
Algorithmica
DOI 10.1007/s00453-008-9268-x

NBMALLOC: Allocating Memory in a Lock-Free
Manner

Anders Gidenstam · Marina Papatriantafilou ·
Philippas Tsigas

Received: 3 February 2006 / Accepted: 10 December 2008
© The Author(s) 2009. This article is published with open access at Springerlink.com

Abstract Efficient, scalable memory allocation for multithreaded applications on
multiprocessors is a significant goal of recent research. In the distributed computing
literature it has been emphasized that lock-based synchronization and concurrency-
control may limit the parallelism in multiprocessor systems. Thus, system services
that employ such methods can hinder reaching the full potential of these systems.
A natural research question is the pertinence and the impact of lock-free concurrency
control in key services for multiprocessors, such as in the memory allocation ser-
vice, which is the theme of this work. We show the design and implementation of
NBMALLOC, a lock-free memory allocator designed to enhance the parallelism in
the system. The architecture of NBMALLOC is inspired by Hoard, a well-known con-
current memory allocator, with modular design that preserves scalability and helps
avoiding false-sharing and heap-blowup. Within our effort to design appropriate lock-
free algorithms for NBMALLOC, we propose and show a lock-free implementation
of a new data structure, flat-set, supporting conventional “internal” set operations as
well as “inter-object” operations, for moving items between flat-sets. The design of
NBMALLOC also involved a series of other algorithmic problems, which are dis-
cussed in the paper. Further, we present the implementation of NBMALLOC and a

This work was supported by computational resources provided by the Swedish National
Supercomputer Centre (NSC). This paper is an extended version of [1].

A. Gidenstam (�)
Algorithms and Complexity, Max-Planck-Institut für Informatik, 66123 Saarbrücken, Germany
e-mail: andersg@mpi-inf.mpg.de

M. Papatriantafilou · P. Tsigas
Computer Science and Engineering, Chalmers University of Technology, 412 96 Göteborg, Sweden

M. Papatriantafilou
e-mail: ptrianta@cs.chalmers.se

P. Tsigas
e-mail: tsigas@cs.chalmers.se

mailto:andersg@mpi-inf.mpg.de
mailto:ptrianta@cs.chalmers.se
mailto:tsigas@cs.chalmers.se

Algorithmica

study of its behaviour in a set of multiprocessor systems. The results show that the
good properties of Hoard w.r.t. false-sharing and heap-blowup are preserved.

Keywords Memory allocation · Lock-free synchronization · Non-blocking
synchronization · Multithreaded applications

1 Introduction

In this paper we investigate the impact of lock-free synchronization in the memory-
allocation system service on shared memory multiprocessor computers. We also pro-
pose a data structure useful for such a system, with new algorithms for lock-free and
linearizable implementation of operations involving more than one instance of it; the
latter is of independent interest in lock-free synchronization. Lock-free algorithms is
an efficient, fault-tolerant alternative to using locks for synchronization, since they
enable higher levels of parallelism and prevents slow operations from blocking the
progress of other operations. A common consistency requirement from algorithms
that access data objects concurrently is linearizability, which ensures that each oper-
ation on the data appears to take effect instantaneously during its actual duration and
the effect of all operations are consistent with the object’s sequential specification.

Dynamic memory management, used in most computer programs, comes in a vari-
ety of flavors, from the traditional manual general purpose allocate/free type memory
allocators (e.g. as provided by the C runtime library) to advanced automatic garbage
collectors. The focus here is on conventional, general-purpose memory allocators
(such as the C runtime library “libc” malloc) where the application can request (al-
locate) arbitrarily-sized blocks of memory and free them in any order. A memory
allocator is essentially an online algorithm that manages a pool of memory (heap),
e.g. a contiguous range of addresses or a set of such ranges, keeping track of which
parts of that memory are currently given to the application and which parts are un-
used and can be used to meet future allocation requests from the application. The
memory allocator is not allowed to move or otherwise disturb memory blocks that
are currently owned by the application.

We propose NBMALLOC, a new memory allocator based on lock-free, fine-
grained synchronization, to enhance parallelism, fault-tolerance and scalability,
the latter characterizing how well throughput (total and per thread) is increased/pre-
served as the number of threads (and/or processors) increase. The architecture of
NBMALLOC is inspired by Hoard [2], due to its well-justified design decisions, which
we outline below. Further, in the process of designing appropriate data structures and
lock-free synchronization algorithms for NBMALLOC, we introduced a data struc-
ture, which we call flat-set. The flat-set is a container data structure with a subset op-
erations on normal sets, as well as “inter-object” operations, for moving an item from
one flat-set to another. The lock-free algorithms we introduce make use of standard
hardware synchronization primitives provided by multiprocessor systems and provide
linearizable implementation of the flat-set operations. Analytical proofs of lock-free
algorithms are commonly a challenge; the correctness (linearizability) proofs of op-
erations involving more than one instances of an object are an even bigger challenge

Algorithmica

and as such, the linearizability proofs in this paper can be considered as a contribu-
tion of its own interest. The design of NBMALLOC also involved a set of other in-
teresting algorithmic issues, which are discussed and analysed here, along with their
solutions.

We implemented and studied NBMALLOC on a set of common multiprocessor
platforms, namely an UMA Sun Fire 880 running Solaris 9, a ccNUMA Origin 2000
running IRIX 6.5 and a Intel Xeon PC running Linux 2.9.6. We studied NBMALLOC

in connection with the standard “libc” allocator of each platform and with Hoard
(on the systems where the Hoard allocator was available) using standard benchmark
applications to test the efficiency, scalability, cache behaviour and memory consump-
tion behaviour. The results show that NBMALLOC preserves the good properties of
Hoard, while offering higher scalability potential (i.e. potential to increase/preserve
throughput as the number of threads (and/or processors) increase), as justified by its
lock-free nature.

Related Work

The Hoard [3] concurrent memory allocator is designed to meet the above goals. The
allocation is done on the basis of per-processor heaps, which avoids false-sharing and
reduces the synchronization overhead in many cases, improving both performance
and scalability. Memory requests are mapped to the closest matching size in a fixed
set of size-classes, which bounds internal fragmentation. The heaps are sets of su-
perblocks, with each superblock handling blocks of one size class, which helps in
coping with external fragmentation. To avoid heap-blowup, freed blocks are returned
to the heap they were allocated from and empty superblocks may be reused in other
heaps.

Concurrently with and independently from our work on NBMALLOC, Michael
presented a lock-free allocator [4] which, like our contribution, is loosely based on
the Hoard architecture and uses Compare-And-Swap. Despite both having started
from the Hoard architecture, we have used two different approaches to achieve lock-
freeness. Another allocator which tries to reduce the use of locks is LFMalloc [5]. To
be able to relate these contributions with the one presented here, some more detail is
needed and for this reason we describe this relation in Sect. 6.

Also of relevance to lock-free memory allocators are algorithms for lock-free
memory management and reclamation. Such schemes need to be used in lock-free
dynamic data-structures to provide safe reclamation of dynamically allocated shared
memory blocks, i.e. to make sure that a deleted memory block is not reused until
it is certain that it cannot be accessed by any concurrent or future operation. Some
schemes focus on the safety of thread-local references to objects only, such as the
efficient hazard pointer algorithm by Michael [6, 7] and the algorithm by Herlihy
et al. [8], but these cannot be used with all data-structures. Other schemes based on
reference counting can guarantee the safety of local as well as global references to
objects. In this category we have the work of Valois et al. [9, 10], Detlefs et al. [11],
Herlihy et al. [12] and Gidenstam et al. [13].

Recently, Streamflow, another memory allocator which reduces use of locks and
contention on shared memory locations, but is not entirely lock-free appeared in [14].

