
Efficient and Reliable
Lock-Free Memory

Reclamation
Based on Reference Counting

Anders Gidenstam, Marina Papatriantafilou,
Håkan Sundell and Philippas Tsigas

Distributed Computing and Systems group,
Department of Computer Science and Engineering,

Chalmers University of Technology

2005 Anders Gidenstam, Distributed Computing and
Systems, Chalmers

2

Outline

Introduction
The Problem
Lock-free synchronization

Our solution
Idea
Properties

Experiments
Conclusions

2005 Anders Gidenstam, Distributed Computing and
Systems, Chalmers

3

The Lock-Free Memory Reclamation
Problem

Concurrent shared data structure
Dynamic use of shared memory
Concurrent and overlapping operations by
threads or processes

A B C
Base

2005 Anders Gidenstam, Distributed Computing and
Systems, Chalmers

4

A B C

The Lock-Free Memory Reclamation
Problem

Thread X

Base

Local variables

2005 Anders Gidenstam, Distributed Computing and
Systems, Chalmers

5

A B C

The Lock-Free Memory Reclamation
Problem

Thread X

Base

X has de-referenced the
link (pointer) to B

2005 Anders Gidenstam, Distributed Computing and
Systems, Chalmers

6

A

B

C

The Lock-Free Memory Reclamation
Problem

Thread X

Base

Another thread, Y, finds and deletes
(removes) B from the active structure

Thread Y

2005 Anders Gidenstam, Distributed Computing and
Systems, Chalmers

7

A

B

C

The Lock-Free Memory Reclamation
Problem

Thread X

Base

Thread Y wants to reclaim(/free) B
Thread Y?

Property I: A (de-)referenced node is not reclaimed

2005 Anders Gidenstam, Distributed Computing and
Systems, Chalmers

8

A

C

D

The Lock-Free Memory Reclamation
Problem

Thread X

Base

?
The nodes B and C
are deleted from the
active structure.

B

Property II: Links in a (de-)referenced node
should always be de-referencable.

2005 Anders Gidenstam, Distributed Computing and
Systems, Chalmers

9

The Lock-Free Memory Reclamation
Problem

Thread X

Base

A
1

D
2

B
1

C
1

Solutions?
Garbage collection?
Reference counting?

Needs to be lock-free!

2005 Anders Gidenstam, Distributed Computing and
Systems, Chalmers

10

Lock-free synchronization
A lock-free shared data structure

Allows concurrent operations without enforcing
mutual exclusion (i.e. no locks)
Guarantees that at least one operation always
makes progress
Avoids:

• Blocking, deadlock and priority inversion

Hardware synchronization primitives
Built into CPU and memory system

• Typically: atomic read-modify-write instructions
Examples
• Test-and-set, Compare-and-Swap, Load-Linked / Store-Conditional

2005 Anders Gidenstam, Distributed Computing and
Systems, Chalmers

11

Lock-free Reference Counting
Valois + Michael & Scott 1995
Detlefs et al. 2001
Herlihy et al. 2002

Remaining issues
A slow thread might prevent reclamation
Cyclic garbage
Implementation practicality issues

Reference-count field MUST remain forever (Valois + Michael &
Scott)
Needs double word CAS (Detlefs et al.)
Needs double width CAS (Herlihy, 2002)
Large overhead

Previous solutions

B
1

C
1

A
1Slow

2005 Anders Gidenstam, Distributed Computing and
Systems, Chalmers

12

Our approach – The basic idea

Combine the best of
Hazard pointers (Michael 2002)

• Tracks references from threads
• Fast de-reference
• Upper bound on the amount of unreclaimed deleted nodes
• Compatible with standard memory allocators

Reference counting
• Tracks references from links in shared memory

• Manages links within dynamic nodes
• Safe to traverse links (also) in deleted nodes

Practical
Uses only single-word Compare-And-Swap

2005 Anders Gidenstam, Distributed Computing and
Systems, Chalmers

13

The basic idea

API
DeRefLink
ReleaseRef
CompareAndSwapRef
StoreRef
NewNode
DeleteNode

Hazard pointers (Thread X)

Base

A
1

B
1

C
1

Thread X

Deletion list

2005 Anders Gidenstam, Distributed Computing and
Systems, Chalmers

14

The basic idea

API
DeRefLink(Base)
ReleaseRef
CompareAndSwapRef
StoreRef
NewNode
DeleteNode

Hazard pointers (Thread X)

Base

A
1

B
1

C
1

Deletion list

Thread X

R

2005 Anders Gidenstam, Distributed Computing and
Systems, Chalmers

15

Thread X

R

The basic idea

API
DeRefLink
ReleaseRef(R)
CompareAndSwapRef
StoreRef
NewNode
DeleteNode

Hazard pointers (Thread X)

Base

A
1

B
1

C
1

Deletion list

2005 Anders Gidenstam, Distributed Computing and
Systems, Chalmers

16

Thread X

new

The basic idea

API
DeRefLink
ReleaseRef
CompareAndSwapRef
StoreRef
NewNode
DeleteNode

Hazard pointers (Thread X)

