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Real-time Specification for JAVA

• To make JAVA more suitable for real-time 
programming
– Real-time threads NoHeapRealtimeTreads
– Memory Management which bypasses the 

garbage collection
– Wait-free synchronization between non-real-

time threads and real-time threads: 
WaitFreeReadQueue, WaitFreeWriteQueue

– ……
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Wait-free Synchronization in RTSJ

• Why?
– RTSJ supports priority-based real-time 

systems.
– Lock-based synchronizations introduce the 

priority inversion problem.
– Protocols to solve the priority inversion 

problem bring dependencies with the garbage 
collector in JVM.
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Lock-Based Synchronization -> 
Priority Inversion

• A high priority task is delayed due to a low
priority task holding a shared resource. The low
priority task is delayed due to a medium priority
task executing.

• Solutions: Priority inheritance protocols

Task H:

Task M:

Task L:
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Lock-based Synchronizations for 
RTJ threads

Regular ThreadsNoHeapRealTimeThreads

Garbage Collector

• Regular java threads must wait until the 
collector reaches a preemption-safe point. 

Higher priority
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Lock-based synchronizations for 
RTJ threads

Regular ThreadsNoHeapRealTimeThreads

Garbage Collector

• NoHeapRealtimeThread may interrupt the 
garbage collector at any time. 

Higher priority
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Lock-based synchronizations for 
RTJ threads

Regular ThreadsNoHeapRealTimeThreads

Garbage Collector

• When NHRTs use locks to synchronize with regular Java threads, 
PCP/PIP may prompt the priorities of regular java threads.

Higher priority
(PCP/PIP)
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Lock-based synchronizations for 
RTJ threads

Regular ThreadsNoHeapRealTimeThreads

Garbage Collector

• Which one has the highest priority? Catch-22

Higher priority
(PCP/PIP)

Higher priorityHigher priority



RTAS '06 10

Non-Blocking Algorithms

• Lock-Free. Guarantees that always one
operation is making progress. 
– Combined with scheduling information, 

schedulability analysis can be done.
• Wait-Free. Guarantees that any operation 

will finish in a finite time. 
– Schedulability analysis can be done directly. 
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Java Real-time Queue Classes

WaitFreeWriteQueue

wait-free

wait-free

lock-based
No-heap
real-time
threads

Non-
real-time
threads

Thread A

Thread B

Thread C

lock-based
Thread D

Thread E

Thread F

WaitFreeReadQueue
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Our Algorithm

• Design principles
– Multiple threads can access the wait-free 

queue at the same time at both ends (real-
time and non-real-time).

– Using only READ/WRITE primitives to ensure 
the “Write Once, Run Anywhere” principal.

– Integrate the uni-direction property of the wait-
free queues in our implementation.
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Wait-free Methodologies in Priority-
based Real-time Systems

• Operations by high priority tasks are atomic 
operations for low priority tasks.
– Read/Write has the same power as the “Compare 

and Swap” primitive. [Ramamurthy, Moir, Anderson 
1996]

• Announce and help scheme
– Tasks make announcements of their intention in an 

announcement array.
– Each priority has a correspond location in the 

announcement array.
– Each task will help the announcements from the 

lowest priority to its own priority.
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Our WaitFreeWriteQueue
Implementation

• Extended a sequential implementation based on 
Link-List.

• Each task announces its enqueue operation.
• Each task helps all announcements up to its own 

priority.
– If the task is not preempted, all pending 

announcements will be helped.
– If the task is preempted by a high priority task, all 

announcements includes its own will be helped by the 
high priority task.
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The “enabled late write” Problem

• The problem happens when a task is preempted
just before its write operation.

• When the task is resumed, it may overwrite a 
wrong value to the location.

• Previous solution to the problem is based on a 
voting scheme. [Ramamurthy, Moir, Anderson 
1996]

• Our solution has two parts: i) directs threads to 
write on different locations when possible ii) by a 
careful algorithmic designing we make sure that 
every shared writing will agree on the content.



