
ParMarkSplit: A Parallel Mark-Split Garbage

Collector Based on a Lock-Free Skip-List

Nhan Nguyen1 and Philippas Tsigas1,∗ and H̊akan Sundell2

1 Chalmers University of Technology, Gothenburg, Sweden
{nhann,tsigas}@chalmers.se

2 University of Bor̊as, Bor̊as, Sweden
Hakan.Sundell@hb.se

Abstract. Mark-split is a garbage collection algorithm that combines
advantages of both the mark-sweep and the copying collection algo-
rithms. In this paper, we present a parallel mark-split garbage collec-
tor (GC). Our parallel design introduces and makes use of an efficient
concurrency control mechanism for handling the list of free memory in-
tervals. This mechanism is based on a lock-free skip-list design which
supports an extended set of operations. Beside basic operations, it can
perform a composite one that can search and remove and also insert two
elements atomically. We have implemented the parallel mark-split GC in
OpenJDK’s HotSpot virtual machine. We experimentally evaluate our
collector and compare it with the default concurrent mark-sweep GC in
HotSpot, using the DaCapo benchmarks, on two contemporary multipro-
cessor systems; one has 12 Intel Nehalem cores with HyperThreading and
the other has 48 AMD Bulldozer cores. The evaluation shows that our
parallel mark-split keeps the characteristics of the sequential mark-split,
that it performs better than the concurrent mark-sweep in applications
that have low live/garbage ratio, and have live objects locating con-
tiguously, therefore being marked consecutively. Our parallel mark-split
performs significantly better than a trivial parallelization based on locks
in terms of both collection time and scalability.

Keywords: garbage collector, concurrent programming, mark-split,
mark-sweep, parallel garbage collection, lock-free data structures.

1 Introduction

Garbage collection (GC) is a form of automatic memory management to re-
claim memory occupied by objects that are no longer used. Being introduced in
1960 [1], GC has evolved to become an important feature offered by many mod-
ern programming languages. Mark-sweep [1], copying [2], and their derivations
are among the algorithms that have been extensively studied in the literature;

∗ The research leading to these results has been partially supported by the Euro-
pean Union Seventh Framework Programme (FP7/2007-2013) through the EXCESS
Project (www.excess-project.eu) under grant agreement 611183.

M.K. Aguilera et al. (Eds.): OPODIS 2014, LNCS 8878, pp. 372–387, 2014.
c© Springer International Publishing Switzerland 2014

ParMarkSplit 373

and their pros and cons have been identified in a range of scenarios. The mark
phase in mark-sweep has a time complexity proportional to the amount of live
data, while the sweep phase has one proportional to the size of the heap. Mark-
sweep can be improved by executing the sweep phase concurrently with the
execution of the mutator, which has been suspended while marking. This tech-
nique is referred to as lazy sweeping [3]. Mark-region [4] improves the mark-sweep
by dividing the heap in several regions and compacts objects to one end of the
regions, and can thus reduce memory fragmentation. Garbage-First[5], which
also works in per-region manner, marks objects and then evacuates them from
current regions to new ones so that current regions can be reclaimed as a whole.
Differing from the mark-sweep collectors, copying ones need time proportional
to the amount of live data. However, they waste half of the space reserved for
the need of the collectors, and move objects during collection. Copying collec-
tors perform better than mark-sweep ones when the amount of live data is small
compared to the size of the heap. This is the case where mark-sweep is penalized
by the complexity of its sweep phase.

Sagonas and Wilhelmsson [6] introduced a GC technique called mark-split
that can combine advantages of mark-sweep and copying collection. Mark-split
evolves from mark-sweep but removes the sweep phase. Instead, the list of free
spaces is built during marking, and can thus be used for allocation when the
mark phase completes. Mark-split starts by creating the list of free intervals
containing only a big free interval spanning the whole collected space. Then it
proceeds to the mark phase. For each unmarked live object, it marks the object
and calls a special split operation to exclude the marked space from the free
intervals. The split operation which takes an object as an argument splits a free
interval containing that object into two smaller free intervals, one to the left and
the other to the right of the object. When the mark phase completes, the list of
free intervals contains only free memory, thus can be used for new allocation.

Mark-split removes the sweep phase from mark-sweep, and thus achieves a
time complexity proportional to the size of the live data set. However, this comes
with an overhead cost of maintaining a set of free memory intervals. The number
of free intervals is much smaller than the number of live objects because some live
objects reside adjacent to each other. It seems beneficial, in certain situations,
to avoid the sweep phase at the cost of this overhead, which depends on the
distribution of live objects and also highly on the data structure selected to
store the free intervals. The data structure should preferably provide search for
an interval at sub-linear cost, e.g. binary search trees, splay trees, or skip-lists.
The original mark-split uses a sequential balanced search tree [6], which might
hurt its performance.

While mark-split is comparable to mark-sweep and even outperforms it in
some situations, to the best of our knowledge, this is the first effort to design
a mark-split collector for multi-core systems. Our contribution is to parallelize
mark-split based on a highly concurrent data structure to handle the free inter-
vals. We consider using lock-free data structures for their many advantages such
as providing high performance, progress guarantees and immunity to deadlocks

374 N. Nguyen, P. Tsigas, and H. Sundell

and livelocks [7]. However, previous implementations of concurrent data struc-
tures that supported the basic operations couldn’t be used directly to parallelize
mark-split, as they were not powerful enough to build a list of free intervals
in mark-split. This was because mark-split frequently performs a combined op-
eration of multiple basic operations. First it finds the correct interval and then
performs split on it. This latter operation is also a combination of two operations;
i) remove one interval and possibly ii) add two intervals. Concurrent environ-
ments require that split operations must perform all those actions in an atomic
step, and thus the concurrency control is a challenge for the data structure to
be used. A lock-free skip-list such as the one introduced in [8] can satisfy the
performance but not the capability requirements of mark-split. We therefore ex-
tend it with a novel concurrency control to handle the free intervals and use the
new skip-list to parallelize mark-split.

