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Abstract

We present an efficient and practical lock-free imple-
mentation of a concurrent priority queue that is suitable
for both fully concurrent (large multi-processor) systems
as well as pre-emptive (multi-process) systems. Many al-
gorithms for concurrent priority queues are based on mu-
tual exclusion. However, mutual exclusion causes block-
ing which has several drawbacks and degrades the system’s
overall performance. Non-blocking algorithms avoid block-
ing, and are either lock-free or wait-free. Previously known
non-blocking algorithms of priority queues did not perform
well in practice because of their complexity, and they are
often based on non-available atomic synchronization primi-
tives. Our algorithm is based on the randomized sequential
list structure called Skiplist, and a real-time extension of
our algorithm is also described. In our performance evalu-
ation we compare our algorithm with some of the most effi-
cient implementations of priority queues known. The exper-
imental results clearly show that our lock-free implemen-
tation outperforms the other lock-based implementations in
all cases for 3 threads and more, both on fully concurrent
as well as on pre-emptive systems.

1 Introduction

Priority queues are fundamental data structures. From
the operating system level to the user application level, they
are frequently used as basic components. For example, the
ready-queue that is used in the scheduling of tasks in many
real-time systems, can usually be implemented using a con-
current priority queue. Consequently, the design of efficient
implementations of priority queues is a research area that
has been extensively researched. A priority queue supports
two operations, theInsert and theDeleteMin operation.
The abstract definition of a priority queue is a set of key-
value pairs, where the key represents a priority. TheInsert

operation inserts a new key-value pair into the set, and the
DeleteMin operation removes and returns the value of the
key-value pair with the lowest key (i.e. highest priority) that
was in the set.

To ensure consistency of a shared data object in a concur-
rent environment, the most common method is to use mu-
tual exclusion, i.e. some form of locking. Mutual exclusion
degrades the system’s overall performance [14] as it causes
blocking, i.e. other concurrent operations can not make any
progress while the access to the shared resource is blocked
by the lock. Using mutual exclusion can also cause dead-
locks, priority inversion (which can be solved efficiently on
uni-processors [13] with the cost of more difficult analysis,
although not as efficient on multiprocessor systems [12])
and even starvation.

To address these problems, researchers have proposed
non-blocking algorithms for shared data objects. Non-
blocking methods do not involve mutual exclusion, and
therefore do not suffer from the problems that blocking
can cause. Non-blocking algorithms are either lock-free
or wait-free. Lock-free implementations guarantee that re-
gardless of the contention caused by concurrent operations
and the interleaving of their sub-operations, always at least
one operation will progress. However, there is a risk for
starvation as the progress of other operations could cause
one specific operation to never finish. This is although dif-
ferent from the type of starvation that could be caused by
blocking, where a single operation could block every other
operation forever, and cause starvation of the whole system.
Wait-free [6] algorithms are lock-free and moreover they
avoid starvation as well, in a wait-free algorithm every op-
eration is guaranteed to finish in a limited number of steps,
regardless of the actions of the concurrent operations. Non-
blocking algorithms have been shown to be of big practical
importance in practical applications [17, 18], and recently
NOBLE, which is a non-blocking inter-process communi-
cation library, has been introduced [16].

There exist several algorithms and implementations of
concurrent priority queues. The majority of the algorithms
are lock-based, either with a single lock on top of a se-
quential algorithm, or specially constructed algorithms us-
ing multiple locks, where each lock protects a small part of
the shared data structure. Several different representations
of the shared data structure are used, for example: Hunt
et al. [7] presents an implementation which is based on
heap structures, Grammatikakiset al. [3] compares differ-
ent structures including cyclic arrays and heaps, and most
recently Lotan and Shavit [9] presented an implementa-
tion based on the Skiplist structure [11]. The algorithm
by Huntet al. locks each node separately and uses a tech-
nique to scatter the accesses to the heap, thus reducing the
contention. Its implementation is publicly available and
its performance has been documented on multi-processor
systems. Lotan and Shavit extend the functionality of the
concurrent priority queue and assume the availability of a
global high-accuracy clock. They apply a lock on each
pointer, and as the multi-pointer based Skiplist structure
is used, the number of locks is significantly more than the
number of nodes. Its performance has previously only been
documented by simulation, with very promising results.

Israeli and Rappoport have presented a wait-free algo-
rithm for a concurrent priority queue [8]. This algorithm
makes use of strong atomic synchronization primitives that
have not been implemented in any currently existing plat-
form. However, there exists an attempt for a wait-free al-
gorithm by Barnes [2] that uses existing atomic primitives,
though this algorithm does not comply with the generally
accepted definition of the wait-free property. The algo-



rithm is not yet implemented and the theoretical analysis
predicts worse behavior than the corresponding sequential
algorithm, which makes it not of practical interest.

One common problem with many algorithms for concur-
rent priority queues is the lack of precise defined semantics
of the operations. It is also seldom that the correctness with
respect to concurrency is proved, using a strong property
like linearizability [5].

In this paper we present a lock-free algorithm of a con-
current priority queue that is designed for efficient use in
both pre-emptive as well as in fully concurrent environ-
ments. Inspired by Lotan and Shavit [9], the algorithm is
based on the randomized Skiplist [11] data structure, but
in contrast to [9] it is lock-free. It is also implemented us-
ing common synchronization primitives that are available
in modern systems. The algorithm is described in detail
later in this paper, and the aspects concerning the underly-
ing lock-free memory management are also presented. The
precise semantics of the operations are defined and a proof
is given that our implementation is lock-free and lineariz-
able. We have performed experiments that compare the per-
formance of our algorithm with some of the most efficient
implementations of concurrent priority queues known, i.e.
the implementation by Lotan and Shavit [9] and the imple-
mentation by Huntet al. [7]. Experiments were performed
on three different platforms, consisting of a multiprocessor
system using different operating systems and equipped with
either 2, 4 or 64 processors. Our results show that our al-
gorithm outperforms the other lock-based implementations
for 3 threads and more, in both highly pre-emptive as well
as in fully concurrent environments. We also present an
extended version of our algorithm that also addresses cer-
tain real-time aspects of the priority queue as introduced by
Lotan and Shavit [9].