Algorithmica

Earlier related work in similar direction is the work on non-blocking operating
systems by Massalin and Pu [15, 16] and Greenwald and Cheriton [17, 18]. The re-
spective algorithms, however, made extensive use of the 2-Word-Compare-And-Swap
(2CAS) primitive, which can update two arbitrary memory locations in one atomic
step, while this primitive is not available in current systems and is expensive to sim-
ulate in software.

Document Structure

Section 2 provides technical background on concurrent memory allocation and lock-
and wait-free synchronization (throughout the paper we use the terms non-blocking
and lock-free interchangeably). Section 3 describes NBMALLOC, including the lock-
free flat-sets data structure designed for this purpose. In Sect. 4 we show that the flat-
sets data structure implementation is linearizable and lock-free. Section 5 describes
details on the implementation done for the experimental study of the system, includ-
ing the platforms on which it was implemented and benchmark information. The re-
sults of our experimental study are also presented here. Sect. 6 relates NBMALLOC to
other related work in detail. We conclude in Sect. 7 with a discussion of the achieved
results and future work.

2 Background and Problem Description

2.1 Concurrent Memory Allocators

An important optimization goal of a good allocator is to minimize fragmentation, i.e.
minimize the amount of free memory that cannot be used (allocated) by the applica-
tion. Fragmentation is classified as either internal or external. Internal fragmentation
is free memory wasted when the allocator gives the application a larger memory block
than the application requested. External fragmentation is free memory that have been
split into non-contiguous blocks too small to be used to satisfy the requests from the
application.

Moreover, multi-threaded programs add more complications to the memory allo-
cator. Obviously some kind of synchronization has to be added to protect the heap
during concurrent requests. There are also other issues which have significant impact
on application performance when the application is run on a multiprocessor [2]:

(i) False-sharing, i.e. when different parts of the same cache-line end up being used
by threads running on different processors. This will put a potentially large and
completely unnecessary load on the cache-coherence mechanism. False-sharing
can never be avoided completely since application threads may pass allocated
memory between themselves but a memory allocator should avoid to actively
induce false-sharing by satisfying memory requests from different processors
with memory from the same cache-line.

(ii) Heap-blowup, i.e. an overconsumption of memory that may occur if the memory
allocator fails to make memory deallocated by threads running on one processor

Algorithmica

Table 1 Properties of different memory allocators. False-sharing refers to actively induced false-sharing

Type False-sharing Heap-blowup Scalable Lock-free

The standard memory
allocators on Solaris,
Irix and Windows 2000

Single heap Yes No No No

STL allocator [19] Pure private heaps No Unbounded Yes No

Cilk [20] Pure private heaps No Unbounded Yes No

MTmalloc (Solaris) Private heaps w. ownership No Linear Yes No

Ptmalloc (glibc) [21] Private heaps w. ownership No Linear Yes No

Hoard [3] Private heaps w. thresholds No Constant Yes No

LFMalloc [5] Private heaps w. thresholds ? Constant Yes Almost

M. Michael’s allocator
[4]

Private heaps w. ownership ? Constant Yes Yes

StreamFlow [14] Private heaps w. thresholds No Constant Yes Mostly

NBMALLOC Private heaps w. thresholds No Constant Yes Yes

available1 to threads running on other processors. The worst case heap-blowup
of a memory allocator is often classified w.r.t. the number of per-processor heaps
(e.g. as constant, linear or unbounded). A typical source of heap blowup is an
application that has producer and consumer threads, where the producers allo-
cate memory and pass it to the consumers which in turn free the memory. If the
memory blocks freed by the consumers are not made available to the producers
an unbounded heap blowup could occur.

(iii) Ensure efficiency and scalability. For a memory allocator to be scalable, its per-
formance has to scale well with the number of processors, threads and the load
in the system. In terms of speed, the concurrent memory allocator should be
about as fast as a good sequential one in order to ensure good performance even
when a multithreaded program is executed on a single processor.

Table 1 gives a brief overview of concurrent memory allocator designs and their
respective properties based on the taxonomy presented in [2].

Separate handling of thread-local allocations In many applications most of the dy-
namic memory requests concern memory that will only be used by one thread. There-
fore, it might be advantageous to distinguish between these thread-local allocations
and allocations of memory that is to be shared between threads. In particular, the
thread-local memory allocator might not need any synchronization. The crucial dis-
tinction between thread-local allocations and shared memory allocations could be
made either explicitly by the programmer (using an extension of the traditional mal-
loc interface) or automatically by compile time analysis, as e.g. in [22].

1E.g. as the result of a coarse policy for avoiding false-sharing.

Algorithmica

2.2 Non-blocking Synchronization

The most commonly required consistency guarantee for shared data objects is lin-
earizability [23]. A shared object (its implementation) is linearizable if it guarantees
that even when operations overlap in time, each of them appears to take effect in
an atomic time instant which lies within its respective time duration, in a way that
the effect of each operation is in agreement with the object’s sequential specifica-
tion.

Compared to the traditional solution for maintaining the consistency of a shared
data object (i.e. for ensuring linearizability) by enforcing mutual exclusion, non-
blocking implementations of shared data objects are an alternative approach. Non-
blocking mechanisms allow multiple tasks to access a shared object at the same time,
but without enforcing mutual exclusion [17, 24–26]. Non-blocking (a.k.a. optimistic)
synchronization can be lock-free or wait-free. Lock-free algorithms guarantee that
regardless of the contention caused by concurrent operations and the interleaving of
their steps, at each point in time there is at least one operation which is able to make
progress. However, the progress of other operations might cause one specific oper-
ation to take unbounded time to finish. In a wait-free algorithm, every operation is
guaranteed to finish in a bounded number of its own steps, regardless of the actions
of concurrent operations.

Lock-free algorithms typically involve fine-grained synchronization, with at-
tempts to commit updates using certain synchronization primitives (e.g. CAS; see
below) or to verify non-interfered access to small amounts of shared data. If such an
attempt fails, then that process/thread needs to retry. The above may happen due to
preemption or due to interleaving by threads running in parallel. Helping is a method
proposed to alleviate the problem: an operation that detects that it has preempted or
has otherwise interleaved steps with another operation, helps the latter operation to
progress before proceeding with its own steps, so as to reduce the fail-retry overhead.

It has been shown that there exist universal synchronization primitives, that can
implement, in a wait-free manner—hence, also in lock-free manner—, any object
with a sequential specification using those primitives [25].

Some of the aforementioned universal primitives are available in several common
processors, e.g. the Compare-And-Swap instruction (also denoted CAS), which atom-
ically executes the steps described in Fig. 1. If CAS cannot assign the new value to
the location for which it is invoked, we say that it fails, otherwise, it succeeds. CAS is
available in e.g. SPARC and Intel x86 processors. Another useful primitive is Fetch-
And-Add (also denoted FAA), described in Fig. 1. FAA can be simulated in software
using CAS when it is not available in hardware.

An issue that sometimes arises in connection with the use of CAS, is the so-called
ABA problem. It can happen if a thread reads a value A from a shared variable, and
then invokes a CAS operation to try to modify it. The CAS will (undesirably) succeed
if between the read and the CAS other threads have changed the value of the shared
variable from A to B and back to A. A common way to cope with the problem is
to use version numbers of b bits as part of the shared variables [27]. Then, for the
same problem to occur, it would be necessary to have a sequence of 2b successful
CAS operations between the read A and its corresponding CAS, with the last such

Algorithmica

Fig. 1 Compare-And-Swap
(denoted CAS) and
Fetch-And-Add (denoted FAA)

atomic CAS(mem : pointer to integer;
new, old : integer) return integer

begin
tmp := *mem;
if tmp == old then

mem := new; / CAS succeeded */
return tmp;

end CAS;

atomic CAS(mem : pointer to integer;
new, old : integer) return boolean

begin
tmp := *mem;
if tmp == old then

mem := new; / CAS succeeded */
return tmp == old;

end CAS;

atomic FAA(mem : pointer to integer;
increment : integer) return integer

begin
tmp := *mem;
*mem := tmp + increment;
return tmp;

end FAA;

operation storing value A to the shared variable. By choosing b appropriately, this
is made extremely unlikely. An alternative method to cope with the ABA problem is
to introduce special NULL values; this was proposed and used in a lock-free queue
implementation in [28]. An appropriate memory-reclamation mechanism, such as [6],
can also solve the problem.

