In order to be able to allocate memory for the
WR2 variable, process p0’s, p1’s and p2’s SVWRITEs are
chosen as 2-svwrite, 3-svwrite and 5-svwrite, respectively. The
WR2 variable is located in a memory region consisting of 7
consecutive units {u0, . . . , u6} of which u0 is at an address
multiple of 2, u4 at an address multiple of 3 and u1 at an
address multiple of 5. Since 2, 3 and 5 are prime numbers,
we can always find such a memory region. For instance, if the
memory address space starts from the unit with index 0, the
memory region from unit 14 to unit 20 can be used for WR2

(cf. Figure 1(a)). This memory allocation allows p0, p1 and
p2 to write atomically to the first two units {u0, u1}, the last
three units {u4, u5, u6} and the five middle units {u1, . . . , u5},
respectively. The WR2 variable is the set {u0, u1, u2, u5, u6}
(cf. the solid squares in Figure 3(b)).

Lemma 4.1: The SVW_FIRSTAGREEMENT procedure re-
turns the index of the preceding process of p0 and p1.

Proof: Without loss of generality, we consider the value
returned by the SVW_FIRSTAGREEMENT procedure that is
invoked by process p0, i.e. i = 0.

If p0 precedes p1 (i.e. p0’s SVWRITE (line 2SF) precedes
p1’s SVWRITE (line 4SF)), their unit WR1[1] is either Lower
(when p1 has not executed its SVWRITE yet) or Higher
(when p1’s SVWRITE has overwritten the value Lower written
by p0’s). In the former case, WR1[2] =⊥ holds (line 6SF),
making the procedure return 0 (line 7SF). In the latter case,

7

0 1 2 3

p0

p1

WR1

(a) SVW_1stAgreement.

0 1 2 3 4 65WR2

p0 p1

p2

(b) SVW_2ndAgreement.

...

word index pf pl

ur uqup,r up,q

rf qfrl ql

up

(c) S = {p}, S̄ = {q, r, t}

...

word index pf pl

ur uqup,r up,q

rf rl

up ut,q

qf ql

tf tl

(d) S = {p, t}, S̄ = {q, r}

Fig. 3. Illustrations for the SVW_FIRSTAGREEMENT,
SVW_SECONDAGREEMENT and Lemma 4.5.

WR1[2] 6=⊥ and the procedure checks WR1[1] at line 8SF.
Since predicate (WR1[1] = Higher and i = 0) holds, the
procedure returns 0 (line 9SF).

If p1 precedes p0, their unit WR1[1] from line 8SF is
either Higher (when p0 has not executed its SVWRITE yet)
or Lower (when p0’s SVWRITE has overwritten the value
Higher written by p1’s). The former case cannot happens
since p0 executes its SVWRITE at line 2SF (i.e. before
line 6SF) in the SVW_FIRSTAGREEMENT procedure and the
procedure is assumed to be invoked by p0. In the latter case,
the procedure returns 1 (line 11SF) since the predicate at line
6SF fails and subsequently the predicate at line 8SF fails.

Lemma 4.2: The SVW_SECONDAGREEMENT procedure
returns index 2 if p2 precedes both p0 and p1. Otherwise, it
returns index first.

Proof: If p0 precedes p2 (i.e. p0’s SVWRITE (line 2SS)
precedes p2’s SVWRITE (line 6SS)), their unit WR2[1] is
either Lower (when p2 has not executed its SVWRITE
yet) or Higher (when p2’s SVWRITE has overwritten the
value Lower written by p0’s). In the former case, predicate
(WR2[0] 6=⊥ and WR2[2] =⊥) holds (line 8SS), making the
procedure return first (line 9SS). In the latter case, predicate
(WR2[0] 6=⊥ and WR2[1] = Higher) holds (line 8SS),
making the procedure return first (line 9SS).

Using similar argument, the procedure return first if p1

precedes p2.
Note that since i) p0 and p1 invoke the

SVW_SECONDAGREEMENT procedure (line 5V, Algorithm
1) only after getting first from the SVW_FIRSTAGREEMENT
procedure (line 3V) and ii) the reference to first (instead of
a value of first) is passed to SVW_SECONDAGREEMENT,
the value first returned by SVW_SECONDAGREEMENT in
these two cases is defined.

If p2 precedes both p0 and p1 (i.e. p2’s SVWRITE precedes
both p0’s and p1’s SVWRITEs), then
• WR2[2] 6=⊥ at line 8SS, and
• their unit WR2[1] is either Higher (when p0 has not

executed its SVWRITE yet, i.e. WR2[0] =⊥) or Lower
(when p0’s SVWRITE has overwritten the value Higher
written by p2’s), and

• their unit WR2[3] is either Higher (when p1 has not

executed its SVWRITE yet, i.e. WR2[4] =⊥) or Lower
(when p1’s SVWRITE has overwritten the value Higher
written by p2’s).

This makes the predicate at line 8SS false, causing the proce-
dure to return 2 (line 11SS).

Note that the five units WR2[0],WR2[1],WR2[2],WR2[3]
and WR2[4] at line 8SS are read one by one and the order
in which the reads are performed for checking each predicate
does not matter due to the atomic write-operations SVWRITE
at lines 2SS, 4SS and 6SS.

Lemma 4.3: The SVW_CONSENSUS algorithm is wait-free
and solves the consensus problem for 3 processes.

Proof: It is obvious from the pseudocode in Algorithms
1, 2 and 3 that the SVW_CONSENSUS algorithm is wait-free.

From Lemma 4.2, the SVW_CONSENSUS algorithm returns
the same values for all invoking processes. The value is
either PROPOSAL[2] (if p2 precedes both p0 and p1) or
PROPOSAL[first], first ∈ {0, 1} (otherwise).

Lemma 4.4: The single-svword assignment has consensus
number at least 3, ∀B ≥ 5.

Proof: Since there is a wait-free consensus algorithm
for 3 processes using only registers and the single-svword
assignment with B ≥ 5 (Lemma 4.3), this lemma immediately
follows.

Lemma 4.5: The single-svword assignment has consensus
number at most 3, ∀B ≥ 5.

Proof: We prove the lemma by contradiction. Assume
that there is a wait-free consensus algorithm ALG for four
processes p, q, r and t. From Lemma 3.1, ALG must have
a critical configuration C∗ and the critical operations opi

of processes pi with different critical values must be write-
operations. At the critical configuration C∗, we can always
divide the set of the four processes into two non-empty subsets
S and S̄ where S consists of at most two processes with the
same critical value called V and S̄ consists of processes with
critical values different from V (If three of the four processes
have the same critical value, the other process is chosen as S).
Since the svwrite operation writes to consecutive memory units
in the conventional 1-dimensional memory address space, let
[kf , kl] be the range of consecutive units to which a process
k ∈ {p, q, r, t} atomically writes using its critical operation
opk. For any pair of processes {h, k}, where h and k belong
to different subsets S and S̄, [hf , hl] and [kf , kl] must partly
overlap (due to the second requirement of Lemma 3.2) and
none of them are completely covered by ranges [vf , vl] of the
other processes v (due to the first requirement of Lemma 3.2).