The rest of this paper is organized as follows. Section 2 introduces our ex-
tended skip-list algorithm to meet the requirements for parallelization of mark-
split. The implementation of a parallel mark-split algorithm with the design of
a lazy-splitting mechanism are presented in Section 3. Section 4 shows our eval-
uation of the GC inside HotSpot, along with result discussions before section 5
concludes the paper.

2 Concurrent Skip-List with Extended Functionality

I)

S2 E2E1S1

II a)

S2 E2E1S1 S3 E3X S4 E4

TH

H T

E1S1 S3 E3 S4 E4H T

II b)

...

...

... ...

...

... ...

...

...

...

III a)

S3 E3E1S1 S5 E5X S4 E4H T

...

E1S1 S5 E5 S4 E4H T

III b)
...

S1 S2E1 E2

S1 S3E1 E4S4E3

S1 S5E1 E4S4E5

E1S1 S5 E5 X S4 E4H T

IV a)
...

IV b)

S4 E4E1S1 TH

...... ...

CAS

CAS

CAS

CAS

CAS

CAS

E1 E4S4S1

...

...

...

Fig. 1. Multiple-step process for marking
and deleting blocks simultaneously with
inserting new nodes, thus fulfilling the
corresponding (to the right) abstract op-
erations on the free-list

We present a skip-list with extended
functionality offering significant exten-
sions over the original lock-free skip-list
in [8]. A skip-list is a search data struc-
ture which stores elements in different
layers of ordered linked lists with dif-
ferent densities to achieve tree-like be-
haviour. The original skip-list [8] can
insert a new element, search for or
remove an exiting element, but not a
combination of those in one atomic op-
eration. The use of recursion in that
skip-list also made its memory man-
agement complicated and not efficient.
Our extensions of the new skip-list are
significant both when it comes to op-
erations that it supports and in the
algorithmic design. The new replace2

operation gives the ability to atomically
replace a node with one or two new
nodes; making the skip-list usable in the context of mark-split. Regarding the
performance, we redesigned the data structure to make use of hazard pointers[9]
for memory reclamation purposes and thread-local-storage.

ParMarkSplit 375

The split operation described in the mark-split algorithm operates on an ab-
stract free-list representing a set of free intervals. A free interval can be repre-
sented by a node in a skip-list, where key represents the start address S of the
interval and the corresponding value represents its end address E. As used in
[8], the skip-list is basically made out of a singly-linked list with the nodes or-
dered by their keys. To allow probabilistic logarithmic expected time complexity
for searching a particular node, nodes are inserted with a varying height such
that several auxiliary lists are created with several layers of decreasing density
with increasing height. For modifications to the abstract state of the free-list,
only changes on the lowest layer’s linked list are representative, i.e., changes
are first performed atomically on the lowest layer and then modifications of the
other layers can be performed concurrently with other operations. All necessary
additional steps of the operation are eventually completed by making use of a
suitably designed helping scheme. The helping scheme is designed to allow a
concurrent operation to help another on-going operation when the former want
to access the data that the latter is processing. A node in the skip-list can be
defined to be present as soon as it is inserted on the lowest layer (i.e., there is
another present node with a next pointer on the lowest level pointing to it) and
deleted whenever the next pointer on the lowest layer for the corresponding node
is marked (e.g. bit 0 set to 1). Atomic changes to the state of each node being
present or deleted can be made using the Compare-And-Swap (CAS) primitive1.

The split operation can result in four distinct changes on the abstract free-list.
Each of these four changes must be possible to perform atomically with respect
to each other. The possible changes are to either change S or E of an interval,
replace the interval with two new intervals, or remove the interval altogether.
To facilitate the representation of these abstract changes in the skip-list, an
important observation is that it is possible to extend the skip-list to actually
allow atomic deletion and insertion. The CAS primitive has the capability to
both mark the next pointer and change it in the same operation. Thus, it is
possible to atomically replace a node in the skip-list with one or more new
nodes. The way that this modified skip-list is made to represent the abstract
changes on the free-list, is shown in Fig. 1.

-Step I illustrates how a free-list containing the intervals 〈S1, E1〉 and 〈S2, E2〉
can be represented with two corresponding nodes in the skip-list.
- In Step IIa, the interval 〈S2, E2〉 is split into two intervals 〈S3, E3〉 and
〈S4, E4〉, where S3 = S2 and E4 = E2. By means of a CAS , the pointer on the
lowest level of node [S2, E2] is atomically marked and made to point to the new
node [S3, E3] which is already pointing to the new node [S4, E4]. The deleted
node is then removed (also part of the helping scheme) in step IIb, with the
CAS operating on the previous node’s corresponding next pointer. The remaining
layers are then handled in a similar manner.

1 CAS, a synchronization primitive available in most modern processors, compares the
content of a memory word to a given value and, only if they are the same, modifies
the content of that word to a given new value.

