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Abstract: Systems of selfish-computers, such as the Internet, are subject
to transient faults due to hardware/software temporal malfunctions; just as
the society is subjected to human mistakes due to a moment of weakness.
Game theory uses punishment for deterring improper behavior. Due to
faults, selfish-computers may punish well-behaved ones. This is one of
the key motivations for forgiveness that follows any effective and credible
punishment. Therefore, unplanned punishments must be proven to have
ceased in order to avoid infinite cycles of unsynchronized behavior of “tit
for tat”.

We investigate another aspect of selfish-computer systems. We consider
the possibility of subsystem takeover, say, by the use of hostile malware.
The takeover may lead to joint deviations coordinated by an arbitrary
selfish-computer that controls an unknown group of subordinate computers.

We present strategies that deter the coordinator (and its subordinates)
from deviating in infinitely repeated games. We construct deterministic and
finite automata that implement these strategies with optimal complexity.
Moreover, we prove that all unplanned punishments eventually cease by
showing that the automata can recover from transient faults.

Keywords: Game Theory; Folk-Theorem; Joint Deviations; Finite-
Automata; Self-Stabilization; Repeated Games; Subsystem Takeover; Au-
tonomous Systems; Adaptive Communications.
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1 Introduction

Systems of selfish-computers, such as the Internet,
introduce new challenges in distributed computing,
game theory, and computational complexity. They
exhibit both cooperative and uncooperative interac-
tions. 1 While cooperative and uncooperative inter-
actions have been extensively studied as the two ex-
tremes, the study of joint deviations in uncooperative
repeated games has been neglected so far. In systems
of selfish-computers (where out-of-band communica-
tion is possible), it is unlikely that selfish-computers
cannot conspire. Therefore, it is imperative to con-
sider joint deviations. New models of distributed sys-
tems and uncooperative games are needed to con-
sider joint deviations. This paper presents one such
new model of subordinates’ deviations in infinitely
repeated games. We find a simple and optimal strat-
egy for deterring subordinates’ deviations. Moreover,
the strategy allows selfish-computers to recover from
involuntary misbehaver and unplanned punishments.

1.1 Subsystem takeovers

Stability and self-enforcement are two of the most at-
tractive properties that equilibria offer. We consider
equilibrium of strategies that autonomous agents
have devised, and all possible joint deviations by
a group of at most D deviators. Stability and
self-enforcement are achieved when the autonomous
agents deter the deviation; if any one of all possible
joint deviations happens, then the deviating group
will lose payoff, compared to what they would get by
obeying the equilibrium strategy.

Many noncooperative games follow the assumption
of unilateral deviation (e.g., Nash equilibrium in non-

†An extended abstract of this paper appeared in [26]
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1Cooperative interactions refers to scenarios in which con-

tracts among selfish-computers are usually held on to and can
be made legally binding; uncooperative interactions refers to
scenarios in which there is mistrust and no external enforce-
ment mechanisms are available.
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cooperative games [37]). In practice, it is unlikely
that agents cannot conspire and coordinate joint de-
viations. Alternatively, joint deviations are consid-
ered in cooperative games as a competition among
coalitions of agents, rather than among individual
agents (e.g., strong Nash equilibrium in cooperative
games [6, 41]). Unfortunately, cooperative games en-
force cooperative behavior among agents using mech-
anisms that do not exist in selfish-computer systems.

We study the crossover between noncooperative
and cooperative games. We consider noncooperative
games in which every joint deviation is coordinated
by an arbitrary agent – the coordinator. The coordi-
nator selects the actions of its subordinates, and has
no control over the autonomous agents. The coordi-
nator and autonomous agents maximize their individ-
ual payoffs by a deliberate and optimized selection of
actions. The autonomous agents cannot enforce co-
ordinated behavior, and have no a priori knowledge
about the identities of the coordinator and its subor-
dinates. Stability and self-enforcement are achieved
when the autonomous agents deter the coordinator
(and its subordinates) from deviating.

Subsystem takeovers can model scenarios in which
users abuse their access privileges to remote ma-
chines. (Such privileges might be gained by hostile
malware.) The abuser (i.e., the coordinator) deprives
the individual benefit of an arbitrary subset of agents
(i.e., the remote machines). We assume that the co-
ordinator does not compensate its subordinates for
their losses. Therefore, the notion of subordinates’
deviation should be modeled by games that have no
side payments or transferable utilities (similar to the
definitions in [7]). Hence, neither the sum nor the
maximum of the deviators’ payoffs should be consid-
ered (our approach is different than [32]).

Corollary 1 (Lemma 1 of Section 5). Autonomous
and selfish agents can deter joint deviations of the
subordinate groups using deterministic and finite au-
tomata.

1.2 Complexity issues of games with subsys-
tem takeovers

Computational game theory has several ways of mea-
suring complexity (see [38]). The two most related to
games with subordinates’ deviations are:
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• Costs of finding strategies

The computational complexity of a game model de-
scribes the asymptotic difficulty of finding a solution
as the game grows arbitrarily. We give the shared
responsibility game as an example for which it is pos-
sible to efficiently find strategies that deter subor-
dinates’ deviations. Unfortunately, this is not the
general case; finding strategies that deter joint devia-
tions is at least as hard as finding a Nash equilibrium,
which is known to also be computationally intractable
for infinitely repeated games, see [20, 13].

• Costs of implementing strategies

What is the minimal amount of memory required
for implementing a given strategy? Kalai and Stan-
ford [33] answer this question in the context of finite-
state machines, and show that it is the size of the
smallest automaton that can implement the strat-
egy. 2 The difficulty that Corollary 2 raises is that
selfish-computers that try to deter subordinates’ de-
viations may exhaust their resources.

Corollary 2 (Lemma 2 of Section 6). Strategies for
deterring subordinates’ deviations have the complex-
ity of Θ(D

(
n
D

)
), where n is the number of agents, and

D is an upper bound on the size of the subordinate
group.

1.3 Tolerating transient faults

When designing a distributed system of selfish-
computers, it is unsuitable to assume that failures
never occur (see [24, 23, 25]). Most of the existing lit-
erature on repeated games considers agents that have
identical views on the history of actions. In practice,
it is unlikely that all selfish-computers never fail to
observe an action in an infinite system run. Once
a single selfish-computer misinterprets an action, the
outcome of the game cannot be predicted by the cur-
rent theory.

Transient faults are regarded as faults that tem-
porarily violate the assumptions made by the system
designer about the game model and the system set-
tings. For example, the system designer may assume
the existence of a constant upper bound, D, on the
size of the subordinate group. In this case, a tran-
sient fault could be a joint deviation of more than D
agents. (Recall that Corollary 2 implies a possible
failure in allocating sufficient memory as D grows.)

2The size of an automaton is the cardinality of its state set.

Actions that some agents misinterpret are transient
faults as well. Thus, a transient fault is defined as
an arbitrary violation of the designer’s assumptions
for a finite period. Transient faults imply an arbi-
trary starting state after the system has returned to
obey the designer’s assumptions for an infinitely long
period.

1.4 Self-stabilization

Self-stabilizing systems [21, 22] can recover after the
occurrence of transient faults. These systems are
designed to automatically regain their consistency
from any starting state of the automaton. The ar-
bitrary state may be the result of violating the as-
sumptions about the game model or the system set-
tings. The correctness of a self-stabilizing system is
demonstrated by considering every sequence of ac-
tions that follows the last transient fault and is, there-
fore, proved assuming an arbitrary starting state of
the automaton. Corollary 3 implies that there are
self-stabilizing systems of selfish-computers that de-
ter subordinates’ deviations.

Corollary 3 (Lemma 3 of Section 7). Self-stabilizing
automata can satisfy the assertion of Corollary 1.

1.5 Our contribution

We present deterministic self-stabilizing finite au-
tomata for deterring subsystem takeovers. We show
how to deter subsystem takeovers in uncooperative
games using a simple strategy that can be imple-
mented by finite automata.

• Costs of games with subsystem takeovers

We analyze the complexity of our strategy and
demonstrate a lower bound that asymptotically
matches the costs of our implementation. We note
that prior work, such as [41], does not explicitly
bound the complexity of their strategies.

• Self-stabilization

The automaton is self-stabilizing and provides a
strategy that deals with deviations, transient faults,
and mistakes that are done at a moment of weak-
ness. After the occurrence of such mistakes, the
system punishes the deviators for a bounded num-
ber of periods. Moreover, after the occurrence of an
unexpected combination of deviations (or transient
faults), the system is guaranteed to recover within
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We describe an example of a system with n selfish-computers. We
denote by N = {1, . . . , n} the set of agents; each represents a selfish-
computer. Every agent decides whether to be a Server or a Client.
An agent receives a payoff of −1 for every period in which it decides
to be a Server (independently of the other agents’ choices). The
payoff of a Client depends on the decisions of other agents.
In every period, every Server i, reveals its access list si of agents
that can access its services. Moreover, every Client j, writes a single
agent, say i, in sj (possibly not matching the access list of agent i).
Namely, for Client j, sj = {i} means that j would like to access i as
a server Server. In case that i indeed chooses to be a Server, then
Client j can access i if j ∈ si.
Let G = (V,E) be a directed graph that is induced by the access
lists. The set V is the set of agents, N . Let i ∈ N be a Server
and j ∈ N be an agent (that is either a Client or a Server), then
(i, j) ∈ E if, and only if, i ∈ sj ∧ j ∈ si. See the example of the
right.
The Client j receives the payoff of +1 (or 0) if the strongly con-
nected component that contains j in the induced graph G includes
(respectively, does not include) the majority of agents in N (i.e.,
more than |N |2 ).

An example of the induced
graph

1

2

3

45

Above is an example of the induced
directed graph. Servers 1 and 2
(boxes) receive the payoff of −1
each. Clients 3 and 4 (ellipses) re-
ceive the payoff of +1 each. Client 5
is not connected to a strongly con-
nected component that includes a
majority of agents. Therefore, 0 is
the payoff of client 5.

Figure 1: The shared responsibility n-agent game.

a bounded number of periods. We believe that re-
quiring a bounded number of periods of punishment
and recovery is essential within the scope of self-
stabilization, because the system can be started with
agents being punished in spite their excellent past
behavior.

• Autonomous systems of selfish-computers

While we do not claim to be the first to bridge game
theory and fault tolerance, we believe that our work
provides an important insight to self-stabilizing dis-
tributed systems. On one hand, we consider joint
deviations that are harder to deal with than devia-
tions in which all deviators are rational (as in [6, 1, 5])
because we assume that not all deviators are ratio-
nal. On the other hand, we offer equilibria that are
more credible than known fault tolerant equilibrium
because we consider new realistic system settings of
infinitely repeated games in which not all deviators
are faulty (as in [28, 17, 3, 35, 18, 4]). 3

3 One may think about a subordinate agent as a faulty
one. The reason is that a subordinate agent does not self-
ishly promote its own benefit, because it is controlled by an-
other selfish (non-faulty) agent, i.e., the coordinator. However,
subordinate agents do not present an arbitrary behavior (as
in [28, 17, 3, 35, 18, 4]).

