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The Lock-Free Memory Reclamation 
Problem

Concurrent shared data structure
Dynamic use of shared memory
Concurrent and overlapping operations by 
threads or processes

A B C
Base
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A B C

The Lock-Free Memory Reclamation 
Problem

Thread X

Base

Local variables



2005 Anders Gidenstam, Distributed Computing and 
Systems, Chalmers

5

A B C

The Lock-Free Memory Reclamation 
Problem

Thread X

Base

X has de-referenced the 
link (pointer) to B
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B

C

The Lock-Free Memory Reclamation 
Problem

Thread X

Base

Another thread, Y, finds and deletes
(removes) B from the active structure

Thread Y



2005 Anders Gidenstam, Distributed Computing and 
Systems, Chalmers

7

A

B

C

The Lock-Free Memory Reclamation 
Problem

Thread X

Base

Thread Y wants to reclaim(/free) B
Thread Y?

Property I: A (de-)referenced node is not reclaimed
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A

C

D

The Lock-Free Memory Reclamation 
Problem

Thread X

Base

?
The nodes B and C 
are deleted from the 
active structure.

B

Property II: Links in a (de-)referenced node 
should always be de-referencable.
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The Lock-Free Memory Reclamation 
Problem

Thread X

Base

A
1

D
2

B
1

C
1

Solutions?
Garbage collection?
Reference counting?

Needs to be lock-free!
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Lock-free synchronization
A lock-free shared data structure

Allows concurrent operations without enforcing 
mutual exclusion (i.e. no locks)
Guarantees that at least one operation always 
makes progress
Avoids:

• Blocking, deadlock and priority inversion

Hardware synchronization primitives
Built into CPU and memory system

• Typically: atomic read-modify-write instructions
Examples
• Test-and-set, Compare-and-Swap, Load-Linked / Store-Conditional
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Lock-free Reference Counting
Valois + Michael & Scott 1995
Detlefs et al. 2001
Herlihy et al. 2002

Remaining issues
A slow thread might prevent reclamation
Cyclic garbage
Implementation practicality issues

Reference-count field MUST remain forever (Valois + Michael & 
Scott)
Needs double word CAS  (Detlefs et al.)
Needs double width CAS (Herlihy, 2002)
Large overhead

Previous solutions

B
1

C
1

A
1Slow
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Our approach – The basic idea

Combine the best of 
Hazard pointers (Michael 2002)

• Tracks references from threads
• Fast de-reference
• Upper bound on the amount of unreclaimed deleted nodes 
• Compatible with standard memory allocators

Reference counting
• Tracks references from links in shared memory

• Manages links within dynamic nodes
• Safe to traverse links (also) in deleted nodes

Practical
Uses only single-word Compare-And-Swap
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The basic idea

API
DeRefLink
ReleaseRef
CompareAndSwapRef
StoreRef
NewNode
DeleteNode

Hazard pointers (Thread X)

Base

A
1

B
1

C
1

Thread X

Deletion list
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The basic idea

API
DeRefLink(Base)
ReleaseRef
CompareAndSwapRef
StoreRef
NewNode
DeleteNode

Hazard pointers (Thread X)

Base

A
1

B
1

C
1

Deletion list

Thread X

R
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Thread X

R

The basic idea

API
DeRefLink
ReleaseRef(R)
CompareAndSwapRef
StoreRef
NewNode
DeleteNode

Hazard pointers (Thread X)

Base

A
1

B
1

C
1

Deletion list
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Thread X

new

The basic idea

API
DeRefLink
ReleaseRef
CompareAndSwapRef
StoreRef
NewNode
DeleteNode

Hazard pointers (Thread X)

Base

A
1

B
1

C
1

Deletion list

D
0
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Thread X

C

new

R

The basic idea

API
DeRefLink
ReleaseRef
CompareAndSwapRef
StoreRef(new.next, R)
NewNode
DeleteNode

C
Hazard pointers (Thread X)

Base

A
1

B
1

C
2

Deletion list

D
0
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Thread X

A

B
new

prev

old

The basic idea

API
DeRefLink
ReleaseRef
CompareAndSwapRef(prev.next, old, new)
StoreRef
NewNode
DeleteNode

BA
Hazard pointers (Thread X)

Base

A
1

B
0

C
2

Deletion list

D
1
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Thread X

A

_
new

prev

old

The basic idea

API
DeRefLink
ReleaseRef
CompareAndSwapRef
StoreRef
NewNode
DeleteNode(old)

Hazard pointers (Thread X)

Base

A
1

B
0

C
2

Deletion list

D
1
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Breaking chains of garbage

Hazard pointers (Thread Y)

Base

A
1

D
1

E
2

Thread X

Deletion list

B
0

C
1

Clean-up deleted nodes
Update links to point to 
live nodes
Performed on nodes in

• Own deletion list
• All deletion lists
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Breaking chains of garbage

Clean-up deleted nodes
Update links to point to 
live nodes
Performed on nodes in

• Own deletion list
• All deletion lists

Hazard pointers (Thread Y)

Base

A
1

D
1

E
3

Thread X

Deletion list

B
0

C
0
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Bound on unreclaimed nodes

A deleted node can be reclaimed when
The reference count is zero and
No hazard pointer is pointing to it and
There is no ongoing clean-up of this node

With a rate relative to the number of threads of 
Scanning hazard pointers
Cleaning up nodes as needed

Then the maximum size of each deletion list depends on
The number of hazard pointers
The number of links per node
The number of threads
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Experimental evaluation

Lock-free deque (Sundell and Tsigas 2004)
(deque – double-ended queue)

The algorithm needs traversal of deleted nodes
Time for 10000 random operations/thread

Tested memory reclamation schemes
Reference counting, Valois et al.
The new algorithm

Systems
4 processor Xeon PC / Linux (UMA)
8 processor SGI Origin 2000 / IRIX (NUMA)
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Experimental evaluation
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Experimental evaluation
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Conclusions

First lock-free memory reclamation scheme 
that

Only uses atomic primitives available in 
contemporary architectures
Guarantees safety of

• Local and
• Global references

Has an upper bound on the amount of deleted 
but unreclaimed nodes
Allows arbitrary reuse of reclaimed memory
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Questions?

Contact Information:
Address:

Anders Gidenstam,
Computer Science & Engineering,
Chalmers University of Technology,
SE-412 96 Göteborg, Sweden

Email:
andersg @ cs.chalmers.se

Web:
http://www.cs.chalmers.se/~dcs
http://www.cs.chalmers.se/~andersg

Implementation
http://www.noble-library.org/

http://www.cs.chalmers.se/~dcs
http://www.cs.chalmers.se/~andersg
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Conclusions

First lock-free memory reclamation scheme 
that

Only uses atomic primitives available in 
contemporary architectures
Guarantees safety of

• Local and
• Global references

Has an upper bound on the amount of deleted 
but unreclaimed nodes
( Bound: N * N * (k + L_max + a + 1) )
Allows arbitrary reuse of reclaimed memory
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