376 N. Nguyen, P. Tsigas, and H. Sundell

- In Step IIIa, the interval 〈S3, E3〉 is modified to become 〈S5, E5〉 where either
S5 = S3 or E5 = E3. By means of a CAS , the pointer on the lowest level of node
[S3, E3] is atomically marked and made to point to the new node [S5, E5]. The
deleted node is then finally removed (also part of the helping scheme) in step
IIIb, with the CAS operating on the previous node’s corresponding next pointer.
The remaining layers are then handled in a similar manner.
- In Step IVa, the interval 〈S5, E5〉 is removed altogether from the free-list. By
means of a CAS , the pointer on the lowest level of node [S5, E5] is atomically
marked. The deleted node is then finally removed (part of the helping scheme)
in step IVb, with the CAS operating on the previous node’s corresponding next
pointer. The remaining layers are then handled in a similar manner.

The lock-free property is fulfilled by properly designing the helping scheme
so that whenever an attempt made to perform a CAS for the a-part of the steps
fails, the helping scheme makes sure that the b-part is being performed before
attempting the a-part again.

2.1 Implementation

The implementation of the extended skip-list is described in Figs. 2 and 3 . The
operation split removes a given interval (i.e., the start and endmemory addresses
of the live object) from the list of free intervals represented by the skip-list. The
node that contains the given interval is searched for, with the search starting
from the head node at the highest level. As the search is done in the skip-
list level by level downwards, the previous node on each level is stored in the
thread-local-storage savedNodes array. These remembered previous nodes are
later used when deciding to either replace or remove the found node, according
to the rules described in Section 2. If the found node, represented by node, is
concurrently modified, the corresponding replace or remove attempts will fail,
and the whole split operation is repeated.

Operation replace2 describes how node can be atomically replaced by two new
nodes node1 and node2. First the next pointer of node on the lowest level is
atomically modified using CAS , to both contain the deletion mark (represented
by the pointer value of 1) and instead point to node1. Thereafter, node is fully
removed from the skip-list, and then node1 and node2 are inserted together,
starting from level 1 and going upwards. During this insertion, node1 or node2
can have been concurrently deleted, in which case the insertion is aborted and
helping is applied to make sure the deleted node is fully removed. Before actually
starting modifying next pointers of previous nodes, the deletion mark is prop-
agated upwards on all levels of the next pointer of node using CAS operations.
This step is also required to be done by all concurrent operations that apply
helping. The next step is then to modify the next pointer of all previous nodes
of node such that they should instead point to the next node of node, starting
with the highest level of the next pointers of node and going downwards. This is
done by using CAS to atomically update the next pointer of the previous node,
possibly given by savedNodes[i], from originally pointing to node to instead

ParMarkSplit 377

1 void s p l i t (void ∗ s t a r t , void ∗end)
2 do
3 Node ∗node , ∗prev = head ;
4 for (i = MAX HEIGHT; i >= 0; i−−)
5 for (; ;)
6 node = prev . next [i] ;
7 i f (node & 1)
8 Go backwards in path using savedNodes[i+ 1] or higher and help prev if needed
9 i f (node matches i n t e r v a l) break ;

10 prev = node ;
11 savedNodes [i] = prev ;
12 bool keepLe f t = (s ta r t−node . s t a r t) ≥ T;
13 bool keepRight = (node . end−end) ≥ T;
14 int he ight = log2random (1 , MAX HEIGHT) ;
15 i f (keepLe f t && keepRight)
16 ok = rep l a c e 2 (node , new Node(node . s t a r t , s t a r t , he ight) , new Node

(end , node . end , he ight)) ;
17 else i f (keepLe f t)
18 ok = rep l a c e 1 (node , new Node(node . s t a r t , s t a r t , he ight)) ;
19 else i f (keepRight)
20 ok = rep l a c e 1 (node , new Node(end , node . end , he ight)) ;
21 else
22 ok = remove (node) ;
23 while (! ok) ;

24 bool r ep l a c e 2 (Node ∗node , Node ∗node1 , Node ∗node2)
25 Connect all next[] of node1 to node2
26 do
27 Node ∗next = node . next [0] ;
28 i f (next & 1) return fa l se ;
29 node2 . next = next ;
30 ok = CAS(&node . next [0] , next , (node1 | 1)) ;
31 while (! ok) ;
32 do remove (node) ;
33 for (i =1; i<node1 . he ight ; i++)
34 do
35 Node ∗prev = savedNodes [i] ;
36 Node ∗next = prev . next [i] ;
37 If prev is deleted or not the previous node according to node1, update savedNodes[i]

while applying helping if necessary, and repeat
38 node2 . next [i] = next ;
39 ok = CAS(&prev . next [i] , next , node1) ;
40 while (! ok) ;
41 If node1 or node2 has been marked for deletion, perform helping if needed and exit

for-loop
42 return true ;

43 bool r ep l a c e 1 (Node ∗node , Node ∗node1)
44 do
45 Node ∗next = node . next [0] ;
46 i f (next & 1) return fa l se ;
47 node1 . next = next ;
48 ok=CAS(&node . next [0] , next , (node1 | 1)) ;
49 while (! ok) ;
50 do remove (node) ;
51 for (i =1; i<node1 . he ight ; i++)
52 do
53 Node ∗prev = savedNodes [i] , ∗next = prev . next [i] ;
54 If prev is deleted or not the previous node according to node1, then update

savedNodes[i] while applying helping if necessary, and repeat
55 node1 . next [i] = next ;
56 ok = CAS(&prev . next [i] , next , node1) ;
57 while (! ok) ;
58 if node1 has been marked for deletion, perform helping if necessary and exit for-loop
59 return true ;