This work facilitates the design of autonomous sys-
tems that are required to deter subsystems takeovers.
Subsystem takeovers can model scenarios in which
users abuse their access privileges to remote ma-
chines. (Such privileges might be gained by hostile
malware.) We show that a simple strategy can de-
ter subsystem takeovers. Moreover, we are the first
to show that the simple strategy guarantees system
recovery after the occurrence of an unexpected com-
bination of deviations.

1.6 Document structure

We illustrate the problem at hand (Section 3) and
list the preliminaries before we define subsystem
takeovers (Section 4). Then, we explain the proofs
of Corollary 1 (Section 5), Corollary 2 (Section 6),
and Corollary 3 (Section 7). (For brevity, some parts
of the complete proof of Corollary 3 appear in Sec-
tion 9 of the Appendix and in [27].) Lastly, we draw
our concluding remarks.
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2 Preliminaries

Throughout we follow the definitions and notations
of [39]. Throughout we use N to denote the set
of agents, Ai the set of action, and %i the prefer-
ence relation (where i ∈ N is an agent). We repre-
sent single stage games, G, in their strategic form as
〈N,A = (Ai),%= (%i)〉 and in their extensive form
as 〈N,H,%= (%i)〉. We refer to solution concepts
such as Nash equilibrium, and feasible and enforce-
able payoff profiles.

2.1 Profiles

We refer to a collection of values of some variable, one
for each agent, as a profile. Similar to the single ele-
ment profile notation (i.e., x = (xi)i∈N , (x−i, xi), and
X−i of [39]), we consider profile notation for subsets
of elements s ⊆ N . We define profiles xs, x−s to be
the list of elements (xi)i∈s, respectively (xi)i∈N\s for
all s ⊆ N . Given a list of elements x−s = (xi)i∈N\s
and a profile xs = (xi)i∈s, we denote by (x−s, xs)
the profile (xi)i∈N . We denote by Xs, X−s the sets
×j∈sXj , respectively ×j∈N\sXj , where the set of el-
ements is defined as Xi for each i ∈ N .

2.2 Repeated games

Throughout we consider the game Γ = 〈N,H,%=
(%i)〉, in which the constituent game G = 〈N,A =
(Ai),%= (%i)〉 is repeated an infinite number of
times. We assume that all periods (plays) are syn-
chronous, i.e., all agents make simultaneous moves.
Moreover, by the end of each round, all agents have
observed the actions taken by all other agents.

2.3 Preference relations for repeated games

A preference relation expresses the desire of the indi-
vidual for one particular outcome over another. For
the constituent game, G, the relation %i refers to
agent i’s preferences. Suppose that %i can be repre-
sented by a payoff/utility function ui : A → R, for
which ui(a) ≥ ui(b) whenever a %i b. We assume
that in Γ, agent i’s preference relation %?

i is based on
a payoff function ui. Namely, (at) %?

i (bt) depends
only on the relation between the corresponding se-
quences (ui(at)) and (ui(bt)).

2.4 The limit of means criterion

The limit of the means criterion [9, 42] treats the fu-
ture as no more important than the present. The se-
quence vti of real numbers is preferred to the sequence
wti if and only if lim T→∞ΣTt=1(vti − wti)/T > 0.
lim T→∞ ΣTt=1(vti − wti)/T > 0.

2.5 Games in extensive form

The extensive form of a game describes the game
as a decision tree, which is directed from the root
downwards. Each node of the tree represents every
reachable stage of the game. Starting from the initial
node, agents take synchronous (simultaneous) choices
of actions. Given any internal node in the tree, each
possible action profile leads from that node to an-
other node. A node is said to be terminal if it has no
outgoing action profiles.

A history is a sequence of action profiles that corre-
sponds to a directed path from the root of the decision
tree. The set of all histories is denoted by H. We note
that history (ak)k=[1,K] ∈ H is terminal if it is infinite
or if there is no (ak)K+1 such that (ak)k=[1,K+1] ∈ H.
The set of terminal histories is denoted Z. Moreover,
for each agent i ∈ N a preference relation %i is de-
fined on Z. Let h be a history of length k; we denote
by (h, a) the history of length k + 1 consisting of h
followed by a. We denote an extensive game with
perfect information and synchronous (simultaneous)
moves as Γ = 〈N,H,%= (%i)〉.

2.6 Subgames

In large (or infinite) decision trees, it is useful to iso-
late parts of the tree in order to establish simpler
games. When the initial node of a subgame is reached
in a larger game, agents can concentrate on only that
subgame; they can ignore the history of the rest of
the game.

Let Γ = 〈N,H,%〉 be an extensive game with
perfect information and synchronous (simultaneous)
moves. Let H|h be the set of sequences h′ of actions
for which (h, h′) ∈ H. We define %i |h as h′ %i |hh′′
if, and only if, (h, h′) %i (h, h′′). The subgame Γ(h)
of game Γ that follows the history h is the extensive
game 〈N,H|h,%〉. By defining a new decision tree,
H|h in the subgame, agents can concentrate on only
the subgame Γ(h); they can ignore the history of the
rest of the game.
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2.7 Strategies for individuals

Agents protect their benefits by following a long-term
plan (or program) of action selection. We call this
plan the (individual) strategy sti of agent i ∈ N . We
define sti as a function that assigns an action in Ai
to every finite sequence of outcomes in the game Γ =
〈N,H,%= (%i)〉.

3 Background of the problem

We illustrate basic notions in game theory and ele-
ments of the problem at hand using an example (a
more detailed tutorial appears in [31]).

Our example of a system of selfish-computers con-
siders the shared responsibility service, which is pre-
sented in Figure 1. We model the service as an un-
cooperative game among n agents. An agent decides
whether it would participate as a server or as a client.
Servers specify their access list; the list restricts the
access of other agents (clients or servers). Clients
benefit the most whenever they can access a major-
ity of selfish-computers via a server that relays the
communications.

3.1 Single stage games

The payoff matrix that considers a 3-agent instance
of the game is presented in Figure 2. The matrix
describes the payoff that agent 1 gets for every possi-
ble combination of actions that the agents may take.
We note that the payoff of any server is less than the
payoff of any client (in the single stage game). There-
fore, all agents decide to be clients and thus receive
the payoff of 0. 4 This is Nash equilibrium.

3.2 Infinitely repeated games

If the single stage game is repeated infinitely, the
agents can benefit from a sequence of cooperation
steps in which the agents take turns for responsibil-
ity. A possible cooperation sequence is presented in
Figure 3(a). In this sequence of cooperation, every
agent is supposed to eventually receive the average
payoff of (|N | − 2)/|N |. 5 In that sense, if all agents

4Starting from any entry of the matrix, consider a sequence
of (unilateral) changes to the agents’ choice of action. Once
every agent was able to change its choice, all agents choose to
be clients.

5In every |N | periods of the cooperative sequence there are
N − 1 periods in which agent i ∈ N is a Client (that is served

“play along” then (|N | − 2)/|N | is a feasible payoff.
Unfortunately, the selfish agent j might deviate from
the sequence of cooperation. Suppose that j knows
that all other agents would always allow j to access
their services. Then agent j can decide to deviate
and be a client whenever it is the turn of j to be a
server.

3.3 Punishment

In uncooperative games, all agents must monitor the
actions of agent j, and deter j from deviation by pun-
ishment. The punishment should hold j to the mini-
mal payoff value that the punishing agent can enforce.
In the shared responsibility game, j receives a min-
imal enforceable payoff when the punishing agents
take a sequence of steps in which: (1) they exclude
j from their access list, and (2) they “play along”
among themselves. A punishing sequence in which
the payoff of 0 is enforced on agent 3 is shown in
Figure 3(b). In that sense, 0 is an enforceable payoff.

3.4 Grim trigger strategies

One can consider the following strategy. Initially,
agent i follows the sequence of cooperation. How-
ever, as soon as agent j defects, agent i follows the
punishment scheme that forever holds j down to its
minimal enforceable payoff. In the shared responsi-
bility game, agent j cannot benefit from defecting,
because the punishment eventually reduces j’s aver-
age payoff from (|N | − 2)/|N | to 0. Thus, agent j
would prefer to cooperate. Thus, the grim trigger
strategy is Nash equilibrium for infinitely repeated
games.

There is a clear disadvantage to the grim trigger
strategy; while the agents hold down j to its min-
imal payoff, their payoff might be reduced as well.
The equilibrium will continue to be played forever,
even if j defects only once. Thus, the threatened re-
sponse may seem unreasonable, especially when it is
too costly to the punishing agents. In other words,
the knowledge that the punishing agents will respond
to j’s defection by an unrelenting punishment is what
keeps j from defecting. However, if j does in fact de-
fect, it may no longer be beneficial for the punishers
to punish. That is what makes the grim trigger strat-
egy unbelievable.

by others) and a single period in which the payoff of agent i is
−1.
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〈Server, {2}〉 -1 -1 -1 -1 -1

〈Server, {3}〉 -1 -1 -1 -1 -1

〈Server, {2, 3}〉 -1 -1 -1 -1 -1

〈Client, {2}〉 +1 0 +1 0 0

〈Client, {3}〉 +1 +1 +1 +1 +1

(a) Agent 3: 〈Server, {1}〉 or 〈Server, {1, 2}〉
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,3
}〉

〈C
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t,
{1
}〉

〈C
li
en

t,
{3
}〉

〈Server, {2}〉 -1 -1 -1 -1 -1

〈Server, {3}〉 -1 -1 -1 -1 -1

〈Server, {2, 3}〉 -1 -1 -1 -1 -1

〈Client, {2}〉 +1 0 +1 0 0

〈Client, {3}〉 0 0 0 0 0

(b) Agent 3: 〈Server, {2}〉, 〈Client, {1}〉, or 〈Client, {2}〉

Figure 2: The payoff matrices of the shared responsibility game with 3-agents. The headings of tables,
columns and rows are in the form of 〈a, s〉, where a is the action, and s is the access list of agent 1. The
matrix is symmetrical and thus the payoffs of agents 2 and 3 are, in fact, described as well.

3.5 The perfect folk theorem

In the context of repeated games, Nash equilib-
rium can be refined to exclude strategy such as the
grim trigger strategy (see subgame perfect equilib-
rium [43, 39]). Roughly speaking, the “refined equi-
librium” represents Nash equilibrium in every “stage”
of the repeated game. And thus, if agent j defects
only once, then the punishing agents would punish j
merely for a finite period. At the end of the punish-
ment period, all agents return to cooperate.

The perfect Nash Folk theorem provides strategies
that can deter an agent from deviating unilaterally
(see [39], and references therein). A sketch of a strat-
egy is presented in Figure 4. The strategy is a deter-
ministic and finite automaton that plays the sequence
of cooperation as long as there are no deviations. The
automaton retaliates to the deviation of an agent with
a punishment for a sufficiently long (but finite) pe-
riod.