The rest of the paper is organized as follows. In Section
2 we define the properties of the systems that our imple-
mentation is aimed for. The actual algorithm is described
in Section 3. In Section 4 we define the precise semantics
for the operations on our implementations, as well show-
ing correctness by proving the lock-free and linearizability
property. The experimental evaluation that shows the per-
formance of our implementation is presented in Section 5.
In Section 6 we extend our algorithm with functionality that
can be needed for specific real-time applications. We con-
clude the paper with Section 7.

2 System Description

A typical abstraction of a shared memory multi-
processor system configuration is depicted in Figure 1.
Each node of the system contains a processor together with
its local memory. All nodes are connected to the shared
memory via an interconnection network. A set of co-
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Figure 1. Shared Memory Multiprocessor Sys-
tem Structure
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Figure 2. The Skiplist data structure with 5
nodes inserted.

operating tasks is running on the system performing their
respective operations. Each task is sequentially executed
on one of the processors, while each processor can serve
(run) many tasks at a time. The co-operating tasks, possi-
bly running on different processors, use shared data objects
built in the shared memory to co-ordinate and communi-
cate. Tasks synchronize their operations on the shared data
objects through sub-operations on top of a cache-coherent
shared memory. The shared memory may not though be
uniformly accessible for all nodes in the system; proces-
sors can have different access times on different parts of the
memory.

3 Algorithm

The algorithm is based on the sequential Skiplist data
structure invented by Pugh [11]. This structure uses ran-
domization and has a probabilistic time complexity of
O(logN) where N is the maximum number of elements in
the list. The data structure is basically an ordered list with
randomly distributed short-cuts in order to improve search
times, see Figure 2. The maximum height (i.e. the maxi-

structure Node
key,level,validLevelh,timeInserti : integer
value :pointer to word
next[level],prev :pointer to Node

Figure 3. The Node structure.
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Figure 4. Concurrent insert and delete opera-
tion can delete both nodes.

function TAS(value:pointer to word ):boolean
atomic do

if *value=0 then
*value:=1;
return true ;

else return false;

procedureFAA(address:pointer to word , number:integer)
atomic do

*address := *address + number;

function CAS(address:pointer to word , oldvalue:word,
newvalue:word):boolean

atomic do
if *address = oldvaluethen

*address := newvalue;
return true ;

else return false;

Figure 5. The Test-And-Set (TAS), Fetch-And-
Add (FAA) and Compare-And-Swap (CAS)
atomic primitives.

mum number of next pointers) of the data structure islogN .
The height of each inserted node is randomized geometri-
cally in the way that 50% of the nodes should have height
1, 25% of the nodes should have height 2 and so on. To
use the data structure as a priority queue, the nodes are or-
dered in respect of priority (which has to be unique for each
node), the nodes with highest priority are located first in the
list. The fields of each node item are described in Figure 3
as it is used in this implementation. For all code examples
in this paper, code that is between the “h” and “i” symbols
are only used for the special implementation that involves
timestamps (see Section 6), and are thus not included in the
standard version of the implementation.

In order to make the Skiplist construction concurrent and
non-blocking, we are using three of the standard atomic
synchronization primitives, Test-And-Set (TAS), Fetch-
And-Add (FAA) and Compare-And-Swap (CAS). Figure
5 describes the specification of these primitives which are
available in most modern platforms.

As we are concurrently (with possible preemptions)
traversing nodes that will be continuously allocated and
reclaimed, we have to consider several aspects of mem-
ory management. No node should be reclaimed and then
later re-allocated while some other process is traversing this
node. This can be solved for example by careful reference
counting. We have selected to use the lock-free memory
management scheme invented by Valois [19] and corrected
by Michael and Scott [10], which makes use of the FAA and
CAS atomic synchronization primitives.

To insert or delete a node from the list we have to change
the respective set of next pointers. These have to be changed
consistently, but not necessary all at once. Our solution is to
have additional information on each node about its deletion
(or insertion) status. This additional information will guide
the concurrent processes that might traverse into one partial
deleted or inserted node. When we have changed all neces-
sary next pointers, the node is fully deleted or inserted.

One problem, that is general for non-blocking imple-
mentations that are based on the linked-list structure, arises
when inserting a new node into the list. Because of the
linked-list structure one has to make sure that the previous
node is not about to be deleted. If we are changing the next
pointer of this previous node atomically with CAS, to point
to the new node, and then immediately afterwards the pre-
vious node is deleted - then the new node will be deleted as
well, as illustrated in Figure 4. There are several solutions
to this problem. One solution is to use the CAS2 opera-
tion as it can change two pointers atomically, but this oper-
ation is not available in any existing multiprocessor system.
A second solution is to insert auxiliary nodes [19] between
each two normal nodes, and the latest method introduced by
Harris [4] is to use one bit of the pointer values as a dele-
tion mark. On most modern 32-bit systems, 32-bit values
can only be located at addresses that are evenly dividable
by 4, therefore bits 0 and 1 of the address are always set to
zero. The method is then to use the previously unused bit
0 of the next pointer to mark that this node is about to be
deleted, using CAS. Any concurrentInsert operation will
then be notified about the deletion, when its CAS operation
will fail.

