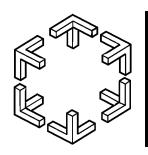

Distributed Computing and Systems Chalmers university of technology

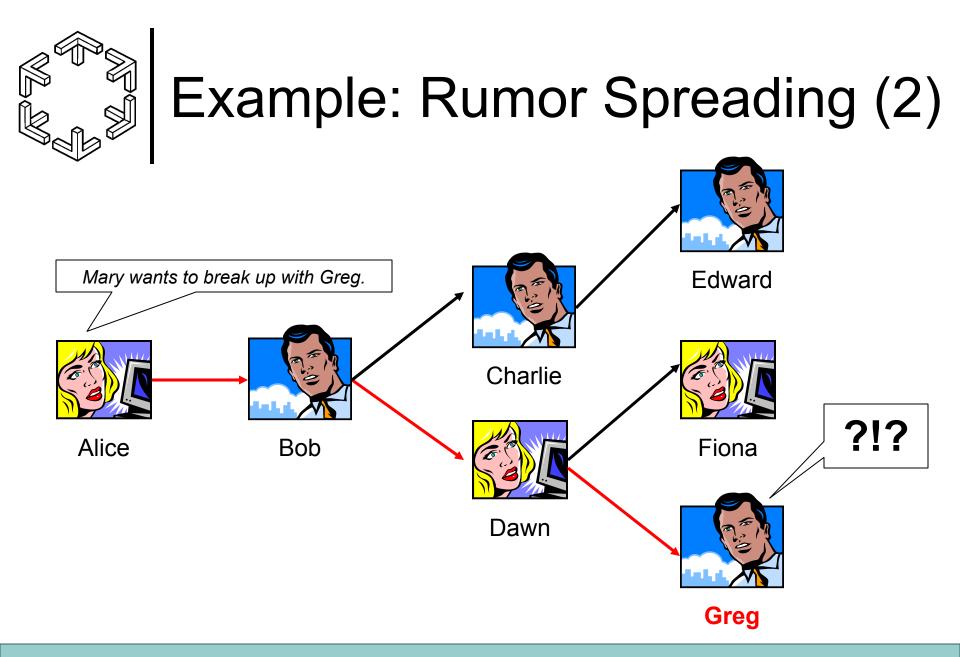
Growing Squares: Animated Visualization of Causal Relations

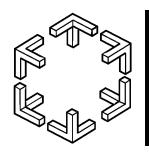

Niklas Elmqvist (*elm@cs.chalmers.se*) Philippas Tsigas (*tsigas@cs.chalmers.se*)

ACM Conference on Software Visualization 2003 June 11th to 13th, San Diego

Outline

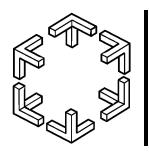
Motivating Example (aka Awful-Clipart Slide)
Problem Statement
Growing Squares
User Study
Results & Discussion
Conclusions & Future Work

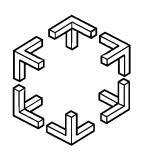



Example: Rumor Spreading

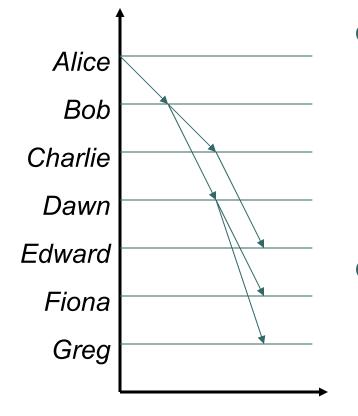
• Suppose Alice knows a specific piece of information (a rumor)

Example: Mary wants to break up with Greg


- If we observe which people she speaks to, we can deduce which people *potentially* learns the rumor
- These observations can be used to deduce the information flow in the system of people

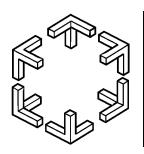

Example: Rumor Spreading (3)

- We want to be able to visualize this rumor spreading system
- In the general case, each of the participants (processes) have their own information that is propagated (i.e. not a single rumor)
- Visualizing this is a difficult problem

