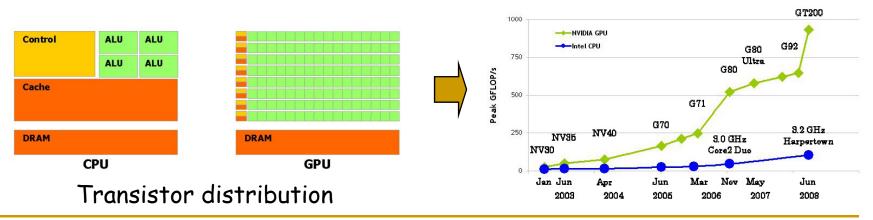
The Synchronization Power of Coalesced Memory Accesses


Phuong H. Ha (Univ. of Tromsø, Norway)
Philippas Tsigas (Chalmers Univ. of Tech., Sweden)
Otto J. Anshus (Univ. of Tromsø, Norway)

Problem

- Memory access mechanisms influence the system synchronization capability.
- Conventional wisdom: single-word assignment has consensus number 1

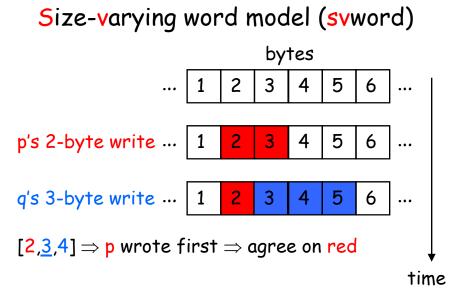
 \Rightarrow stronger synch. primitives (e.g. TAS, FAA, CAS) added.

Can we make single-word assignment stronger?
 ⇒ transistors saved from strong synch. primitives can be used to enhance other functionality.

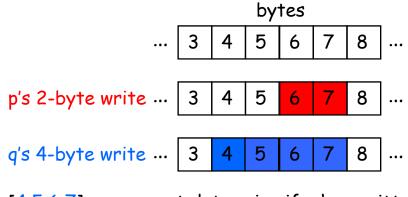
[These figures are from NVIDA CUDA Programming Guide, version 2.0] DISC'08

What is a memory word?

A group of *n* bytes that can be stored or retrieved in a single, basic operation.
 n is called *word size* (in byte-addressable memory)

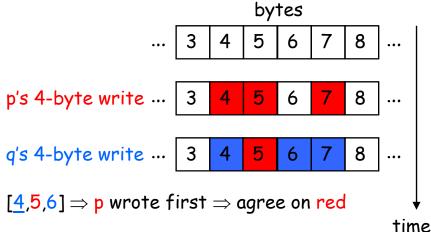


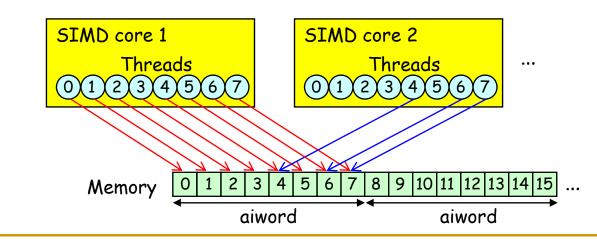
 Words of size *n* must always start at addresses that are multiples of *n*. (Alignment restriction)


[Hamacher et al. 2002, Hennessy et al. 2003]

Key idea 1

- Word size *n* can be any integer
 - instead of powers of 2 as in conventional architectures
 - Ex: solving 2-process consensus using 2-byte write and 3-byte write.
 - Feasibility: NVIDIA CUDA
 - int1, int2, int3, int4



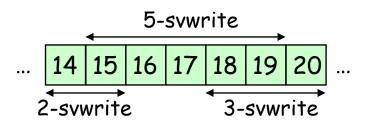

 $[4,5,\underline{6},\underline{7}] \Rightarrow q$ cannot determine if p has written!

Key idea 2

- Some of the *n* bytes of a word may be left untouched in a single-word assignment.
 - Ex: solving 2-process consensus using 4-byte writes
 - Feasibility: NVIDIA CUDA
 - Coalesced memory accesses