One memory management issue is how to de-reference
pointers safely. If we simply de-reference the pointer, it
might be that the corresponding node has been reclaimed
before we could access it. It can also be that bit 0 of the
pointer was set, thus marking that the node is deleted, and
therefore the pointer is not valid. The following functions
are defined for safe handling of the memory management:

function READ_NODE(address:pointer to pointer to
Node):pointer to Node /* De-reference the pointer and in-
crease the reference counter for the corresponding node. In
case the pointer is marked, NULL is returned */



// Global variables
head,tail :pointer to Node
// Local variables
node2 :pointer to Node

function ReadNext(node1:pointer to pointer to Node,
level:integer):pointer to Node
R1 if IS_MARKED((*node1).value)then
R2 *node1:=HelpDelete(*node1,level);
R3 node2:=READ_NODE((*node1).next[level]);
R4 while node2=NULLdo
R5 *node1:=HelpDelete(*node1,level);
R6 node2:=READ_NODE((*node1).next[level]);
R7 return node2;

function ScanKey(node1:pointer to pointer to Node,
level:integer, key:integer):pointer to Node
S1 node2:=ReadNext(node1,level);
S2 while node2.key < keydo
S3 RELEASE_NODE(*node1);
S4 *node1:=node2;
S5 node2:=ReadNext(node1,level);
S6 return node2;

Figure 6. Functions for traversing the nodes
in the Skiplist data structure.

function COPY_NODE(node:pointer to Node):pointer
to Node /* Increase the reference counter for the corre-
sponding given node */

procedure RELEASE_NODE(node:pointer to Node)
/* Decrement the reference counter on the corresponding
given node. If the reference count reaches zero, then call
RELEASE_NODE on the nodes that this node has owned
pointers to, then reclaim the node */

While traversing the nodes, processes will eventually
reach nodes that are marked to be deleted. As the process
that invoked the correspondingDelete operation might be
pre-empted, thisDelete operation has to be helped to fin-
ish before the traversing process can continue. However, it
is only necessary to help the part of theDelete operation
on the current level in order to be able to traverse to the
next node. The functionReadNext, see Figure 6, traverses
to the next node ofnode1on the given level while help-
ing (and then setsnode1to the previous node of the helped
one) any marked nodes in between to finish the deletion.
The functionScanKey, see Figure 6, traverses in several
steps through the next pointers (starting fromnode1) at the
current level until it finds a node that has the same or higher
key (priority) value than the given key. It also setsnode1to
be the previous node of the returned node.

The implementation of theInsert operation, see Fig-

// Local variables
node1,node2,newNode,
savedNodes[maxlevel]:pointer to Node

function Insert(key:integer, value:pointer to word ):boolean
I1 hTraverseTimeStamps();i
I2 level:=randomLevel();
I3 newNode:=CreateNode(level,key,value);
I4 COPY_NODE(newNode);
I5 node1:=COPY_NODE(head);
I6 for i:=maxLevel-1to 1 step-1 do
I7 node2:=ScanKey(&node1,i,key);
I8 RELEASE_NODE(node2);
I9 if i<level then savedNodes[i]:=COPY_NODE(node1);
I10 while true do
I11 node2:=ScanKey(&node1,0,key);
I12 value2:=node2.value;
I13 if not IS_MARKED(value2)and node2.key=keythen
I14 if CAS(&node2.value,value2,value)then
I15 RELEASE_NODE(node1);
I16 RELEASE_NODE(node2);
I17 for i:=1 to level-1do
I18 RELEASE_NODE(savedNodes[i]);
I19 RELEASE_NODE(newNode);
I20 RELEASE_NODE(newNode);
I21 return true2;
I22 else
I23 RELEASE_NODE(node2);
I24 continue;
I25 newNode.next[0]:=node2;
I26 RELEASE_NODE(node2);
I27 if CAS(&node1.next[0],node2,newNode)then
I28 RELEASE_NODE(node1);
I29 break;
I30 Back-Off
I31 for i:=1 to level-1do
I32 newNode.validLevel:=i;
I33 node1:=savedNodes[i];
I34 while true do
I35 node2:=ScanKey(&node1,i,key);
I36 newNode.next[i]:=node2;
I37 RELEASE_NODE(node2);
I38 if IS_MARKED(newNode.value)or

CAS(&node1.next[i],node2,newNode)then
I39 RELEASE_NODE(node1);
I40 break;
I41 Back-Off
I42 newNode.validLevel:=level;
I43 hnewNode.timeInsert:=getNextTimeStamp();i
I44 if IS_MARKED(newNode.value)then

newNode:=HelpDelete(newNode,0);
I45 RELEASE_NODE(newNode);
I46 return true ;

Figure 7. Insert



// Local variables
prev,last,node1,node2 :pointer to Node

function DeleteMin():pointer to Node
D1 hTraverseTimeStamps();i
D2 htime:=getNextTimeStamp();i
D3 prev:=COPY_NODE(head);
D4 while truedo
D5 node1:=ReadNext(&prev,0);
D6 if node1=tailthen
D7 RELEASE_NODE(prev);
D8 RELEASE_NODE(node1);
D9 return NULL;

retry:
D10 value:=node1.value;
D11 if not IS_MARKED(value)hand

compareTimeStamp(time,node1.timeInsert)>0i then
D12 if CAS(&node1.value,value,

GET_MARKED(value))then
D13 node1.prev:=prev;
D14 break;
D15 else gotoretry;
D16 else if IS_MARKED(value)then
D17 node1:=HelpDelete(node1,0);
D18 RELEASE_NODE(prev);
D19 prev:=node1;
D20 for i:=0 to node1.level-1do
D21 repeat
D22 node2:=node1.next[i];
D23 until IS_MARKED(node2)or CAS(