There is a plethora of research articles that focus on wait-free and lock-free
synchronization (for a few examples cf. [6, 24, 25, 27, 29–35] and references
therein).

3 NBMALLOC

3.1 Architecture

The architecture of NBMALLOC is inspired by Hoard [3], which is a well-known and
practical concurrent memory allocator for multiprocessors.

The memory allocator provides allocatable memory of a fixed set of sizes, called
size-classes. The size of memory requests from the application are rounded upwards
to the closest size-class. To reduce false-sharing and contention, the memory allocator
distributes the memory into per-processor heaps. The managed memory is handled
internally in units called superblocks. Each superblock contains allocatable blocks
of one size-class. Initially all superblocks belong to the global heap. During an exe-
cution superblocks are moved to per-processor heaps as needed. When a superblock

Algorithmica

(a) The organization of the global and per-processor heaps

(b) A non-blocking flat-set and a superblock

Fig. 2 The architecture of NBMALLOC

in a per-processor heap becomes almost empty (i.e. few of its blocks are allocated)
it is moved back to the global heap. The superblocks in a per-processor heap are
stored and handled separately, based on their size-class. Within each size-class the
superblocks are kept sorted into groups based on fullness (cf. Fig. 2(a)). As the full-
ness of a particular superblock changes, it is moved between the groups. A malloc call
first searches for a superblock with a free block among the superblocks in the “almost
full” fullness-group of the requested size-class in the appropriate per-processor heap.
If no suitable superblock is found there, it will proceed to search in the lower fullness-
groups, and, if that, too, is unsuccessful, it will request a new superblock from the
global heap. Searching the almost full superblocks first reduces external fragmenta-
tion. When freed (by a call to free) an allocated block is returned to the superblock
it was allocated from and, if the new fullness requires so, the superblock is moved to
another fullness-group.

Algorithmica

3.2 Managing Superblocks: The Flat-Set Data Structure

Since the number of superblocks in each fullness-group varies over time, a suitable
collection-type data structure is needed to implement a fullness-group. Hoard, which
uses mutual-exclusion on the level of per-processor heaps, uses linked-lists of su-
perblocks for this purpose, but this issue becomes very different in a lock-free alloca-
tor. While there exist several lock-free linked-list implementations, e.g. [27, 29, 36],
we cannot apply those here, because not only do we want the operations on the list to
be lock-free, but we also need to be able to move a superblock from one set to another
without making it inaccessible to other threads during the move. To address this, we
propose a new data structure we call a flat-set, supporting conventional “internal” set
operations (Get_Any and Insert item) as well as “inter-object” operations, for moving
an item from one flat-set to another.

To have an entirely lock-free implementation including “inter”-flat-set operations
it is crucial to be able to move superblocks from one set to another in a lock-free
fashion. The requirement that makes this difficult is that the operations should be
linearizable, and in particular we want the following properties to be satisfied:

1. a superblock should be reachable for other threads even while it is being moved
between flat-sets, i.e. a non-atomic first-remove-then-insert sequence is not ac-
ceptable;

2. Get_Any and Insert should behave as if a superblock is referenced by exactly one
shared location at any time.

Below we present the operations of the lock-free and linearizable flat-set data
structure and the algorithm, Move, which implements the “inter-object” operation
for moving a reference to a superblock from one shared variable (pointer) to another,
while satisfying the above requirements.

3.3 Operations on Bounded Non-blocking Flat-Sets

A bounded non-blocking flat-set provides the following operations:

1. Get_Any , which returns a reference to an item currently in the flat-set (which is
unspecified); and

2. Insert , which inserts an item into a flat-set.

Note that an important property to satisfy is that an item only resides inside one flat-
set at the time; when an item is inserted into a flat-set it is also removed from its old
location.

The flat-set data structure implementation consists of an array of M shared loca-
tions set.set[i], each capable of holding a reference to an item, and a shared index
variable set.current. The flat-set data structure and operations are shown in Algo-
rithms 1 and 2 and are explained in the following paragraphs. The flat-set operations
use two internal sub-operations Move and SB_Deref to move and read item refer-
ences, respectively. These operations are further described in Sect. 3.4.

To speed up flat-set operations there is an index variable set.current that is used as
the starting point for searches, both for items and for free slots.

Algorithmica

Algorithm 1 The flat-set and superblock data structures in NBMALLOC

type flat-set_t is record
size : constant integer
current : flat-set_info
set[size] : array of superblock_ref_t

type flat-set_info is atomic record
/* Fits in one 32 bit machine word. */
index : integer_16
version : integer_16

type superblock_ref_t is atomic record
/* Fits in one 32 bit machine word. */
ptr : integer_16
version : integer_16

/* superblock_ref_t utility functions. */
function pointer(ref : superblock_ref_t) return pointer to superblock_t
function version(ref : superblock_ref_t) return integer_16
function make_sb_ref(sb : pointer to superblock_t, op_id : integer_16)

return superblock_ref_t

type superblock_t is record
mv_info : move_info_t
freelist_head : block_ref_t
free_block_cnt : integer
...

type move_info_t is record
new_pos : pointer to superblock_ref_t
cur_pos : pointer to superblock_ref_t
new_pos_value : superblock_ref_t
cur_pos_value : superblock_ref_t
result : enum {SB_MOVED_OK, SB_NOOP, NA} /* The initial value is always NA. */

type block_ref_t is atomic record
/* Fits in one machine word. */
offset : integer_16
version : integer_16

function pointer(ref : block_ref_t) return pointer to block_t
function version(ref : block_ref_t) return integer_16
function make_ref(sb : pointer to block_t, version : integer_16) return block_ref_t

type block_t is record
/* Block header. */
owner : pointer to superblock_t
next : pointer to block_t

3.4 How to Move a Shared Reference: Moving Items between Flat-Sets

The two operations SB_Deref and Move provide lock-free and linearizable reading
and moving of superblock references. SB_Deref reads a superblock reference from
a shared location and Move moves a superblock reference sb from a shared location

Algorithmica

Algorithm 2 The flat-set operations Get_Any and Insert
function Get_Any(set : in out flat-set_t, sb : out superblock_ref_t,

loc : out pointer to superblock_ref_t)
return status_t

i, j : integer; old_current : flat-set_info_t;
begin
G1 loop
G2 old_current := set.current;
G3 i := old_current.index;
G4 for j := 1 .. set.size do
G5 sb := SB_Deref(&set.set[i]);
G6 if pointer(sb) �= null then
G7 loc := &set.set[i];
G8 CAS(&set.current, old_current,(i,));
G9 return SUCCESS;
G10 if i == 0 then i := set.size - 1; else i--;
G11 if set.set not changed since prev. iter. then
G12 return EMPTY;
end Get_Any;

function Insert(set : in out flat-set_t, sb : in superblock_ref_t,
loc : in out pointer to superblock_ref_t)

return status
i, j : integer; old_current : flat-set_info_t;

begin
I1 loop
I2 old_current := set.current;
I3 i := (old_current.index + 1) mod set.size;
I4 for j := 1 .. set.size do
I5 while SB_Deref(&set.set[i]) == null do
I6 if Move(sb, loc, &set.set[i]) == SB_MOVED_OK then
I7 CAS(&set.current, old_current, (i,));
I8 loc := &set.set[i];
I9 return SUCCESS;

else /* Move returned SB_NOOP */
I10 if *loc �= sb then
I11 return MOVED_AWAY;
I12 i := (i + 1) mod set.size;
I13 if set.set not changed since prev. iter. then
I14 return FULL; /* The flat-set is full. */
end Insert;

from to another shared location to. The target location (i.e. to) is known e.g. via the
Insert operation.

