SN

V&

Distributed Computing and Systems

Chalmers university of technology

Walt-free Queue
Algorithms for the Real-
time Java Specification

Philippas Tsigas

Yi Zhang, SAP Research
Daniel Cederman

Tord Dellsén

RTAS 06, San Jose,
Apr. 4th— 7th 2006

Outline

 JAVA Real-time gqueue Classes
- RTSJ
— Non-Blocking Synchronization
* An Algorithmic implementation of these
JAVA RT gueue classes
— Algorithm
— Previous work
— Evaluation

e Conclusions & Future

E}:;a Eiys_tributed Computing jmd Systems RTAS '06

y of bach

Real-time Specification for JAVA

e To make JAVA more suitable for real-time
programming
— Real-time threads NoHeapRealtimeTreads

— Memory Management which bypasses the
garbage collection

— Walit-free synchronization between non-real-
time threads and real-time threads:

WaitFreeReadQueue, WaitFreeWriteQueue

ﬂﬂﬂﬂﬂ

E“:-_r;; Eﬂ?_uted Go:‘lwwnd Systems RTAS '06

Walit-free Synchronization in RTSJ

o Why?
— RTSJ supports priority-based real-time
systems.

— Lock-based synchronizations introduce the
oriority inversion problem.

— Protocols to solve the priority inversion
oroblem bring dependencies with the garbage
collector in JVM.

i':;;a Distributed Computing and Systems RTAS '06

y of bach

Lock-Based Synchronization ->
Priority Inversion

« A high priority task is delayed due to a low
priority task holding a shared resource. The low
priority task is delayed due to a medium priority
task executing.

Task H: R ——e
Task M: b ®
TaskL: &—&—— D — et —_—

e Solutions: Priority inheritance protocols

-_-,:u':f"t..- » .
ﬁ;ﬂg Eﬂl&uted Gﬂrwlng and Systems RTAS '06

Lock-based Synchronizations for
RTJ threads

Garbage Collector

igher priority

NoHeapRealTimeThreads Regular Threads

 Regular java threads must wait until the
collector reaches a preemption-safe point.

-_-,:u':f‘t..- » .
£, d Ssmniaegneungsnd Systems RTAS '06

Lock-based synchronizations for
RTJ threads

Garbage Collector

Higher priority

NoHeapRealTimeThreads Regular Threads

 NoHeapRealtimeThread may interrupt the
garbage collector at any time.

ﬂﬂﬂﬂﬂ

E‘:-_r.,fj Eﬂ?_uted Gog‘lwwnd Systems RTAS '06

Lock-based synchronizations for
RTJ threads

Garbage Collector

Higher priority

NoHeapRealTimeThreads 4JM)= Regular Threads

« When NHRTSs use locks to synchronize with regular Java threads,
PCP/PIP may prompt the priorities of regular java threads.

2
E‘:-_r § Eﬂ?-uted Computuaﬁnd Systems RTAS '06

Lock-based synchronizations for
RTJ threads

Garbage Collector

Higher priority igher priority

Higher priority

NoHeapRealTimeThreads 4JM)= Regular Threads
 Which one has the highest priority? Catch-22

ﬂﬂﬂﬂﬂ

Eﬁ:ﬁ Elfﬂt?_uted Go:‘nwmnd Systems RTAS '06

Non-Blocking Algorithms

 Lock-Free. Guarantees that always one
operation is making progress.

— Combined with scheduling information,
schedulablility analysis can be done.

 Walt-Free. Guarantees that any operation
will finish in a finite time.
— Schedulability analysis can be done directly.

i':;;a Distributed Computing and Systems RTAS '06

y of bach

10

Java Real-time Queue Classes

WaltFreeReadQueue

Thread A
(e

Thread B
—

Thread C
(D

No-heap
real-time
threads

walit-free

lock-based

walit-free

WalitFree

@ Distributed Computing and Systems
Cr y ol ay

lock-based

riteQueue

RTAS '06

Thread D
N

Thread E
—

Thread F
N ey

Non-
real-time
threads

11

Outline

* An Algorithmic implementation of these
JAVA RT queues

— Algorithm
— Previous work
— Evaluation

E;;a Distributed Computing and Systems RTAS '06

y of bach

12

Our Algorithm

e Design principles

— Multiple threads can access the walit-free
gueue at the same time at both ends (real-
time and non-real-time).

