
1

Dynamic and fault-tolerant cluster
management

Boris Koldehofe, Anders Gidenstam,
Marina Papatriantafilou, and Philippas Tsigas

2

Outline

Why peer-to-peer resource management is interesting?
Large scale event dissemination
Ordered event delivery

Problem description
Cluster management algorithm
Properties
Conclusion and Future Work

3

Peer-to-peer resource
management?

Focus
Scalability, reliability, and responsiveness of peer-to-peer services

Observe
Many peers may be interested to access similar resources

Based on local decision
Response time of services depends on the number of peers
competing for the service
Reliability can only be provided if the number of concurrent peers is
limited

Approach
To perform an action a process needs to acquire a resource
number of processes to access a resource is restricted

4

Example1: Event dissemination

Event dissemination / Group communication
Scalability and reliability

#peers : well addressed by current work
#events : ignored

Problem: too many events disseminated concurrently
⇒ buffer overflow, too many messages per process etc.

Possible improvement:
Restrict number of concurrent senders
Number of concurrent peers corresponds to number of peers which
are allowed to share a resource in the system

5

Example 2: Causal event delivery

Achieved using vector clocks
Problem vector clocks grow linearly with the
number of peers which send messages
⇒ long latencies for large number of

processes

The vector clock is a resource to be used by
at most n processes concurrently

Benefits:
1. dynamic reuse of vector clock entries
2. Message sizes stay constant

⇒ Scalability

1

2

3

4

5

6

7

Processes

Timestamp vector

6

This work

Resource management for P2P services
can improve scalability
can improve reliability

Best applicable where an action of a single peer causes a
large number of peers to perform work

Present a cluster management algorithm
Manages resources decentralised
Fault-tolerant

7

Basic Resource Management
Model

Event-based system
set of resources R={r1, …, rl}
Using ri ' sending event

Cluster Model:
resources are partitioned into several disjoint clusters

C1, C2, … with ∪i Ci = R
Cluster manages n distinguishable tickets t0, …, tn-1
Process uses a resource only if it obtained a ticket from the cluster
managing the resource

Cluster ensures
Never two processes own the same ticket

8

Cluster Management

Each cluster corresponds to a process group
Interested peers join
Observers – everyone

Join the process group
Using a resource

At most n
at a time
Core of the cluster
' obtain a ticket

Cluster

Core

resource

Peer/process

9

Problem description

Decentralised management of tickets
Two processes never

own the same ticket
Fault tolerance

Stop failures
Communication failures

Reclaim tickets from failed peers
Communication paradigm

Speed of clocks approximately synchronised
Message passing

Core

10

Cluster Management
Algorithm

p1

p4

p3

p2

SuccessorRing Structure
peers form a cycle (max n)
Predecessor and successor are
determined by the ticket a peer
obtained
Each peer manages entries in between
its own ticket and its successor ticket.

Join
Contact any coordinator
Notify successor if given an entry
Notify all about the new coordinator

1

0

n-1

n-2 2

n-3
3

11

Dealing with failures

Problem: If a process fails need to
be able to reclaim vector entries
Solution idea: Sending alive
messages to 2k+1 successors
Process to proceed needs to receive
k+1 alive messages from known
processes
Detect successor failing:

Exclusion algorithm contacting
the closest successor
At the end either initiator
succeeds in exclusion or fails

Can tolerate k failures of 2k +1
known processes

12

Basic Idea of Exclusion algorithm

Two party negotiation not feasible
partitioning

Instead peer determines set of 2k+1 closest predecessors
for its immediate successor
In each round

Send Update(2k+1 closest predecessors) to immediate
neighbours
Send ALIVE message to 2k+1 closest successors

a b c d e f
UPDATE{a,b,c}

k=1

UPDATE{b,c,d}

13

Cont. Exclusion Algorithm

Determine two sets
Lp = {predecessor received by the last UPDATE}
Rp = {predecessors successfully send by last UPDATE}
E.g. Ld = {a,b,c}, Rd = {b,c,d}

Exclusion(p,q) succeeds if
Lp ∩ Rq > k+1
k+1 peers in Lp ∩ Rq confirm exclusion

a b c d e f
UPDATE{a,b,c} UPDATE{b,c,d}

k=1
Exclude

14

Algorithms Properties

Correctness
Proof in the paper

Overhead in messages
2k+1 heartbeat messages send in each round
Successful ticket acquisition is followed by a Multicast

Availability of tickets
During exclusion of failed tickets coordinators cannot release tickets
Analysis:

pf : failure rate α: fraction of taken tickets
In equilibrium failing and joining peers:

Peer succeeds w.h.p. to acquire a ticket if
pf < ½ (1-α)

15

Conclusion and Future Work

Fault-tolerant cluster management model
Can support scalable and reliable peer-to-peer services

Presented an algorithm
Decentralised situation
Proven correctness in the occurrence failures

Stop failures, message omissions
Low message overhead
Good availability of tickets in the occurrence of failures

Future work
Combining and testing with peer-to-peer services

Beyond examples introduced
Practical evaluation of algorithms properties

Availability of tickets
Fairness properties

16

Experiments: Scalability

17

Experiments: Scalability

18

Experiments: Reliability

	Dynamic and fault-tolerant cluster management
	Outline
	Peer-to-peer resource management?
	Example1: Event dissemination
	Example 2: Causal event delivery
	This work
	Basic Resource Management Model
	Cluster Management
	Problem description
	Cluster Management Algorithm
	Dealing with failures
	Basic Idea of Exclusion algorithm
	Cont. Exclusion Algorithm
	Algorithms Properties
	Conclusion and Future Work
	Experiments: Scalability
	Experiments: Scalability
	Experiments: Reliability