4 Subsystem Takeovers

The perfection property is a key feature of the notion
of subgames. This property specifies that a strategy
profile is Nash equilibrium in every subgame. Given
a game Γ = 〈N,H,%〉, we define the strategy profile
st = (sti)i∈N as a subgame perfect equilibrium that is
t-defendable from joint deviations of any subordinate
group s ∈ S(t), where t ∈ [1, |N |) is a constant and
S(t) = {s : s ∈ 2N \ {∅, N} ∧ |s| ≤ t} is the set of all

possible subordinate groups. 6

4.1 Joint strategies

Let s ⊆ N be any group of agents, sts = (sti)i∈s
their joint strategies and h ∈ H a history of the ex-
tensive game Γ = 〈N,H,%〉. We denote by Γ(h) the
subgame that follows the history h. Moreover, de-
note by sts|h the joint strategies that sts induces in
the subgame Γ(h) (i.e., sts|h(h′) = sts(h, h′) for each
h′ ∈ H|h). We denote by Oh the outcome function
of Γ(h). Namely, Oh(st−s|h, sts|h) is the outcome of
the subgame Γ(h) when the agents take the strategy
profile (st−s|h, sts|h).

4.2 Perfect and t-defendable subgame equi-
libria

Given a number t ∈ [1, |N |), we say that the sub-
game st = (sti)i∈N cannot recover from a joint de-
viation of a subordinate group s ∈ S(t), if there
is a joint deviation st′s of the agents in s, such
that for any h ∈ H \ Z it holds that for an ar-
bitrary agent icoord ∈ s (the coordinator) we have
Oh(st−s|h, st′s|h) �icoord

|h Oh(st−s|h, sts|h). When
the subgame st can recover from any joint deviation
of the subordinate groups, s ∈ S(t), we say that st is
a t-defendable equilibrium.

We note that while the joint deviation st′s is re-
quired to guarantee the benefit of coordinator, there
are no guarantees for the benefits of the subordi-
nates. In more detail, there could possibly exist a
subordinate agent jsubor ∈ s \ {icoord}, such that

6We do not consider the case of s = N , because it refers to
a system that is controlled by a single agent.
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Period Agent 1 Agent 2 Agent 3
1 〈Server, {2, 3}〉 〈Client, {1}〉 〈Client, {1}〉
2 〈Client, {2}〉 〈Server, {1, 3}〉 〈Client, {2}〉
3 〈Client, {3}〉 〈Client, {3}〉 〈Server, {1, 2}〉
...

...
...

...

(a) A sequence of cooperation for 3 agents.

Period Agent 1 Agent 2
1 〈Server, {2}〉 〈Client, {1}〉
2 〈Client, {2}〉 〈Server, {1}〉
...

...
...

(b) A scheme for punishing agent 3.

Figure 3: Two examples of cooperation sequences. The entry format follows that of Figure 2.

Oh(st−s|h, st′s|h) ≺jsubor
|h Oh(st−s|h, sts|h). We

mention that joint deviations in which agent jsubor
may exist are not considered by [5, 41, 6, 1, 12, 36]
(see the discussion in Section 8).

4.3 s-enforceable payoff profiles

To support a feasible outcome, each subordinate
group and its coordinator must be deterred from de-
viating by being “punished”. The concept of enforce-
able payoff profiles considers a single agent that may
deviate (see [39]). We extend that concept to consider
the deviation of subordinate groups.

Define minmax payoff in game Γ of a subordinate
group s ∈ S, denoted vi|s, to be the lowest payoff
that the autonomous agents N ′ = N \ s can force
upon the coordinator i ∈ s:

vi|s = min
a−s∈A−s

max
as∈As

ui(a−s, as). (1)

Given a minmax payoff profile vi |s, the payoff pro-
file w|s is called strictly s-enforceable if wi|s > vi |s for
all i ∈ s. Denote by p−s ∈ A−s one of the solutions
of the minimization problem on the right-hand side
of equation 1.

5 Folk Theorem of Subsystem Takeovers

The folk theorem is a class of proofs which show that
every feasible and enforceable profile of payoffs can be
achieved by a subgame perfect equilibrium (see [39],
and references therein). In this section, we present
Lemma 1, which is a folk theorem for games with
subsystem takeovers.

Joint deviations are more complex than unilateral
ones. The coordinator of a subordinate group can
synchronize its subordinates’ deviations and divide

them in groups: a group of provoking agents, and a
group of “fifth column” agents. 7

For example, suppose that in the shared respon-
sibility game the subordinate group is s = {j1, j2}.
The coordinator can synchronize the following devi-
ation: Agent j1 provokes the autonomous agents by
not following its duty to be a Server. The autonomous
agents retaliate by punishing agent j1. We note that
the deviation of the provoking agents does not reveal
the fact that the “fifth column” agent, j2, is the co-
ordinators’ subordinate. Therefore, the autonomous
agents expect j2 to participate in the punishment of
its fellow member j1. Alas, the agent j2 betrays the
autonomous agents; while the autonomous group is
punishing, agent j2 deviates from punishing and en-
ters j1 in its access list. Hence, the synchronized
deviation can protect j1’s profit.

Lemma 1 considers the payoff profiles that the au-
tonomous group can guarantee in the presence of sub-
system takeovers. A payoff profile w that is strictly s-
enforceable ∀s ∈ S(D) is called strictly D-defendable.
If a ∈ A is an outcome of Γ for which u(a) is strictly
D-defendable in Γ, then we refer to a as a strictly
D-defendable outcome of Γ.

Lemma 1 (Corollary 1). Let Γ be an infinitely re-
peated game of G = 〈N, (Ai), (ui)〉 with the limit
of means criterion. Every feasible and strictly D-
defendable payoff profile of Γ has a subgame perfect
equilibrium payoff profile that is D-defendable.

Proof outline The strategy profile of the automata,
(atmi)i∈N , is illustrated in Figure 5. We use the con-
stant m∗ that we now turn to estimate. After the first
deviation, the sequence of punishment starts, during
which, the coordinator might increase its benefit for
% periods of betrayal, where 0 ≤ % ≤ |s′\s|. However,
a suffix of the punishment sequence is guaranteed to

7Fifth column [14]: Clandestine group of subversive agents
who attempt to undermine a nation’s solidarity by any means.
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q1

q2

q3

q4

q5

q6

q7

qm+5

a1

a2

a3

a1|¬j

a2|¬j

a3|¬j ∗

∗

On the right side of this figure, we sketch an automaton for agent i ∈ {1, 2, 3}.
For brevity, the sketch merely considers a specific deviating agent j ∈ {1, 2, 3},
such that i 6= j. †

• Norm (normal) states

The set Norm includes the states q1, q2, and q3. The Norm states emulate the
cooperation sequence of Figure 3(a). The automaton starts from state q1 and
chooses its action according to the first row of the table in Figure 3(a). As long
as agent j does not deviate, the automaton stays in the Norm states. Namely,
if all agents choose their actions according to the sequence of cooperation, then
from Norm state qk the automaton moves to state qk+1 mod 3. ‡

• The Norm-d (deviated) states

Suppose that agent j deviates while the automaton is in a Norm state, qk,
where k ∈ {1, 2, 3}. In this case, the automaton moves to state qk+3. The
set Norm-d includes the states q4 and q5. The Norm-d states emulate the
cooperation sequence of Figure 3(a). However, all of the Norm-d states lead
to the punishment periods. We use ∗ to denote an arbitrary output of the au-
tomaton. Namely, regardless of the choice of the other agents, the automaton
moves from state q4 to q5 and then to q6, which is the starting state of the
punishment.

• The P (punishing) states

The state that emulates the punishment scheme q6, q7, qm+5. A scheme for
punishing agent 3 appears in Figure 3(b). (It is easy to describe similar
schemes that punish any other agent.) The automaton starts punishing agent
j in state q6 and chooses its action according to the first row of the table
in Figure 3(b). Regardless of the choice of the other agents, the automaton
moves from state qk to the state qk′ , where k ∈ [6,m + 5] and k′ = k + 1
mod m+ 5.

• Estimating the constant m∗

We note that the maximum benefit of agent j from a single deviation is 1. Moreover, a complete cycle
of the cooperation sequence provides the payoff of frac13 (see Figure 3(a)), whereas in every period of
punishment j’s payoff is 0 (see Figure 3(b)). Therefore, agent j receives a benefit of 1− fracx3 whenever
j is being punished for x periods. Thus, m ≥ 3 is any integer that is an integral multiple of 3.
———————————————————
† We note that this sketch can be completed easily by considering any deviating agent. Moreover, we consider all the

transitions that the figure on the right does not describe. The state q6 (double circled) is the state to which all non-described

transitions go. ‡ We define m( mod g) to be the integer q with 1 ≤ q ≤ γ satisfying m = `γ + q for some integer ` (e.g., γ(

mod γ) = γ).

Figure 4: A sketch of a strategy for the shared responsibility game with 3 agents.

include |s′|m∗ periods in which there are no further
betrayals and the automaton plays vi|s′ . Thus, the

coordinator’s potential benefit is (γ + %)g∗, where g∗

is the maximal amount that any coordinator j ∈ N
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q1

qs
Dm∗ qs

m∗ qs

m
∗−1

qs
k

qs
2

qs′
m∗

qs′
2

qs′
Dm∗qs′

�m∗

a

a|¬s

a|¬s′

p−s

p−s

p−s|¬s′\s

p−s′

On the right, an automaton for agent i ∈ N is sketched. For brevity, the automaton considers: a single
subordinate group, s′ ∈ S(D), † and a sequence of cooperation that consists of the repetition of a single
outcome, i.e., γ = 1. ‡

• Norm (normal) states

The automaton starts from Norm state, q1, and chooses its action according to the profile of actions,
a = (ai)i∈N , that guarantees the strictly D-defendable outcome, w. As long as no subordinate group
deviates, the automaton stays in the Norm state q1. In the case where the subordinate group s deviates
from a, then the automaton moves to state qsm∗ from which the punishment of s begins.

• P (punishing) states

For each subordinate group, d ∈ S(D), the set P includes the punishing states {qdk}d∈S(D),k∈[2,Dm∗]. The
punishment of the subordinate group s ∈ S(D) uses a payoff profile, p−s that is s-enforceable. § As long
as the agents in N ′ = N \{s} do not deviate from the punishment scheme p−s, the automaton moves from
qsk to qdk′ , where k ∈ [2, Dm∗] and k′ = k + 1 mod m∗. ‡ Suppose that while the automaton is in state
qsk, the agents s′ \ s betray the autonomous group N ′ and deviate from the punishment scheme p−s. In
this case, the automaton moves from state qsk to state qs

′

`m∗ , where s′ is the set of exposed deviators, and
` = |s′|.
———————————————————
We note that: † This sketch can be easily completed by considering any subordinate group. Moreover, we consider all the

transitions that the figure above does not describe. The state q1 (double circled) is the state to which all such non-described

transitions go. ‡ The more general case appears in Figure 4. § Use m( mod g) as defined in Figure 4.

Figure 5: A strategy sketch for a repeated game with n agents and the limit of means criterion.

can gain when any subordinate group s ∈ S(D) de-
viates from any action profile in G. (Namely, g∗ is
the maximum of uj(a−s, a′s) − uj(a) over all j ∈ N ,
s ∈ S(D), a′s ∈ As and a ∈ A. Moreover, we assume
that g∗ is given.)