Figures 3(c) and 3(d) illustrate the main idea of the proof
when S consists of one and two processes, respectively. In
Figure 3(c), the range [tf , tl] of process t cannot partly overlap
with that of process p without completely covering (or being
covered by) the range of process r or q. In Figure 3(d), t and
r belong to different subsets S and S̄, respectively, but their
ranges cannot partly overlap. The detailed proof is as follows.

• If S consists of 1 process, let S = {p}. Since p’s critical
value is different from those of the three other processes q, r
and t, process p’s critical operation must atomically write to
4 units up,q , up,r, up,t and up (cf. Lemma 3.2). The atomic

8

write-operation determines the relative ordering between p
and the three other processes with critical values different
from p’s: if p’s operation precedes q’s, p is considered
preceding q.
Without loss of generality, assume pf < qf ≤ pl < ql

where the 2W-unit up,q of p and q is between qf and pl,
qf ≤ up,q ≤ pl, and the 1W-units up < qf and uq > pl (cf.
Figure 3(c)).
We prove that rf < pf ≤ rl < pl. Since ranges [rf , rl]
and [pf , pl] must partly overlap, either rf < pf ≤ rl <
pl or pf < rf ≤ pl < rl must hold. If the latter holds,
ql < rl must hold due to the first requirement of Lemma
3.2 for the process r. That means pf < qf < ql < rl, or
q’s range [qf , ql] is covered completely by the overlapping
ranges [pf , pl] and [rf , rl], violating the first requirement of
Lemma 3.2 for the process q.
Arguing similarly, we have tf < pf ≤ tl < pl. If
tf ≤ rf , r’s range [rf , rl] is covered completely by the
overlapping ranges [tf , tl] and [pf , pl]. Therefore, rf < tf
must hold, leading to t’s range [tf , tl] covered completely by
the overlapping ranges [rf , rl] and [pf , pl], a contradiction
to the first requirement of Lemma 3.2 for the process t.

• If S consists of 2 processes, let S = {p, t}. Since p’s and
t’s critical value is different from those of the two other
processes q and r, processes p and t must atomically write
to units {up,q , up,r, up} and {ut,q , ut,r, ut}, respectively
(cf. Lemma 3.2). Similarly, q and r must atomically write
to units {up,q , ut,q , uq} and {up,r, ut,r, ur}, respectively.
Since p must atomically write to units {up,q , up,r, up},
arguing similarly to the above case S = {p}, we have
either rf < pf ≤ rl < qf ≤ pl < ql (cf. Figure 3(c))
or qf < pf ≤ ql < rf ≤ pl < rl (i.e. exchange r and q
in Figure 3(c)). Without loss of generality, assume that the
former holds.
Similarly, since i) q must atomically write to units {up,q ,
ut,q , uq} and ii) pf < qf ≤ pl < ql, we have pf < qf ≤
pl < tf ≤ ql < tl (cf. Figure 3(d)). On the other hand,
since qf < tf ≤ ql < tl and t must atomically write to units
{ut,q , ut,r, ut}, we have qf < tf ≤ ql < rf ≤ tl < rl. This
contradicts the assumption rf < pf ≤ rl < qf ≤ pl < ql.

Lemma 4.6: The single-svword assignment (svwrite) has
consensus number 1 when B = 2.

Proof: We prove the lemma by contradiction. Assume
that there is a wait-free consensus algorithm ALG for two
processes (with different proposal values) p0 and p1 using only
svwrites and registers. Algorithm ALG must have a critical
configuration C∗ (Lemma 3.1) in which pi’s critical operation
must atomically write to both pi’s 1W-unit ui, i ∈ {0, 1}, and a
2W-unit u0,1 (Lemma 3.2). Since B = 2, in order to atomically
write to two units, both p0’s and p1’s critical operations must
be 2-svwrites, which prevents the two critical operations from
partly overlapping due to the memory alignment restriction.
That means if p0’s critical operation is the first operation
writing to the 2-svword containing u0,1 and u0, p1’s critical
operation, which must write to u0,1, will then overwrite the 2-

svword completely, violating the first requirement of Lemma
3.2 for process p0.

Lemma 4.7: The single-svword assignment (svwrite) has
consensus number 2 when B ∈ {3, 4}.

Proof: Since the SVW_FIRSTAGREEMENT procedure
(Algorithm 2) solves wait-free consensus for two processes
using svwrites and registers (Lemma 4.1) when B ≥ 3, the
single-svword assignment (svwrite) has consensus number at
least 2 when B ∈ {3, 4}.

We now prove by contradiction that when B ∈ {3, 4}, there
is no wait-free consensus algorithm for three processes using
only svwrites and registers. Assume that there is a wait-
free consensus algorithm ALG for three processes p, q and
r. Algorithm ALG must have a critical configuration (Lemma
3.1) in which we can always divide the set of these three
processes into two non-empty subsets S and S̄, where S
consists of a process p with critical value V and S̄ consists
of processes q and r with critical values different from V .
Since the svwrite operation writes to consecutive memory units
in the conventional 1-dimensional memory address space, let
[kf , kl] be the range of consecutive units to which a process
k ∈ {p, q, r} atomically writes using its critical operation opk.
For any pair of processes {h, k}, where h and k belong to
different subsets S and S̄, [hf , hl] and [kf , kl] must partly
overlap (due to the second requirement of Lemma 3.2) and
none of them are completely covered by ranges [vf , vl] of the
other processes v (due to the first requirement of Lemma 3.2).

Arguing similarly to the proof of Lemma 4.5 results in that
ranges [pf , pl], [qf , ql] and [rf , rl] must partly overlap each
other as shown in Figure 3(c).
• If B = 3, range [pf , pl], which contains up,r, up and up,q ,

must be a 3-svword starting at an address multiple of 3,
namely pf = 3a, a ∈ N (integers). In order to partly overlap
with range [pf , pl], ranges [rf , rl] and [qf , ql] must be 2-
svwords due to the memory alignment restriction. That
means rf and qf are addresses multiple of 2: rf = 2b and
qf = 2c where b, c ∈ N. On the other hand, since range
[pf , pl] is a 3-svword, there is exactly one unit between rl

and qf (cf. Figure 3(c)), or qf = rl + 2 = (rf + 1) + 2 =
2(b + 1) + 1, a contradiction to qf = 2c (an even address).