— Using only READ/WRITE primitives to ensure
the “Write Once, Run Anywhere” principal.

— Integrate the uni-direction property of the wait-
free queues Iin our Implementation.

i':;;a Distributed Computing and Systems RTAS '06

y of bach

13

Wait-free Methodologies in Priority-

based Real-time Systems

e Operations by high priority tasks are atomic
operations for low priority tasks.

— Read/Write has the same power as the “Compare
and Swap” primitive. [Ramamurthy, Moir, Anderson
1996]

 Announce and help scheme

— Tasks make announcements of their intention in an
announcement array.

— Each priority has a correspond location in the
announcement array.

— Each task will help the announcements from the
lowest priority to its own priority.

-_-,:u':f"t..- » .
k“:r.,g Eﬂ?_uted Gurwmg and Systems RTAS '06

Our WaltFreeWriteQueue
Implementation

e Extended a sequential implementation based on
Link-List.
e Each task announces its enqueue operation.

« Each task helps all announcements up to its own
priority.
— If the task is not preempted, all pending
announcements will be helped.

— If the task is preempted by a high priority task, all
announcements includes its own will be helped by the
high priority task.

i':;;a Distributed Computing and Systems RTAS '06

y of bach

15

The “enabled late write” Problem

The problem happens when a task Is preempted
just before its write operation.

When the task is resumed, it may overwrite a
wrong value to the location.

Previous solution to the problem is based on a
voting scheme. [Ramamurthy, Moir, Anderson
1996]

Our solution has two parts: 1) directs threads to
write on different locations when possible ii) by a
careful algorithmic designing we make sure that
every shared writing will agree on the content.

-_-,:u':f"t..- . .
k“:r.,‘g Eﬂ?_uted Gurwmg and Systems RTAS '06

16

fers

Enabled-Late-Write

Thread A’s Variables: Shared Variables:
| = undefined Counter=0

void incCounter()

{

int i = counter;
=i+ 1;
counter = i;

}

e

“ﬁ Er;g_t_ributeﬁ G?:‘nputing IIEn::i Systems RTAS '06

17

fers

Enabled-Late-Write

Thread A’s Variables: Shared Variables:
1=0 Counter =0

void incCounter()

{

— int i = counter;
=i+ 1;
counter = i;

}

e

“ﬁ Er;g_t_ributeﬁ G?:‘nputing IIEn::i Systems RTAS '06

18

.

Enabled-Late-Write

Thread A’s Variables: Shared Variables:
=1 Counter =0

void incCounter()

int i = counter;
—_— =+]
counter = i;

}

= ol - .
E;{rwﬁ Er:s_t_rlbuteﬁ C?Ll"lputmg -End Systems RTAS '06

19

s

€

B

Enabled-Late-Write

Thread A’s Variables: Shared Variables:
=1 Counter =0

Thread B starts helping
void incCounter() Thread A

— int i = counter;
—_— =+]
counter = i;

}

5,;3 E:Eg_t_rmuteﬁ G?Tputlng -End Systems RTAS '06

20

fers

Enabled-Late-Write

Thread A’s Variables: Shared Variables:
=1 Counter =0

void incCounter()

int i = counter;
— — i=i+1;
counter = i;

}

e

“ﬁ Er;g_t_ributeﬁ G?:‘nputing IIEn::i Systems RTAS '06

21

Enabled-Late-Write

Thread A’s Variables: Shared Variables:
=1 Counter=1

void incCounter()

int i = counter;
—_— =+]
— counter = i;

}

2 . .
£, 3 Distibued Computing and Systems RTAS ‘06

22

Enabled-Late-Write

Thread A’s Variables: Shared Variables: Thread B increments the
=1 Counter =1 counter for itself

void incCounter()

—_ int i = counter;
—_— =+]
counter = i;

}

ek

r e » .
ﬁ;gﬁ Er:s_t_rlbuteﬁ G?TPLITII’IQ -End Systems RTAS '06

s

Sl

Enabled-Late-Write

Thread A’s Variables:
=1

ﬁ

r e » .
P; ﬁ Elr:s_t_rlbuteﬁ Gf:-:‘nputmg IIEn::i Systems

Shared Variables:
Counter = 2

void incCounter()

{

int i = counter;
=i+ 1;
counter = i;

}

RTAS '06

Thread B increments the
counter for itself

24

.