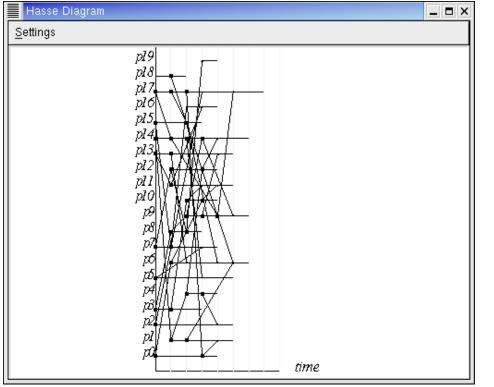


Causal Relation Visualization

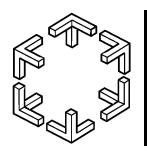
- Formally, we are looking to visualize systems of *causal relations*
 - **Def**: The *causal relation* \rightarrow is a relation that connects two elements (*events*) x and y as $x \rightarrow y$ iff x is the cause of y.
 - Sets of events are called processes P_1, \dots, P_N
 - Internal events are sequential and causally related
 - *External events* interconnect processes through *messages*
- We want to visualize a graph of such mutual causal dependencies between events
 - **Example**: Hasse diagrams (next slide)



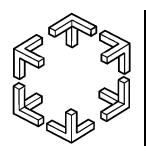
Hasse Diagrams



• Hasse diagrams use a straightforward approach


- Each process has a lifeline
- Messages are represented as arrows between lifelines
- This example is fairly simple and structured
 - Well-suited to Hasse diagrams

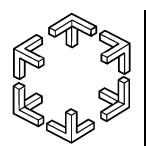
Hasse Diagrams: Example


- Distributed system with *n=20* processes and 60 system events
 - Not unrealistic situation
- Difficult to comprehend
 - Intersecting and coinciding message arrows
 - Fine granularity

Hasse Diagrams: Problems

• Some problems with Hasse diagrams:

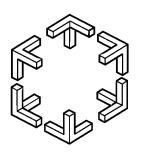
- Works fine for smaller systems
- Fine granularity make them unsuitable to larger systems of causal relations
- The user must manually maintain "the context" of the relations
 - Users may have to backtrace every single message to get a clear picture of the system
 - Vital information is scattered

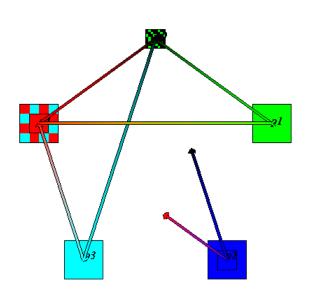


Problem Statement

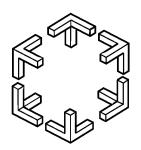
• **Problem**: Visualizing the information flow and causal relations in a system of communicating processes

• **Goals** for the visualization:

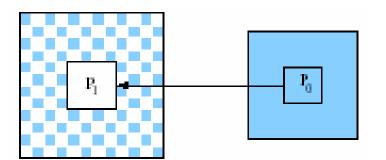

- Focus on information flow
- Make dependencies explicit
- Address the problems of Hasse diagrams
- Utilize the computer medium (color, animation, etc)


Applications

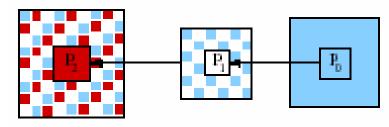
• General information flow problems

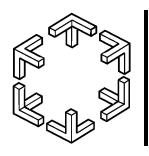

- Rumor spreading example
- Software visualization
 - Learning, designing, or debugging distributed programs and algorithms
 - **Examples**: Finding deadlocks, detecting synchronization errors, determining the critical path abstraction, longest sequential thread, chain of dependencies, etc.