Fig. 2. Operations of the skip-list

378 N. Nguyen, P. Tsigas, and H. Sundell

60 struct Node
61 void ∗ s t a r t , end ;
62 int he ight ;
63 Node∗ next [he ight] ;
64 static Node ∗head = new Node(−∞ , −∞ , MAX HEIGHT) ;
65 static Node ∗ t a i l = new Node(∞ , ∞ , MAX HEIGHT) ;
66 thread static savedNodes [MAX HEIGHT] ;

68 void do remove (Node ∗node)
69 Mark node.next[x] on all levels x using CAS
70 for (i = node . height −1; i >= 0; i −−;)
71 Node ∗prev = savedNodes [i] , ∗next = node . next [i] & (˜1) ;
72 bool ok=CAS(&prev . next [i] , node , next) ;
73 i f (! ok)
74 Update savedNodes[i] to be the previous node of node and perform helping if

necessary of deleted nodes in the path, and repeat. If previous node cannot be
found, perform next lap in the for-loop

75 bool remove (Node ∗node)
76 do
77 Node ∗next = node . next [0] ;
78 i f (next & 1) return fa l se ;
79 ok = CAS(&node . next [0] , next , (next | 1)) ;
80 while (! ok) ;
81 do remove (node) ;
82 return true ;

Fig. 3. Data structures, auxiliary do remove, and remove operation of the skip-list

point to the next node. As concurrent helping can have been applied, it is im-
portant to notify this state when trying to update a possibly outdated pointer
in savedNodes[i].

Operation replace1 , which replaces the free interval with another interval, fol-
lows the similar logic as replace2 but only one new node, node1, atomically re-
places node. Remove operation deletes a node as follow. First, the next pointer
of node on lowest level is atomically modified using CAS , to contain the deletion
mark. Thereafter, node is fully removed from the skip-list by do remove.

For internal memory management, hazard pointers [9] are preferably used.
Each hazard pointer represents a memory address that can be set by an indi-
vidual thread in order to signal that the corresponding object is currently in use
and should not be reclaimed. The thread-local-storage savedNodes can then be
implemented by a corresponding number of hazard pointers. To also allow the
search part of split to safely pass through (i.e., de-reference) next pointers that
are marked, without applying helping, the same hand-over trick as used in [10]
can be applied.

2.2 Correctness

We now sketch (because of space constraints) the proof of correctness for the
linearizability and lock-free criteria.

Lemma 1. The implementation of the split operation, described in Fig.2, is lin-
earizable with respect to other concurrent split operations.

Proof: Linearizability is demonstrated by giving the respective linearizability
points for the corresponding executions of the split operations in four cases:

ParMarkSplit 379

Case 1 - split into two intervals: A split operation that results in this case takes
effect at the successful CAS in line 30. Before the CAS takes effect, the nodes
node1 and node2 cannot be reached by the search part of any concurrent split

invocation, and node is not marked for deletion. After the CAS takes effect,
the nodes node1 and node2 can clearly be reached by the search part of a
concurrent split, as node is now referring to node1 as being the next node, and
node has been logically deleted.

Case 2 - keep the left interval: a split that results in this case takes effect at the
successful CAS in line 48 . Before the CAS takes effect, the node node1 (contain-
ing the left interval) cannot be reached by the search part of any concurrent
split, and node is not marked for deletion. After the CAS takes effect, the node
node1 can clearly be reached by the search part of a concurrent split as node is
referring to node1 as being the next node, and node has been logically deleted.

Case 3 - keep the right interval: a split that results in this case takes effect at
the successful CAS in line 48 . Same arguments holds as for Case 2.

Case 4 - remove the interval: A split that results in this case takes effect at the
successful CAS in line 79 . Before the CAS takes effect, node is not marked for
deletion. After the CAS takes effect, node has been logically deleted, which will
be noted by any concurrent split operations that will fail to modify node, as
the CAS in lines 30 and 48 requires the mark to not be set of the next pointer.

��
Lemma 2. The implementation of the split operation, described in Fig.2, is lock-
free.

Proof: The lock-free property of the split operation is maintained if a not finite
execution of a loop for one invocation of the operation, is a result of a progress of
another concurrent invocation. Assuming that the searched interval exists, the
lines 6-10 are indefinitely repeated due to concurrent deletions. These deletions
are due to successful concurrent CAS in lines 79, 30, and 48, all resulting in
progress for the corresponding invocations. The lines 3-23 are repeated due to
failed replace2 , replace1 , or remove functions. These functions fail in lines 28, 46,
or 78, due to concurrent deletion of node. These deletions are due to successful
concurrent CAS in lines 30, 48 and 79, all resulting in progress for the corre-
sponding invocations. The lines 35-40 can indefinitely repeat due to concurrent
deletions or insertions, which is progress for the corresponding invocations. Same
arguments can be applied for the loops in lines 53-57 and lines 77-80. ��

3 Parallel Mark-Split

We are first presenting the design of a lazy-splitting mechanism for our parallel
mark-split algorithm, and then the main implementation, a.k.a ParMarkSplit.