The coordinator cannot increase its benefit during
the punishment suffix, which has no further betray-
als. We explain how to choose a large enough m∗ so
that the punishment is effective. The alternative pay-
off of the coordinator is at least the sum of wj − vj |s′
taking over all |s′|m∗ periods of the punishment suf-

fix. Since w is strictly D-defendable and s ∈ S(D),
then w|s is s-enforceable and wj |s > vj |s (recall vj |s
from Equation 1). Therefore, there exists an integer
m∗ ≥ 1 that is an integral multiple of γ, such that
for all j ∈ N and s′ ∈ S(D):

g∗(γ +D − 1) < m∗(wj − vj |s′). (2)

The proof specifies the strategy described above.
Moreover the proof verifies that in the case where
there are no deviations, the automaton follows the
sequence of cooperation. In addition, for any non-
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empty subordinate group that deviates, the automa-
ton follows a finite and effective sequence of punish-
ment.

We note that existing work on joint deviation in
repeated games, such as [41, 1], does not bound the
costs that are related to the strategy complexity. The
finite automaton that is considered by Lemma 1 al-
lows us to present such bounds (see Section 6).

5.1 Proof of Lemma 1

Proof. The strategy follows the sequences of cooper-
ation as long as no agent deviates. In case agents
deviate, the strategy follows a scheme of punishment
for a finite number of periods. We start by speci-
fying the sequences of cooperation and punishment
before constructing an automaton that implements
strategy. We present a sketch of the strategy that
allows us to discuss key issues of concern. Then, in
the full description of the strategy, we address these
issues, before proving the strategy’s properties.

Sequence of cooperation that yields a pro-
file of w of average payoffs By definition, a vector
of payoff profile, w, is feasible in Γ if it is a convex
combination Σa∈Aαau(a) for which the coefficients
αa are rational. (See [9] for the generalization to
the case of vector with irrational numbers.) Sup-
pose that w is strictly D-defendable payoff profile,
such that w = Σa∈Aαau(a). Moreover, suppose that
αa = βa/γ for each a ∈ A, where every βa is an in-
teger and γ = Σa∈Aβa. We define the cooperative
sequence, W , as the sequence of outcomes (ak)γk=1 in
the repeated game that consists of an indefinite repe-
tition of a cooperation sequence of length γ in which
each a ∈ A is played for βa periods. We note that W
yields an average payoff profile over the cooperation
sequence, and hence in the entire repeated game, of
w.

Let s ∈ S(D) be the subordinate set, and N ′ =
N \s the autonomous group that take the strategy of
(atmi)i∈N ′ . We denote by W |s the set of sequences
((aki )i∈N ′)

γ
k=1 in which the automata (atmi)i∈N ′ fol-

low the sequence of cooperation.
The sequence of punishment, p−s, where

s ∈ S(D) Since w is D-dependable, then for every
s ∈ S(D) there is a s-enforceable payoff profile v|s.
For the sake of simplicity, we assume that v|s can
be achieved using any finite number of repetitions of
the profile of actions p−s. We note that the gener-
alization is straightforward; construct a sequence of
action profiles, P−s, in a similar manner to W . We

denote by P |s the set of sequences, p−s′ , in which all
of the automata (atmi)i∈N ′ punish the subset s′ ⊆ s
of agents s ∈ S(D).

The strategy and its sketch The strategy is
presented in Figure 6. The sketch in Figure 5 de-
picts the strategy as an automaton. For the reader’s
connivance, we illustrate keys issues of the strategy,
before presenting a formal proof of these properties.
◦ Cooperation and punishment The strategy gener-
ates indefinite repetition of the cooperation sequence
W as long as no agent deviates. Each agent punishes
any deviation for a limited number of periods. We
construct the strategy such that the punishment se-
quence begins after the last period in the sequence of
cooperation in which a deviation occurred (similar to
the example in Figure 4). Subsequently, the punish-
ers return to the beginning of a cooperation sequence
after the deviators have been punished.
◦ Groups of provoking agents, and “fifth column”
agents In the definition of D-defendable payoff
profiles (Section 4), we describe a social scenario in
which the coordinator divides the subordinate group,
s′ ∈ S(D), in two groups: a group of provoking
agents, s ∈ S(D), and a group of “fifth column”
agents, s′ \ s ∈ S(D). The provoking agents s, de-
viate during cooperation sequence W , while “fifth
column” agents, s′ \ s deviate not during cooper-
ation sequence. Rather, the “fifth column” agents
aim at conspiring with s and against the punishers
N \ (s∪ s′). Namely, suppose that s∪ s′ ∈ S(D) and
let a−(s∪s′) = b−(s∪s′)(((p−s)j)j∈N\(s∪s′)) be an ac-
tion profile of agents (s ∪ s′) take as a best response
to ((p−s)j)j∈N\(s∪s′). If ∃j ∈ s : uj(a−(s∪s′)) <
uj(p−s), then the conspires, s∪s′, may deviate during
s’s sequence of punishment and make j’s punishment
“sweet”.

We note that the coordinator may divide the sub-
ordinate group, s′, to at most D groups. Namely, all
agents, j ∈ s, deviate for the “first time” at differ-
ent periods, kj1 , . . . kj|s| , where kj ∈ s. At each of
these “first time” deviations, the strategy is caught
“unguarded”. Namely, the non-deviator agents may
lose some of their payoff. Nevertheless, the strategy
effectively punishes the agents of s′ for all deviations.

The perfection property of the strategy We
show that after all the deviators have deviated at
least once, the automaton take an s-enforceable pay-
off profile for |s|m∗ periods. During these periods,
the deviator’s benefit is washed off.

Let atm = (atmi)i∈N be automata that are con-
structed as specified in Figure 6. Let s ∈ S(D) be the
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subordinate set andN ′ = N\s the autonomous group
that take the strategy of (atmi)i∈N ′ . Let 〈N,H,%〉
be the extensive form of the game Γ. Claims 1 and 2
show that atm is a perfect Nash equilibrium that is
D-defendable. Claim 1 shows that any sequence of
punishments has at most m∗|s|(|s| − 1)/2 periods.

Claim 1. Let s′ ∈ S(D) be the subordinate group.
Let h ∈ H be the history that has a suffix h′ ∈W |s (in
which the automata (atmi)i∈N ′ follow the sequence
of cooperation). Moreover, h′ is a cooperation se-
quence in which a non-empty set of agents s ⊆ s′

deviates. Then, within γ periods of h′ the automata
(atmi)i∈N ′ reach the state P (s, |s|m∗). Moreover,
within m∗|s′|(|s′|−1)/2 periods from P (s, |s|m∗), the
automata (atmi)i∈N ′ start a sequence of punishment
h′′ ∈ P |s′ . Furthermore, h′′ is immediately followed
by a sequence of cooperation.

Proof. Without the loss of generality, suppose that
the first agent to deviate does it during the first cycle
of the cooperation sequence. Moreover, we assume
that h starts on the first period of the cooperation
sequence. We denote by kj the index of the first
period in which agent j ∈ s deviates in h′. Moreover,
without the loss of generality, we assume that j1 < j2
implies that kj1 ≤ kj2 for every j1, j2 ∈ s′.

The proof is followed by showing that:

Assertion 1 (The sequence of cooperation ends). On
the γth period of h′, automata (atmi)i∈N ′ reach the
state P (s, |s|m∗).

Let k ≥ γ be the (minimal) index of a period in h′

that is before the first period in which all automata
(atmi)i∈N ′ are in state (Norm1, ∅). Let dk = {j ∈
s′|kj < k} be the set of agents that have deviated
before period k.

Assertion 2 (Reaching an effective sequence of pun-
ishment). Within m∗|dk|(|dk| − 1)/2 periods from
P (s, |s|m∗) in h, all automata (atmi)i∈N ′ are in state
P (dk, |dk|m∗).

We note that Assertion 2 implies that once all
agents in s′ have deviated, then all automata
(atmi)i∈N ′ reach the state P (s′, |s′|m∗). By the def-
inition of the subordinate group s′ (see Section 4),
we can assume, without the loss of generality, that
all agents in s′ deviate and all automata (atmi)i∈N ′
reach the state P (s′, |s′|m∗). (In other words, we as-
sume that kj − kj−1 ≤ m∗(j − 1)(j − 2)/2.)

Assertion 3 (Returning to the sequence of co-
operation). Within m∗|s| periods (that are after
P (s′, |s′|m∗)) in which all deviators in s′ are held to
their minimal payoff, all automata (atmi)i∈N ′ are in
state (Norm1, ∅).

In other words, a sequence of cooperation starts
after a finite sequence of punishment that is in P |s.

• The sequence of cooperation ends – verifying
Assertion 1.

Let k′ ≤ k be the index in h′ of any period that
precedes the first deviation of agent j on the kj-th
period. By induction on k′, it is possible to show that
on that k′th period, atmi’s state, qi, is (Normk′ , d)
for any i ∈ N ′, where d0 = ∅, dj = dj−1 ∪ {j} and
d ( dj . The arguments comes from the assumption
that j deviates on the kj-th round and the definition
of τi() 1a. Therefore, all automata (atmi)i∈N ′ move
to state (Normk, d), where d ∈ S(D) and j ∈ d.

Let s be the set of agents that deviate during the
(first) cooperation sequence in h′. The proof of this
assertion is continued by similar arguments for each
of the periods in which any agent j ∈ s deviates for
the first time in h′. The rest of the proof of this
assertion is followed by the definition of τi(); It is easy
to see that item 1a of τi()’s definition holds not before
the state P (s, |s|m∗) is reached (and only item 1b is
applied).

• Reaching an effective sequence of punish-
ment – verifying Assertion 2.

By the definition of τi(), the condition in item 2a of
τi()’s definition holds only when the period index, k,
equals to kj for some j ∈ s. In all other periods k of
h in which kj < k < kj+1 : j ∈ s′ \ s, the automata
(atmi)i∈N ′ move from state P (dj , t) to state P (dj , t−
1) until τi()’s item 2b holds. Once item 2b holds, all
automata (atmi)i∈N ′ move to state (Norm1, ∅) and
the sequence of cooperation starts.

• The sequence of cooperation is reached – ver-
ifying Assertion 3.

The proof of this assertion is by the fact that the num-
ber |s′|(|s′| − 1)/2m∗ bounds the maximal number of
successive periods in which the condition in item 2a
of τi()’s definition holds. Once item 2b of τi()’s def-
inition holds, all automata (atmi)i∈N ′ move to state
(Norm1, ∅) and the cooperation sequence starts.
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Let h′′ be the maximal prefix of h′ that includes
at most one cooperation sequence from the set W |s
(i.e., periods in which any subset of s is punished).
Without the loss of generality, we assume that all of
the agents in s′ deviate in h′′. Claim 2 shows that
any sequence of punishments is effective.

Claim 2. Any coordinator jcoord ∈ s′ of the sub-
ordinate group s′ ∈ S(D) does not benefit from any
deviation of s′ from the strategy atm.