• If B = 4, range [pf , pl] must be a 4-svword starting at an
address multiple of 4, namely pf = 4a, a ∈ N. Indeed, if
range [pf , pl] is a 3-svword, arguing similarly to the case
B = 3 will result in a contradiction since rl and qf must
be odd and even, respectively, while qf = rl + 2.
Since range [pf , pl] is a 4-svword, in order to partly overlap
with range [pf , pl], ranges [rf , rl] and [qf , ql] must be 3-
svwords due to the memory alignment restriction. That
means rf and qf are addresses multiple of 3: rf = 3b and
qf = 3c where b, c ∈ N. Since range [pf , pl] must not be
covered completely by ranges [rf , rl] and [qf , ql], c ≥ (b+2)
must hold (cf. Figure 3(c)). On the other hand, since range
[pf , pl] is a 4-svword, there are at most 2 units between
rl and qf (cf. Figure 3(c)). That means qf − rl ≤ 3, or
3(c− b) ≤ 5, a contradiction to c ≥ (b + 2).

From Lemmas 4.4, 4.5, 4.6 and 4.7, we have the following

9

Theorem:
Theorem 4.1: The single-svword assignment has consensus

number exactly N, where

N =





3, if B ≥ 5
2, if B = 3, 4
1, if B = 2

(2)

V. CONSENSUS NUMBER OF THE aiword MODEL

In this section, we prove that the single-aiword assignment
(or aiwrite for short) has consensus number exactly bA+1

2 c.
First, we prove that the aiwrite operation has a consensus
number at least bA+1

2 c. We prove this by presenting a wait-
free consensus algorithm AIW_CONSENSUS for N = bA+1

2 c
processes (cf. Algorithm 4) using only the aiwrite operation
and registers. Subsequently, we prove that there is no wait-
free consensus algorithm for N + 1 processes using only the
aiwrite operation and registers.

The main idea of the AIW_CONSENSUS algorithm is to
gradually extend the set S of processes agreeing on the same
value by one at a time. This is to minimize the number of units
that must be written atomically by the aiword operation (cf.
Lemma 5.4). The algorithm consists of N rounds and a process
pi, i ∈ [1, N], participates in rounds ri . . . rN . A process pi

leaves a round rj , j ≥ i, and enters the next round rj+1 when
it reads the value upon which all processes in round rj (will)
agree. A round rj starts with the first process that enters the
round, and ends when all j processes pi, 1 ≤ i ≤ j, have left
the round. At the end of a round rj , the set S consists of j
processes pi, 1 ≤ i ≤ j.

A process pi participates in the consensus protocol from
round i by initializing its agreed value Ai[i] in round i to its
proposal value bufi (line 1I). In order to determine whether it
precedes all (i−1) other processes pk participating in round i,
k = 1, . . . , (i− 1), pi atomically writes Higher to its unit U i

i

and (i− 1) units U i
i,k using aiwrite (line 3I). Each process pk

atomically writes Lower to its units U i
k and U i

i,k using aiwrite
(line 13I). Process pk precedes pi if pk’s aiwrite precedes pi’s
aiwrite. If one of processes pk precedes pi, pi agrees on pk’s
proposal value Ai[k] by writing this value to Ai[i] (lines 4I -
6I). Note that all processes pk participating in round i, k < i,
have the same proposal value, which is their agreed value in the
previous round (i− 1) (line 12I and Lemma 5.1). Otherwise,
pi keeps its proposal value bufi as its agreed value in round
i and subsequently enters the next round (i + 1) (line 11I).

Process pi participates in rounds j, j = (i + 1), . . . , N, by
initializing its agreed value Aj [i] in round j to its agreed value
Aj−1[i] in the previous round (j − 1) (line 12I). Since all
processes pk participating in round j, k < j, have agreed on
the same value in the previous round (j−1) (cf. Lemma 5.1)),
they have the same proposal value in round j. Therefore, pi

needs to change its agreed value Aj [i] only if pj precedes all
processes pk, k < j. After atomically writing Lower to its
units U j

i and U j
j,i, pi checks if pj precedes all other processes

pk, k < j (lines 14I - 21I). If so, pi agrees on pj’s proposal
value Aj [j] by writing this value to Aj [i] (line 23I). After
obtaining its agreed value AN [i] in round N , pi agrees with
all other processes on the same value (Lemma 5.1) and finishes
the consensus protocol (line 27I).

Algorithm 4 AIW_CONSENSUS(bufi: proposal) invoked by
process pi, i ∈ [1, N]
Ar [i]: the value upon which pi agrees with other processes in round r;
Ur

i,j : the unit written only by processes pi and pj in round r. Ur
i : the unit written

only by process pi in round r;
Input: process pi’s proposal value, bufi.
Output: the value upon which all N processes (will) agree.

// pi starts from round i
1I: Ai[i] ← bufi; // Initialized pi’s agreed value for round i
2I: if i ≥ 2 then
3I: AIWRITE({Ui

i , Ui
i,1, . . . , Ui

i,i−1}, {Higher, Higher, . . . , Higher}) //
Atomic assignment

4I: for k = 1 to (i − 1) do // Check if pi precedes all other processes pk in
round i

5I: if (Ui
k 6=⊥) and (Ui

i,k = Higher) then // The predicates are checked
from left to right

6I: Ai[i] ← Ai[k]; // pk precedes pi ⇒ Update pi’s agreed value with
the set S’s agreed value

7I: break;
8I: end if
9I: end for
10I: end if

// Participate in rounds (i + 1) . . . N
11I: for j = i + 1 to N do
12I: Aj [i] ← Aj−1[i]; // Initialized pi’s agreed value for round j
13I: AIWRITE({Uj

i , Uj
j,i}, {Lower, Lower}; // Atomic assignment

14I: if (Uj
j 6=⊥) and (Uj

j,i = Lower) then // The predicates are checked from
left to right

15I: WinnerIsJ ← true; // pj precedes pi

16I: for k = 1 to j − 1 do // Check if pj precedes all pk, ∀k < j
17I: if (Uj

k 6=⊥) and (Uj
j,k = Higher) then // The predicates are

checked from left to right
18I: WinnerIsJ ← false; // pk precedes pj ;
19I: break;
20I: end if
21I: end for
22I: if WinnerIsJ = true then
23I: Aj [i] ← Aj [j]; // pj precedes pk, ∀k < j,⇒ pj ’s value is the

agreed value in round j.
24I: end if
25I: end if
26I: end for
27I: return AN [i];

Definition 5.1: A correct process is a process that does not
crash.

Definition 5.2: The agreed value v of a correct process pi

in round rj , j ≥ i, is the value of Aj [i] when pi reaches either
line 10I (if i = j) or line 25I in iteration j of the for-loop 11I
- 26I (if i < j). We say that pi agrees on v in rj .

Lemma 5.1: All correct processes pi agree on the same
value in round rj , where 1 ≤ i ≤ j ≤ N .

