

Evaluating Motion Constraints for 3D Wayfinding in Immersive and Desktop Virtual Environments

Niklas Elmqvist elm@lri.fr

Philippas Tsigas tsigas@chalmers.se

UNIVERSITY OF ARKANSAS AT LITTLE ROCK

CHALMERS

The Challenge

• 3D motion constraints!

Outline

- Problem
- Design space: Wayfinding in 3D
- Solution: Motion constraints
- User study
- Results and discussion
- Conclusions and future work

Problem

- Wayfinding: navigation to solve specific task
 - Performed on cognitive map
 - -Poor map leads to poor performance
- **Objective**: support wayfinding by aiding cognitive map building
 - Motion constraints and guides
 - -Example: sightseeing tour of new city

Virtual vs. Physical Worlds

- Why is wayfinding more difficult in virtual worlds?
 - -Low visual fidelity
 - Mouse and keyboard poorly mapped to
 3D navigation
 - -Lack of sensorial cues
- High cognitive load on users

Reducing Cognitive Load

- Method: Immersive Virtual Reality

 Full 3D input
 - Full 3D output
- But: No widespread use, expensive (?)
- Mouse and keyboard are standard
 - Even for 3D games!

Cognitive Maps

7

Supporting Cognitive Maps

- Global coverage
 - -Expose viewer to whole environment
- Continuous motion
 - -Support spatial relations
- Local control
 - -Learning by doing

3D Motion Constraints

- Tour-based motion constraints
- Spring-based control
- Smooth animation

User Study

- Predictions
 - P1: Guiding navigation helps wayfinding
 - P2: User control will improve familiarization
 - **P3**: More improvement for desktop
- Controlled experiment
- Two experiment sites
- 35 participants
 - 16 (4 female) on desktop computer
 - 19 (2 female) on CAVE system

Experimental Conditions

- Platform (BS): desktop or CAVE
- Navigation (BS/WS): free, follow, spring
- Scenario (WS): outdoor, indoor, infoscape, conetree
- Collect distance, error, and time

Procedure

- Phase I: Familiarization
 - -Create cognitive map (5 minutes)
 - -Supported by guidance technique
 - -Three target object types
- Phase II: Recall
 - -Locate two targets on overhead map
- Phase III: Evaluation
 - -Collect target in world
 - -No navigation guidance

Results

Navigation method:

- -Free navigation: CAVE better
- -Motion constraints: desktop significantly better (p < 0.05)

Results (cont'd)

- Desktop platform:
 - Spring-based guidance gave better accuracy than other methods
 - Navigation guidance more efficient than none

14

Discussion

- Unaided navigation easier in CAVE
- Guidance improved performance (P1)
 Guidance reduces cognitive load
- Local control improved accuracy (P2)
 Learning by doing works for desktops
- CAVE performed worse with guidance

 Motion constraints work against
 Partial confirmation of P3

Conclusions and Future Work

- Navigation guidance based on tours
 - -Improve cognitive map building
 - -Improve visual search
- Evaluation on desktop and CAVE
 - Navigation guidance on desktop outperforms CAVE
 - -Less focus on interaction mechanics

Questions?

Main findings:

- Free-flight best on immersive platforms
- Motion guidance
 helped desktop users
 outperform CAVE
 users
- Allowing local deviations improved correctness for desktop

Contact information

 Niklas Elmqvist (<u>elm@lri.fr</u>)

Edi Tudoreanu
 (<u>metudoreanu@ualr.fr</u>)

University of Arkansas at Little Rock

Philippas Tsigas
 (tsigas@chalmers.se)

CHALMERS