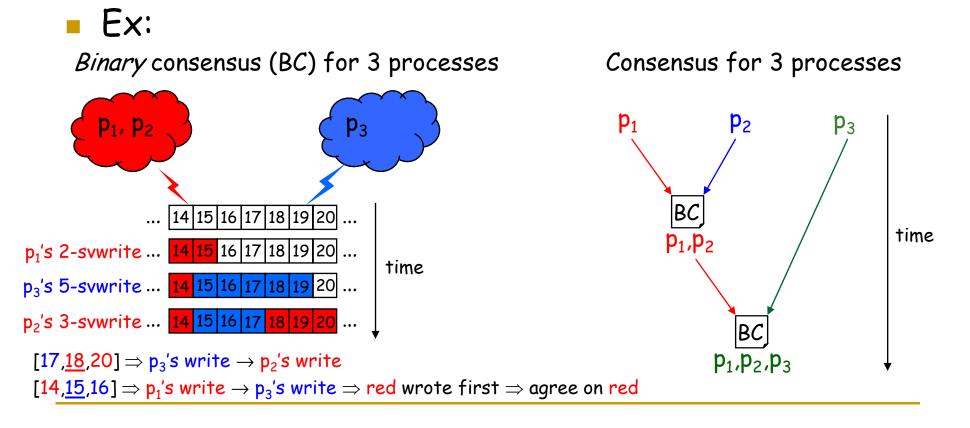
Our main technical contributions

- Develop general models for coalesced memory accesses.
- Prove the exact consensus numbers of these models:
 - size-varying word model (svword)
 - aligned-inconsecutive word model (aiword)
 - the combination of these two models (asvword)

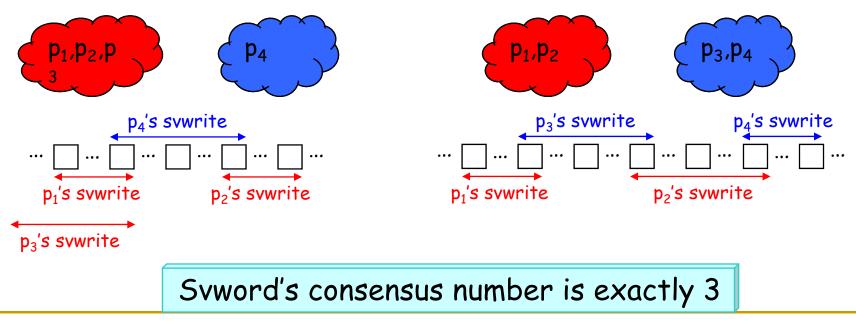

Road-map

Size-varying word model (svword)

- Aligned-inconsecutive word model (aiword)
- The combination of these two models (asvword)


Size-varying word model (svword)

- A syword consists of *b* consecutive memory units,
- $b \in [1, B], B$ is a constant.
 - *b*-svword for short
 - b-svwrite = b-svword assignment
- Alignment restriction:
 - Svwords of size b must start at addresses that are multiples of b.
- Ex: 2-svwrite, 3-svwrite and 5-svwrite

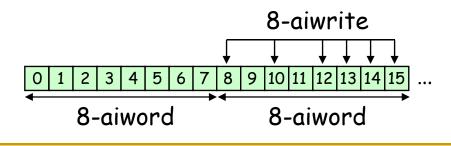

Svword's consensus no. ≥ 3

- Idea:
 - □ 5-svwrite can partly overlap both 2-svwrite and 3-svwrite
 - \Rightarrow can construct (binary) consensus objects for 3 processes

Svword's consensus no. ≤ 3

- Idea
 - p's critical assignment must
 - write to p's private unit
 - partly overlap q's critical assignment if p's critical value ≠ q's critical value
 (Bivalency argument)
 - b-svwrite accesses consecutive units \Rightarrow each b-svwrite can partly overlap at most 2 other b-svwrites.

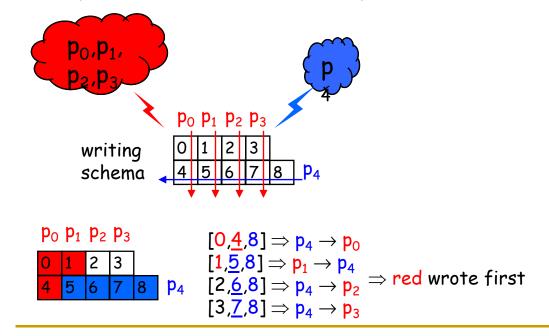
Road-map

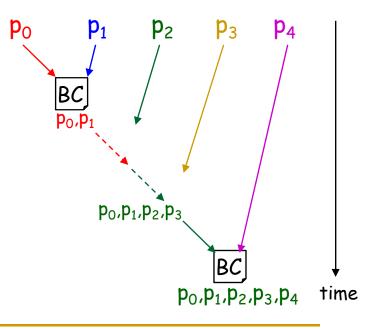

Size-varying word model (svword)

Aligned-inconsecutive word model (aiword)

The combination of these two models (asvword)

Aligned-inconsecutive word (aiword)


- Memory is aligned to *m*-unit words, *m* is a constant.
 m-aiword for short
- A read/write operation accesses an arbitrary non-empty subset of the *m* units of an aiword.
 - *m*-aiwrite = *m*-aiword assignment.
- Alignment restriction
 - \square *m*-aiwords must start at addresses that are multiples of *m*.
- Ex: 8-aiwrite


m-aiword's consensus no. $\geq /(m+1)/2/$

- Idea:
 - Construct a *binary* consensus object for N=/(m+1)/2/ processes in which (N-1) processes propose the same value.
 - Construct a *multivalued* consensus object for N processes using the binary consensus object.
- Ex: 9-aiword