Enabled-Late-Write

Thread A’s Variables: Shared Variables:
=1 Counter=1

void incCounter()

{

int i = counter;
=i+ 1;
— counter =i;

}

= ol - .
E;{rwﬁ Er:s_t_rlbuteﬁ C?Ll"lputmg -End Systems RTAS '06

25

Walt-Free Write Queue

* |nstead of only one talil it has a tail for each
oriority, but only one is the actual tail of the
Inked list

3

@ Distributed Computing and Systems RTAS '06

26

Reading from the queue

 Reading is simple since it’s blocking, just
make the head variable point to the next
node In the list

=T

@ Distributed Computing and Systems RTAS '06

3

27

Reading from the queue

 Reading is simple since it’s blocking, just
make the head variable point to the next
node In the list

=1

@ Distributed Computing and Systems RTAS '06

3

28

Writing to the queue

e First we need to find the actual tall.

=T

E:ﬁ Distributed Computing and Systems RTAS '06

3

29

Writing to the queue

* \We go through the tail array looking for the
node that doesn’t point to another node

=T

@ Distributed Computing and Systems RTAS '06

3

30

Writing to the queue

 \We make it point to the new node

Q Distributed Computing and Systems RTAS '06

3

31

Writing to the queue

 Then we store it in the tall array at the
threads priority, In this case 1

3

E:s Distributed Computing and Systems RTAS '06

32

Writing to the queue

* By doing this we avoid the enabled-late-
write that could have occured when
changing the tall

1

3

@ Distributed Computing and Systems RTAS '06

33

Previous Work

e By combining [Ramamurthy, Maoir,

Anderson 1996] and [Anderson,
Ramamurthy, Jain 97] a fully wait-free
iInked list for priority based systems can
ne derived.

F::t;‘g Erig_t_ribut&d Cﬂ_::-Ll"lputing -End Systems RTAS '06

34

Experimental results

 We compared our implementation with the
TimeSys reference implementation.

e We used JVM version 1.0.0 build 547 on
top of TimeSys Linux 4.1 Build 155

 \We Iimplemented our Queues on top of
this reference implementation

1100 MHz Intel Celeron processor and
512MB memory (with 100 MHz clock
frequency). Its L2 cache was 128kB.

-_"J':é"!..' . .
e d 1
L:{‘ég Distributed Computing an Systems RTAS '06

y of bach

35

Experimental Results

e \We consider the worst case execution

times of the implementations (at least 50
test).

* \WWe generated senarios that produce 90%
utilization (rate monotonic).

 We implemented PCEP for the
HardRealTime to synchronise when
accessing the queues

i':;;a Distributed Computing and Systems RTAS '06

y of bach

36

Response Time Overhead

Write Thread with the Lowest Prionity

—e—tfimasys
j00 F| ——naw

50
= i L
E 2 3 4 5 & 7 8 89 10 N 12 13 14 15 18
B Wiite Thread with Middle Priarity
E-E'j I 1 I I I I 1
&
& 20
E
E 10
& 0
5 2 3 4 5 & 7 8& @ 10 11 12 13 14 15 16
E";EE Write Thread with the Highast Priority
1 I 1 I I I I 1 I 1 I
—a—fimasys
—&— [N
0.5} 3
e ——§——§ ¢ §

8 7 A g 10 N 12 13 14 15 186
MWumbear of Threads

2y
k“:r.,‘ﬁ Eﬂ?_uted Gomput ng and Systems RTAS '06

TI’O

:tf

_ts

-C.

37

ﬂﬂﬂﬂﬂ

Outline

e Conclusions & Future

Distributed Computi Mgﬁnd Systems RTAS '06

Chalmers university ol

38

Our Contribution

« An algorithmic implementation of the walit-
free queues In RTSJ.

 An new solution for the “enabled late write”
problem.