RTAS '06 17

Enabled-Late-Write

Shared Variables:
Counter = 0

void incCounter()
{
int i = counter;
i = i + 1;
counter = i;

}

Thread A’s Variables:
i = undefined
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Enabled-Late-Write

Shared Variables:
Counter = 0

void incCounter()
{
int i = counter;
i = i + 1;
counter = i;

}

Thread A’s Variables:
i = 0
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Enabled-Late-Write

Shared Variables:
Counter = 0

void incCounter()
{
int i = counter;
i = i + 1;
counter = i;

}

Thread A’s Variables:
i = 1
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Enabled-Late-Write

Shared Variables:
Counter = 0

void incCounter()
{
int i = counter;
i = i + 1;
counter = i;

}

Thread A’s Variables:
i = 1

Thread B starts helping
Thread A
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Enabled-Late-Write

Shared Variables:
Counter = 0

void incCounter()
{
int i = counter;
i = i + 1;
counter = i;

}

Thread A’s Variables:
i = 1
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Enabled-Late-Write

Shared Variables:
Counter = 1

void incCounter()
{
int i = counter;
i = i + 1;
counter = i;

}

Thread A’s Variables:
i = 1
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Enabled-Late-Write

Shared Variables:
Counter = 1

void incCounter()
{
int i = counter;
i = i + 1;
counter = i;

}

Thread A’s Variables:
i = 1

Thread B increments the 
counter for itself
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Enabled-Late-Write

Shared Variables:
Counter = 2

void incCounter()
{
int i = counter;
i = i + 1;
counter = i;

}

Thread A’s Variables:
i = 1

Thread B increments the 
counter for itself
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Enabled-Late-Write

Shared Variables:
Counter = 1

void incCounter()
{
int i = counter;
i = i + 1;
counter = i;

}

Thread A’s Variables:
i = 1
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Wait-Free Write Queue

• Instead of only one tail it has a tail for each
priority, but only one is the actual tail of the 
linked list

C

D

1

2

3

B A

Head
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Reading from the queue

• Reading is simple since it’s blocking, just 
make the head variable point to the next
node in the list

C

D

1

2

3

B A

Head
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Reading from the queue

• Reading is simple since it’s blocking, just 
make the head variable point to the next
node in the list

C

D

1

2

3

B A

Head
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Writing to the queue

• First we need to find the actual tail. 

C

D

1

2

3

B A

Head
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Writing to the queue

• We go through the tail array looking for the 
node that doesn’t point to another node

C

D

1

2

3

B A

Head
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Writing to the queue

• We make it point to the new node

C

D

1

2

3

B A

Head

E
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Writing to the queue

• Then we store it in the tail array at the 
threads priority, in this case 1

C

D

1

2

3

B A

Head
E
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Writing to the queue

• By doing this we avoid the enabled-late-
write that could have occured when
changing the tail

C

D

1

2

3

B A

Head
E
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Previous Work

• By combining [Ramamurthy, Moir, 
Anderson 1996] and [Anderson, 
Ramamurthy, Jain 97] a fully wait-free 
linked list for priority based systems can 
be derived. 
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Experimental results

• We compared our implementation with the 
TimeSys reference implementation.

• We used JVM version 1.0.0 build 547 on 
top of TimeSys Linux 4.1 Build 155 

• We implemented our Queues on top of 
this reference implementation

• 1100 MHz Intel Celeron processor and 
512MB memory (with 100 MHz clock 
frequency). Its L2 cache was 128kB.
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Experimental Results

• We consider the worst case execution 
times of the implementations (at least 50 
test).

• We generated senarios that produce 90% 
utilization (rate monotonic).

• We implemented PCEP for the 
HardRealTime to synchronise when
accessing the queues
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Response Time Overhead

isfro CttT −−=
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Our Contribution

• An algorithmic implementation of the wait-
free queues in RTSJ.

• An new solution for the “enabled late write”
problem.

• O(N+M) space complexity
• O(N) time complexity
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Future Work

• Wait-Free Memory Management schemas
• Experiments with real-world data 
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Memory Management
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Memory Consumption
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Task Set Generation



RTAS '06 44

Test Setup
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