Binary consensus (BC) for 4+1 processes

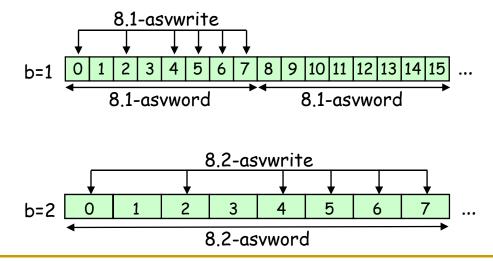
m-aiword's consensus no. $\leq /(m+1)/2/$

Idea:

- Lemma: p's critical assignment must atomically write to
 - p'_i s own unit u_i
 - shared units $u_{i,j}$ written only by p_i and p_j where p'_i s critical value $cv_i \neq p'_j$ s critical value cv_j .

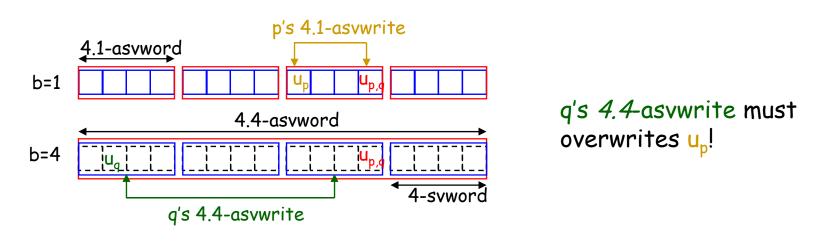
(Bivalency argument)

⇒ solving consensus for 2 subsets S_1 and S_2 , where $cv_1 \neq cv_2$ and $n_1 + n_2 = N$, needs to write atomically to *m* units, where $m = N + n_1 n_2 \ge 2N - 1 \Rightarrow N \le (m+1)/2$


m-aiword's consensus number is exactly /(m+1)/2/

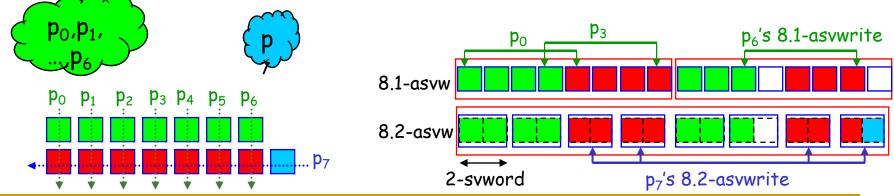
Road-map

- Size-varying word model (svword)
- Aligned-inconsecutive word model (aiword)
- The combination of these two models (asvword)


Asvword = aiword + svword

- An extension of *aiword*:
 - □ aiword's m units are replaced by m svwords of the same size $b, b \in \{1, B\}$.
 - m.b-asvword for short
 - m.b-asvwrite = m.b-asvword assignment
 - $m=t.B \text{ or } B=t.m, t \in N^*.$
- Alignment restriction
 - m.b-asywords must start at addresses that are multiples of (m.b).
- Ex: m=8, B=2:
 - 8.2-asvword vs. 8.1-asvword

Asyword's consensus no. when $m \le B$


- Asvword's consensus number is |(m+1)/2|, like aiword's.
- Idea:
 - When B=t.m, t∈N*, the combination of *m.1*-asvwrite and *m.B*-asvwrite does not provide any additional strength compared to *m*-aiwrite.
- Ex: B=m=4
 - \square p and q write to u_p , u_q , $u_{p,q}$ using 4.1-asymptotic and 4.4-asymptotic.

Asvword's consensus no. when m>B

- Asvword's consensus number N
 - mB/2 if m=2tB, $t \in N^*$
 - □ (*m*-*B*)*B*/2 if *m*=(2*t*+1)*B*
- Idea
 - Processes can atomically modify *m.B* units using *m.B*-asywrite vs. *m* units using *m*-aiwrite.
 - Avoid overwriting unintended units:
 - each B-syword contains either private units or shared units, but not both.
- Ex: m=8, B=2 \Rightarrow N=8

Binary consensus (BC) for 7+1 processes

Conclusions

- Develop new memory access models for coalesced memory accesses and prove their exact consensus numbers N.
 - □ size-varying word model, *b*-svword, $b \in [1,B]$.
 - N = 3, ∀ B ≥ 5
 - aligned-inconsecutive word model, *m*-aiword
 - N = |(m+1)/2

• the combination of these two models, *m.b*-asyword, $b \in [1,B]$.

$$N = \begin{cases} \left\lfloor \frac{m+1}{2} \right\rfloor & \text{if} \quad B = tm, t \in N \\ \frac{mB}{2} & \text{if} \quad m = 2tB \\ \frac{(m-B)B}{2} & \text{if} \quad m = (2t+1)B \end{cases}$$

Thanks for your attention!