Proof. Let kj be the first period in h′′ in which agent
j ∈ s′ deviates. Without the loss of generality, we
assume that j1 < j2 implies that kj1 ≤ kj2 for every
j1, j2 ∈ s′. Let x, y, and z be the sums of j’s payoffs
for the different periods of h′′, which we define as
follows: The sum x considers the periods between the
first and γth one. The sums y considers the periods
between the (γ + 1)th one and the periods in which
all automata move to the state P (s′, |s′|m∗). The
sum z considers all the periods in which all automata
are in the states P (s′, t), where t ∈ [1, |s′|]. We show
that for any coordinator jcoord ∈ s′, the total sum
xjcoord

+ yjcoord
+ zjcoord

is smaller than the sum of
payoffs wjcoord

taking over the period of punishment.

The proof is followed by showing that for agent
j ∈ s, it holds that:

Assertion 4 (Potential benefit during the coopera-
tion sequence). xj ≤ g∗γ.

Let k ≥ γ be the index of a period in h′′ that is be-
fore the first period in which all automata (atmi)i∈N ′
are in state (Norm1, ∅). Let dk = {j ∈ s′|kj < k} be
the set of agents that have deviated before period k.
We denote by ξ(dk) the number of periods in h′′ in
which the automata (atmi)i∈N ′ follows the strategy
vj |dk

. We denote by % = {kj : γ < kj ≤ |h′′| ∧ j ∈ s′}
the number of periods in h′′ in which there is an agent
j ∈ s′ \ s that deviates for the first time while the
automata (atmi)i∈N ′ are in any of the punishment
states.

Assertion 5 (Benefits and detriments between the
states P (s, |s|m∗) and P (s′, |s′|m∗)). yj ≤ y+

j + y−j ,
where y+

j = %g∗, and y−j = Σ(ξ|dk
− 1)vj |dk

(recall
the definition of vi|s from Equation 1).

We note that by definition of g∗, we have that y+
j ≥

wjγ. We would like to explain why y−j ≤ wjΣ(ξ|dk
−

1). Since w is D-defendable, we have that wj ≥ wj |s′
for all s′ ∈ S(D) and j ∈ s′. Moreover, for all s ⊆ s′ it
holds that wj |s ≥ wj |s′ . We note that by Equation 1,

we have that wj ≥ wj |dk
≥ vj |d′k for all dk ⊆ d′k.

Therefore, y−j ≤ Σ(ξ|dk
− 1)vj |dk

≤ Σ(ξ|dk
− 1)wj .

Assertion 6 (Profits wipeout). zj < vj |s′m∗|s′|.

Then, by Assertion 7, any coordinator icoord ∈ s′
does not profit from a deviation of s′ from the strat-
egy profile atm.

Assertion 7 (The total sum).

xj + yj + zj < m∗wj |s′|+ wjΣξ(dk) (3)

We would like to note that the left side of Equal-
ity 3 represents the coordinators’ choice to deviate.
Moreover, the right side of Equality 3 represents the
alternative sum of payoffs. Namely, we sum up the co-
ordinator’s payoffs during a sequence of cooperation
that is in the length of the sequence of punishment.

• Potential benefit during the cooperation se-
quence – verifying Assertion 4.

The proof of this assertion is followed by Assertion 1
of Claim 1 and the definition of g∗.

• Benefits and detriments between the states
P (s, |s|m∗) and P (s′, |s′|m∗) – verifying Asser-
tion 5.

The proof of this assertion is followed by Assertion 2
of Claim 1. We note that Figure 5 illustrates the
sequence of punishment, which we now turn to look
at. Let k be an index of a period in the sequence
of punishment of h′′. The coordinator, jcoord ∈ s′,
decides if to order the subordinates to deviate in k.
We note that after the subordinate, j ∈ s′, deviates,
the automata (atmi)i∈N ′ punish j. Namely, playing
the strategy vj |dk

, where j ∈ dk. Thus, the agents
j ∈ dk may increase their payoff to at most g∗ if
the coordinator jcoord order a deviation. However,
when coordinator jcoord does not order a deviation,
the agents j ∈ dk receive the payoff vj |dk

.
The proof of this assertion is completed by sum-

ming in y+
j and y−j the payoffs of the periods in which

the coordinator jcoord decide, and respectively de-
cides not, to order the deviation of its subordinates.
The profits wipeout – verifying Assertion 6. By the
definition of τi(), we have that starting from state
P (s′, |s′|m∗), the automata (atmi)i∈N ′ take |s′|m∗
steps from state P (s′, |s′|m∗) to state (Norm1, 1) in
which the automaton i ∈ N ′ play vi|s′ .
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• The total sum – verifying Assertion 7.

By assertion 4, 5, and 6, Equality 3 can be rewritten
as:

g∗γ + Σ(ξ|dk
− 1)vj |dk

+ %g∗ +m∗vj |s′ |s′| < (4)
m∗wj |s′|+ Σξ(dk)wj ,

which implies

g∗γ + %g∗ +m∗vj |s′ |s′| < (5)
m∗wj |s′|+ Σξ(dk)(wj − vj |dk

) + %wj .

We wish to find the minimal value ofm∗, and there-
fore we write:

g∗γ + %g∗ − Σξ|dk
(wj − vj |dk

)− %wj < (6)
m∗|s′|(wj − vj |s′).

Since wj > vj |s′ , then there exists an integer
m∗ ≥ 1 that is an integral multiple of γ and sat-
isfies Equation 6. Moreover, since % ≤ D − 1 and
|s′| = D, then we can take an integer m∗ ≥ 1 that is
an integral multiple of γ and satisfies Equation 2.

Hence, the lemma.

6 Strategy Complexity

Computational game theory has several ways of mea-
suring complexity of games (see [38]). In Section 1,
we mentioned the computational complexity of games
with subsystem takeovers. We now turn to consider
the strategy complexity of these games. Kalai and
Stanford [33] define the complexity of an individual
strategy as follows. Let (sti)i∈N be a subgame per-
fect equilibrium. Then, the complexity of an individ-
ual strategy, sti, is the number of distinct strategies,
|{sti|h : h ∈ H}|, induced by sti in all possible sub-
games. The size of an automaton is the cardinality
of its state set. Kalai and Stanford [33] show that
the complexity of a strategy equals the size of the
smallest automaton that can implement the strategy.

Existing work on joint deviation in repeated games,
such as [41, 1], does not bound the costs that are re-
lated to the strategy complexity. Rubinstein [41] adds

to Aumann’s n-strong Nash equilibria (see [6]) the
perfection property for the limit of means criterion.
Rubinstein [41] presents an inductive definition of the
strategy that, on the t-th period of the game, consid-
ers all the deviations during the last T periods of
the game. We note that T is not explicitly bounded.
Moreover, in order to decide on the next action of the
strategy, the definition of the strategy in [41] consid-
ers all the payoffs of all the subsets, s ∈ 2N , of agents
during the last T periods. Our automaton uses a
(constant time) transition function for deciding on
the next action that the strategy should take. More-
over, we explicitly bound the number of periods in
which the agents in s are punished.

Abraham et al. [1] consider t-resilient Nash equi-
librium (where 1 ≤ t < n) and presents mecha-
nisms for finitely repeated games that use poly-time
(or probabilistic) Turing machine, which can be em-
ulated by finite automata. The reduction increases
the number of states that the automaton uses by a
non-polynomial factor. We consider simpler imple-
mentations.

Lemma 2 (Corollary 2). The complexity of a
strategy that deters subordinates’ deviations is in
Θ(D

(
n
D

)
), where n is the number of agents, and D is

an upper bound on the size of the subordinate group.

Proof outline A strategy that deters subordinates’
deviations is presented in Section 5. The automaton
that implements these strategies requires O(D

(
n
D

)
)

states (for the case of D ≤ n
2 ). The lower bound part

of this lemma is demonstrated by considering every
subordinate group, s ∈ S(D), and all the possible
sequences of deviations. There are at least

(
n
D

)
− 1

subordinate groups. The proof verifies the existence
of at least D different periods in which the deviators
may deviate before all of them deviate. Only after the
last deviation, can the strategy complete the punish-
ment of the subordinate. Therefore, there are at least
D(

(
n
D

)
−1) different subgames in which a subordinate

group deviates. Thus, by [33] the strategy complexity
is in Θ(D

(
n
D

)
).

6.1 Proof of Lemma 2

The proof of Lemma 2 is followed by Observation 1
and claims 3, 4, and 5.

Claim 3. Let us consider the automaton that is pre-
sented in Figure 6. The number of states that the
automaton has is in O((γ +m∗D)

(
n
D

)
).
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• Set of states Qi:

{(Normk, d) : either k = 1 and d = ∅ or 2 ≤ k ≤ γ and d ∈ {∅} ∪ S(D)} ∪ {P (d, t) : d ∈ {∅} ∪ S(D) and
1 ≤ t ≤ Dm∗}. † (The state (Normk, ∅) means that we are in the kth period of the cooperation sequence and
no agent deserves punishment. The state (Normk, s) means that we are in the kth period of the cooperation
sequence and the agents in s deserves punishment. The state P (s, t) (where s 6= ∅) means that the agents
in s is being punished and there are t periods left in which he has to be punished. The state P (∅, t) means
that a transient fault have happened and there are t periods left to recovery.)

• Initial state:

q0i = (Norm1, ∅).

• Output function fi():

In (Normk, s) for any s ∈ {∅} ∪ S(D) choose (ak)i; in P (s, t) choose (p−s)i if i 6∈ s ∧ s 6= ∅, and bi(p−s) if
i ∈ s ∧ s 6= ∅. For the case of s = ∅, we define p−∅ to be t-defendable Nash equilibrium in G, where t ≥ D
is maximal. ‡ We note that ∀i ∈ N ∧ s ∈ S(D) it holds that ui(p−s) ≥ ui(p−∅) and therefore no agent can
profit by deviating (and getting punished) by having (p−∅)i played for Dm∗ periods.

• Transition function τi():

To simplify the presentation, we define @si ∈ {∅} ∪ S(D) to be the set of deviating agents in automaton
atmi’s point-of-view when the automata output the action profile a ∈ A and atmi’s state is qi ∈ Qi. Namely,
we require that @si is a maximal subset of N , such that ((fj(qj))j)j∈N\@si

= (aj)j∈N\@si
.

1. From (Normk, d) move to (Normk+1( mod γ), d) unless: §

(a) When @si ∪ d 6∈ S(D), or agent j ∈ N plays (p−d′)j (where d′ ∈ {∅} ∪ S(D)) move to P (∅, Dm∗).
(b) When @si∪d ∈ S(D) move to (Normk+1( mod γ), @si∪d) if k < γ, to (Norm1, ∅) if k = γ∧@si∪d =
∅, and to P (@si ∪ d, |@si ∪ d|m∗) if k = γ ∧ @si ∪ d 6= ∅.

2. From P (d, t) move to P (d, t− 1) unless:

(a) When @si 6⊆ d move to P (∅, Dm∗) if @si ∪ d 6∈ S(D) ∨ d = ∅, and to P (@si ∪ d, |@si ∪ d|m∗) if
@si ∪ d ∈ S(D).