&node1.next[i],node2,GET_MARKED(node2));
D24 prev:=COPY_NODE(head);
D25 for i:=node1.level-1to 0 step-1 do
D26 while true do
D27 if node1.next[i]=1then break;
D28 last:=ScanKey(&prev,i,node1.key);
D29 RELEASE_NODE(last);
D30 if last6=node1or node1.next[i]=1then break;
D31 if CAS(&prev.next[i],node1,

GET_UNMARKED(node1.next[i]))then
D32 node1.next[i]:=1;
D33 break;
D34 if node1.next[i]=1then break;
D35 Back-Off
D36 RELEASE_NODE(prev);
D37 RELEASE_NODE(node1);
D38 RELEASE_NODE(node1); /* Delete the node */
D39 return value;

Figure 8. DeleteMin

// Local variables
prev,last,node2 :pointer to Node

function HelpDelete(node:pointer to Node,
level:integer):pointer to Node
H1 for i:=level to node.level-1do
H2 repeat
H3 node2:=node.next[i];
H4 until IS_MARKED(node2)or CAS(

&node.next[i],node2,GET_MARKED(node2));
H5 prev:=node.prev;
H6 if not prevor level� prev.validLevelthen
H7 prev:=COPY_NODE(head);
H8 for i:=maxLevel-1to level step-1 do
H9 node2:=ScanKey(&prev,i,node.key);
H10 RELEASE_NODE(node2);
H11 elseCOPY_NODE(prev);
H12 while true do
H13 if node.next[level]=1then break;
H14 last:=ScanKey(&prev,level,node.key);
H15 RELEASE_NODE(last);
H16 if last6=nodeor node.next[level]=1then break;
H17 if CAS(&prev.next[level],node,

GET_UNMARKED(node.next[level]))then
H18 node.next[level]:=1;
H19 break;
H20 if node.next[level]=1then break;
H21 Back-Off
H22 RELEASE_NODE(node);
H23 return prev;

Figure 9. HelpDelete

ure 7, starts in lines I5-I11 with a search phase to find the
node after which the new node (newNode) should be in-
serted. This search phase starts from the head node at the
highest level and traverses down to the lowest level until
the correct node is found (node1). When going down one
level, the last node traversed on that level is remembered
(savedNodes) for later use (this is where we should insert
the new node at that level). Now it is possible that there
already exists a node with the same priority as of the new
node, this is checked in lines I12-I24, the value of the old
node (node2) is changed atomically with a CAS. Otherwise,
in lines I25-I42 it starts trying to insert the new node start-
ing with the lowest level and increasing up to the level of the
new node. The next pointers of the nodes (to become pre-
vious) are changed atomically with a CAS. After the new
node has been inserted at the lowest level, it is possible that
it is deleted by a concurrentDeleteMin operation before
it has been inserted at all levels, and this is checked in lines
I38 and I44.

TheDeleteMin operation, see Figure 8, starts from the
head node and finds the first node (node1) in the list that



does not have its deletion mark on the value set, see lines
D3-D12. It tries to set this deletion mark in line D12 using
the CAS primitive, and if it succeeds it also writes a valid
pointer to the prev field of the node. This prev field is nec-
essary in order to increase the performance of concurrent
HelpDelete operations, these operations otherwise would
have to search for the previous node in order to complete
the deletion. The next step is to mark the deletion bits of the
next pointers in the node, starting with the lowest level and
going upwards, using the CAS primitive in each step, see
lines D20-D23. Afterwards in lines D24-D35 it starts the
actual deletion by changing the next pointers of the previ-
ous node (prev), starting at the highest level and continuing
downwards. The reason for doing the deletion in decreas-
ing order of levels, is that concurrent search operations also
start at the highest level and proceed downwards, in this way
the concurrent search operations will sooner avoid travers-
ing this node. The procedure performed by theDeleteMin

operation in order to change each next pointer of the previ-
ous node, is to first search for the previous node and then
perform the CAS primitive until it succeeds.

The algorithm has been designed for pre-emptive as well
as fully concurrent systems. In order to achieve the lock-
free property (that at least one thread is doing progress) on
pre-emptive systems, whenever a search operation finds a
node that is about to be deleted, it calls theHelpDelete op-
eration and then proceeds searching from the previous node
of the deleted. TheHelpDelete operation, see Figure 9,
tries to fulfill the deletion on the current level and returns
when it is completed. It starts in lines H1-H4 with setting
the deletion mark on all next pointers in case they have not
been set. In lines H5-H6 it checks if the node given in the
prev field is valid for deletion on the current level, other-
wise it searches for the correct node (prev) in lines H7-
H10. The actual deletion of this node on the current level
takes place in lines H12-H21. This operation might execute
concurrently with the correspondingDeleteMinoperation,
and therefore both operations synchronize with each other
in lines D27, D30, D32, D34, H13, H16, H18 and H20 in
order to avoid executing sub-operations that have already
been performed.

In fully concurrent systems though, the helping strategy
can downgrade the performance significantly. Therefore
the algorithm, after a number of consecutive failed attempts
to help concurrentDeleteMin operations that hinders the
progress of the current operation, puts the operation into
back-off mode. When in back-off mode, the thread does
nothing for a while, and in this way avoids disturbing the
concurrent operations that might otherwise progress slower.
The duration of the back-off is proportional to the number
of threads, and for each consecutive entering of back-off
mode during one operation invocation, the duration is in-
creased exponentially.