Move works by extending the helping mechanism, into constructing a “bridge”
across two locations (which could belong to different objects). In particular, the
algorithm requires the superblock to contain an auxiliary variable mv_info —of
type move_info_t, which contains the fields new_pos, cur_pos new_pos_value,
cur_pos_value and result. Further, all superblock references need to have a version
field (cf. Algorithm 1). The move_info_t structure may also contain additional in-
formation in case of application needs. This is the case in NBMALLOC where two
additional fields, cur_owner and new_owner, are used to keep track of which flat-set
the superblock is currently located in.

Algorithmica

Algorithm 3 The superblock Move operation
function Move(sb : in superblock_ref_t,

from : in pointer to superblock_ref_t,
to : in pointer to superblock_ref_t)

return status
new_op, cur_op : pointer to move_info_t;
cur_from, cur_to : superblock_ref_t;

begin
/* Step 1: Initiate move. */

M1 loop
M2 cur_op := HP_Deref(&sb.mv_info);
M3 cur_from := *from;
M4 if cur_from �= sb then
M5 HP_Release(cur_op); return SB_NOOP;
M6 if cur_op.new_pos == null then /* No current operation. */
M7 cur_to := SB_Deref(to);
M8 if pointer(cur_to) �= null then
M9 HP_Release(cur_op);
M10 return SB_NOOP;
M11 new_op := HP_New((to, from, cur_to, cur_from, NA));
M12 if CAS(&sb.mv_info, cur_op, new_op) then
M13 HP_Delete(cur_op);
M14 return Move_Help(sb, new_op);

else
M15 HP_Delete(new_op); HP_Release(cur_op);

else
M16 Move_Help(cur_op.old_pos_value, cur_op);
end Move;

A Move operation may succeed by returning SB_MOVED_OK or fail (abort) by
returning SB_NOOP (if the block was moved away by another overlapping Move or
the to location was occupied).

To ensure the lock-free property and linearizability, the move operation is divided
into a number of atomic suboperations. The first step (1), to register the Move opera-
tion, is done in the Move(sb, from, to) function in Algorithm 3, while the other three
steps, (2) to update location to, (3) to clear location from and (4) to update sb.mv_info,
are done in the Move_Help function in Algorithm 4.

A Move operation that encounters an unfinished Move of the same superblock will
help the old operation to finish before it attempts to perform its own move. The help-
ing procedure is performed by Move_Help and is identical to steps 2–4 of the move
operation as described below. Since all information required to finish an ongoing op-
eration is stored in the descriptor mv_info, any thread that encounters the superblock
can continue and finish any ongoing operation.

1. Initiate Move: First a Move(sb, from, to) collects the current state of from, and
sb.mv_info (lines M2–3). If sb is no longer present in from, SB_NOOP is returned
(lines M4–5). Line M6 checks whether there is an ongoing operation. If so, that
operation is helped to completion via Move_Help (line M16). Otherwise the to lo-
cation is read using SB_Deref (line M7). If the to location is occupied SB_NOOP
is returned (line M10). Otherwise this Move will try to register itself in sb by up-
dating sb.mv_info to point to new a descriptor containing all information needed
to finish this operation using CAS (line M12). Note in particular that the value

Algorithmica

Algorithm 4 The superblock Move_Help operation
function Move_Help(sb : in superblock_ref_t, op : pointer to move_info_t)
return status

old, new, res : superblock_ref_t;
new_op : pointer to move_info_t;

begin
/* Step 2: Update “TO”. */

H1 res := CAS(op.new_pos, op.new_pos_value,
make_sb_ref(pointer(sb), version(op.new_pos_value) + 1));

H2 if res �= op.new_pos_value then /* I.e.CAS failed. */
H3 if res �= make_sb_ref(pointer(sb), version(op.new_pos_value) + 1) then

/* To seems to be occupied. */
H4 if sb.mv_info == op then /* Finish this op. */
H5 CAS(&op.result, NA, SB_NOOP);
H6 new_op := HP_New((null, op.cur_pos, null, null, NA));
H7 if CAS(&sb.mv_info, op, new_op) then
H8 HP_Release(new_op); HP_Delete(op);

else
H9 HP_Delete(new_op); HP_Release(op);
H10 return SB_NOOP;
H11 HP_Release(op); return op.result;
H12 CAS(&op.result, NA, SB_MOVED_OK);

/* Step 3: Clear “FROM”. */
H13 CAS(op.cur_pos, op.cur_pos_value, make_sb_ref(null, version(op.cur_pos_value) + 1));

/* Step 4: Remove operation information.*/
H14 new_op := HP_New((null, op.new_pos, null, null, NA));
H15 if CAS(&sb.mv_info, op, new_op) then
H16 HP_Release(new_op); HP_Delete(op);

else
H17 HP_Delete(new_op); HP_Release(op);
H18 return SB_MOVED_OK;
end Move_Help;

of the result field in the new descriptor is NA, indicating that the outcome of this
operation is not yet decided. If the CAS succeeds this operation proceeds to Step 2
which is in Move_Help. Otherwise this operation retries from start as there might
be another ongoing operation.

2. Update to location: The second step of a Move operation (and the first in the
Move_Help operation) is to update the to location. This is done with the CAS
at line H1. If the CAS succeeds the result field in the descriptor is set to
SB_MOVED_OK (line H12) and the operation proceeds to Step 3. If the CAS
fails, this could either mean that to has become occupied and this operation fails
or that a(nother) helper has already performed the line H1 CAS for this oper-
ation. These two cases are distinguished below. First, if to contains the value
this operation would have written there, the result field in the descriptor is set
to SB_MOVED_OK (line H12) and the operation proceeds to Step 3. Otherwise,
the value of sb.mv_info is checked to see if this operation has been completed
by a(nother) helper (line H4). If it has been completed the return code stored in
the descriptor is returned. Otherwise, it is certain that the operation will return
SB_NOOP since the value of to at line H1 was neither the old value expected nor
the new this operation would write, yet the operation is still not completed (which
it had to be if sb had been successfully moved to to and then moved elsewhere by

Algorithmica

Algorithm 5 The superblock SB_Deref operation
function SB_Deref(loc : in pointer to superblock_ref_t)
return superblock_ref_t

sb : superblock_ref_t; op : pointer to move_info_t;
begin

loop
SD1 sb := *loc;
SD2 if pointer(sb) == null then return sb;
SD3 op := HP_Deref(&sb.mv_info);
SD4 if op.new_pos == null and *loc == sb then
SD5 HP_Release(op); return sb;
SD6 if op.new_pos �= null then

/* Help ongoing move operation to finish. */
SD7 Move_Help(sb, op);

else
SD8 HP_Release(op);
end SB_Deref;

a subsequent Move.) So, SB_NOOP is written to the descriptor (line H5) and then
the descriptor in sb is replaced by an idle one (line H7).

3. Clear from location: The from location is set to null using CAS (line H13). The
CAS succeeds if and only if from still contains the expected superblock reference
(including the right version). If it does not then someone else has already helped
this move to complete this step.

4. Operation finished: The last step is to remove the descriptor from the superblock.
The value of sb.mv_info is updated to reference a new idle descriptor using CAS
(line H15). If the CAS fails a(nother) helper has already performed this step. The
Move operation is now finished and returns SB_MOVED_OK (line H18).

In the presentation of the algorithm and in the pseudo-code in Algorithms 3 and 4
we use the atomic primitive CAS to update shared variables that fit in a single memory
word, but other strong atomic synchronization primitives, such as Load-Linked /Store-
Conditional could be used as well (cf. e.g. [37]).