(b) When t = 1 ∧ (d = ∅ ∨ @si ⊆ d) move to (Norm1, ∅).

———————————————————
† We use m∗ as defined in Figure 5. ‡ For example, in the shared responsibility game we have that t = n (when all autonomous

agents choose to be Clients). § We use m( mod g) as defined in Figure 4.

Figure 6: A strategy for a repeated game with n agents and the limit of means criterion.

Proof. There are γ states of the type Norm. The
states of the type Norm − d can be divided into
the groups {(Normk, d) : d ∈ S(D) ∧ 1 < k ≤ γ}.
I.e., there are O(

(
n
D

)
) groups and γ − 1 members in

each. The states of the type P can be divided into

the groups {P (d, k) : d ∈ S(D)∧1 < k ≤ Dm∗}. I.e.,
there are O(

(
n
D

)
) groups and Dm∗ members in each.

The proof is completed by a summery of the number
of states in every type.

Observation 1 explains some aspect of strategies’
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perfection (see [43]). Let s ∈ S(D) be the group
of deviators. We consider the different sequences of
punishment for s. We say that a sequence of pun-
ishment P ′|s is maximal, if there is no sequence of
punishment P |s, such that ∀i ∈ N ′ = N \ s we have
that P ′|s ≺∗i P |s in Γ.

Observation 1. Let sti be a perfect strategy for de-
terring subordinate deviations in the game Γ. Then,
sti induces only maximal sequences of punishment.

Proof. The perfect strategy punishes s for a finite
number of punishment periods. We note that there
are many possible punishments schemes: There are
punishment schemes in which “only” the agents in s
are punished. Alternatively, there are schemes that
take the form of a “collective punishment”. Namely,
the non-deviating agents can punish j ∈ s by punish-
ing a group of non-deviating agents d 6⊆ s, such that
j ∈ d.

Let us consider the example of the shared responsi-
bility game. The punishment can be a finite number
of periods in which all non-deviating agents decide
to be clients. This way s’s minimal payoff is guaran-
teed and the automata size is reduced, because the
scheme employs merely one sequence of punishment.
However, from the perspective of an agent that does
not deviate, the cost of any “collective punishment”
is higher than the cost of the punishment in which
just the agents in s are excluded. This is what makes
the “collective punishment”, P |s, unbelievable.

Claim 4. Consider the shared responsibility game.
Let s and s′ be two different subordinate groups in
S(D), and let their corresponding maximal sequences
of punishments be P |s and P ′|s. Then, P |s and P |s′
are different.

Proof. Without the loss of generality, suppose there
exists agent j ∈ s \ s′. By the effectiveness of the
punishment scheme P |s, the agents of N ′ = N \ s
disconnect agent j from the communication graph in
P |s. By the maximality of P |s′ , the agents of N ′ =
N \ s do not disconnect j in P |s′ . Hence, the claim.

Claim 5. Let G be a game with symmetrical pay-
off matrix, and Γ a game that infinitely repeats G.
The complexity of perfect strategies that deter subor-
dinates’ deviations in Γ is in at least D(

(
n
D

)
− 1).

Proof. The proof is followed by counting the number
of possible subgames that starts at the first period of

the cooperation sequence, present a single sequence
of punishment, and then returns to the first period in
the sequence of cooperation.

There are at leat
(
n
D

)
− 1 different subordinate

groups. Then, by Observation 1 and Claim 4, we
have that each subordinate group can induce a dif-
ferent sequence of punishment. Given a subordinate
group, s, we show that there are |s| different sub-
games in which any non-empty subset of s deviates.
Therefore, by Kalai and Stanford [33], we have that
the strategy complexity is at leat D(

(
n
D

)
− 1).

Suppose that agent j0 ∈ s deviates during the
sequence of cooperation. Moreover, suppose that
agents j1, j2 ∈ s deviate in different periods of the
(first) sequence of punishment that follows j0’s devi-
ation. By Observation 1, only maximal sequence of
punishment are used. Therefore, we have that the
subgame in which j1 deviates before j2 does, is dif-
ferent than the subgame in which j1 deviates after j2
does.

We can generalize the above arguments to any non-
empty subset of agents in s \ {j0} and every permu-
tation of that subset by induction on the cardinality
of subset. Therefore, every permutation of s induces
a different subgame.

We note that by the symmetry of G’s payoff ma-
trixes, we have that the order in which the devia-
tors ji ∈ s join the punishment set, d ⊆ s does not
change the sequence of punishment. Namely, for all
s ∈ S(D), we have that all punishment sequences
p{j1}, p{j1,j2}, p{j1,j2,...}, . . . are identical for all per-
mutations j1, j2, . . . of s \ {j0}. Hence, there are at
least |s| different subgames that corresponds to s.

7 Self(ish)-Stabilization

Lemma 3 extends Lemma 1 by showing that the au-
tomata can be made to recover from transient faults.

Lemma 3 (Corollary 3). Let Γ be an infinitely re-
peated game of G under the limit of means crite-
rion. Then, there are self(ish)-stabilizing automata
that implement subgame perfect equilibria that are D-
defendable in Γ.

We consider two proofs of Lemma 3: a simple one
the uses known techniques of clock (state) synchro-
nization and a more general one. Dolev [22] presets
clock synchronization algorithms that within a finite
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number of steps after the last transient fault synchro-
nize the clock values. One can view the clock values
as the state of the automata. Namely, requiring iden-
tical state values of the autonomous automata is the
same as requiring the same time values in all clocks.
This simple proof assumes that all states are distin-
guishable, e.g., all automata send their state number
in every period. This assumption implies that during
the punishment period all automata have to commu-
nicate and that there is no “punishment by silence”.
Sometime this assumption is too restrictive. For ex-
ample, in some applications it might be required that
the autonomous agents do not communicate or in-
teract during the sequence of punishment. In this
case, no communication implies that the states are
indistinguishable. Therefore, we also consider a more
general proof in which only the first state of any pun-
ishment sequence is distinguishable. For the sake of
brevity, we present here the proof outline, and the
complete and general proof of Lemma 3 can be found
in [27] (and in Section 9 of the Appendix).

Proof outline Let us construct an additional se-
quence of punishment using the states P (∅, k), where
k ∈ [1, Dm∗]. In these states the automaton plays ac-
cording to a D-defendable Nash equilibrium. With-
out the loss of generality, suppose that the states
P (d,Dm∗) : d ∈ S(D)∪ {∅} are distinguishable from
all the other states. 8

Self-stabilization requires the properties of closure
and convergence that can be verified by a variant
function (see [22]). Every step of the automata mono-
tonically decreases the value of the variant function
until it reaches zero, which implies the end of the
stabilization period. In order to define the poten-
tial function, we represent the automata as directed
graphs.

• The automaton as a graph

The graph Φ = (V,E) has the set of states as the set
of vertices, V . Moreover, the transitions function,
τ(), induces directed edges of E, i.e., (v, u) ∈ E ↔
∃a ∈ A : τ(v, a) = u.

8This assumption can be implemented, for example, by let-
ting all selfish-computers to broadcast the indices of their cur-
rent states at the end of every period. We note that any ad-
ditional costs that the broadcast induces can be compensated
by selecting a larger m∗.

• The variant function

We define LongDistance(qj) to be the length of the
maximal simple and directed path in graph Φ, from
state qj to state P (∅, Dm∗). (A simple and directed
path is one without any directed cycles.) We de-
fine the variant function Φ() to be 0 if all automata
(atmi)i∈N ′ are in the same state, where s ∈ S(D) is
the subordinate group and N ′ = N \ s. For all other
cases, we define Φ(c) = maxj∈N ′ LongDistance(qj).
It can be observed in Figure 5 that 0 ≤ Φ(c) ≤
(γ +m∗D2).

• Closure

Suppose that Φ() = 0, which mean that automata
(atmi)i∈N ′ are in the same state. Since the automata
are deterministic they all move to the same state, and
Φ() = 0 holds.

• Convergence

The proof verifies this property by showing that all
steps decrease the value of Φ(). Let us construct the
automaton, such that all undefined transitions move
to state P (∅, Dm∗). In particular, the automaton
moves to state P (∅, Dm∗) when more than D devia-
tors are observed. The proof verifies that if automa-
ton atmi : i ∈ N ′ is in any punishing state, then
all automata (atmi)i∈N ′ move to state P (∅, Dm∗),
and stay in P (∅, Dm∗), until all automata (atmi)i∈N ′
move to state P (∅, Dm∗).

We follow the spirit of Kalai and Stanford [33] and
define the strategy complexity of a self-stabilizing
strategy, sti, as the number of distinct strategies in-
duced by sti in all possible subgames that start after
stabilization. In that sense, Lemma 3 shows a self-
stabilizing strategy that has asymptotically the same
complexity as the non-self-stabilizing one (presented
in Lemma 1).

8 Related work

The solution concepts of strong Nash equilibrium [5,
41, 6] aims at deterring a coalition of deviators that
may all benefit from their joint deviations. Moreover,
the solution concepts of resilient Nash equilibrium [1]
aims at deterring a coalition of deviators that may
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increase the payoff of at least one deviator, but com-
mitted to keep the benefits of all the other deviators.
We mention that coalition-proof strategies consider
agents that can communicate prior to play, but can-
not reach binding agreements (see [12, 36]). In the
context of repeated games, the collective dynamic
consistency (of coalition-proof strategies) considers
equilibria for which agents do not wish to jointly rene-
gotiate throughout the course of the game (see [11]).
This work considers harder deviations, in which the
coordinator benefit and the subordinates may lose
payoff. Therefore, our strategy can deter the devia-
tions that are mentioned above.

Self(ish)-stabilization [24, 23, 19, 25, 16] was earlier
considered for single stage games. The game author-
ity [24, 23, 25] verifies that no agent violates the game
model of the stage game. Spanning trees among self-
ish parties are studied by [19]. Reactive systems that
are inspired by game theory appear in [16].

The research path of BAR fault tolerance sys-
tems [4] studies cooperative services that span mul-
tiple administrative domains, such as: a backup
service [3], a peer-to-peer data streaming applica-
tion [35], and Synchronous Terminating Reliable
Broadcast [17]. BAR fault tolerance systems consider
a minority of Byzantine computers that deviate arbi-
trarily and a single selfish deviator (out of the set of
all selfish-computers). Between every pair of selfish-
computers, the grim trigger strategy is used, which
suffers primarily from the inability to recover from
transient faults (see [10]). In other words, an agent
that (involuntarily) deviates once is punished forever.
We consider the more realistic model of infinitely re-
peated games, in which any group of D agents can
always deviate. We offer a more sensible solution;
the system punishes the deviators for a bounded pe-
riod after the last betrayal. This type punishment
better fits the cases of non-deliberate misbehavior of
selfish-computers and transient faults.

8.1 Discussion

• Why the model of repeated games is consid-
ered?