4 Correctness

In this section we present the proof of our algorithm. We
first prove that our algorithm is a linearizable one [5] and
then we prove that it is lock-free. A set of definitions that
will help us to structure and shorten the proof is first ex-
plained in this section. We start by defining the sequential
semantics of our operations and then introduce two defini-
tions concerning concurrency aspects in general.

Definition 1 We denote withLt the abstract internal state
of a priority queue at the timet. Lt is viewed as a set of
pairs hp; vi consisting of a unique priorityp and a corre-
sponding valuev. The operations that can be performed on
the priority queue areInsert (I) andDeleteMin (DM ).
The timet1 is defined as the time just before the atomic exe-
cution of the operation that we are looking at, and the time
t2 is defined as the time just after the atomic execution of the
same operation. The return value oftrue2 is returned by an
Insert operation that has succeeded to update an existing
node, the return value oftrue is returned by anInsert op-
eration that succeeds to insert a new node. In the following
expressions that defines the sequential semantics of our op-
erations, the syntax isS1 : O1; S2, whereS1 is the condi-
tional state before the operationO1, andS2 is the resulting
state after performing the corresponding operation:

hp1; _i 62 Lt1 : I1(hp1;v1i) = true;

Lt2 = Lt1 [ fhp1;v1ig (1)

hp1; v11i 2 Lt1 : I1(hp1;v12i) = true2;

Lt2 = Lt1 n fhp1;v11ig [ fhp1;v12ig (2)

hp1; v1i = fhmin p; vijhp; vi 2 Lt1g

: DM1() = hp1;v1i; Lt2 = Lt1 n fhp1;v1ig (3)

Lt1 = ; : DM1() = ? (4)

Definition 2 In a global time model each concurrent op-
eration Op “occupies" a time interval[bOp; fOp] on the
linear time axis(bOp < fOp). The precedence relation
(denoted by ‘!’) is a relation that relates operations of
a possible execution,Op1 ! Op2 means thatOp1 ends
beforeOp2 starts. The precedence relation is a strict par-
tial order. Operations incomparable under! are called
overlapping. The overlapping relation is denoted byk and
is commutative, i.e.Op1 k Op2 and Op2 k Op1. The
precedence relation is extended to relate sub-operations
of operations. Consequently, ifOp1 ! Op2, then for
any sub-operationsop1 and op2 of Op1 andOp2, respec-
tively, it holds thatop1 ! op2. We also define the di-
rect precedence relation!d, such that ifOp1!dOp2, then
Op1 ! Op2 and moreover there exists no operationOp3
such thatOp1 ! Op3 ! Op2.



Definition 3 In order for an implementation of a shared
concurrent data object to be linearizable [5], for every con-
current execution there should exist an equal (in the sense
of the effect) and valid (i.e. it should respect the semantics
of the shared data object) sequential execution that respects
the partial order of the operations in the concurrent execu-
tion.

Next we are going to study the possible concurrent exe-
cutions of our implementation. First we need to define the
interpretation of the abstract internal state of our implemen-
tation.

Definition 4 The pairhp; vi is present (hp; vi 2 L) in the
abstract internal stateL of our implementation, when there
is a next pointer from a present node on the lowest level
of the Skiplist that points to a node that contains the pair
hp; vi, and this node is not marked as deleted with the mark
on the value.

Lemma 1 The definition of the abstract internal state for
our implementation is consistent with all concurrent opera-
tions examining the state of the priority queue.

Proof: As the next and value pointers are changed using
the CAS operation, we are sure that all threads see the same
state of the Skiplist, and therefore all changes of the abstract
internal state seems to be atomic. 2

Definition 5 The decision point of an operation is defined
as the atomic statement where the result of the operation
is finitely decided, i.e. independent of the result of any sub-
operations proceeding the decision point, the operation will
have the same result. We define the state-read point of an
operation to be the atomic statement where a sub-state of
the priority queue is read, and this sub-state is the state on
which the decision point depends. We also define the state-
change point as the atomic statement where the operation
changes the abstract internal state of the priority queue af-
ter it has passed the corresponding decision point.

We will now show that all of these points conform to the
very same statement, i.e. the linearizability point.

Lemma 2 An Insert operation which succeeds
(I(hp; vi) = true), takes effect atomically at one
statement.

Proof: The decision point for anInsert operation which
succeeds (I(hp; vi) = true), is when the CAS sub-
operation in line I27 (see Figure 7) succeeds, all follow-
ing CAS sub-operations will eventually succeed, and the
Insert operation will finally returntrue. The state of the
list (Lt1) directly before the passing of the decision point
must have beenhp; _i 62 Lt1 , otherwise the CAS would

have failed. The state of the list directly after passing the
decision point will behp; vi 2 Lt2 . 2

Lemma 3 An Insert operation which updates
(I(hp; vi) = true2), takes effect atomically at one
statement.

Proof: The decision point for anInsert operation which
updates (I(hp; vi) = true2), is when the CAS will succeed
in line I14. The state of the list (Lt1) directly before passing
the decision point must have beenhp; _i 2 Lt1 , otherwise
the CAS would have failed. The state of the list directly
after passing the decision point will behp; vi 2 Lt3 . 2

Lemma 4 A DeleteMin operation which succeeds
(D() = hp; vi), takes effect atomically at one statement.

Proof: The decision point for anDeleteMin operation
which succeeds (D() = hp; vi) is when the CAS sub-
operation in line D12 (see Figure 8) succeeds. The state
of the list (Lt) directly before passing of the decision point
must have beenhp; vi 2 Lt, otherwise the CAS would have
failed. The state of the list directly after passing the decision
point will be hp; _i 62 Lt. 2

Lemma 5 A DeleteMin operations which fails (D() =
?), takes effect atomically at one statement.