Proof: We will prove this lemma by induction on j, the
round index. The lemma is true for j = 1 since there is only
one process p1 in round r1. Assume that the lemma is true for
(j − 1), we need to prove that the lemma is true for j. That
means we need to prove that if all correct processes pi, 1 ≤
i ≤ j − 1, agree on the same value in round rj−1, then all
correct processes pi, 1 ≤ i ≤ j, will agree on the same value
in round rj .

Indeed, since all correct processes pi, 1 ≤ i ≤ j − 1, agree
on the same value in round rj−1, their proposal values in round
rj are the same (line 12I) called Aj

S . Let Aj
j be pj’s proposal

value in round j, its original proposal value (line 1I). The
agreed value in round rj will be either Aj

S or Aj
j . At this

moment, we assume that AIWRITE (at line 3I or 13I) is atomic
(cf. Figure 4 for the layout of units U j

j , U j
i and U j

j,i on an
aiword when j = N). We will prove that in round rj the agreed
value of participating processes will be Aj

j if pj precedes all
the other processes pi, 1 ≤ i < j (i.e. pj’s AIWRITE precedes

10

all the other processes AIWRITE), or Aj
S otherwise.

• If pj precedes all the other processes pi, 1 ≤ i < j, all
processes will see U j

j 6=⊥ after their AIWRITE (line 3I for
pj or line 13I for pi, i < j). Let pl, l = 1, . . . , j, be the
process that is executing the AIW_CONSENSUS procedure.
If l = j, pj determines its relative ordering with processes
pi, i < j, using their unit U j

j,i, which is only written by pj’s
and pi’s AIWRITEs (lines 4I-9I). Since pj precedes all the
other processes pi, predicate U j

j,i = Higher holds only if
pi did not yet execute its AIWRITE, which would overwrite
value Higher written by pj with value Lower. This leads
to U j

i =⊥, making predicate (U j
i 6=⊥ and U j

j,i = Higher)
at line 5I false, ∀i < j. Consequently, pj keeps its proposal
value Aj

j as its agreed value.
If l = i, i < j, process pi determines its relative ordering
with process pj using their unit U j

j,i (line 14I). Since pj

precedes all pi, predicate (U j
j 6=⊥ and U j

j,i = Lower))
holds (line 14I) but predicate (U j

k 6=⊥ and U j
j,k = Higher)

does not hold for all k ∈ [1, j − 1] (line 17I). This makes
pi agree on Aj

j (line 23I).
• If there is a process pI , I < j, that precedes pj , predicate

(U j
I 6=⊥ and U j

j,I = Higher) at line 5I holds, making
pj agree on Aj

S (line 6I). For a process pi, i < j, that is
executing the AIW_CONSENSUS procedure, if it is pre-
ceded by pj , it will find that the predicate (U j

I 6=⊥ and
U j

j,I = Higher) at line 17I holds and consequently keep its
proposal value Aj

S as its agreed value.

With the assumption that AIWRITE can atomically write
to pj’s units at line 3I or pi’s units at line 13I, it follows
directly from Lemma 5.1 that all the N processes will achieve
an agreement in round rN .

Lemma 5.2: The AIW_CONSENSUS algorithm is wait-free
and can solve the consensus problem for N = bA+1

2 c pro-
cesses.

Proof: The time complexity for a process using
AIW_CONSENSUS to achieve an agreement among N pro-
cesses is O(N2) due to the for-loops at lines 11I and 16I.
Therefore, the AIW_CONSENSUS algorithm is wait-free.

From Lemma 5.1, the AIW_CONSENSUS algorithm can
solve the consensus problem for N = bA+1

2 c processes if
AIWRITE can atomically write to pj’s j units at line 3I or pi’s
2 units at line 13I. Since AIWRITE can write to an arbitrary
subset of A units of an aiword AI , if AIWRITE can atomically
write to a units of AI , a ≤ A, it can atomically write to b
units of AI where b ≤ a. Therefore, we only need to prove
that the requirement is satisfied for the case j = N .

Indeed, since N = bA+1
2 c, an A-unit aiword (or A-aiword

for short) can accommodate both (N − 1) units UN
N,i, 1 ≤

i < N, and N units UN
k , 1 ≤ k ≤ N, used in round rN .

Figure 4 illustrates the 2-dimensional layout of the (2N −
1) units to be mapped on the A units of an aiword. Since
the single-aiword assignment AIWRITE can atomically write
to an arbitrary subset of the A units of an aiword and leave
the other units untouched, each process pk, 1 ≤ k ≤ (N −
1), can atomically write to its units UN

k and UN
N,k, and pN

...

...UN
1 UN

2 UN
N−1

UN
N,1 UN

N,2 UN
N,N−1 UN

N

p1 p2 pN−1

pN

Fig. 4. The layout of units UN
i and UN

N,i on an A-aiword, where N =

bA+1
2
c.

can can atomically write to its unit UN
N and (N − 1) units

UN
N,1, . . . , U

N
N,N−1. This guarantees that a unit UN

i is written
only by pi and a unit UN

N,i is written only by pN and pi.
Lemma 5.3: The single-aiword assignment has consensus

number at least bA+1
2 c.

Proof: Since there is a wait-free consensus algorithm for
N = bA+1

2 c processes (cf. Lemma 5.2) using only the single-
aiword assignment and registers, this lemma immediately
follows.

Lemma 5.4: The single-aiword assignment has consensus
number at most bA+1

2 c.
Proof: We prove this lemma by contradiction. Assume

that there is a wait-free consensus algorithm ALG for N
processes where N ≥ bA+1

2 c + 1. Due to Lemma 3.1, ALG
must have a critical configuration C∗ and the critical operations
opi of processes pi with different critical values must be write-
operations. At the critical configuration C∗, we divide N
processes into k ≥ 2 subsets s1, . . . , sk each of which consists
of processes with the same critical value. Let n1, . . . , nk to be
the sizes of the subsets, we have

∑k
l=1 nl = N . Let pi

j be a
process in si, 1 ≤ j ≤ ni. Since pi

j’s critical value is different

from that of
(∑

l 6=i nl

)
processes in the (k−1) other subsets,

pi
j’s critical operation must atomically write to its 1W-unit

and
(∑

l 6=i nl

)
2W-units (cf. Lemma 3.2). The write-operation

determines the relative ordering between pi
j and the

(∑
l 6=i nl

)

other processes with critical values different from pi
j’s: if pi

j’s
operation precedes pl

∗’s, l 6= i, pi
j is considered preceding pl

∗.
First, we prove that for any pair of processes in different

subsets pi
j and pi′

j′ , i 6= i′, their 1W-units ui
j , u

i′
j′ and 2W-unit

ui,i′

j,j′ must be located in the same A-aiword. Indeed, since pi
j

and pi′
j′ belong to different subsets, they have different critical

values. Therefore, pi
j (resp. pi′

j′) must atomically write to its
1W-/2W-units {ui

j , u
i,i′

j,j′} (resp. {ui′
j′ , u

i,i′

j,j′}). Since the aiwrite
operation cannot atomically write to units located in different
aiwords due to the memory alignment restriction, units ui

j and
ui,i′

j,j′ must be located in the same aiword corresponding to
pi

j . Similarly, units ui′
j′ and ui,i′

j,j′ must be located in the same
aiword corresponding to pi′

j′ . It follows that all three units
ui

j , u
i,i′

j,j′ and ui′
j′ must be located in the same aiword.