In distributed systems, single stage games reflect
tasks that are less common compared to settings of
infinitely repeated games. Repeated games are best-
known for their ability to model cooperation among
selfish agents. For example, the perfect folk theorem
(see [9, 42]) presents a strategy where its payoff in
infinitely repeated games is better than the payoff

of the single stage Nash equilibrium. The theorem
can explain periods of war and peace among selfish
agents that can deviate unilaterally. For this reason,
the model of repeated games is regarded as more re-
alistic than the model of single stage games.

• Why using DFA and not Turing machines?

Deterministic and finite automata (DFA) can imple-
ment the strategies of the folk theorem (see [39], and
references therein). The literature considers strate-
gies that can be implemented by deterministic and
finite automata as a separate and “simpler” class of
strategies (see [8, 40]). In fact, there is evidence that
this class is strictly weaker than the class of strate-
gies that Turing machines can implement (see the
survey [30] and references therein).

We note that some of the existing results (such
as [1, 2]) consider poly-time (or probabilistic) Tur-
ing machine, which can be emulated by finite (or
probabilistic) automata. The reduction increases the
number of states that the automaton uses by a non-
polynomial factor. We present simpler implementa-
tions.

• Why not to consider coalitions in which all
agents are faulty? 3

Eliaz [28] and later [17, 3, 35, 18, 4] consider coali-
tions in which all of the deviators may possibly be
faulty. 3 The inherent difficulty is that no punish-
ment deters a coalition in which all agents are Byzan-
tine. In this case, the literature proposes either to
use strategies for single stage games, or grim trigger
strategies.

In distributed systems, single stage games reflect
tasks that are less common compared to settings of
infinitely repeated games. Lack of credibility is the
Achilles’ heel of grim trigger strategies; deviating
agents are forever punished due to mistakes that are
made at the moment of weakness. Furthermore, the
system cannot recover from transient faults in these
settings.

We assume that a single rational agent controls a
set of deviators and propose a perfect strategy that
deters the deviators with a finite period of punish-
ment. Thus, in the context of self-stabilization it is
essential to require that not all deviators are faulty. 3
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• Why not to consider coalitions in which all
agents are rational?

A coalition in which all deviators are rational is re-
quired to promote (or at least protect) the benefit
of its members (see [5, 41, 6, 1, 12, 36], and refer-
ences therein). This is not the case with subsystem
takeovers; here the coordinator dictates the actions
of its subordinates and ignores their benefits. There-
fore, by assuming that not all deviators are rational,
it is “harder” for the autonomous (non-deviating yet
selfish) agents to protect their benefits, because the
requirements regarding joint deviations are explicitly
less restrictive.

We do not claim to be the first to consider strate-
gies for protecting the benefit of the autonomous
(non-deviating yet selfish) agents (see [1, 5]). How-
ever, we present strategies for protecting the bene-
fit of autonomous agents in the presence of deviat-
ing coalitions that do not protect the social benefit
of all deviators. It is important to see that previous
works [1, 5] consider strategies for protecting the ben-
efit of autonomous agents in the presence of deviating
coalitions that indeed protect the social benefit of all
deviators.

• Are there strategies for coping with more
than one rational deviator within the subordi-
nate group?

Our definition of subsystem takeovers has a straight-
forward extension that considers collations of k ra-
tional agents that collectively and totally control t
subordinate agents. For example, the rational agent
1 controls the subordinating agents 11, 21 and 31, and
the rational agent 2 controls subordinating agents 12,
22 and 32. Another example is when agents 1 and
2 reach an agreement about the behavior of their
subordinates. Our strategies can deter such devia-
tions because we consider an arbitrary coordinator
and punish the entire subordinate group.

Generally speaking, given an integer t ∈ [1, |N |],
we have that a t-defendable Nash equilibrium is a t-
resilient Nash equilibrium, and a t-resilient Nash equi-
librium is a t-strong Nash equilibrium. Also, let X be
any of the properties defendable, resilient, and strong .
Then, for any t ∈ [2, |N |], we have that a (t + 1)-
X Nash equilibrium is also a t-X Nash equilibrium.
Therefore, a 1-X Nash equilibrium [37] is the conven-
tional Nash equilibrium, and n-X Nash equilibrium
is the conventional strong Nash equilibrium [6, 41].

• Are the assumptions on synchrony and ob-
servable actions holds in distributed system?

These are well-known settings that can be realized;
every period can be defined to be sufficiently long
to allow the stabilization of the underlying protocols
(i.e., the actions’ implementation). This behavior
can be facilitated by game authority [24, 23, 25] in
which a self-stabilizing Byzantine clock synchroniza-
tion protocol periodically restarts a Byzantine agree-
ment protocol. The agreement explicitly facilitates
observable actions, and the synchronization protocol
overcomes timing failures.

8.2 Conclusions

Decentralized systems consisting of selfish-computers
are becoming part of reality; new aspects of these sys-
tems need to be exposed and studied. One such an
example is subsystem takeover of a selfish-computer
over other computers by the use of hostile malware.
Game theory does not consider this type of joint de-
viation.

We investigated infinitely repeated games in the
presence of an arbitrary deviator that controls an un-
known group of subordinates. We consider infinitely
repeated games with the limit of the mean criterion.
Interestingly, the strategy for deterring subordinates’
deviations, in such games, is simple; it can be de-
scribed by deterministic and finite automaton. We
discover that the number of states of the automaton
is in Θ(D

(
n
D

)
), where n is the number of agents, and

D is an upper bound on the size of the subordinate
group.

In practice, high performance communication net-
works process communication by dedicated fast hard-
ware. The hardware is essentially an implementation
of a deterministic and finite automaton. Therefore,
the hardware may cope with a predefined number of
subordinates, D, which is a bound on the size of a
subordinate group. In the very rare cases in which D
exceeds the designed bound, the automata will not
act as desired; due to the loss of synchronization, the
automata may never recover.

Therefore, we must consider the case in which the
system resources are eventually exhausted, e.g., when
an unexpected number of computers deviate. We ad-
dress this problem by designing self-stabilizing au-
tomata that recover once the system returns to fol-
low the designer’s original assumptions. Interestingly,
the self-stabilization design criteria provide an ele-
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gant way for designing decentralized autonomous sys-
tems.
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Appendix

9 Proof of Lemma 3

We start by formally defining self-stabilizing systems
before presenting complementary definitions. Then,
we turn to prove Lemma 4.

9.1 Self-stabilizing systems

System executions We describe the global state of
the system, the system configuration, by the vector of
the state of the automata 〈q1, q2, · · · qn〉. We describe
the system configuration in the instance in which the
pulse is triggered, when there are no messages in tran-
sit. We define an execution (or run) R = c0, c1, . . . as
a sequence of system configurations ci, such that each
configuration ci+1 (except the initial configuration c0)
is reached from the preceding configuration ci by an
execution of steps by all the automata. 9

The task of self(ish)-stabilizing automata
The self(ish)-stabilization tasks are characterized by
maximizing the payoffs of selfish-computers in self-
stabilizing systems (see [19, 16, 23]). In this work,
we consider the payoff of subordinate groups in the
repeated game Γ = 〈N,H,%?= (%?

i )〉.
9Histories vs. executions: We terms histories and ex-

ecutions are different. Recall that a history is a sequence of
action profiles, whereas an execution is a sequence of configu-
rations.

The task τ of a distributed system is defined by a
set of executions LE called legal executions. We define
legal executions in which the automata (atmi)i∈N
implement subgame perfect equilibria that are D-
defendable in Γ. The definition of the set LE =
∪s∈S(D)LE(s) includes the executions from the sets
LE(s), where s ∈ S(D) is a subordinate group.
The definition of LE(s) considers all possible exe-
cutions in which the autonomous group of automata
(atmi)i∈N ′ (where N ′ = N \ s) implements a pro-
file of strategies, such that the profile of strategies
(atmi)i∈N is a subgame perfect equilibrium that is
D-defendable, and (atmi)i∈s is a profile of arbitrary
strategies.

Namely, R ∈ LE(s) if, and only if, for every
two consecutive configurations, c, c′ ∈ R (where
c = 〈q1, · · · qn〉 and c′ = 〈q′1, · · · q′n〉), and every ac-
tion profile (a−s, as) ∈ A (which are the steps that
all the automata take from c to c′), we have that:
(1) (fi(qi))i∈s = a−s is the output of automaton
(atmi)i∈N ′ , and (2) τi(qi, (a−s, as)) = (q′i)i∈N ′ .

10

9.2 Correctness proofs

The correctness of a self-stabilizing system is demon-
strated by considering every execution that follows
the last transient fault and is, therefore, proved as-
suming an arbitrary starting configuration. The sys-
tem should exhibit the desired behavior (of task τ)
in an infinitely long period after a finite convergence
period.

A configuration c is safe with regard to a task τ and
to the distributed system if every nice execution that
starts from c belongs to LE. We say that the system
satisfies its task τ when its execution is in LE. A
system is (strongly) self-stabilizing if, starting from an
arbitrary configuration, it reaches a safe configuration
within a finite convergence period.

A system is (pseudo) self-stabilizing [15, 22] if,
starting from an arbitrary configuration, it reaches a
safe configuration within a finite convergence period,
and exhibit the desired behavior (of task τ) in an in-
finitely long period of legal behavior; but may stray
from this legal behavior a finite number of times.

We note that the proof of a self-stabilizing system
demonstrates both convergence property and the clo-
sure property.

10Minority groups with arbitrary strategies: We note
that as ∈ As is an arbitrary output that the subordinate group,
(atmi)i∈s, takes from c to c′. Moreover, (q′i)i∈s is a profile of
arbitrary states of the subordinate group.
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9.3 Complementary definitions

Distinguishable states One way to regain system
consistency after a transient fault is to perform a
global reset. The global reset technique requires all
automata to set their state to a unique state and to
stay in that state until system consistency is achieved.
We note that assuming that all of the actions of the
automata encode the states of the automata implies
that the game model should consider the communica-
tion costs of the state related information. We wish
not to unnecessarily restrict the possible set of game
models and therefore we specify our assumptions re-
garding to the state related information.

We say that the set of states Q′i ⊂ Qi is dis-
tinguishable (from Qi \ Q′i) if, and only if, ∀q′i ∈
Q′i∧qi ∈ Qi\Q′i it holds that fi(q′i) 6= fi(qi). We note
that any set of states can be made distinguishable
by letting the automata communicate the states’ in-
dices. However, additional communication costs may
change the game model. We add the following as-
sumptions to the automata presented in Figure 6.
We assume that each of the states P (d,m∗) (where
d ∈ {∅} ∪ S(D)) is a distinguished one, and that the
set {P (d, t)|d ∈ {∅} ∪ S(D) ∧ 1 ≤ t ≤ m∗} is distin-
guishable as well.

We note that in case that additional communica-
tions costs are require for allowing the punishment
states to be distinguishable, then larger values of m∗

could compensate these overheads. Moreover,

∀i, j ∈ N ∧ qi ∈ Qi ∧ qj ∈ Qj , and qi is (7)
distinguishable from qj , we have that i ∈ @sj .