3.1 Lazy Splitting

We design a lazy-splitting mechanism to improve the efficiency of the splitting
part. Originally, whenever a live object is marked, an interval is split to exclude

380 N. Nguyen, P. Tsigas, and H. Sundell

the space occupied by the marked object from the free intervals. We called
this design aggressive splitting. Splitting for every marked object is inefficient
in multi-threaded environment as it causes high contention at the shared data
structure. We observe that: marking threads often consecutively mark objects
that locate adjacent. The number of those adjacent marked objects is observed
about 10% to 61% of the total number of live objects in applications in the
DaCapo benchmarks. It is possible to perform splitting one time for adjacent
objects that are marked consecutively, instead of splitting for each individual
marked objects. We design a mechanism to do so, called lazy-splitting.

The lazy-splitting mechanism works as follows. Each marking thread main-
tains a memory range of adjacent objects recently marked but not yet “split”.
When it marks a new object, the object’s memory is coalesced to the range if
they are adjacent. Otherwise, it performs split for the range and the range is
set to the object’s memory. At the end of marking, split is called for the re-
mained range. The lazy-splitting mechanism reduces the number of accesses by
marking threads to the list of free intervals compared to aggressive splitting
at a cost of maintaining not-yet-split interval locally at each marking thread.
The lazy-splitting benefits the parallel mark-split algorithm when the perfor-
mance gain by the reduction of the number of calls to split can cover the cost:
(N −M).C1 > N.C2, where N is the total number of live objects; M is the total
number of split operations that the lazy-splitting performs; C1 is the cost of a
split operation and C2 is the cost to add a marked object to the not-yet-split
interval. It is reasonable to assume that, for specific application and platform,
these costs are constants. Therefore, whether the lazy-splitting mechanism ben-
efits ParMarkSplit collector mainly depends on the (N −M)/N ratio. An auto
switch mechanism for determining when to use lazy-splitting is easy to design by
using a threshold t to decide when to use lazy-splitting. Based on the evaluation
results, we recommend t = 10%. By default, lazy-splitting is applied as it is
observed to benefit the parallel mark-split GC. But, lazy-splitting is not going
to be applied when the GC finds, while collecting, that (N −M)/N < t.

3.2 Implementation

A parallel version of mark-split can be achieved by performing the following
modifications to the concurrent mark-sweep collector (CMS) [11]
– When GC starts, empty the skip-list, then add one interval of the entire

region to it.
– When a thread marks an object during the mark phases: If aggressive splitting

is used, the thread calls split to remove the occupied space from the skip-list.
If lazy-splitting is used, the thread book-keeps the object for the lazy-splitting
mechanism.

– At the end of the Remark phase (i.e., the mutator is still suspended), convert
the list of free intervals to the format of the allocator’s free list. Remove the
Sweep phase.

The correctness of the algorithm in the presence of interleaving among concurrent
operations can be achieved thanks to the design of the extended skip-list which

ParMarkSplit 381

allows split to be performed atomically and in a lock-free manner. The lock-free
property of the skip-list, when the number of objects to be marked is finite,
guarantees the termination of all executed split, and therefore, the mark phases.

We implement our parallel mark-split collector as a collector for the 64-bit
OpenJDK 7’s HotSpot virtual machine - an open source implementation of the
Java SE Platform contributed and supported by Oracle. The collector is named
ParMarkSplit. The HotSpot uses a generational heap layout which divides its
memory space into two parts: young and old generations. The young generation
is to contain recently allocated objects, while objects that have been lived for
a while are placed in the old generation. ParMarkSplit serves as a collector for
the old generation, similar to CMS. One implementation issue of ParMarkSplit
based on the CMS is that CMS is dedicated to work for the old generation in
a generational heap. This brings difficulty for a plain comparison of the two
algorithms in which they are used to collect a whole heap. Disabling the genera-
tional option in HotSpot so that the collectors work on the whole heap requires
thorough modifications of the memory management that would have touched
the HotSpot intensively. We find that it is more practical to maintain the gener-
ational heap layout, similar to other known commercial JVM, which also allows
the comparison of the collectors in an industrial standard environment.

4 Evaluation

We are presenting an experimental evaluation of our parallel mark-split collec-
tor and comparing it with other collectors in the HotSpot, using the DaCapo
benchmarks. Then we discuss the memory overhead and characterize applica-
tions that can benefit from ParMarkSplit. We opted to compare ParMarkSplit,
with lazy-splitting (PMS) and without it (PMS1), to existing HotSpot’s CMS
as it was implemented based on CMS. Our evaluation also includes a lock-based
parallel mark-split (PMS Lock) which uses a binary search tree that relies on a
single mutex lock to synchronizes concurrent accesses to store free intervals.

The collectors were evaluated in two scenarios. In the first scenario, GCs were
configured to work in a stop-the-world mode where the mutator was suspended
during collection. This setting allowed us to exclude the synchronization cost
between the old GCs and the mutator. Such an execution provides a better look
at the performance of the design itself. In the second scenario, the GCs were
evaluated in the concurrent mode where the mutator was not suspended during
collection. This is the scenario that CMS was designed for.