The auxiliary mv_info variable in a superblock needs to be larger than the one or
(for some platforms) two words of adjacent data the hardware CAS primitive can han-
dle. To handle that we use an extra layer of indirection and a lock-free method, called
hazard pointers [7] that can be implemented efficiently using the common single-
word CAS, that provides safe handling of pointers to shared data blocks. The method
provides four lock-free and linearizable operations: HP_Deref to read a shared ref-
erence to a data block and prevent that block from being reclaimed; HP_Release to
release a previously dereferenced block for (potential) reclamation; HP_New to allo-
cate a new data block; and HP_Delete to schedule a data block for reclamation once
all claims to it via HP_Deref have been released. It is possible to safely use CAS to
update a shared reference to a data block.

Dereferencing a superblock reference The operation SB_Deref , in Algorithm 5, is
used to read a superblock reference variable (i.e. a value of type superblock_ref_t)
in shared memory in a way that is linearizable with respect to concurrent Move and
SB_Deref operations. SB_Deref achieves this by helping any ongoing Move opera-
tion concerning the referenced superblock to finish before it returns the reference.

Algorithmica

Algorithm 6 The superblock operations Get_block and Put_Block
function Get_Block(sb : in pointer to superblock_t) return pointer to block_t

nb : block_ref_t;
begin
GB1 loop
GB2 nb := sb.freelist_head;
GB3 if pointer(nb) �= null then
GB4 if CAS(&sb.freelist_head, nb, make_ref(nb.next, version(nb) + 1)) then
GB5 FAA(&sb.free_block_cnt, -1);
GB6 return pointer(nb);

else
GB7 return null;
end Get_Block;

procedure Put_Block(sb : in pointer to superblock_t, bl : in pointer to block_t)
oh : block_ref_t;

begin
PB1 loop
PB2 oh := sb.freelist_head;
PB3 bl.next := pointer(oh);
PB4 if CAS(&sb.freelist_head, oh, make_ref(bl, version(oh) + 1)) then
PB5 FAA(&sb.free_block_cnt, 1);
PB6 return;
end Put_Block;

3.5 Managing Blocks within a Superblock

The allocatable memory blocks within each superblock are kept in a lock-free IBM
free-list [38]. The IBM free-list is essentially a lock-free stack implemented as a
single-linked list where the push and pop operations are done by a CAS operation on
the head-pointer. To avoid ABA-problems the head-pointer contains a version field.
Each block has a header containing a pointer to the superblock it belongs to and a next
pointer for the free-list. The two free-list operations Get_Block and Put_Block are
shown in Algorithm 6. The free blocks counter, sb.free_block_cnt, is used to estimate
the fullness of a superblock.

3.6 Interacting with NBMALLOC

The user application interacts with the memory allocator via the two operations:
malloc, to make a memory request, and free, to release previously allocated mem-
ory.

These two operations together with the main global data structures of the mem-
ory allocator are shown in Algorithm 7. The Global_Heap structure consists of an
array of flat-sets, one for each size-class, which contains all empty or nearly empty
superblocks in the system (cf. also Fig. 2(a)). A per-processor heap is a two dimen-
sional array of flat-sets indexed by size-class and superblock fullness group.

A malloc call for a memory block of a certain size-class sc will first search the flat-
sets for the required size-class in the appropriate per-processor heap for a superblock
with a free block. The search begins in the flat-set for the “almost full” fullness-

Algorithmica

Algorithm 7 The malloc and free operations
Global_Heap : global shared array [SIZE_CLASSES] of flat-set_t;
type per-processor_heap_t is array

[SIZE_CLASSES] [MIN_FULLNESS .. MAX_FULLNESS] of flat-set_t;

function malloc(sc : in size_class) return pointer to block_t
heap : pointer to per-processor_heap_t := select_heap(thread_id);
sb : superblock_ref_t; sbr : pointer to superblock_ref_t;
bl : block_ref_t:= null;

begin
A1 for fg := MAX_FULLNESS - 1 .. MIN_FULLNESS do
A2 while Get_Any(heap[sc][fg], sb, sbr) == SUCCESS do
A3 bl := Get_Block(pointer(sb));
A4 if bl �= null then
A5 exit for loop;

else
/* Move the full superblock out of the way. */

A6 Insert(heap[sc][MAX_FULLNESS], sb, sbr);
A7 while bl == null loop

/* Move a superblock from the global heap to the per-processor heap. */
A8 if Get_Any(Global_Heap[sc], sb, sbr) then
A9 if SB_MOVED_OK == Insert(heap[sc][MIN_FULLNESS], sb, sbr) then
A10 bl := Get_Block(pointer(sb));

else
A11 return null; /* Out of memory. */
A12 if fullness(sb) �= fg then /* Move the superblock to the right fullness group. */
A13 Insert(heap[sc][fullness(sb)], sb, sbr);
A14 return bl;
end malloc;

procedure free(bl : in pointer to block_t)
sbp : pointer to superblock_t := bl.owner;
heap : pointer to per-processor_heap_t := sbp.owner;
newfg, oldfg : fullness_group := fullness(sbp);
status : pointer to move_info_t; sb : superblock_ref_t; sbr : pointer to superblock_ref_t;

begin
F1 Put_Block(sbp, bl);
F2 newfg := fullness(sbp);
F3 if newfg �= oldfg then
F4 status := HP_Deref(&sbp.mv_info);
F5 sbr := status.cur_pos;
F6 sb := *sbr;
F7 HP_Release(status);
F8 if pointer(sb) == sbp then
F9 if newfg == empty or almost empty then
F10 Insert(Global_Heap[sc], sb, sbr);

else
F11 Insert(heap[sc][newfg], sb, sbr);
end free;

group. If no suitable superblock is found there, the search proceeds to search in the
lower fullness-groups (lines A1 to A6 in Algorithm 7). Searching in the almost full
superblocks set first is a strategy to reduce external fragmentation, since it allows
less full superblocks in the per-processor heap to get fewer allocation requests and
gradually become empty enough to be moved to the global heap. If no superblock

Algorithmica

with a free block is found in the per-processor heap, malloc will attempt to get a new
superblock from the Global_Heap (line A8) and move it to the per-processor heap
(line A9). If such a superblock is found then malloc tries to allocate a block from it.
If no such superblock is found the system is out of memory for this size-class and
malloc will return null.

The operation free is used by the application to return a no longer needed block
of memory to the memory allocator. The operation uses the owner field of the block
header to find the superblock it belongs to. When the block is returned to the su-
perblock (line F1), the superblock might need to be moved to a different fullness-
group or, if it has become almost empty, to the global heap. To be able to move the
superblock, its current location is needed. The location is read from the mv_info field
in the superblock (line F4) and the superblock is then moved at line F10 or F11.
The test at line F8 makes sure that it is the right superblock that is going to be
moved—the superblock in question could have been removed from sbr between
line F4 and F6 by some concurrent operation.

4 Correctness of the Non-blocking Flat-Set Algorithm

The main and central algorithmic construction in NBMALLOC is the flat-sets used to
manage the superblocks. At the heart of the flat-set operations lie the two subopera-
tions Move and SB_Deref which allow superblock references to be moved between
shared locations in a lock-free and linearizable manner.

The SB_Deref and Move operations Let li be a set of locations and bj a set of
items/superblocks for i:s and j :s from any two sets. In the following we will use
la and lb to refer to two arbitrary (distinct) locations and x to refer to an arbitrary
item/superblock. The operations SB_Deref and Move then have the following se-
quential semantics:

• a superblock x resides at (is referenced by) exactly one location at any time.
• SB_Deref (la) returns a reference r to the superblock presently at location la or null

if la is empty.
• Move(r , la , lb) has the following outcomes:

SB_MOVED_OK when la contains a reference r to x and lb contains null. The
superblock reference r is moved from the location la to the location lb.