Proof: The decision point and also the state-read point
for anDeleteMin operations which fails (D() = ?), is
when the hidden read sub-operation of theReadNext sub-
operation in line D5 successfully reads the next pointer on
lowest level that equals the tail node. The state of the list
(Lt) directly before the passing of the state-read point must
have beenLt = ;. 2

Definition 6 We define the relation) as the total order
and the relation)d as the direct total order between all
operations in the concurrent execution. In the following
formulas,E1 =) E2 means that ifE1 holds thenE2 holds
as well, and� stands for exclusive or (i.e.a � b means
(a _ b) ^ :(a ^ b)):

Op1 !d Op2; 6 9Op3:Op1 )d Op3;

6 9Op4:Op4 )d Op2 =) Op1 )d Op2 (5)

Op1 k Op2 =) Op1 )d Op2 �Op2 )d Op1 (6)

Op1 )d Op2 =) Op1 ) Op2 (7)

Op1 ) Op2;Op2 ) Op3 =) Op1 ) Op3 (8)

Lemma 6 The operations that are directly totally ordered
using formula 5, form an equivalent valid sequential execu-
tion.



Proof: If the operations are assigned their direct total order
(Op1 )d Op2) by formula 5 then also the decision, state-
read and the state-change points ofOp1 is executed before
the respective points ofOp2. In this case the operations
semantics behave the same as in the sequential case, and
therefore all possible executions will then be equivalent to
one of the possible sequential executions. 2

Lemma 7 The operations that are directly totally ordered
using formula 6 can be ordered unique and consistent, and
form an equivalent valid sequential execution.

Proof: Assume we order the overlapping operations ac-
cording to their decision points. As the state before as well
as after the decision points is identical to the corresponding
state defined in the semantics of the respective sequential
operations in formulas 1 to 4, we can view the operations as
occurring at the decision point. As the decision points con-
sist of atomic operations and are therefore ordered in time,
no decision point can occur at the very same time as any
other decision point, therefore giving a unique and consis-
tent ordering of the overlapping operations. 2

Lemma 8 With respect to the retries caused by synchro-
nization, one operation will always do progress regardless
of the actions by the other concurrent operations.

Proof: We now examine the possible execution paths of our
implementation. There are several potentially unbounded
loops that can delay the termination of the operations. We
call these loops retry-loops. If we omit the conditions that
are because of the operations semantics (i.e. searching for
the correct position etc.), the retry-loops take place when
sub-operations detect that a shared variable has changed
value. This is detected either by a subsequent read sub-
operation or a failed CAS. These shared variables are only
changed concurrently by other CAS sub-operations. Ac-
cording to the definition of CAS, for any number of concur-
rent CAS sub-operations, exactly one will succeed. This
means that for any subsequent retry, there must be one
CAS that succeeded. As this succeeding CAS will cause
its retry loop to exit, and our implementation does not con-
tain any cyclic dependencies between retry-loops that exit
with CAS, this means that the correspondingInsert or
DeleteMin operation will progress. Consequently, inde-
pendent of any number of concurrent operations, one oper-
ation will always progress. 2

Theorem 1 The algorithm implements a lock-free and lin-
earizable priority queue.

Proof: Following from Lemmas 6 and 7 and using the di-
rect total order we can create an identical (with the same

semantics) sequential execution that preserves the partial or-
der of the operations in a concurrent execution. Following
from Definition 3, the implementation is therefore lineariz-
able. As the semantics of the operations are basically the
same as in the Skiplist [11], we could use the corresponding
proof of termination. This together with Lemma 8 and that
the state is only changed at one atomic statement (Lemmas
1,2,3,4,5), gives that our implementation is lock-free.2

5 Experiments

In our experiments each concurrent thread performs
10000 sequential operations, whereof the first 100 or 1000
operations areInsert operations, and the remaining op-
erations are randomly chosen with a distribution of 50%
Insert operations versus 50%DeleteMin operations. The
key values of the inserted nodes are randomly chosen be-
tween0 and1000000 �n, where n is the number of threads.
Each experiment is repeated 50 times, and an average ex-
ecution time for each experiment is estimated. Exactly the
same sequential operations are performed for all different
implementations compared. Besides our implementation,
we also performed the same experiment with two lock-
based implementations. These are; 1) the implementation
using multiple locks and Skiplists by Lotanet al. [9] which
is the most recently claimed to be one of the most efficient
concurrent priority queues existing, and 2) the heap-based
implementation using multiple locks by Huntet al. [7]. All
lock-based implementations are based on simple spin-locks
using the TAS atomic primitive. A clean-cache operation is
performed just before each sub-experiment. All implemen-
tations are written in C and compiled with the highest op-
timization level, except from the atomic primitives, which
are written in assembler.

The experiments were performed using different num-
ber of threads, varying from 1 to 30. To get a highly pre-
emptive environment, we performed our experiments on a
Compaq dual-processor Pentium II 450 MHz PC running
Linux. A set of experiments was also performed on a Sun
Solaris system with 4 processors. In order to evaluate our
algorithm with full concurrency we also used a SGI Ori-
gin 2000 195 MHz system running Irix with 64 processors.
The results from these experiments are shown in Figure 10
together with a close-up view of the Sun experiment. The
average execution time is drawn as a function of the number
of threads.