Therefore, all the 1W-units ui
j , 1 ≤ i ≤ k, 1 ≤ j ≤ ni, and

2W-units ui,i′

j,j′ , i 6= i′, used in the ALG algorithm must be
located in the same A-aiword called AI . Let M be the number
of 1W-/2W-units that must be located in the A-aiword AI , we
have M ≤ A.

Second, we prove that the ALG algorithm maximizes N
when k is 2, the minimum. In order to maximize the number
N of processes, we need to minimize the number M of the

11

processes’ 1W-/2W-units that must be located in the A-aiword
AI , where A is a constant. The number M in the ALG
algorithm is:

M = N + n1(n2 + · · ·+ nk) + n2(n3 + · · ·+ nk) + · · ·+ nk−1nk

/*N : the number of 1W-units*/

≥ N + n1(ni + · · ·+ nk) + n2(ni + · · ·+ nk)+

· · ·+ ni−1(ni + · · ·+ nk), where 2 ≤ i ≤ k

= N + (n1 + n2 + · · ·+ ni−1)(ni + · · ·+ nk) (3)

That means M will be less if there are only two subsets
sI , sII of processes with the same critical value, where nI =∑i−1

l=1 nl and nII =
∑k

l=i nl. In this case, we have

M = N + nI .nII = N + nI(N − nI) = −n2
I + N.nI + N,

where 1 ≤ nI ≤ N − 1

It follows that M achieves the minimum (2N − 1) when
nI = 1 or nI = N − 1.

Since N ≥ bA+1
2 c+ 1 due to the hypothesis, M ≥ (A + 1)

must hold. This contradicts the requirement M ≤ A.
From Lemmas 5.3 and 5.4, we have the following theorem.
Theorem 5.1: The single-aiword assignment has consensus

number exactly bA+1
2 c.

VI. CONSENSUS NUMBER OF THE asvword MODEL

We will prove that the single-asvword assignment has con-
sensus number exactly N , where

N =





AB
2

, if A = 2tB, t ∈ N∗ (positive integers)
(A−B)B

2
+ 1, if A = (2t + 1)B, t ∈ N∗

bA+1
2
c, if B = tA, t ∈ N∗

(4)

The intuition behind the higher consensus number N of the
asvword model (cf. Equation (4)) compared with the aiword
model is that process pN in Algorithm 4 can atomically write
to A · B units using AxB-asvwrite instead of only A units
using A-aiwrite (line 3I). As illustrated in Figure 2, an 8x2-
asvwrite can atomically write to 16 memory units (i.e. write
to 8 consecutive 2-svwords each of which is comprised of 2
memory units) (cf. row b = 2) whereas an 8x1-asvwrite (or
8-aiwrite) can atomically write to only 8 memory units (cf.
row b = 1). However, since an 8x2-asvwrite uses 2-svwords
as its minimum units, it cannot write to only one memory unit.
For instance, using 8x2-asvwrite, SIMD core 4 cannot write
to only memory unit 14 (cf. row b = 1), but it must write
to both memory units 14 and 15 that comprise 2-svword 7
(cf. row b = 2). Therefore, to prevent pN from overwriting
unintended memory units when using AxB-asvwrite, each B-
svword located in Al, 1 ≤ l ≤ B, contains either units UN

i or
units UN

N,i, i < N, but not both as illustrated in Figure 6(a),
where B-svwords labeled “1W” contain only units UN

i and
B-svwords labeled “2W” contain only units UN

N,i. This allows
pN to atomically write to only B-svwords with units UN

N,i

(and keep unit UN
i , i < N, untouched) using AxB-asvwrite.

For each process pi, i 6= N , its units UN
i and UN

N,i are located

in two B-svwords labeled "1W" and "2W", respectively, that
belong to the same Al. This allows pi to atomically write to
only its two units using Ax1-asvwrite.

We first prove that the asvwrite operation has consensus
number at least N (cf. Equation (4)). We prove this by present-
ing a wait-free consensus algorithm ASVW_CONSENSUS for
N processes using only the asvwrite operation and registers.
Subsequently, we prove that there is no wait-free consensus
algorithm for N+1 processes using only the asvwrite operation
and registers. The rest of this section presents a complete proof
of the exact consensus number.

Lemma 6.1: The single-asvword assignment has consensus
number exactly bA+1

2 c for B = tA, t ∈ N∗.
Proof: Since the asvword model is an extension of the

aiword model, the asvwrite operation has consensus number
at least N = bA+1

2 c (cf. Theorem 5.1). When the size b
of svwords is the same for all asvwrites, the asvword model
degenerates to the aiword model. The asvwrite operation can
achieve a higher consensus number when the size b of svwords
is allowed to be different between asvwrites, namely both Ax1-
asvwrites and AxB-asvwrites are utilized.

However, we will prove by contradiction that when B = tA,
the combination of Ax1-asvwrites and AxB-asvwrites does
not provide any additional strength. Assume that there is a
wait-free consensus algorithm ALG for N processes, where
N ≥ bA+1

2 c+1, using asvwrites and registers. Due to Lemma
3.1, ALG must have a critical configuration C∗ and the critical
operations opi of processes pi with different critical values
must be write-operations. At the critical configuration C∗,
assume that there are two processes p and q that have different
critical values and use the Ax1-asvwrite and AxB-asvwrite
as their critical operations to write to their 2W-unit up,q (cf.
Lemma 3.2), respectively. Since p must atomically write to its
1W-unit up and 2W-unit up,q using an Ax1-asvwrite, the two
units must be located in the same Ax1-asvword ASp that starts
and ends at addresses kA, k ∈ N, and (k+1)A−1, respectively,
due to the memory alignment restriction as illustrated in Figure
5(a). Two rows b = 1 and b = B in Figure 5(a) illustrate the
memory alignment corresponding to the size b of svwords on
the same 32 consecutive memory units with addresses from
0 to 31. Let k = at + b, where a, b ∈ N, t = B

A , b ≤ t − 1.
Since AxB-asvwrite uses B-svwords as its working units, q
whose write-operation is AxB-asvwrite, must write to the B-
svword SVq that overlaps up,q . The starting address and ending
address of SVq are aB and (a + 1)B− 1, respectively, due to
the memory alignment restriction (cf. Figure 5(a)). We have
aB = atA ≤ kA and (a + 1)B = (ta + t)A ≥ (k + 1)A,
namely SVq overlaps the whole ASp. That means q overwrites
the whole ASp including p’s 1W-unit up, a contradiction to
the first requirement of Lemma 3.2 for process p.