SB_NOOP when la does not contain a reference r to x or lb does not contain null.

As a Move operation may be completed by a helper it is not obvious that the actual
outcome of the operation is returned to the caller. The following lemma proves that
the actual result of the Move is returned.

Lemma 1 (Move return code) A Move operation always returns the actual outcome
of the operation to its caller.

Proof It is easy to see that the actual outcome is reported when the operation result is
SB_NOOP due to the superblock no longer being present in from (line M5), as there
are no helping in this case. The same holds for SB_NOOP reported at line M10.

Algorithmica

Once an operation has been registered (line M12), helping may occur. There are
two cases to consider:

(i) Assume the operation was successful (i.e. SB_MOVED_OK should have been
returned) but SB_NOOP (or NA) is returned to the caller. Since the operation was
successful the CAS at line H1 succeeded for one helper, denoted Move_HelpH . In the
initiator’s call to Move_Help the CAS at H1 did not succeed (else SB_MOVED_OK
would have been returned). Now, if the initiator saw the expected new value of
to at line H1 (tested at H3) SB_MOVED_OK would be returned, so to must hold
some other value. Next, the initiator would check if sb.mv_info still contains the
current operation (line H4). This cannot be the case, since according to our as-
sumption the helper has updated to and the only way to remove the reference to
x from to is with another subsequent Move operation. Consequently, the initiator
will return the return-code stored in the operation descriptor (line H11) and since
the operation has been completed (line H15) by the helper, the stored return code is
SB_MOVED_OK.

(ii) The operation resulted in SB_NOOP but SB_MOVED_OK (or NA) is returned
to the caller. Since the result is SB_NOOP the CAS at line H1 does not succeed for
the initiator or any helper. Consider the first helper to reach line H5. It will reach this
line since the operation is still unfinished and the CAS will succeed since the initial
value of op.result is NA. The initiator will either take the same path (if it sees that
the operation is still unfinished at line H4) and return SB_NOOP at H10 or find the
operation finished and return op.result, which at this point cannot contain anything
else than SB_NOOP as some helper must have passed line H5 before completing the
operation at line H10. �

Proposition 1 The linearization point of the operation SB_Deref is the memory read
at line SD1 iff null is returned and the HP_Deref at line SD3 otherwise.

Proposition 2 The linearization point of the operation Move1(r, la, lb) is

• the first CAS at H11 executed by the initiator or any helper iff the result is
SB_MOVED_OK;

• the memory read at M31 iff the result is SB_NOOP and *from �= r at line M31;
• the SB_Deref at M71 iff the result is SB_NOOP and SB_Deref (lb) �= null at line

M71; and
• the first CAS at H11 executed by the initiator or any helper otherwise.

To facilitate the presentation of the linearizability proofs we first outline the key
events for an operation Move(r , la , lb) to return a particular result here. These lists of
events follow directly from the pseudo code.

SB_MOVED_OK
M2: HP_Deref (&sb.mv_info) gives cur_op with cur_op.new_pos equal to null;
M3: The value read from the from location equals r ;
M7: The result of SB_Deref(to) is a null reference;
M12: The CAS succeeds, i.e. the old value is cur_op;

Algorithmica

H1: The CAS succeeds, i.e. to still hold the value read at M7;
H12: The result code is set to SB_MOVED_OK;
H13: from is set to null;
H15: The operation descriptor is removed from sb.mv_info.

SB_NOOP
M3: The value read from the *from location is different from r ;
or
M2: HP_Deref (&sb.mv_info) gives cur_op with cur_op.new_pos equal to null;
M3: The value read from the from location equals r ;
M7: The result of SB_Deref(to) is not a null reference;
or
M2: HP_Deref (&sb.mv_info) gives cur_op with cur_op.new_pos equal to null;
M3: The value read from the from location equals r ;
M7: The result of SB_Deref(to) is a null reference;
M12: The CAS succeeds, i.e. the old value is cur_op;
H1: The CAS fails, i.e. to does not hold the value read at M7;
H5: The result code is set to SB_NOOP;
H7: The operation descriptor is removed from sb.mv_info.

Lemma 2 (Linearizability I) The operation SB_Deref is linearizable with respect to
other SB_Deref and Move operations with linearization points according to Propo-
sition 1.

Proof According to the abstract semantics SB_Deref returns null or a reference to a
superblock. First, consider the case when SB_Deref returns null. This is done at line
SD2 if the current value of loc as read at line SD1 contains a null reference. In this
case line SD1 is the linearization point of SB_Deref .

Now consider the case when SB_Deref returns a reference to a superblock x. This
is done at line SD5 if and only if the following conditions hold: (i) loc was referencing
x at line SD1; (ii) the move info read at line SD3 shows that x is not involved in
any ongoing operation; and (iii) loc is still referencing x at line SD4 (with the same
version number). Condition (i) and (iii) together implies that loc was referencing x at
line SD3 when the move info was read. Therefore, the linearization point in this case
is at line SD3.

Now consider a sequence of SB_Deref operations on two locations,
la (initially occupied by a superblock x) and lb (initially empty), concurrent
with a successful Move(r , la , lb). There are two nontrivial forbidden result se-
quences: (i) SB_Deref (la) = null; SB_Deref (lb) = null; and (ii) SB_Deref (lb) = b;
SB_Deref (la) = b.

(i) Assume towards a contradiction that the sequence SB_Deref (la) = null;
SB_Deref (lb) = null occurred. Then line SD1 of SB_Deref (la) was executed after
line H13 of Move and line SD1 of SB_Deref (lb) before line H1 of Move. This is a
contradiction.

(ii) Assume towards a contradiction that the sequence SB_Deref (lb) = b;
SB_Deref (la) = b occurred. then line SD3 of SB_Deref (lb) was executed after line
H1 of Move and line SD3 of SB_Deref (la) before line M12 of Move. This is also a
contradiction. �

Algorithmica

Lemma 3 (Linearizability II) The operation Move is linearizable with respect to
other Move and SB_Deref operations with linearization points according to Propo-
sition 2.

Proof Consider the operation Move1(r , la , lb) for the superblock x. There are three
main cases for its interaction with other concurrent Move operations:

1. Chained. There is a Move2(r ′, lb , l′) moving another superblock from lb .
2. Same source. There is a Move2(r , la , l′).
3. Same destination. There is a Move2(r ′, l′, lb).

Case 1. Chained. Assume there is a Move2(r ′, lb , l′). We will examine the potential
linearizations below:

Move1 = OK → Move2 = OK: This case is impossible. The successful Move1 and
Move2 imply the following two sequences of events occurred as outlined above:
M21, M31, M71, M121, H11, H121, H131 and H151 and M22, M32, M72, M122,
H12, H122, H132 and H152, where H11 and H12 are the linearization points of
Move1 and Move2. The key point here is that the SB_Deref at M71 has to return
null, which implies that it occurred after H132 or helped Move2 to completion. So
we have Move2 → Move1 which contradicts the assumed order.

Move1 = OK → Move2 = NOOP: This case is impossible. There is no way Move1

can succeed when lb persistently contains r ′.
Move1 = NOOP → Move2 = OK: The successful Move2 implies the following

events occured as outlined above: M22, M32, M72, M122, H12, H122, H132 and
H152, where H12 is the linearization point of Move2. There are two potential
linearization points for Move1: (i) M31 if la �= r at that point, which is rather un-
interesting since the outcome of Move1 doesn’t depend on Move2 in this case;
(ii) M71 if SB_Deref (lb) returns r ′ there, which implies that M71 occured before
M122 (since SB_Deref would help Move2 otherwise). The linearization point H11

for Move1 would require that lb was empty at M71 and imply that there is an oper-
ation Move′ moving the block referenced by r ′ into lb between Move1 and Move2.
This is covered by case 3 below.

