
Wait-free Queue
Algorithms for the Real-
time Java Specification

Philippas Tsigas
Yi Zhang, SAP Research
Daniel Cederman
Tord Dellsén

RTAS ’06, San Jose,
Apr. 4th – 7th, 2006

RTAS '06 2

Outline

• JAVA Real-time queue Classes
– RTSJ
– Non-Blocking Synchronization

• An Algorithmic implementation of these
JAVA RT queue classes
– Algorithm
– Previous work
– Evaluation

• Conclusions & Future

RTAS '06 3

Real-time Specification for JAVA

• To make JAVA more suitable for real-time
programming
– Real-time threads NoHeapRealtimeTreads
– Memory Management which bypasses the

garbage collection
– Wait-free synchronization between non-real-

time threads and real-time threads:
WaitFreeReadQueue, WaitFreeWriteQueue

– ……

RTAS '06 4

Wait-free Synchronization in RTSJ

• Why?
– RTSJ supports priority-based real-time

systems.
– Lock-based synchronizations introduce the

priority inversion problem.
– Protocols to solve the priority inversion

problem bring dependencies with the garbage
collector in JVM.

RTAS '06 5

Lock-Based Synchronization ->
Priority Inversion

• A high priority task is delayed due to a low
priority task holding a shared resource. The low
priority task is delayed due to a medium priority
task executing.

• Solutions: Priority inheritance protocols

Task H:

Task M:

Task L:

RTAS '06 6

Lock-based Synchronizations for
RTJ threads

Regular ThreadsNoHeapRealTimeThreads

Garbage Collector

• Regular java threads must wait until the
collector reaches a preemption-safe point.

Higher priority

RTAS '06 7

Lock-based synchronizations for
RTJ threads

Regular ThreadsNoHeapRealTimeThreads

Garbage Collector

• NoHeapRealtimeThread may interrupt the
garbage collector at any time.

Higher priority

RTAS '06 8

Lock-based synchronizations for
RTJ threads

Regular ThreadsNoHeapRealTimeThreads

Garbage Collector

• When NHRTs use locks to synchronize with regular Java threads,
PCP/PIP may prompt the priorities of regular java threads.

Higher priority
(PCP/PIP)

RTAS '06 9

Lock-based synchronizations for
RTJ threads

Regular ThreadsNoHeapRealTimeThreads

Garbage Collector

• Which one has the highest priority? Catch-22

Higher priority
(PCP/PIP)

Higher priorityHigher priority

RTAS '06 10

Non-Blocking Algorithms

• Lock-Free. Guarantees that always one
operation is making progress.
– Combined with scheduling information,

schedulability analysis can be done.
• Wait-Free. Guarantees that any operation

will finish in a finite time.
– Schedulability analysis can be done directly.

RTAS '06 11

Java Real-time Queue Classes

WaitFreeWriteQueue

wait-free

wait-free

lock-based
No-heap
real-time
threads

Non-
real-time
threads

Thread A

Thread B

Thread C

lock-based
Thread D

Thread E

Thread F

WaitFreeReadQueue

RTAS '06 12

Outline

• JAVA Real-time queue Classes
– RTSJ
– Non-Blocking Synchronization

• An Algorithmic implementation of these
JAVA RT queues
– Algorithm
– Previous work
– Evaluation

• Conclusions

RTAS '06 13

Our Algorithm

• Design principles
– Multiple threads can access the wait-free

queue at the same time at both ends (real-
time and non-real-time).

– Using only READ/WRITE primitives to ensure
the “Write Once, Run Anywhere” principal.

– Integrate the uni-direction property of the wait-
free queues in our implementation.

RTAS '06 14

Wait-free Methodologies in Priority-
based Real-time Systems

• Operations by high priority tasks are atomic
operations for low priority tasks.
– Read/Write has the same power as the “Compare

and Swap” primitive. [Ramamurthy, Moir, Anderson
1996]

• Announce and help scheme
– Tasks make announcements of their intention in an

announcement array.
– Each priority has a correspond location in the

announcement array.
– Each task will help the announcements from the

lowest priority to its own priority.

RTAS '06 15

Our WaitFreeWriteQueue
Implementation

• Extended a sequential implementation based on
Link-List.

• Each task announces its enqueue operation.
• Each task helps all announcements up to its own

priority.
– If the task is not preempted, all pending

announcements will be helped.
– If the task is preempted by a high priority task, all

announcements includes its own will be helped by the
high priority task.

RTAS '06 16

The “enabled late write” Problem

• The problem happens when a task is preempted
just before its write operation.

• When the task is resumed, it may overwrite a
wrong value to the location.

• Previous solution to the problem is based on a
voting scheme. [Ramamurthy, Moir, Anderson
1996]

• Our solution has two parts: i) directs threads to
write on different locations when possible ii) by a
careful algorithmic designing we make sure that
every shared writing will agree on the content.