The DaCapo suite [12] was used for benchmarking. DaCapo contains a set
of open-source, general-purpose JVM benchmarks, and is representative of real-
world Java applications. We ran the benchmarks and reported results from rep-
resentative applications which have rich memory behaviors, as tested by Gidra L.
et.al [13] and Kalibera T. et al. [14]: lusearch, avrora, sunflow, tomcat and xalan.
We also found that the Dacapo benchmarks use much less memory than our
available memory and do not produce much garbage in the old generation. Too
big heap might not trigger any old generation collection, though the young gen-
eration collection could be triggered often. In order to focus on garbage collection

382 N. Nguyen, P. Tsigas, and H. Sundell

of the old generation, the heap sizes were chosen to be close to the benchmark’s
working set size. They were 50 megabytes (MB) for aurora, 400MB for xalan
and 100MB for the others. Corresponding flags are set to allow the GCs working
in multi-threaded mode. The other flags were left on default values.

The experiments were run on two contemporary NUMA multiprocessor plat-
forms running Ubuntu Linux with kernel 3.0.0. One has two Intel Nehalem 6-core
processors running at 2.4GHz with HyperThreading, 48GB of RAM, and sup-
port up to 24 concurrent hardware threads. The other has four AMD Bulldozer
12-core processors at 2.6GHz, 64GB of RAM and supports up to 48 concurrent
hardware threads. In each experiment, we iterated a benchmark six times so that
the old generation’s collection can be triggered for several cycles.

4.1 Stop-the-world Scenario

In the stop-the-world scenario, we evaluate the lazy-splitting mechanism and the
garbage collection time of the evaluated GCs in five applications of the DaCapo
benchmarks. We varied the number of threads that collect garbage (GC threads).
As we observed that the performance of the evaluated GCs does not change
significantly above 15 threads (due to the known poor scalability of CMS), we
report the results up to this number of GC threads.

We first evaluate the lazy-splitting mechanism by comparing the number of
split operations performed by ParMarkSplit in each collection cycles before and
after adopting lazy-splitting mechanism. In general, the lazy-splitting mechanism
helps ParMarkSplit reducing the number of split operations to be performed. In
avrora and sunflow, lazy-splitting can reduce this number by around 50%. But
in xalan applications, the reduction is only about 4 − 6%. The reason may be
that live objects marked by the GC in xalan interleave with garbage. Therefore
lazy-splitting can not reduce the number of calls to split as much as in other
applications. We expect that the lazy-splitting mechanism benefits PMS, in term
of collection time, the most in avrora and sunflow.

The benefits of lazy-splitting are reflected in the performance of the ParMark-
Split collector. Fig. 4 presents the collection time of different GCs in the HotSpot
in our Intel and AMD systems. In four out of five benchmarks on the Intel one,
lazy-splitting helps reducing the collection time of ParMarkSplit, especially in
avrora and sunflow. Only in xalan, the improvement of lazy-splitting are not
clear as the gained performance is not enough to pay-off for the overhead cost.
Comparing to PMS Lock, the ParMarkSplit implementations perform signifi-
cantly better in all applications. The performance of ParMarkSplit compared to
CMS, however, are mixture of good and bad results. There are two applications,
avrora and sunflow, in which ParMarkSplit works better than CMS. In others,
CMS works better. In seeking for the reason of this result, we notice that avrora
and sunflow have higher ratios of adjacent live objects over the total number of
live objects compared to the other DaCapo applications. These applications can
benefit ParMarkSplit from the caching effect as the GC accessing the same inter-
vals for a short time and help ParMarkSplit to work more efficient. We analyze
this observation further in section 4.4.

ParMarkSplit 383

Fig. 4. Garbage collection time (sec) in the stop-the-world scenario

Fig. 5. Pause time when the GCs work concurrently with the mutator. Data columns
at each label, from left to right: PMS1, PMS, PMS Lock and CMS. Longest concurrent
(or GC) pause when GC works in concurrent mode (or includes pauses when the GC
switches to stop-the-world); Average pause: average of all the pauses by the old GC.

Another observation is the scalability of different GCs in Fig. 4. We can see
that the PMS Lock performs worse as the number of GC threads increases.
This result is not surprised as the lock protecting the skip-list becomes a hot
contention point when many GC threads concurrently access it. Meanwhile, the
ParMarkSplit collectors, with and without lazy-splitting, as well as CMS are, at
least, not scaling down its performance as the number of GC threads increases.

Considering the tested hardware platforms, we found that ParMarkSplit per-
forms better on the Intel than on the AMD. One possible reason can be that the
AMD system has NUMA architecture with four nodes which results in higher
cost for accessing the shared skip-list.

4.2 Concurrent Scenario

In the concurrent scenario, GCs collect garbage concurrently with the mutator,
i.e., the scenario that CMS was built for. We evaluated the pause times of our
GC during the collection, in addition to the benchmark’s execution times.

We measured the pause time at different number of GC threads. CMS sus-
pends applications during the initial mark and remark phase. ParMarkSplit,
which derives from CMS and adds the splitting work to these phases,