Move1 = NOOP → Move2 = NOOP: In this case Move1 is linearized at M31 or
M71. In case Move2 is linearized at H12 then M71 → M122 or else the opposite
linearization order would have occured due to helping.

Move2 = OK → Move1 = OK: The successful Move1 and Move2 imply the follow-
ing two sequences of events occured as outlined above: M21, M31, M71, M121,
H11, H121, H131 and H151 and M22, M32, M72, M122, H12, H122, H132 and
H152, where H11 and H12 are the linearization points of Move1 and Move2. The
key point here is that the SB_Deref at M71 has to return null, which implies that it
occured after H132 or helped Move2 to completion. So Move2 → Move1.

Move2 = OK → Move1 = NOOP: The successful Move2 implies the following
events occured as outlined above: M22, M32, M72, M122, H12, H122, H132 and
H152, where H12 is the linearization point of Move2. The linearization point for
Move1 is M31, as the linearization point M71 would have implied M71 → M122

Algorithmica

and H11 would have implied that an other Move with destination lb occured be-
tween Move2 and Move1.

Move2 = NOOP → Move1 = OK: This case is impossible. There is no way Move1
can succeed when lb persistently contains r ′.

Move2 = NOOP → Move1 = NOOP: In this case Move1 is linearized at M31 or
M71 where in the M71 case Move1 might help Move2 to complete.

Case 2. Same source. Assume there is a Move2(r , la , l′). We will examine the poten-
tial linearizations below (the cases where Move2 is linearized first are symmetric):

Move1 = OK → Move2 = OK: This is an impossible outcome. To have any possi-
bility of succeeding an operation has to be registered by a successful CAS at line
M12. When the old value passed to CAS was read at M2, location lA must still con-
tain r at line M4 and there must not be an ongoing operation on this superblock
(line M6). Clearly, one operation will be register before the other and once that
has happened the other have no hope of registering since when the first operation
is finished (by itself or via helping) la isn’t equal to r anymore.

Move1 = OK → Move2 = NOOP: The successful Move1 implies the following
events occured as outlined above: M21, M31, M71, M121, H11, H121, H131 and
H151, where H11 is the linearization point of Move1. There are two potential lin-
earization points for Move2: (i) M32 if la �= r at that point, which implies that H131
has already occured; (ii) M72 if M22 occured before M121 and M32 before H131,
which doesn’t force M72 to happen after H11 but that linearization order is also
fine since the outcome of Move2 then didn’t depend on Move1. The linearization
point H12 is impossible here since it implies Move2 was successfully registered in
x before Move1 and therefore Move2 → Move1.

Move1 = NOOP → Move2 = OK: The successful Move2 implies the following
events occured as outlined above: M22, M32, M72, M122, H12, H122, H132 and
H152, where H12 is the linearization point of Move2. There are two possible lin-
earization points for Move1: (i) M71 if M21 occured before M122 and M31 before
H132, which actually does not imply Move1 → Move2 but is indistinguishable
from the reverse case as seen above; (ii) H11 which implies the CAS at M121 was
successful and occured before M122, hence Move1 → Move2.

Move1 = NOOP → Move2 = NOOP: Since Move1 and Move2 are directly next to
each other in the linearized history and neither of them have any external effect
their order doesn’t matter. Hence it is fine linearize them according to the proposed
linearization points.

Case 3. Same destination. Assume there is a Move2(r ′, l′, lb). We will examine the
potential linearizations below:

Move1 = OK → Move2 = OK: This is an impossible outcome. To return OK both
Moves must succeed to change the null reference in lb to a reference to the respec-
tive superblock using CAS at H11 and H12, respectively. That is clearly impossi-
ble.

Move1 = OK → Move2 = NOOP: The successful Move1 implies the following
events occured as outlined above: M21, M31, M71, M121, H11, H121, H131 and
H151, where H11 is the linearization point of Move1. There are two interesting

Algorithmica

possible linearization points for Move2: (i) M72 which implies M72 occured after
H11 and hence Move1 → Move2; (ii) H12 which implies M72 occured before H11

but (as Move2 returns NOOP) H11 occured before H12, hence Move1 → Move2.
The linearization point M32 is an uninteresting case as it fails without interacting
with Move1.

Move1 = NOOP → Move2 = OK: The successful Move2 implies the following
events occured as outlined above: M22, M32, M72, M122, H12, H122, H132 and
H152, where H12 is the linearization point of Move2. The linearization point for
Move1 is M31, which is an uninteresting case as it fails without interacting with
Move2. The linearization points M71 or H11 cannot occur as they either imply that
H12 occured before M71 or H11 which contradict Move1 → Move2, or that an-
other Move’ moved another superblock away from lb between Move1 and Move2

which implies that the Moves can be linearized according to case 2 above.
Move1 = NOOP → Move2 = NOOP: If one or both Moves are linearized at M3 the

case is clear. Likewise for the other linearization points. �

Lemma 4 (Lock-free I) The operation Move is lock-free.

Proof There is only one loop in Move and none in Move_Help. For a Move invocation
to remain in the loop it either has to find an already ongoing operation concerning the
same superblock (line M6) or have the CAS at line M12 fail. In the first case this
operation itself will help the other ongoing operation to complete (line M16), thus
ensuring some operation makes progress. In the second case another Move operation
successfully registered itself and has thus made progress. �

Lemma 5 (Lock-free II) The operation SB_Deref is lock-free.

Proof There is only one loop in SB_Deref and none in Move_Help. For a SB_Deref
to remain in the loop it needs to read a non-null superblock reference from loc (line
SD1) and find that the referenced superblock is involved in an ongoing operation (line
SD4). If there is an ongoing operation SB_Deref will finish it via Move_Help. So, in
the next iteration loc may contain: (i) null, (e.g. if the move operation moved the
superblock from loc); or (ii) a reference to a superblock with no ongoing operation;
or (iii) a reference to a superblock with an ongoing operation. In the first two cases
SB_Deref will terminate. In (iii) SB_Deref would do another iteration, but in that
case, clearly, some other concurrent operation made progress (at least) via the help
provided by Move_Help, so it is acceptable for SB_Deref not to make progress. �

The flat-set Insert and Get_Any operations Flat-sets are containers with the fol-
lowing operations: Get_Any(s, r, loc) returns SUCCESS and a reference r to a su-
perblock x and r’s location loc in the flat-set s or EMPTY if the flat-set s is empty.

Insert(s, r, loc), which takes a superblock reference r and its current location loc
as arguments, returns:

• SUCCESS and updates loc to reference the new location of r if the superblock is
inserted into s (and removed from its previous location);

Algorithmica

• MOVED_AWAY if the superblock is no longer present in loc; and
• FULL if the flat-set s is full.

Proposition 3 The linearization point of the operation Get_Any(s, r, loc) is

• the SB_Deref at line G7 iff SUCCESS is returned; and
• at line G1 iff EMPTY is returned.

Proposition 4 The linearization point of the operation Insert(s, r, loc) is

• the Move at line I6 iff it returns SB_MOVED_OK;
• the memory read at line I10 iff ∗loc �= sb; and
• at line I1 iff FULL is returned.

To shorten the linearizability proofs we first outline the key events for an operation
Get_Any(set, r, loc) and Insert(set, r, loc) to return a particular result here. These lists
of events follow directly from the pseudo code.
Get_Any(set, r, loc):

SUCCESS G6: SB_Deref returns a non-null reference;
G11: set.current is updated with (i,) if it still is equal to old_current.

EMPTY G6–12: No non-null reference is found in set.set;
G6–12: No non-null reference is found in set.set;
G11: The second iteration saw exactly the same values in set.set as the first.