Base

A
1

B
1

C
1

Deletion list

D
0

2005 Anders Gidenstam, Distributed Computing and
Systems, Chalmers

17

Thread X

C

new

R

The basic idea

API
DeRefLink
ReleaseRef
CompareAndSwapRef
StoreRef(new.next, R)
NewNode
DeleteNode

C
Hazard pointers (Thread X)

Base

A
1

B
1

C
2

Deletion list

D
0

2005 Anders Gidenstam, Distributed Computing and
Systems, Chalmers

18

Thread X

A

B
new

prev

old

The basic idea

API
DeRefLink
ReleaseRef
CompareAndSwapRef(prev.next, old, new)
StoreRef
NewNode
DeleteNode

BA
Hazard pointers (Thread X)

Base

A
1

B
0

C
2

Deletion list

D
1

2005 Anders Gidenstam, Distributed Computing and
Systems, Chalmers

19

Thread X

A

_
new

prev

old

The basic idea

API
DeRefLink
ReleaseRef
CompareAndSwapRef
StoreRef
NewNode
DeleteNode(old)

Hazard pointers (Thread X)

Base

A
1

B
0

C
2

Deletion list

D
1

2005 Anders Gidenstam, Distributed Computing and
Systems, Chalmers

20

Breaking chains of garbage

Hazard pointers (Thread Y)

Base

A
1

D
1

E
2

Thread X

Deletion list

B
0

C
1

Clean-up deleted nodes
Update links to point to
live nodes
Performed on nodes in

• Own deletion list
• All deletion lists

2005 Anders Gidenstam, Distributed Computing and
Systems, Chalmers

21

Breaking chains of garbage

Clean-up deleted nodes
Update links to point to
live nodes
Performed on nodes in

• Own deletion list
• All deletion lists

Hazard pointers (Thread Y)

Base

A
1

D
1

E
3

Thread X

Deletion list

B
0

C
0

2005 Anders Gidenstam, Distributed Computing and
Systems, Chalmers

22

Bound on unreclaimed nodes

A deleted node can be reclaimed when
The reference count is zero and
No hazard pointer is pointing to it and
There is no ongoing clean-up of this node

With a rate relative to the number of threads of
Scanning hazard pointers
Cleaning up nodes as needed

Then the maximum size of each deletion list depends on
The number of hazard pointers
The number of links per node
The number of threads

2005 Anders Gidenstam, Distributed Computing and
Systems, Chalmers

23

Experimental evaluation

Lock-free deque (Sundell and Tsigas 2004)
(deque – double-ended queue)

The algorithm needs traversal of deleted nodes
Time for 10000 random operations/thread

Tested memory reclamation schemes
Reference counting, Valois et al.
The new algorithm

Systems
4 processor Xeon PC / Linux (UMA)
8 processor SGI Origin 2000 / IRIX (NUMA)

2005 Anders Gidenstam, Distributed Computing and
Systems, Chalmers

24

Experimental evaluation

2005 Anders Gidenstam, Distributed Computing and
Systems, Chalmers

25

Experimental evaluation

2005 Anders Gidenstam, Distributed Computing and
Systems, Chalmers

26

Conclusions

First lock-free memory reclamation scheme
that

Only uses atomic primitives available in
contemporary architectures
Guarantees safety of

• Local and
• Global references

Has an upper bound on the amount of deleted
but unreclaimed nodes
Allows arbitrary reuse of reclaimed memory

2005 Anders Gidenstam, Distributed Computing and
Systems, Chalmers

27

Questions?

Contact Information:
Address:

Anders Gidenstam,
Computer Science & Engineering,
Chalmers University of Technology,
SE-412 96 Göteborg, Sweden

Email:
andersg @ cs.chalmers.se

Web:
http://www.cs.chalmers.se/~dcs
http://www.cs.chalmers.se/~andersg

Implementation
http://www.noble-library.org/

http://www.cs.chalmers.se/~dcs
http://www.cs.chalmers.se/~andersg

2005 Anders Gidenstam, Distributed Computing and
Systems, Chalmers

28

Conclusions

First lock-free memory reclamation scheme
that

Only uses atomic primitives available in
contemporary architectures
Guarantees safety of

• Local and
• Global references

Has an upper bound on the amount of deleted
but unreclaimed nodes
(Bound: N * N * (k + L_max + a + 1))
Allows arbitrary reuse of reclaimed memory

	Efficient and Reliable�Lock-Free Memory Reclamation�Based on Reference Counting
	Outline
	The Lock-Free Memory Reclamation Problem
	The Lock-Free Memory Reclamation Problem
	The Lock-Free Memory Reclamation Problem
	The Lock-Free Memory Reclamation Problem
	The Lock-Free Memory Reclamation Problem
	The Lock-Free Memory Reclamation Problem
	The Lock-Free Memory Reclamation Problem
	Lock-free synchronization
	Previous solutions
	Our approach – The basic idea
	The basic idea
	The basic idea
	The basic idea
	The basic idea
	The basic idea
	The basic idea
	The basic idea
	Breaking chains of garbage
	Breaking chains of garbage
	Bound on unreclaimed nodes
	Experimental evaluation
	Experimental evaluation
	Experimental evaluation
	Conclusions
	Questions?
	Conclusions