384 N. Nguyen, P. Tsigas, and H. Sundell

Fig. 6. Benchmark time (sec) for the HotSpot with different GCs

is expected to have longer pauses than the corresponding CMS’s pauses. This
reflects in the longest concurrent pause and average pause, which are pauses
during concurrent collection, in Fig. 5. The same figure also shows the longest
GC pause of the old generation GC which includes pauses when the collector
switches to working in stop-the-world mode under certain circumstance, e.g the
old generation is full during concurrent collection. Due to the lack of space, we
include only the results of sunflow and xalan applications, representing for ap-
plications which may or may not benefit from ParMarkSplit. We can observe
that both average and longest concurrent pauses of ParMarkSplit are longer
than those of CMS, as expected from the design. In current HotSpot, the initial
mark phase runs single-threaded while the remark phase, though can run multi-
threaded, has many parts running sequentially as well. As these two phases run
mostly sequentially, the pause time in ParMarkSplit, which uses lock-free syn-
chronization based on compare-and-swap operation, are penalized dramatically.
We can expect that when these two phases are fully parallelized in the HotSpot,
pause time of ParMarkSplit will be improved significantly, at least proportion-
ally to the speedup of the lock-free skip-list. Regarding the garbage collection
pause time, we also notice that the longest GC pause time does not follow the
trends of the longest concurrent pause time across the applications. In sunflow,
the ParMarkSplit with or without lazy-splitting usually achieves shorter longest
GC pauses than both the lock-based one and CMS. However, in xalan, the Par-
MarkSplit collectors have shorter longest GC pauses than the lock-based one,
but longer than CMS. This observation can be drawn from both the AMD and
Intel platforms. There are also different in term of absolute values between the
two architecture. The AMD system usually has longer pauses than the Intel one.

Regarding the relation between the application’s response time and the GC’s
pause time, it is noticeable that GC pause time is not necessarily the same as
the application response time, which means how long it takes an application to
responds to a request by users or by other applications. Even though pause time
is an indicator for the maximum application response time in the worst case,

ParMarkSplit 385

Table 1. The estimated size of the skip-list, and of the bitmap of Printesiz’s technique

avrora lusearch sunflow tomcat xalan
Number of nodes (thousands) / Size (MB)

Intel 2.0/ 0.3 14.4/ 2.1 4.9/ 0.7 49.1/ 7.1 55.0/ 7.9

AMD 2.2/ 0.3 16.6/ 2.3 4.3/ 0.7 46.4/ 6.7 57.6/ 8.3

Estimated size of bitmap (MB)

Bitmap 0.78 1.56 1.56 1.56 6.25

the contribution of the GC’s pause time to the mean application response time
is less and less important in systems with heavy loads, as studied by Persson M.
and Cummins H. from IBM [15].

ParMarkSplit brings the split part to the mark phase, but it also removes the
sweep phase. Does this change reflect in the overall throughput of the applica-
tions? Fig. 6 plots the execution time of the benchmarks at different numbers
of GC threads. In some specific cases of lusearch and xalan applications, CMS
performs better than PMS. In sunflow, however, PMS performs slightly better
than CMS. Excepts for those cases, we did not observe significant differences
in the benchmark’s execution time between PMS and CMS. Comparing to the
lock-based parallel mark-split, the benchmark times of ParMarkSplit are lower
in most cases. ParMarkSplit has also shown that it works better than CMS in
sunflow, both in terms of pause time and throughput. We will analyze the reason
that ParMarkSplit works well in certain applications in section 4.4.

4.3 Memory Usage

We can estimate the memory overhead used to store free intervals based on the
memory used by the skip-list. Each free interval is stored as a skip-list’s node,
which occupies approximately 18 memory words; two for the start and the end of
the free interval, one for the node’s level in the skip-list, and at most max level
pointers pointing to the next nodes in the linked list at each level of the skip-
list. During its construction, the skip-list decides max level so that 2max level is
approximately its average size. As our estimated average number of free intervals
is 32000, max level is set statically to 15. The estimated memory used by the
skip-list in a 64-bit system is presented in Table 1.

We observe that avrora and sunflow have the lowest number of free intervals
among the benchmarks. This is because their marked live objects often reside
next to each other as discussed above. The memory overhead in avrora and sun-
flow is less than 1% over the heap size (0.3/50MB and 0.7/100MB, respectively),
which is negligible. This cost is higher in applications where the number of free
intervals are high; approximately 2% in lusearch and xalan, and 7% in tomcat,
where the heap sizes are 100MB, 400MB and 100MB respectively. The size of
the skip-list is usually small in applications where their live objects often reside
adjacent to each other, making the memory overhead become negligible. Com-
pared to the memory overhead of Printezis’s technique, which uses a bitmap to

386 N. Nguyen, P. Tsigas, and H. Sundell

skip over contiguous unmarked objects while sweeping [11], ParMarkSplit uses
less memory in avrora and sunflow, but more in other benchmarks.

The fragmentation behavior of ParMarkSplit is similar to that of CMS, as it
is expected by design. It is possible to check the fragmentation level during or
after a collection cycle by checking the size of the skip-list. When the heap is
considered too fragmented, a compaction algorithm can be applied in a similar
way as it is applied in the CMS garbage collector in HotSpot.

4.4 Characterization of Applications That Benefit from
ParMarkSplit

We try to characterize the applications in which ParMarkSplit performs bet-
ter than CMS so that the system can adaptively select the best GC based on
these characteristics. We have observed from the experimental results that Par-
MarkSplit outperforms CMS in the sunflow and avrora applications, and not
in tomcat and xalan. As ParMarkSplit performance is highly dependent on its
most frequent operation, i.e., split, it usually performs better in applications
where the number of live/garbage ratios are low. Analysis on those applications
shows that sunflow and avrora have live/garbage ratios as low as about 15% and
20%, respectively. Tomcat have higher ratio; 40% on average. We can speculate
that ParMarkSplit maintains the property of its sequential counter-part that it
performs better in applications which have low live/garbage ratio. However, this
property could not be applied to explain ParMarkSplit’s performance in other
applications with the same characteristics. Xalan have similar live/garbage ra-
tios as sunflow and avrora, but ParMarkSplit does not perform well in them. We
need to distinct the formers from the latters to better characterize the applica-
tion that clearly benefit from ParMarkSplit.