Growing Squares

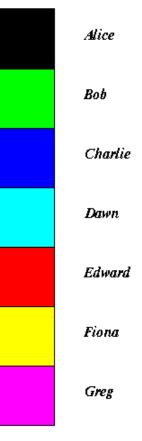


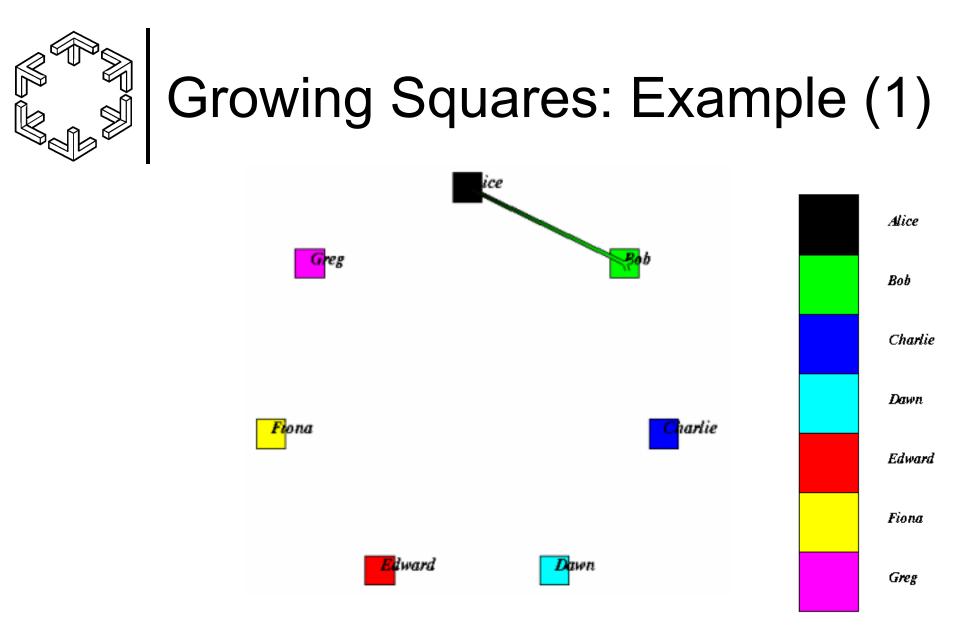
- The Growing Squares visualization technique was designed to solve this problem
- Metaphor: pools of color spreading on a piece of paper
 - Each pool (square) is a process/node and has a unique color
 - Squares grow in size over time
 - Messages from one square to another will add color to the destination square
 - Dependencies to a single square is easy to see just by studying its color makeup

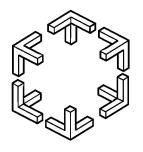

Growing Squares: Visualization


- Message passing
 - Process P₀ (blue) sends a message to process P₁ (white)
 - Process P₁ will now have both blue and white in it