RTAS '06 17

Enabled-Late-Write

Shared Variables:
Counter = 0

void incCounter()
{
int i = counter;
i = i + 1;
counter = i;

}

Thread A’s Variables:
i = undefined

RTAS '06 18

Enabled-Late-Write

Shared Variables:
Counter = 0

void incCounter()
{
int i = counter;
i = i + 1;
counter = i;

}

Thread A’s Variables:
i = 0

RTAS '06 19

Enabled-Late-Write

Shared Variables:
Counter = 0

void incCounter()
{
int i = counter;
i = i + 1;
counter = i;

}

Thread A’s Variables:
i = 1

RTAS '06 20

Enabled-Late-Write

Shared Variables:
Counter = 0

void incCounter()
{
int i = counter;
i = i + 1;
counter = i;

}

Thread A’s Variables:
i = 1

Thread B starts helping
Thread A

RTAS '06 21

Enabled-Late-Write

Shared Variables:
Counter = 0

void incCounter()
{
int i = counter;
i = i + 1;
counter = i;

}

Thread A’s Variables:
i = 1

RTAS '06 22

Enabled-Late-Write

Shared Variables:
Counter = 1

void incCounter()
{
int i = counter;
i = i + 1;
counter = i;

}

Thread A’s Variables:
i = 1

RTAS '06 23

Enabled-Late-Write

Shared Variables:
Counter = 1

void incCounter()
{
int i = counter;
i = i + 1;
counter = i;

}

Thread A’s Variables:
i = 1

Thread B increments the
counter for itself

RTAS '06 24

Enabled-Late-Write

Shared Variables:
Counter = 2

void incCounter()
{
int i = counter;
i = i + 1;
counter = i;

}

Thread A’s Variables:
i = 1

Thread B increments the
counter for itself

RTAS '06 25

Enabled-Late-Write

Shared Variables:
Counter = 1

void incCounter()
{
int i = counter;
i = i + 1;
counter = i;

}

Thread A’s Variables:
i = 1

RTAS '06 26

Wait-Free Write Queue

• Instead of only one tail it has a tail for each
priority, but only one is the actual tail of the
linked list

C

D

1

2

3

B A

Head

RTAS '06 27

Reading from the queue

• Reading is simple since it’s blocking, just
make the head variable point to the next
node in the list

C

D

1

2

3

B A

Head

RTAS '06 28

Reading from the queue

• Reading is simple since it’s blocking, just
make the head variable point to the next
node in the list

C

D

1

2

3

B A

Head

RTAS '06 29

Writing to the queue

• First we need to find the actual tail.

C

D

1

2

3

B A

Head

RTAS '06 30

Writing to the queue

• We go through the tail array looking for the
node that doesn’t point to another node

C

D

1

2

3

B A

Head

RTAS '06 31

Writing to the queue

• We make it point to the new node

C

D

1

2

3

B A

Head

E

RTAS '06 32

Writing to the queue

• Then we store it in the tail array at the
threads priority, in this case 1

C

D

1

2

3

B A

Head
E

RTAS '06 33

Writing to the queue

• By doing this we avoid the enabled-late-
write that could have occured when
changing the tail

C

D

1

2

3

B A

Head
E

RTAS '06 34

Previous Work

• By combining [Ramamurthy, Moir,
Anderson 1996] and [Anderson,
Ramamurthy, Jain 97] a fully wait-free
linked list for priority based systems can
be derived.

RTAS '06 35

Experimental results

• We compared our implementation with the
TimeSys reference implementation.

• We used JVM version 1.0.0 build 547 on
top of TimeSys Linux 4.1 Build 155

• We implemented our Queues on top of
this reference implementation

• 1100 MHz Intel Celeron processor and
512MB memory (with 100 MHz clock
frequency). Its L2 cache was 128kB.

RTAS '06 36

Experimental Results

• We consider the worst case execution
times of the implementations (at least 50
test).

• We generated senarios that produce 90%
utilization (rate monotonic).

• We implemented PCEP for the
HardRealTime to synchronise when
accessing the queues

RTAS '06 37

Response Time Overhead

isfro CttT −−=

RTAS '06 38

Outline

• JAVA Real-time queue Classes
– RTSJ
– Non-Blocking Synchronization

• An Algorithmic implementation of these
JAVA RT queue classes
– Algorithm
– Previous work
– Evaluation

• Conclusions & Future

RTAS '06 39

Our Contribution

• An algorithmic implementation of the wait-
free queues in RTSJ.

• An new solution for the “enabled late write”
problem.

• O(N+M) space complexity
• O(N) time complexity

RTAS '06 40

Future Work

• Wait-Free Memory Management schemas
• Experiments with real-world data

RTAS '06 41

Memory Management

RTAS '06 42

Memory Consumption

RTAS '06 43

Task Set Generation

RTAS '06 44

Test Setup

RTAS '06 45

	Wait-free Queue Algorithms for the Real-time Java Specification�
	Outline
	Real-time Specification for JAVA
	Wait-free Synchronization in RTSJ
	Lock-Based Synchronization -> Priority Inversion
	Lock-based Synchronizations for RTJ threads
	Lock-based synchronizations for RTJ threads
	Lock-based synchronizations for RTJ threads
	Lock-based synchronizations for RTJ threads
	Non-Blocking Algorithms
	Java Real-time Queue Classes
	Outline
	Our Algorithm
	Wait-free Methodologies in Priority-based Real-time Systems
	Our WaitFreeWriteQueue Implementation
	The “enabled late write” Problem
	Enabled-Late-Write
	Enabled-Late-Write
	Enabled-Late-Write
	Enabled-Late-Write
	Enabled-Late-Write
	Enabled-Late-Write
	Enabled-Late-Write
	Enabled-Late-Write
	Enabled-Late-Write
	Wait-Free Write Queue
	Reading from the queue
	Reading from the queue
	Writing to the queue
	Writing to the queue
	Writing to the queue
	Writing to the queue
	Writing to the queue
	Previous Work
	Experimental results
	Experimental Results
	Response Time Overhead
	Outline
	Our Contribution
	Future Work
	Memory Management
	Memory Consumption
	Task Set Generation
	Test Setup