From the results we can conclude that all of the imple-
mentations scale similarly with respect to the average size
of the queue. The implementation by Lotan and Shavit [9]
scales linearly with respect to increasing number of threads
when having full concurrency, although when exposed to
pre-emption its performance decreases very rapidly; already
with 4 threads the performance decreased with over 20
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times. We must point out here that the implementation by
Lotan and Shavit is designed for a large (i.e. 256) number
of processors. The implementation by Huntet al. [7] shows
better but similar behavior. Because of this behavior we de-
cided to run the experiments for these two implementations
only up to a certain number of threads to avoid getting time-
outs. Our lock-free implementation scales best compared
to all other involved implementations, having best perfor-
mance already with 3 threads, independently if the system
is fully concurrent or involves pre-emptions.

6 Extended Algorithm

When we have concurrentInsert andDeleteMin op-
erations we might want to have certain real-time properties
of the semantics of theDeleteMin operation, as expressed
in [9]. TheDeleteMin operation should only return items
that have been inserted by anInsert operation that finished
before theDeleteMin operation started. To ensure this we
are adding timestamps to each node. When the node is fully
inserted its timestamp is set to the current time. Whenever
theDeleteMin operation is invoked it first checks the cur-
rent time, and then discards all nodes that have a timestamp
that is after this time. In the code of the implementation (see
Figures 6,7,8 and 9), the additional statements that involve
timestamps are marked within the “h” and “i” symbols. The
function getNextT imeStamp, see Figure 14, creates a
new timestamp. The functioncompareT imeStamp, see
Figure 14, compares if the first timestamp is less, equal or
higher than the second one and returns the values -1,0 or 1,
respectively.

As we are only using the timestamps for relative com-
parisons, we do not need real absolute time, only that the
timestamps are monotonically increasing. Therefore we can
implement the time functionality with a shared counter, the
synchronization of the counter is handled using CAS. How-
ever, the shared counter usually has a limited size (i.e. 32
bits) and will eventually overflow. Therefore the values of
the timestamps have to be recycled. We will do this by ex-
ploiting information that are available in real-time systems,
with a similar approach as in [15].

We assume that we haven periodic tasks in the system,
indexed�1:::�n. For each task�i we will use the standard
notationsTi, Ci, Ri andDi to denote the period (i.e.min
period for sporadic tasks), worst case execution time, worst
case response time and deadline, respectively. The deadline
of a task is less or equal to its period.

For a system to be safe, no task should miss its deadlines,
i.e.8i j Ri � Di.

For a system scheduled with fixed priority, the response
time for a task in the initial system can be calculated using
the standard response time analysis techniques [1]. If we
with Bi denote the blocking time (the time the task can be

ti

Ti Ti Ti

Ri

LTv

= increment highest known timestamp value by 1

Figure 11. Maximum timestamp increasement
estimation - worst case scenario

delayed by lower priority tasks) and withhp(i) denote the
set of tasks with higher priority than task�i, the response
timeRi for task�i can be formulated as:

Ri = Ci +Bi +
X

j2hp(i)

�
Ri

Tj

�
Cj (9)

The summand in the above formula gives the time that task
�i may be delayed by higher priority tasks. For systems
scheduled with dynamic priorities, there are other ways to
calculate the response times [1].

Now we examine some properties of the timestamps that
can exist in the system. Assume that all tasks call either
the Insert or DeleteMin operation only once per itera-
tion. As each call togetNextT imeStamp will introduce
a new timestamp in the system, we can assume that every
task invocation will introduce one new timestamp. This new
timestamp has a value that is the previously highest known
value plus one. We assume that the tasks always execute
within their response timesR with arbitrary many interrup-
tions, and that the execution timeC is comparably small.
This means that the increment of highest timestamp respec-
tive the write to a node with the current timestamp can occur
anytime within the interval for the response time. The max-
imum time for anInsert operation to finish is the same as
the response timeRi for its task�i. The minimum time be-
tween two index increments is when the first increment is
executed at the end of the first interval and the next incre-
ment is executed at the very beginning of the second inter-
val, i.e.Ti�Ri. The minimum time between the subsequent
increments will then be the periodTi. If we denote with
LTv the maximum life-time that the timestamp with value
v exists in the system, the worst case scenario in respect of
growth of timestamps is shown in Figure 11.

The formula for estimating the maximum difference in
value between two existing timestamps in any execution be-
comes as follows:



MaxTag =

nX
i=0

��
maxv2f0::1g LTv

Ti

�
+ 1

�
(10)

Now we have to bound the value ofmaxv2f0::1g LTv.
When comparing timestamps, the absolute value of these
are not important, only the relative values. Our method
is that we continuously traverse the nodes and replace out-
dated timestamps with a newer timestamp that has the same
comparison result. We traverse and check the nodes at
the rate of one step to the right for every invocation of an
Insert or DeleteMin operation. With outdated times-
tamps we define timestamps that are older (i.e. lower)
than any timestamp value that is in use by any running
DeleteMin operation. We denote withAncientV al the
maximum difference that we allow between the highest
known timestamp value and the timestamp value of a node,
before we call this timestamp outdated.

AncientV al =

nX
i=0

�
maxj Rj

Ti

�
(11)

If we denote withtancientthe maximum time it takes
for a timestamp value to be outdated counted from its first
occurrence in the system, we get the following relation:

AncientV al =

nX
i=0

�
tancient

Ti

�
>

nX
i=0

�
tancient

Ti

�
� n

(12)

tancient<
AncientV al + n

nX
i=0

1

Ti

(13)

Now we denote withttraversethe maximum time it takes
to traverse through the whole list from one position and get-
ting back, assuming the list has the maximum sizeN .