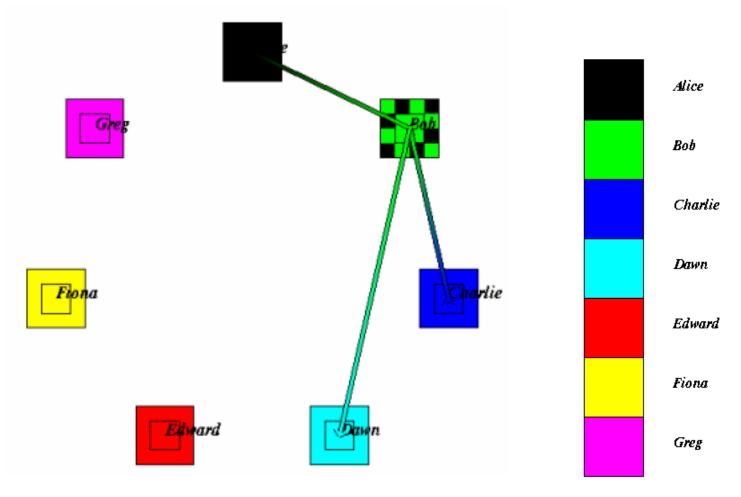
o Transitivity

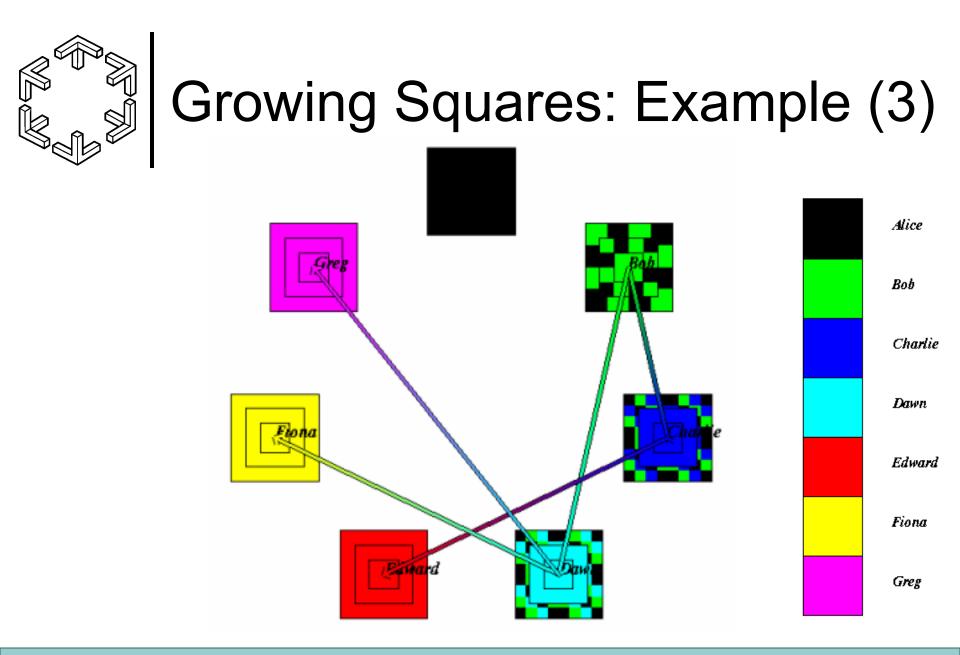

- Process P₀ (blue) sends a message to process P₁ (white)
- Then, process P1 sends a message to P₂ (red)
- Transitivity is clearly visible in P₂

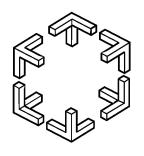




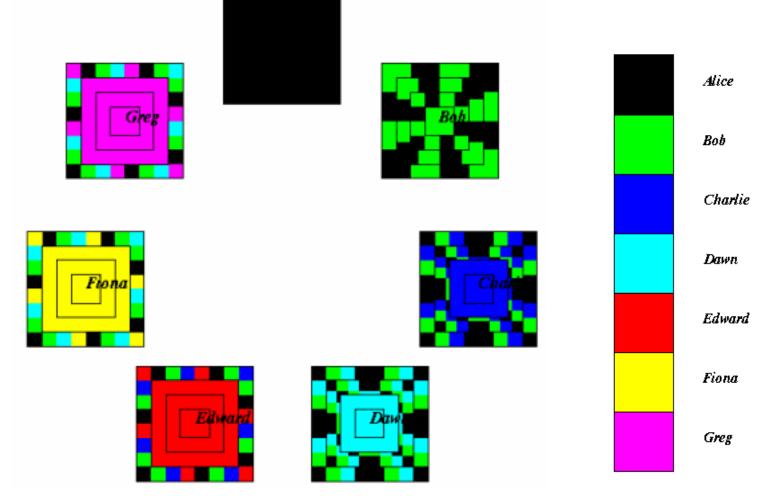
Growing Squares: Example

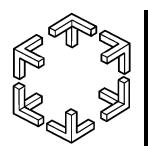

- We turn to our rumor spreading problem again
- The Growing Squares technique assigns each person (process) a unique color
 - Colors are uniformly distributed across the RGB spectrum
- We will now study the timesteps of the algorithm





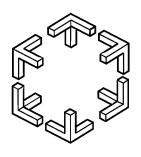
Growing Squares: Example (2)




Growing Squares: Animated Visualization of Causal Relations

Growing Squares: Example (4)

Growing Squares: Animated Visualization of Causal Relations


Growing Squares: Benefits

• Self-contained information

- Not scattered, like in Hasse diagrams
- No need for backtracing of messages

Intuitive influence color mapping

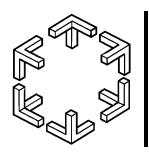
- Processes "contaminate" other processes
- Sometimes difficult to distinguish colors
- Use of animation
 - Can help to give an intuitive understanding
 - Can make it more difficult to get a quick overview
 - More suited to a computer than print

Growing Squares: Design and Implementation

Color scales

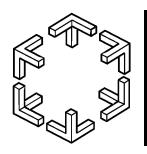
- Investigated perceptually uniform color scales (LOCS)
- Uniform RGB scale was most practical