« O(N+M) space complexity
 O(N) time complexity

i':;;a Distributed Computing and Systems RTAS '06

y of bach

39

Future Work

o Wait-Free Memory Management schemas
* Experiments with real-world data

-_-,:u':f"t..- . .
k“:r.,‘g Eﬂ?_uted Gurwmg and Systems RTAS '06

40

Memory Management

Type Memory Requirements Response Time Comment

Multiple Arrays O(Q*P) O(Q) Simple and very memory
intensive.

Single Array O(Q) o(Q) Low memory
requirements but linear
access.

Stack Q) O(P*c) Slow due to emulated
CAS.

Queue o(Q) O(P) Fast but complicated.

Table 8-1. Comparison between Memoryv Managers
Thus table sums up the benefits and downsides of different memory managers. QQ 1s the maximum size of the queue
and P 1s the number of priorities m the system. The c 15 a large constant due to emulated CAS.

F:f "Q Distributed Computing and Systems RTAS '06

Memory Consumption

13ME 1 1 1 1 1 1 1 T T T T
—a— timesys
—&— Naw
—e— andarson
1MEFE 3
E 100KE F i
&
[]
=
= 10kBL 4
1Bk -
-IGGE | | | 1 | | | 1 1 1 1
1 11 &1 31 41 B &1 P a1 &1 101
Cusue Size
5’".{._;:.,,‘3 Eﬂ?_uted Gomputwg.?nd Systems RTAS '06

Sl

Task Set Generation

T, =(n—1i)+20%), i=10,..., (n—1)

C. — (o —i)* C i=1,.... (n—1)
Pl —n)snxC, i=0

E"ﬁg Eris_t_ributad G:::-E“lpuiing .End Systems RTAS '06

43

Test Setup

11 1 11 1
10 1 10 1
9 9 1
8 8 1
> 7 > 7 1
5 6 5 6 -
O 5 O 5]
4 4 1
3 3 1
2 2 1
1 1 1
0 260 460 BEIJO BEIJO 1000 0 560 1 OIOO 1 5|00 20|00 2500
Cost (ms) Period (ms)

-_"J':'-:"C..' . .
k_}:‘ fg Distributed O?:I"IFH}II'I_Q jmd Systems RTAS '06

Name Queune Type Implementations Operations L.P. Operations Cost
1. Write Queue Write Queue ptyz, tumesys, 1 Write * Reads 5 ms
anderson
2. Wrte Queue - Write Queue ptvz, timesys, 1 Write 1 Write 1 ms
no read anderson
3. Wrte Queue - Write Queue ptvz, timesys 20 Writes * Reads 1 ms
no anderson
4 Read Queue Read Quense ptvz, timesys, 1 Read * Writes 5 ms
anderson
5. Read Queue - Read Queue ptvz, timesys, 1 Read 1 Read 1 ms
no wrife anderson
6. Read Queue - Read Quens ptvz, timesys 20 Reads * Writes 1 ms
no anderson
RTAS '06

@ Distributed Computing and Systems
Cr y ol ay

45

	Wait-free Queue Algorithms for the Real-time Java Specification�
	Outline
	Real-time Specification for JAVA
	Wait-free Synchronization in RTSJ
	Lock-Based Synchronization -> Priority Inversion
	Lock-based Synchronizations for RTJ threads
	Lock-based synchronizations for RTJ threads
	Lock-based synchronizations for RTJ threads
	Lock-based synchronizations for RTJ threads
	Non-Blocking Algorithms
	Java Real-time Queue Classes
	Outline
	Our Algorithm
	Wait-free Methodologies in Priority-based Real-time Systems
	Our WaitFreeWriteQueue Implementation
	The “enabled late write” Problem
	Enabled-Late-Write
	Enabled-Late-Write
	Enabled-Late-Write
	Enabled-Late-Write
	Enabled-Late-Write
	Enabled-Late-Write
	Enabled-Late-Write
	Enabled-Late-Write
	Enabled-Late-Write
	Wait-Free Write Queue
	Reading from the queue
	Reading from the queue
	Writing to the queue
	Writing to the queue
	Writing to the queue
	Writing to the queue
	Writing to the queue
	Previous Work
	Experimental results
	Experimental Results
	Response Time Overhead
	Outline
	Our Contribution
	Future Work
	Memory Management
	Memory Consumption
	Task Set Generation
	Test Setup

