A Parallel Implementation of
Quicksort and its Performance
Evaluation

Philippas Tsigas Yi Zhang
Department of Computing Science
Chalmers University of Technology

(c) Ph. Tsigas, Y. Zhang

‘ The aim of our work

= Sorting is an important kernel

= Parallel implementations of sorting
0 Based on message-passing machines,
o Sample sort
= New developments in computer architecture
bring us new research opportunities
o Cache-Coherent shared memory
o Tightly-coupled multiprocessor

(c) Ph. Tsigas, Y. Zhang

‘ Quicksort

= Advantages
o General purpose
o In-place
o Good cache-behavior
o Simple
= Disadvantages
o Parallel implementations do not scale up.

(c) Ph. Tsigas, Y. Zhang

Our Approach
3+1 Phases

= Parallel Partition of the Data
0 Block based partition
o Cache efficient

= Sequential Partition of the Data
o At most P+1 blocks (P: Number of processors)

= Process Partition
= Sequential Sorting with Helping

o Load-balancing
o Non-blocking synchronization

(c) Ph. Tsigas, Y. Zhang

‘ The advantages of our approach

= General purpose

= In-place

= Good cache-behavior

= Fine grain parallelism

= Good speedup in theory

(c) Ph. Tsigas, Y. Zhang

‘ Experimental Results (8M Integers)

O01P m2P O4P O 8P m16P @O 32P

16
14

12 1 {
1 [

o 0
-
g 8-
o
n o
4 _ | |
Zi { { i il { { {
0 |
PQuickl PSRS |PQuick| PSRS |PQuick| PSRS |PQuick| PSRS |PQuick| PSRS
[U]-8M [G]-8M [Z]-8M [B]-8M [S]-8M

(c) Ph. Tsigas, Y. Zhang

‘ Experimental Results (32M Integers)

D1P m2P O4P O8P m16P @m32P

Speedup
- N
(@)] o
1
1
.

PQuick| PSRS | PQuick| PSRS |PQuick| PSRS | PQuick| PSRS | PQuick PSRS
[U]-32M [G]-32M [Z]-32M [B]-32M [S]-32M

(c) Ph. Tsigas, Y. Zhang

‘ Experimental Results (64M Integers)

D1P m2P O4P O8P m16P @m32P

Speedup
o
|
1

PQuick| PSRS | PQuick| PSRS |PQuick| PSRS | PQuick| PSRS | PQuick PSRS
[U]-64M [G]-64M [Z]-64M [B]-64M [S]-64M

(c) Ph. Tsigas, Y. Zhang

‘ Experimental Results (128M Integers)

D1P m2P O4P O8P m16P @m32P

Speedup
o
|
1
|

PQuick| PSRS | PQuick| PSRS |PQuick| PSRS | PQuick| PSRS | PQuick PSRS
[U]-128M [G]-128M [Z]-128M [B]-128M [S]-128M

(c) Ph. Tsigas, Y. Zhang

‘ Conclusions

= Quicksort can beat Sample Sort on cache-
coherent shared memory multiprocessors.

= Fine grain parallelism that incorporates non-
blocking synchronization can be efficient.

= Cache-coherent shared memory
multiprocessors offer many new research
opportunities.

(c) Ph. Tsigas, Y. Zhang