N =

nX
i=0

�
ttraverse

Ti

�
>

nX
i=0

�
ttraverse

Ti

�
� n (14)

ttraverse<
N + n
nX

i=0

1

Ti

(15)

The worst-case scenario is that directly after the times-
tamp of one node gets traversed, it gets outdated. Therefore
we get:

max
v2f0::1g

LTv = tancient+ ttraverse (16)

Putting all together we get:
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Figure 12. Timestamp value recycling
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Figure 13. Deciding the relative order between
reused timestamps
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The above equation gives us a bound on the length of the

"window" of active timestamps for any task in any possible
execution. In the unbounded construction the tasks, by pro-
ducing larger timestamps every time they slide this window
on the[0; : : : ;1] axis, always to the right. The approach
now is instead of sliding this window on the set[0; : : : ;1]
from left to right, to cyclically slide it on a[0; : : : ; X ] set
of consecutive natural numbers, see figure 12. Now at the
same time we have to give a way to the tasks to identify the
order of the different timestamps because the order of the
physical numbers is not enough since we are re-using times-
tamps. The idea is to use the bound that we have calculated
for the span of different active timestamps. Let us then take
a task that has observedvi as the lowest timestamp at some
invocation� . When this task runs again as� 0, it can con-
clude that the active timestamps are going to be betweenvi
and(vi+MaxTag) mod X . On the other hand we should
make sure that in this interval[vi; : : : ; (vi + MaxTag)
mod X ] there are no old timestamps. By looking closer
to equation 10 we can conclude that all the other tasks have
written values to their registers with timestamps that are at
mostMaxTag less thanvi at the time that� wrote the value
vi. Consequently if we use an interval that has double the



// Global variables
timeCurrent:integer
checked:pointer to Node
// Local variables
time,newtime,safeTime:integer
current,node,next:pointer to Node

function compareTimeStamp(time1:integer,
time2:integer):integer
C1 if time1=time2then return 0;
C2 if time2=MAX_TIME then return -1;
C3 if time1>time2and (time1-time2)�MAX_TAG or

time1<time2and (time1-time2+MAX_TIME)
�MAX_TAG then return 1;

C4 else return -1;

function getNextTimeStamp():integer
G1 repeat
G2 time:=timeCurrent;
G3 if (time+1)6=MAX_TIME then newtime:=time+1;
G4 elsenewtime:=0;
G5 until CAS(&timeCurrent,time,newtime);
G6 return newtime;

procedureTraverseTimeStamps()
T1 safeTime:=timeCurrent;
T2 if safeTime�ANCIENT_VAL then
T3 safeTime:=safeTime-ANCIENT_VAL;
T4 elsesafeTime:=safeTime+MAX_TIME-ANCIENT_VAL;
T5 while true do
T6 node:=READ_NODE(checked);
T7 current:=node;
T8 next:=ReadNext(&node,0);
T9 RELEASE_NODE(node);
T10 if compareTimeStamp(safeTime,next.timeInsert)>0 then
T11 next.timeInsert:=safeTime;
T12 if CAS(&checked,current,next)then
T13 RELEASE_NODE(current);
T14 break;
T15 RELEASE_NODE(next);

Figure 14. Creation, comparison, traversing
and updating of bounded timestamps.

size ofMaxTag, � 0 can conclude that old timestamps are
all on the interval[(vi �MaxTag) mod X; : : : ; vi].

Therefore we can use a timestamp field with double the
size of the maximum possible value of the timestamp.

TagF ieldSize= MaxTag � 2
TagF ieldBits = dlog2 TagF ieldSizee

In this way� 0 will be able to identify thatv1; v2; v3; v4
(see figure 13) are all new values ifd2 + d3 < MaxTag

and can also conclude that:

v3 < v4 < v1 < v2

The mechanism that will generate new timestamps in a
cyclical order and also compare timestamps is presented in
Figure 14 together with the code for traversing the nodes.
Note that the extra properties of the priority queue that are
achieved by using timestamps are not complete with respect
to theInsert operations that finishes with an update. These
update operations will behave the same as for the standard
version of the implementation.

Besides from real-time systems, the presented technique
can also be useful in non real-time systems as well. For
example, consider a system ofn = 10 threads, where the
minimum time between two invocations would beT = 10
ns, and the maximum response timeR = 1000000000 ns
(i.e. after 1 s we would expect the thread to have crashed).
Assuming a maximum size of the listN = 10000, we
will have a maximum timestamp differenceMaxTag <

1000010030, thus needing 31 bits. Given that most systems
have 32-bit integers and that many modern systems handle
64 bits as well, it implies that this technique is practical for
also non real-time systems.

7 Conclusions

We have presented a lock-free algorithmic implementa-
tion of a concurrent priority queue. The implementation is
based on the sequential Skiplist data structure and builds on
top of it to support concurrency and lock-freedom in an effi-
cient and practical way. Compared to the previous attempts
to use Skiplists for building concurrent priority queues our
algorithm is lock-free and avoids the performance penal-
ties that come with the use of locks. Compared to the
previous lock-free/wait-free concurrent priority queue algo-
rithms, our algorithm inherits and carefully retains the basic
design characteristic that makes Skiplists practical: simplic-
ity. Previous lock-free/wait-free algorithms did not perform
well because of their complexity, furthermore they were of-
ten based on atomic primitives that are not available in to-
day’s systems.



We compared our algorithm with some of the most ef-
ficient implementations of priority queues known. Experi-
ments show that our implementation scales well, and with 3
threads or more our implementation outperforms the corre-
sponding lock-based implementations, for all cases on both
fully concurrent systems as well as with pre-emption.

We believe that our implementation is of highly practical
interest for multi-threaded applications. We are currently
incorporating it into the NOBLE [16] library.
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