Lemma 6.2: The single-asvword assignment has consensus
number at least

m =

{
AB
2

, if A = 2tB, t ∈ N∗
(A−B)B

2
+ 1, if A = (2t + 1)B, t ∈ N∗ (5)

Proof: We prove this lemma by presenting a wait-free
consensus algorithm ASVW_CONSENSUS for m processes
using only asvwrites and registers. The ASVW_CONSENSUS
algorithm is similar to the AIW_CONSENSUS algorithm (Al-

12

b=B

b=1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 20 24 28 31address

uq

AxB-asvword

SVq B-svword
Ax1-asvwordASp

up,qup

(a) B = 2A : A = 4, B = 8.

Fig. 5. An illustration for the proof of Lemma 6.1.

... 2W+2W1W 1W1W 1W 2W 2W 1W 1W 2W2W

A1 ABB-svword

AxB-asvword

(a) A = 2tB

...1W 1W 2W 2W 1W 1W 1W 2W 2W

A1 AB

AxB-asvword

(b) A = (2t + 1)B

Fig. 6. An illustration for the proof of Lemma 6.2.

gorithm 4) except that the AIWRITE operations used at lines
3I and 13I are replaced by the ASVWRITE operations.

Similarly to the proof of Lemma 5.2, we will prove that
in round m: i) pm’s ASVWRITE can atomically write to
only m units {Um

m , Um
m,1, . . . , U

m
m,m−1} (line 3I) and ii) pi’s

ASVWRITE can atomically write to only 2 units {Um
i , Um

m,i},
where 1 ≤ i < m (line 13I). We will present a distribution of
the units on an AxB-asvword that satisfies all the requirements.
Figures 6(a) and 6(b) illustrate this proof.

• A = 2tB: Due to the memory alignment, an AxB-
asvword AS is always aligned with B Ax1-asvwords called
A1, . . . , AB , of which each can be atomically written by an
Ax1-asvwrite (cf. Figure 6(a)).
The units Um

i and Um
m,i of each process pi, i < m, are

located in the same Al, 1 ≤ l ≤ B, so that pi can atomically
write to only its two units using an Ax1-asvwrite operation.
This makes the operation satisfy the requirement ii) for pi.
Each B-svword located in Al contains either units Um

i or
units Um

m,i but not both, which allows pm to modify only B-
svwords with units Um

m,i and keep units Um
i untouched by

using one AxB-asvwrite. The distribution of units Um
i and

Um
m,i on Al is shown in Figure 6(a), where t B-svwords

labeled “1W” contain only units Um
i and t B-svwords

labeled “2W” contain only units Um
m,i. Since each process

pi requires one unit Um
i and one unit Um

m,i, the number of
processes that Al can support is nl = tB. Consequently, the
number of units Um

m,i in Al that can be written atomically
by pm’s ASVWRITE is nl = tB.
The last svword labeled “2W+” in Figure 6(a) contains also
pm’s unit Um

m , which, together with units Um
m,i, will be

written atomically by pm’s AxB-asvwrite. Therefore, the
number of units Um

m,i located in AB is nB = tB − 1. The
total number of units Um

m,i to which pm can write atomically
together with its unit Um

m is

s =
B−1∑

l=1

tB + (tB − 1) = tBB − 1 =
AB

2
− 1 = m− 1

That means pm can atomically write to only its unit Um
m and

(m−1) units Um
m,i, 1 ≤ i ≤ (m−1), using an ASVWRITE.

This makes the operation satisfy the requirement i) for pm.
• A = (2t + 1)B: Similarly, the units Um

i and Um
m,i of each

process pi, i < m, are located in the same Al, 1 ≤ l ≤ B,
so that pi can atomically write to only its two units using an
Ax1-asvwrite. This makes the operation satisfy the require-
ment ii) for pi. For each Al with (2t + 1) B-svwords, t B-
svwords labeled “1W” contain only units Um

i , t B-svwords
labeled “2W” contain only units Um

m,i and the other B-
svword without label is not used (cf. Figure 6(b)). Therefore,
the number of processes that Al can support is nl = tB.
It follows that the number of units Um

m,i in Al that can be
written atomically by pm’s ASVWRITE is nl = tB.
Unlike in the case of A = 2tB, in this case pm’s unit Um

m

can be located in the unused B-svword of AB and thus the
number of units Um

m,i located in AB is nB = tB as in other
Al, 1 ≤ l < B. The total number of units Um

m,i to which
pm can write atomically together with its unit Um

m is

s =
B∑

l=1

tB = tBB =
(A−B)B

2
= m− 1

That means pm can atomically write to only its unit Um
m and

(m−1) units Um
m,i, 1 ≤ i ≤ (m−1), using an ASVWRITE.

This makes the operation satisfy the requirement i) for pm.

Lemma 6.3: The single-asvword assignment has consensus
number at most

M =

{
AB
2

, if A = 2tB, t ∈ N∗
(A−B)B

2
+ 1, if A = (2t + 1)B, t ∈ N∗ (6)

Proof: We prove this lemma by contradiction. Assume
that there is a wait-free consensus algorithm ALG for N
processes where N > M . Due to Lemma 3.1, ALG must
have a critical configuration C∗ and the critical operations opi

of processes pi with different critical values must be write-
operations. At the critical configuration C∗, we divide N
processes into k ≥ 2 subsets s1, . . . , sk each of which consists
of processes with the same critical value. Let n1, . . . , nk to
be the size of the subsets, we have

∑k
l=1 nl = N . Let pi

j

be a process in si, 1 ≤ j ≤ ni. Since pi
j’s critical value is

different from that of
(∑

l 6=i nl

)
processes in the (k−1) other

subsets, pi
j’s critical operation must atomically write to its 1W-

unit and
(∑

l 6=i nl

)
2W-units (cf. Lemma 3.2). The operation

determines the relative ordering between pi
j and the

∑
l 6=i nl

other processes with critical values different from pi
j’s: if pi

j’s
operation precedes pl

∗’s, l 6= i, pi
j is considered preceding pl

∗.
Since N is larger than bA+1

2 c, the consensus number of
single-aiword assignments (or A-aiwrites), processes in the
ALG algorithm must use both AxB-asvwrites and Ax1-
asvwrites. Note that if all processes use only either AxB-
asvwrite or Ax1-asvwrite, the asvword model degenerates into
the aiword model. Let pa

b and pa′
b′ , a 6= a′, be the processes that

use an AxB-asvwrite and an Ax1-asvwrite as their critical
operations to modify their 2W-unit ua,a′