9.4 The proof

Lemma 4 (Self(ish)-Stabilization). Let Γ be an in-
finitely repeated game of G. Then, there exists
self(ish)-stabilizing automata that implement a sub-
game perfect equilibrium that is D-defendable of the
limit of means criterion of Γ.

Proof. We show that the automata constructed in
Figure 6 are self-stabilizing. Self-stabilization re-
quires the properties of closure and convergence that
can be verified by a variant function (see [22]). Ev-
ery step of the automata monotonically decreases the
value of the variant function until it reaches zero,
which implies the end of the stabilization period. In
order to define the potential function, we represent
the automata as directed graphs.

The automaton as a graph The graph Φ =
(V,E) has the set of states as the set of vertices,
V . Moreover, the transitions function, τ(), induces
directed edges of E, i.e., (v, u) ∈ E ↔ ∃a ∈ A :
τ(v, a) = u.

The variant function
A simple and directed path is one without any di-

rected cycles. We define LongDistance(qj) to be the
length of the maximal simple and directed path in
graph Φ, from state qj to state P (∅, Dm∗).

Let R be an execution of a system that execute
the automata (atmi)i∈N ′ as depicted in Figure 6,
and c ∈ R be a configuration, where N ′ = N \ s
and s ∈ S(D) be the subordinate group. We define
dis(c, j) to be the value of LongDistance(qj) in con-
figuration c. We define the potential function Φ(c)
to be 0 if all automata (atmi)i∈N ′ are in the same
state in c (i.e., ∃q ∈ Q : ∀i ∈ N ′ → qi = q), and
Φ(c) = maxj∈N ′ dis(c, j) for all other cases. By look-
ing at Figure 5 and Figure 6, we can easily conclude
Observation 2.

Observation 2. 0 ≤ Φ(c) ≤ γ +m∗D(D + 1)/2.

Claim 6 demonstrates that once Φ(c) = 0 holds,
the system never leaves the legal execution.

Claim 6 (Closure). Let c′ be the configuration that
immediately follows c. Then, Φ(c) = 0→ Φ(c′) = 0.

Proof. By the assumption that Φ(c) = 0, we have
that ∃q ∈ Q : ∀i ∈ N ′ → qi = q. Recall that we as-
sume that all non-deviating automata (atmi)i∈N ′ are
deterministic, and therefore (@si)i∈N ′ are determin-
istic. Since automata (atmi)i∈N ′ observe the same
output a, then automata (atmi)i∈N ′ move from q to
τi(q, a). Hence, Φ(c′) = 0.

Let c be an arbitrary starting configuration of sys-
tem execution R. Claims 7, 8, 9, and 10 show that
within O(γ+D2m∗) steps, the system reaches a safe
configuration, c′′, in which Φ(c′′) = 0.

Claim 7. Suppose that ∃i ∈ N ′ : qi = P (∅, Dm∗)
in c. Then, c′′ ∈ R : Φ(c′′) = 0 within O(γ + Dm∗)
steps from c.

Proof. This proof shows that qi = P (∅, Dm∗) ∧
Φ(c) 6= 0 in c implies that:

Invariant 1. qi = P (∅, Dm∗) ∧ Φ(c) 6= 0 in c′

Invariant 2. j ∈ @si (and i ∈ @sj)

Invariant 3. Φ(c) > Φ(c′)
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Therefore, by Observation 2, we have that the sys-
tem reaches configuration c′′ ∈ R within O(γ+m∗D)
steps from c, in which Φ(c′′) = 0.

• Verifying invariants 1 and 2

Suppose that Φ(c) 6= 0, which implies (by definition
of Φ()) that ∃j ∈ N ′, such that qi 6= qj . Let c′ be
the configuration that immediately follows c. By def-
inition of fi, the automaton atmi’s state, P (∅, Dm∗),
is distinguishable from atmj ’s state. Therefore, by
Equation 7, we have invariant (2). This implies that
qi = P (∅, Dm∗) in c′, by definition of τi() 2a. More-
over, as long as Φ(c′) 6= 0 the invariant (1) holds.

• Verifying Invariant 3

We show that ∀j ∈ N ′−{i}, we have that dis(c′, j)−
dis(c, j) ≥ 1 ∨ dis(c′, j) = 0, and thus Φ(c) > Φ(c′).
Let us look at the atmj ’s state in c:

1. (Normk, d). Then qj = P (∅, Dm∗) in c′ (by defi-
nition of τi() 1a). I.e. dis(c, j) ≥ 1 > dis(c′, j) =
0.

2. P (∅, t). Then qj = P (∅, Dm∗) in c′ (by defini-
tion of τi() 2a and the fact that i ∈ @sj). I.e.
dis(c, j) ≥ 1 > dis(c′, j).

3. P (d, t) ∧ d 6= ∅. Then, by definition of τi() 2a
and 2b, the value of qj in c′ is:

(a) P (∅, Dm∗). Then dis(c′, j) = 0.

(b) P (d, t − 1) (where t > 1) or P (@si ∪ d, t)
(where @si 6⊆ d). Then dis(c, j) > dis(c′, j).

(c) (Norm1, ∅). Then dis(c, j) > dis(c′, j).
Moreover, by case 1 within one step from
c′, case 3a holds.

Claim 8. Suppose that qi = P (di, ti) in c, where
di ∈ {∅} ∪ S(D) ∧ ti ∈ [1, Dm∗]. Then, the system
reaches configuration c′′ ∈ R within m∗D steps from
c, where Φ(c′′) = 0 or the assertion of Claim 7 holds
in c′′.

Proof. We denote by c the configuration that imme-
diately precedes c′. The proof show that the following
invariant. For every pair of configuration c and c′, ei-
ther one of the following hold:
(1) the assertion of Claim 7 holds in c′,
(2) Φ(c′) = 0, or

(3) dis(c, j) > dis(c′, j).
Thus, by Claim 7 and Observation 2, the system
reaches configuration c′′ within O(γ + m∗D) steps
from the starting configuration.

Let qj : j ∈ N ′ be atmj ’s state in c. We show that
for every possible value of qj in c, we have that either
(1) the assertion of Claim 7 holds in c′, (2) Φ(c′) = 0,
or (3) dis(c, j) > dis(c′, j).

1. (Normtj , dj), where dj ∈ {∅} ∪ S(D) ∧ tj ∈
[1, γ]. Then by this claim assumption that qi =
P (dj , tj), the definition of f() (the assumption
that the set {P (d, t)|d ∈ {∅} ∪ S(D) ∧ 1 ≤ t ≤
Dm∗} is distinguishable), and definition of τ()
1a, we have that qj = P (∅, Dm∗) in c′. I.e. the
assertion of Claim 7 holds in c′.

2. P (dj , 1), where dj ∈ {∅} ∪ S(D). By τi() (2a
and 2b) definition, qj in c′ is:

(a) P (∅, Dm∗). Then the assertion of Claim 7
holds in c.

(b) (Norm1, ∅). Then dis(c, j) > dis(c′, j).
Moreover, by case 1 @k ∈ N ′, such that
qk = (Normtk , dk) in c′, where dk ∈ {∅} ∪
S(D) ∧ tk ∈ [2, γ]. Therefore, in c′ either:
(1) ∀k ∈ N ′ : qk = (Norm1, ∅) (i.e., Φ(c′) =
0), or (2) within one step qj = P (∅, Dm∗)
(i.e., the assertion of Claim 7 holds).

(c) P (@si ∪ d, t) (where @si 6⊆ d). Then
dis(c, j) > dis(c′, j).

3. P (dj , tj), where dj ∈ {∅}∪S(D)∧ tj ∈ [2, Dm∗].
By τi() (2a and 2b) definition, qj in c′ is:

(a) P (∅, Dm∗). Then the assertion of Claim 7
holds in c.

(b) P (dj , tj − 1) (where tj > 1) or P (@si ∪
dj , tj) (where @si 6⊆ dj). Then dis(c, j) >
dis(c′, j).

4. P (∅, Dm∗). Then the assertion of Claim 7 holds
in c.

Claim 9 (Strong convergence). Suppose that w =
Σa∈Aαau(a) is a payoff profile for which ∃a1, a2 ∈
A : αa1 , αa2 > 0∧a1 6= a2. Then ∃c′′ ∈ R : Φ(c′′) = 0
within O(γ+m∗D) steps from execution’s R starting
configuration c.
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Proof. By Claim 7 and Claim 8, it is sufficient to show
that c′ ∈ R within O(γ + m∗D) steps from c, such
that ∃i ∈ N ′ : qi = P (d, t), where d ∈ {∅}∪S(D)∧t ∈
[1, Dγm∗]. By the definition of τi() 1b, if ∃i ∈ N :
qi = (Normk, d)∧d 6= ∅ in c, then the system reaches
c′ within O(γ) steps from c. Therefore, we complete
the proof by considering all starting configurations,
c, in which all automata

∀i ∈ N : qi = (Normki , ∅) ∧ ki ∈ [1, γ]. (8)

Suppose, without the loss of generality, that ∀i ∈
N∃ki ∈ [1, γ] : qi = (Normki , ∅) in c , and that
i < j → ki ≤ kj . We note that k1 = kn implies that
all automata are in the same state and Φ(c′′) = 0.
By the definition of τi() 1a and 1b, within at most
γ steps from c, there is a configuration c′, such that
fi((Normk1 , ∅)) 6= fi((Normkn , ∅)) (or predicate 8
does not hold). Hence, in c′, the states q1 and qn
are distinguishable and within one step all automata
set their state to be P (∅, Dm∗) (by the definition of
τi() 1a). Hence, we have shown that the system is
self-stabilizing.

Let c ∈ R be a configuration. We define the po-
tential function Ψ(c) = arg min0≤x<γ ∃i, j ∈ N ′ :
fi((Normki+x, ∅)) 6= fj((Normkj+x, ∅)). We note
that Ψ(c) ∈ [0, γ − 1] by this claim assumption that
αa1 , αa2 > 0 ∧ a1 6= a2. The rest of the proof follows
by induction on Ψ(c). In every step of the induction,
the system takes a step from configuration c to con-
figuration c′. By the definition of τi() 1a and 1b, in
c′ it holds that the invariant of equation 8 does not
hold, or Φ(c′)− Φ(c) ≥ 1.

Suppose that the assertion αa1 , αa2 > 0 ∧ a1 6= a2

of Claim 9 does not hold. Then, by the definition of
τi(), predicate 8 (see Claim 9’s proof) holds as long
as no automaton atmj : j ∈ N \N ′ deviates. Claim
10 consider this case, and can be demonstrated by
the arguments of Claim 9’s proof. Hence, the system
is pseudo self-stabilizing and may stray from legal
behavior at most once (when atmj deviates).

Claim 10 (Pseudo convergence). Suppose that w =
Σa∈Aαau(a) is a payoff profile for which ∀a1, a2 ∈
A : αa1 , αa2 > 0 → a1 = a2. Let c ∈ R be a
configuration that immediately follows the first de-
viation by automaton atmj : j ∈ N \ N ′. Then
∃c′′ ∈ R : Φ(c′′) = 0 within O(γ + m∗D) steps from
c.

Hence the lemma.
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