We observed that our lazy-splitting design brings significant performance
gains to ParMarkSplit in applications where it already performs better than
CMS, i.e., sunflow and avrora. The benefit of the design in xalan is however not
as much. The main characteristic differentiating the two groups is the ratio of
the number of adjacent marked objects over that of total marked objects. This
ratio is high in sunflow and avrora; and lower in xalan. When the ratio is high,
doing splitting interval operation in ParMarkSplit benefits in two ways. First
one is a cache benefit when a free interval that is previously split can be cached
and reused in the next splitting. Second benefit is that only one split operation is
required for a set of adjacent objects. As ParMarkSplit brings more such advan-
tages to sunflow and avrora than to xalan, it performs better than CMS in the
former applications but not in the latters in our experimental evaluation. All
above observations regarding the characterization of applications that benefit
from ParMarkSplit are consistent across the two evaluated hardware platforms.

To conclude, ParMarkSplit has been shown to perform better than CMS in
applications where the ratio of the number of live objects to that of garbage
objects is low and live objects often reside adjacent to each other. ParMarkSplit
can be used as a complement to other garbage collection mechanisms to target
applications with such characteristics.

ParMarkSplit 387

5 Conclusion

We present a parallel design of the mark-split garbage collector, called ParMark-
Split. To the best of our knowledge, this is the first parallel mark-split design.
The design is based on a lock-free data structure that extends the functionality
of a skip-list to meet the requirements of the mark-split algorithm augmented
with a lazy-splitting design. A complete implementation of the ParMarkSplit
collector was developed and integrated in the OpenJDK HotSpot Java virtual
machine. We evaluated its behavior experimentally and compared it with the
default concurrent mark-sweep garbage collector present in HotSpot, using the
DaCapo benchmarks. The experiments were performed on two multiprocessor
systems of different architectures; Intel’s Nehalem and AMD’s Bulldozer. The
results are encouraging in applications where the ratio of the number of live
objects to that of garbage objects is low and live objects often reside adjacent
to each other. We believe that ParMarkSplit can add weight to other garbage
collection mechanisms when used for applications with such characteristics.

References

1. McCarthy, J.: Recursive functions of symbolic expressions and their computation
by machine, part i. Commun. ACM 3, 184–195 (1960)

2. Cheney, C.J.: A nonrecursive list compacting algorithm. Commun. ACM 13,
677–678 (1970)

3. Hughes, R.J.M.: A semi-incremental garbage collection algorithm. Software: Prac-
tice and Experience 12(11), 1081–1082 (1982)

4. Blackburn, S.M.,McKinley,K.S.: Immix:Amark-region garbage collector with space
efficiency, fast collection, and mutator performance. SIGPLAN Not. 43(6), 22–32
(2008)

5. Detlefs, D., Flood, C., Heller, S., Printezis, T.: Garbage-first garbage collection.
In: Proceedings of the 4th ISMM, pp. 37–48. ACM (2004)

6. Sagonas, K., Wilhelmsson, J.: Mark and split. In: Proceedings of the 5th Interna-
tional Symposium on Memory Management, ISMM 2006, pp. 29–39. ACM (2006)

7. Herlihy,M., Shavit, N.: TheArt ofMultiprocessor Programming. Morgan Kaufmann
(2008)

8. Sundell, H., Tsigas, P.: Fast and lock-free concurrent priority queues for multi-
thread systems. J. Parallel Distrib. Comput. 65(5), 609–627 (2005)

9. Michael, M.M.: Hazard pointers: Safe memory reclamation for lock-free objects.
IEEE Transactions on Parallel and Distributed Systems 15(8) (August 2004)

10. Sundell, H., Gidenstam, A., Papatriantafilou, M., Tsigas, P.: A Lock-Free Algo-
rithm for Concurrent Bags. In: Proceedings of the 23rd ACM SPAA. ACM (2011)

11. Printezis, T., Detlefs, D.: A generational mostly-concurrent garbage collector. SIG-
PLAN Not. 36, 143–154 (2000)

12. Blackburn, S.M., et al.: The dacapo benchmarks: Java benchmarking development
and analysis. SIGPLAN Not. 41, 169–190 (2006)

13. Gidra, L., Thomas, G., Sopena, J., Shapiro, M.: Assessing the scalability of garbage
collectors on many cores. In: Proceedings of the 6th PLOS Workshop. ACM (2011)

14. Kalibera, T., et al.: A black-box approach to understanding concurrency in dacapo.
In: The UK MM-NET Workshop on Memory Management (April 2012)

15. Persson, M., Cummins, H.: Java technology, ibm style: Garbage collection policies.
IBM DeveloperWorks (May 2006)

	ParMarkSplit: A Parallel Mark-Split Garbage Collector Based on a Lock-Free Skip-List
	1Introduction
	2Concurrent Skip-List with Extended Functionality
	2.1Implementation
	2.2Correctness

	3Parallel Mark-Split
	3.1Lazy Splitting
	3.2Implementation

	4Evaluation
	4.1Stop-the-world Scenario
	4.2Concurrent Scenario
	4.3Memory Usage
	4.4Characterization of Applications That Benefit from ParMarkSplit

	5Conclusion
	References