b,b′ , respectively. Let
AS be the AxB-asvword written by pa

b ’s AxB-asvwrite. AS

13

contains pa
b ’s 1W-unit ua

b .
First, we will prove that for any pair of processes in different

subsets pi
j and pi′

j′ , i 6= i′, if pi
j’s 1W-unit ui

j is located in AS,
then their 2W-unit ui,i′

j,j′ and pi′
j′’s 1W-unit ui′

j′ must be located
in AS. Indeed, since the 1W-unit ui

j is located in AS, there is
one of AS’s B Ax1-asvwords that contains this unit. Let Ac be
this Ax1-asvword. Since pi

j and pi′
j′ belong to different subsets,

they have different critical values. Therefore, pi
j (resp. pi′

j′)
must atomically write to its 1W-/2W-units {ui

j , u
i,i′

j,j′} (resp.
{ui′

j′ , u
i,i′

j,j′}). If pi
j uses AxB-asvwrite, its 2W-unit ui,i′

j,j′ must
be located in AS since AxB-asvwrite cannot atomically write
to two units belonging to two different AxB-asvwords. If pi

j

uses Ax1-asvwrite, its 2W-unit ui,i′

j,j′ must be located in Ac ∈
AS since Ax1-asvwrite cannot atomically write to two units
belonging to two different Ax1-asvwords. Therefore, their 2W-
unit must be located in AS. Since pi′

j′ must atomically write
to both the 2W-unit ui,i′

j,j′ and its 1W-unit ui′
j′ , using a similar

argument we deduce that its 1W-unit ui′
j′ must be located in

AS.
From the above, it follows that all 1W-units ui

j , 1 ≤ i ≤
k, 1 ≤ j ≤ ni, and 2W-units ui,i′

j,j′ , i 6= i′, must be located
in AS. Indeed, since pa

b ’s 1W-unit ua
b is located in AS, all(∑

l 6=a nl

)
processes pl

j in the (k − 1) other subsets must
have their 1W-unit ul

j located in AS. Similarly, since pl
j’s

1W-unit ul
j is located in AS, where l 6= a, all na processes of

sa must have their 1W-unit ua
j located in AS. That means all

processes must have their 1W-unit located in AS. It follows
that all 2W-units written by two processes in different subsets
must be located in AS.

Second, we prove that the ALG algorithm maximizes N
when k is 2, the minimum. Since all the 1W-units and 2W-
units of N processes must be located in AS of a fixed size,
in order to maximize N we need to minimize the number
M of the 1W- and 2W-units used by the N processes. Using
similar argument to the proof of Lemma 5.4, it follows that
M achieves the minimum (2N − 1) when there are only two
subsets: one containing (N − 1) processes p with the same
critical value and the other containing only 1 process q.

Lastly, we prove that N cannot be larger than M defined in
Equation 6.

If q uses an Ax1-asvwrite, let Aq be the Ax1-asvword
written by q. Aq contains q’s 1W-unit uq and all (N − 1)
2W-units up,q . We prove that the number of Aq’s 1-svwords
required by a process p is at least 2. Indeed, if p uses Ax1-
asvwrite, both its 1W-unit up and 2W-unit up,q must be located
in Aq since Ax1-asvwrites cannot atomically write to two
1-svwords located in different Ax1-asvwords. Therefore, p
requires two 1-svwords of Ap. If p uses an AxB-asvwrite,
its 2W-unit up,q must be B-svword so that p’s AxB-asvwrite
does not overwrite other 1W-units nor 2W-units that belong
to other processes. Since B ≥ 2, p’s 2W-unit up,q requires at
least two 1-svwords of Aq . That means the number of Aq’s
1-svwords required by N processes including q is at least
2(N − 1) + 1 = 2N − 1. Since the Ax1-asvword Aq has
A 1-svwords, it follows that N = bA+1

2 c, a contradiction to
the hypothesis that N > M .

If q uses an AxB-asvwrite, let AS be the AxB-asvword
written by q. Due to the memory alignment, the AxB-asvword
AS is aligned with B Ax1-asvwords called Al, 1 ≤ l ≤ B (cf.
Figure 6(a)). It follows from the above argument that all N
1W-units uq, up and (N−1) 2W-units up,q must be located in
AS of a fixed size. In order to maximize N , these 1W-units and
2W-units must be 1-svwords (instead of B-svwords). It follows
that all (N −1) processes p 6= q must use Ax1-asvwrite. Each
process p must have its 1W-unit up and 2W-unit up,q located
in the same Ax1-asvword in order to be able to write to them
atomically.

• If A = 2tB, the maximum number of processes p, p 6= q
that an Ax1-asvword Al can accommodate their 1W- and
2W-units is nl = tB. For the Ax1-asvword Al′ that contains
q’s 1W-unit uq , nl′ = b 2tB−1

2 c = tB − 1. Therefore, the
maximum number of processes (including q) that the AxB-
asvword AS can support is N = (B−1)tB+(tB−1)+1 =
tBB = AB

2 = M , a contradiction to the hypothesis that
N > M .

• If A = (2t+1)B, we prove that each Ax1-asvword Al, 1 ≤
l ≤ B, cannot accommodate more than tB processes p, p 6=
q, by contradiction. Assume that there is an Al that can
accommodate (tB + 1) processes p. Since each process p
has one 1W-unit and one 2W-unit, Al contains (tB + 1)
1W-units and (tB + 1) 2W-units. It follows that there is
at least one of Al’s B-svwords that contains both 1W-units
ur, r 6= q, and 2W-units ur′,q, where r′ can be r (cf. Figure
6(b)). Since q writes to the 2W-units ur′,q using an AxB-
asvwrite, which uses B-svwords as its basic units, q will
overwrite ur, r 6= q, a contradiction to the first requirement
of Lemma 3.2 for process r.
Therefore, the maximum number of processes (including q)
that the AxB-asvword AS can support is N = tBB + 1 =
(A−B)B

2 + 1 = M , a contradiction to the hypothesis that
N > M .

As a remark, we can apply a similar analysis and get the
same upper bound M = AB

2 (when A > B) for a variant
asvword* of the Axb-asvword model where b = 2c, c =
0, 1, . . . , log2 B, and A,B are powers of 2. Since Lemma 6.2
is applicable to the asvword* model, the asvword* model has
consensus number exactly N = AB

2 when A > B.

For the asvword* model, Lemma 6.1 implies that in case
A ≤ B, any two operations Axb1-asvwrite and Axb2-asvwrite,
where b1

b2
= tA, t ∈ N∗, cannot be used as critical op-

erations in any wait-free consensus algorithm ALG for N
processes where N ≥ bA+1

2 c + 1. That means any two
operations Axb1-asvwrite and Axb2-asvwrite (b1 ≥ b2) used
as critical operations in ALG must satisfy b1

b2
< A, ∀b1, b2 =

2minc , . . . , 2maxc . Let B′ = 2maxc−minc , we have b =
20, 21, . . . , B′, and B′ < A, the case in which the asvword*
model has consensus number exactly N = AB′

2 as argued
above. When B′ = A

2 , N reaches its maximum of A2

4 . That
means the asvword* model has consensus number exactly A2

4
when A < B.