Zoomable interface

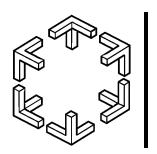

To allow for seeing details despite limited screen estate

Continuous animation

• Present the dynamic execution of the system

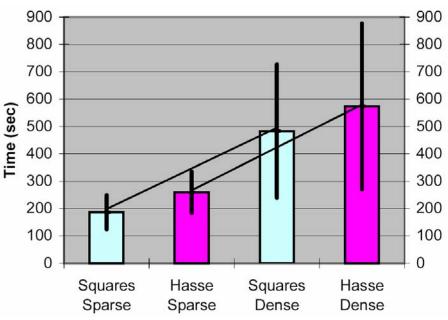

Implementation

C++ and OpenGL in Linux using GTK--


User Study

- A formal user study comparing Hasse diagrams to Growing Squares was performed
 - Two-way repeated-measures ANOVA
 - Independent variables (both within-subjects):
 - Visualization type: Hasse or GS
 - Data density: sparse and dense
- 4 different data sets: 1 of each data density for each visualization type
- 12 subjects participated in the test
 - All subjects knowledgeable in distributed systems

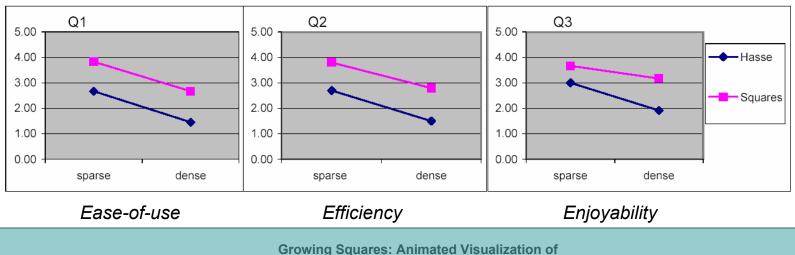
User Study: Tasks

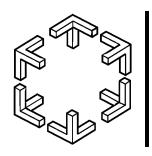

- Each data set required the user to solve 4 common questions related to causal relations:
 - 1. Find the process with longest duration
 - Find the process that has had the most influence on the system
 - 3. Find the process that has been influenced the most
 - 4. Is process *x* causally related to process *y*?
- Times were measured for these tasks
- Users were also asked for their subjective opinion of the visualization


Results

• Performance measurement

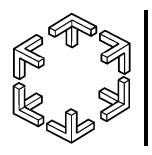
- Users were more efficient using our technique than Hasse diagrams
- GS seems to scale with size similarly to Hasse diagrams
- GS is significantly faster for the sparse density
- No statistically significant difference for GS vs Hasse in the general case


Mean task completion times (standard deviations)

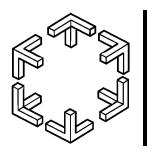

Results (2)

Subjective ratings

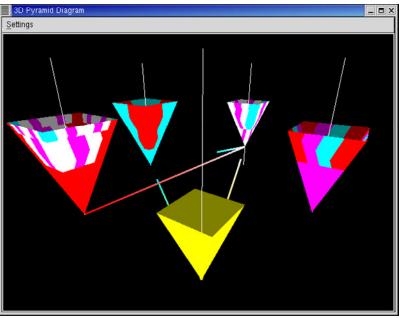
- Very positive user feedback
- Users consistently rated GS over Hasse diagrams in all respects (ease-of-use, enjoyability, efficiency)
- These readings were **all** statistically significant


Causal Relations

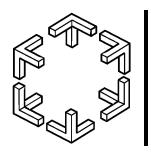
Discussion


• GS is faster, but not significantly so

- *Few test subjects* wildly varying completion times
- Colors hard to distinguish explore alternate ways
- No prior training using GS extended testing
- Our method appeals more to users
- GS and Hasse diagrams provide different views of system
 - A combination of the two visualizations is ideal



Conclusions


- Visualization of causal relations is crucial for understanding complex distributed and parallel systems
- Traditional visualization techniques (Hasse diagrams) fall short
- **Growing Squares** is a novel idea of visualizing distributed systems focused on the information flow
- Our visualization technique:
 - more efficient to use than Hasse diagrams, though not significantly so
 - significantly more appealing to users than Hasse diagrams

Future Work

- Extensions to the original technique (i.e. Growing Pyramids in 3D)
- Related visualization techniques (Growing Polygons to be presented at InfoVis 2003 in Seattle)
- More complex adaptions that make use of the 3rd dimension

Questions?

• Contact information:

• Address:

Niklas Elmqvist and Philippas Tsigas Department of Computing Science Chalmers University of Technology SE-412 96 Göteborg, Sweden

- Email:
 - <u>{elm|tsigas}@cs.chalmers.se</u>
- Project website:
 - http://www.cs.chalmers.se/~elm/projects/causalviz
- Demo this afternoon