14

VII. CONCLUSIONS

This paper has investigated the consensus number of the new
memory access mechanisms implemented in current graph-
ics processor architectures. We have first defined three new
memory access models to capture the fundamental features of
the new memory access mechanisms, and subsequently have
proven the synchronization power of these models. The first
model is the size-varying word model called svword, which has
consensus number exactly 3. The second model is the aligned-
inconsecutive word model called aiword, which has consensus
number exactly bA+1

2 c. The second model is stronger than the
first model when A ≥ 7. The third model is the combination
of the first and second models called asvword, which is the
strongest model. The third model has consensus number N ,
where

N =





AB
2

, if A = 2tB, where t, B ∈ N∗, B ≥ 2
(A−B)B

2
+ 1, if A = (2t + 1)B

bA+1
2
c, if B = tA, where t, A ∈ N∗, A ≥ 2

(7)

The results of this paper show that the new memory access
mechanisms can facilitate strong synchronization between the
threads of multicore architectures, without the need of syn-
chronization primitives other than reads and writes.

Acknowledgements The authors wish to thank the anonymous
reviewers for their helpful and thorough comments on the
earlier version of this paper. Phuong Ha’s and Otto Anshus’s
work was supported by the Norwegian Research Council (grant
numbers 159936/V30 and 155550/420). Philippas Tsigas’s
work was supported by the Swedish Research Council (VR)
(grant number 37252706).

REFERENCES

[1] P. H. Ha, P. Tsigas, and O. J. Anshus, “The synchronization power of
coalesced memory accesses,” in Proc. of the Intl. Symp. on Distributed
Computing (DISC), 2008, pp. 320–334.

[2] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krüger, A. E.
Lefohn, and T. J. Purcell, “A survey of general-purpose computation
on graphics hardware,” Computer Graphics Forum, vol. 26, no. 1, pp.
80–113, 2007.

[3] NVIDIA CUDA Compute Unified Device Architecture, Programming
Guide, version 2.1. NVIDIA Corporation, December 2008.

[4] Cell Broadband Engine Architecture, version 1.01. IBM, Sony and
Toshiba Corporations, 2006.

[5] M. Herlihy, “Wait-free synchronization,” ACM Transaction on Program-
ming and Systems, vol. 11, no. 1, pp. 124–149, Jan. 1991.

[6] P. Jayanti, “Robust wait-free hierarchies,” J. ACM, vol. 44, no. 4, pp.
592–614, 1997.

[7] S. Ramamurthy, M. Moir, and J. H. Anderson, “Real-time object sharing
with minimal system support,” in Proc. of Symp. on Principles of
Distributed Computing (PODC), 1996, pp. 233–242.

[8] Y. Afek, M. Merritt, and G. Taubenfeld, “The power of multi-objects
(extended abstract),” in PODC ’96: Proceedings of the fifteenth annual
ACM symposium on Principles of distributed computing, 1996, pp. 213–
222.

[9] P. Jayanti and S. Khanna, “On the power of multi-objects,” in WDAG
’97: Proceedings of the 11th International Workshop on Distributed
Algorithms, 1997, pp. 320–332.

[10] E. Ruppert, “Consensus numbers of multi-objects,” in Proc. of Symp. on
Principles of Distributed Computing (PODC), 1998, pp. 211–217.

[11] P. H. Ha, P. Tsigas, and O. J. Anshus, “Wait-free programming for
general purpose computations on graphics processors,” in Proc. of the
IEEE Intl. Parallel and Distributed Processing Symp. (IPDPS), 2008,
pp. 1–12.

[12] D. Dolev, C. Dwork, and L. Stockmeyer, “On the minimal synchronism
needed for distributed consensus,” J. ACM, vol. 34, no. 1, pp. 77–97,
1987.

[13] M. J. Fischer, N. A. Lynch, and M. S. Paterson, “Impossibility of
distributed consensus with one faulty process,” J. ACM, vol. 32, no. 2,
pp. 374–382, 1985.

[14] E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym, “Nvidia tesla:
A unified graphics and computing architecture,” IEEE Micro, vol. 28,
no. 2, pp. 39–55, 2008.

[15] S. V. Adve and K. Gharachorloo, “Shared memory consistency models:
A tutorial,” Computer, vol. 29, no. 12, pp. 66–76, 1996.

[16] L. Lamport, “How to make a multiprocessor computer that correctly
executes multiprocess progranm,” IEEE Trans. Comput., vol. 28, no. 9,
pp. 690–691, 1979.

[17] H. Attiya and J. Welch, Distributed Computing: Fundamentals, Simula-
tions, and Advanced Topics. John Wiley and Sons, Inc., 2004.

[18] I. Castano and P. Micikevicius, “Personal communication,” NVIDIA,
2008.

[19] E. Ruppert, “Determining consensus numbers,” in Proc. of Symp. on
Principles of Distributed Computing (PODC), 1997, pp. 93–99.

[20] N. A. Lynch, Distributed Algorithms. Morgan Kaufmann Publishers
Inc., 1996.

[21] H. Buhrman, A. Panconesi, R. Silvestri, and P. Vitanyi, “On the impor-
tance of having an identity or, is consensus really universal?” Distrib.
Comput., vol. 18, no. 3, pp. 167–176, 2006.

Phuong H. Ha received the BEng degree from
the Department of Information Technology, Ho-Chi-
Minh City University of Technology, Vietnam and
the Ph.D. degree from the Department of Computer
Science and Engineering, Chalmers University of
Technology, Sweden. Currently, he is a postdoc
at the Department of Computer Science, Univer-
sity of Tromsø, Norway. His research interests are
parallel/distributed computing and systems, includ-
ing efficient fault-tolerant inter-process coordination
mechanisms, concurrent data structures and parallel

programming (www.cs.uit.no/∼phuong).

Philippas Tsigas ’s research interests include con-
current data structures for multiprocessor systems,
communication and coordination in parallel sys-
tems, fault-tolerant computing, mobile computing
and information visualization. He received a BSc in
Mathematics from the University of Patras, Greece
and a Ph.D. in Computer Engineering and Infor-
matics from the same University. Philippas was
at the National Research Institute for Mathematics
and Computer Science, Amsterdam, the Netherlands
(CWI), and at the Max-Planck Institute for Computer

Science, Saarbrücken, Germany, before. At present he is a professor at the
Department of Computing Science at Chalmers University of Technology,
Sweden (www.cs.chalmers.se/∼tsigas).

Otto J. Anshus is a professor of computer science
at the University of Tromsø. His research interests
include operating systems, parallel and distributed
architectures and systems, scalable display systems,
data-intensive computing, high-resolution visualiza-
tions, and human-computer interfaces. He is a mem-
ber of the IEEE Computer Society, the ACM, and
the Norwegian Computer Society. Contact him at
otto.anshus@uit.no.