Insert(set, r, loc):

SUCCESS I5: SB_Deref (&set.set[i]) is null;
I6: Move(r, loc, set.set[i]) = SB_MOVED_OK;
I7: set.current is updated with (i,) if it still is equal to old_current.

MOVED_AWAY I5: SB_Deref (&set.set[i]) is null;
I6: Move(r, loc, set.set[i]) = SB_NOOP;
I10: ∗loc �= r .

FULL I1–12: set.set[i] �= null for all i;
I1–12: set.set[i] �= null for all i;
I13: The second iteration saw exactly the same values in set.set as the first.

Lemma 6 (Linearizability III) The operations Get_Any and Insert are linearizable
with respect to other Get_Any and Insert operations with linearization points ac-
cording to Proposition 3.

Proof There are three kinds of interesting interactions: (i) operations on or returning
the same superblock, (ii) operations on an empty flat-set, and (iii) operations on a full
flat-set.

(i) Consider the superblock x referenced by the reference r located at index i1 in
the flat set s1. Note that any Get_Any returning r is linearized at a SB_Deref (line G5)
and any Insert of x returning SUCCESS is linearized at a Move (line I6). Lemmas 2
and 3 show that these operations are linearizable w.r.t. each other.

Algorithmica

(ii) Consider an empty flat-set s and two operations Get_Any(s, r ′, l′) returning
EMPTY and Insert(s, r , l) returning SUCCESS. Assume towards a contradiction
that Insert → Get_Any . As mentioned above a successful Insert implies the follow-
ing events I5, I6, and I7 where the linearization point is that of the Move at line I6.
For Get_Any to return EMPTY it must complete two successive scans of the flat-set
location array without finding a superblock in any location and without any location
changing value between the two scans (lines G6–G12, G6–G12). The linearization
point is between the two scans. According to our assumption, the Move at I6 is lin-
earized before the start of the second scan in Get_Any . However, then Lemmas 2
and 3 guarantee that a SB_Deref (i.e. that of the location x was moved to) in the
second scan returns a reference to x, hence Get_Any will not return EMPTY.

(iii) Consider a flat-set s with one empty location and two operations Insert1(s, r, l)

returning SUCCESS and Insert2(s, r ′, l′) returning FULL. Assume towards a contra-
diction that Insert2 → Insert1. The successful Insert1 implies the following events:
I51, I61, and I71 where the linearization point is that of the Move at line I61. For
Insert2 to return FULL it must complete two successive scans of the flat-set location
array without finding any empty location and without any location changing value
between the two scans (lines I12–I122, I12–I122). The linearization point is between
the two scans. According to our assumption the linearization point in the Move at
I61 must occur after the start of the second scan in Insert2. However, for Insert2
to return FULL the second scan must see exactly the same values in the location
array as the first scan and all locations must be occupied. Hence, Insert1 also cannot
succeed. If the second scan in Insert2 sees the value written by Insert1 that value
differs from what was read from that location during the first scan. So Insert2 will
scan the flat-set location array again, thereby moving its linearization point after that
of Insert1. �

Lemma 7 (Lock-free III) The operation Get_Any is lock-free.

Proof The operation Get_Any contains one unbounded loop. To remain in this loop
the state of the flat-set location array must not remain unchanged for two iterations in
a row (line G11). That the flat-set array changed implies some other operation made
progress. �

Lemma 8 (Lock-free IV) The operation Insert is lock-free.

Proof The operation Insert contains two nested loops. First, note that the outer loop
is exited if the state of the flat-set location array remains unchanged for two iterations
(line I13). Further, as the inner loop tries to move the superblock to each empty
location found in the array, two iterations of the outer loop without any change in the
flat-set array guarantees that the flat-set was full at the start of the second iteration. If
the flat-set array changed that implies some other operation made progress.

For Insert to remain in the inner loop the current location set.set[i] must be null
at the start of each iteration (line I4) and Move at I6 must return SB_NOOP due to
the destination set.set[i] being different from null. Recall that Move could also return
SB_NOOP if the superblock is no longer present at loc but in that case Insert returns

Algorithmica

at line I11. So, for Insert to remain in the inner loop set.set[i] has to change from null
to non-null (and then back again) which can only be the result of other operations
making progress. �

5 Experimental Study

5.1 Systems

There are two major families of cache-coherent multiprocessor architectures—UMA
(Uniform Memory Architecture) and NUMA (Non-Uniform Memory Architecture).
In a UMA system all processors have the same latency to the memory. In a NUMA
system, this is not the case, since access to memory on another node can be signifi-
cantly slower.

NBMALLOC has been studied on a three multiprocessor systems, both on UMA
and NUMA memory architectures. The three systems are

(i) an UMA Sun Sun-Fire 880 with 6 900 MHz UltraSPARC III+ (4 MB L2 cache)
processors running Solaris 9;

(ii) a ccNUMA SGI Origin 2000 with 30 250 MHz MIPS R10000 (4 MB L2 cache)
processors running IRIX 6.5;

(iii) an UMA PC with 2 2.80 GHz Intel Xeon (512 KB L2 cache) processors running
Linux 2.6.9-22 SMP.

5.2 Benchmarks

We used the following common benchmarks to evaluate NBMALLOC:
The Larson [2, 3, 39] benchmark simulates a multi-threaded server application

that makes heavy use of dynamic memory. Each thread allocates and deallocates ob-
jects of random sizes (between 5 to 500 bytes) and also transfers some of the objects
to other threads to be deallocated there. The benchmark result is throughput in terms
of the number of allocations and deallocations per second, which reflects the alloca-
tor’s behaviour with respect to false-sharing and scalability, and the resulting mem-
ory footprint of the process which should reflect any tendencies for heap-blowup. We
measured the throughput during 60 second runs for each set of threads.

The Active-false and passive-false [2, 3] benchmarks measure how the allocator
handles active (i.e. directly caused by the allocator) respective passive (i.e. caused
by application behaviour) false-sharing. In the benchmarks each thread repeatedly
allocates an object of a certain size (1 byte) and subsequently reads and writes to that
object a large number of times (1000) before deallocating it again. If the allocator
does not take care to avoid false-sharing, several threads might get objects located
in the same cache-line and this will slow down the reads and writes to the objects
considerably. In the passive-false benchmark all initial objects are allocated by one
thread and then transfered to the others to introduce the risk of passive false-sharing
when those objects are later freed for reuse by the threads. The benchmark result is
the total wall-clock time for performing a fixed number (106) of allocate-read/write-
deallocate cycles among all threads.

Algorithmica

Fig. 3 The results from the
active false-sharing benchmark

(a) Active-False: PC with 2 Intel Xeon CPUs

(b) Active-False: Sun with 6 UltraSPARC III+ CPUs

5.3 Implementation

In our implementation of NBMALLOC2 we use the CAS primitive (implemented from
the hardware synchronization instructions available on the respective system) for the
lock-free operations. To avoid ABA problems we use the version number solution
([27], cf. Sect. 2.2). We use 16-bit version numbers for the superblock references in
the flat-sets. The reason why this is safe, is that for a bad event (i.e. that a CAS of
a superblock reference succeeds when it should not) to happen, not only must the

2Our implementation is available at http://www.cs.chalmers.se/~dcs/nbmalloc.html.

http://www.cs.chalmers.se/~dcs/nbmalloc.html

Algorithmica

Fig. 3 (Continued)

(c) Active-False: SGI Origin 2000 with 30 MIPS 10k
CPUs

version numbers be equal, but also that same superblock must have been moved back
to the same location in the flat-set, which contains thousands of locations. We use su-
perblocks of 64 KB and this leaves enough space for version numbers in superblock
pointers. We also use size-classes that are powers of two, starting from 8 bytes. This
is not a decision forced by the algorithm; a more tightly spaced set of size-classes can
also be used; this would impose some extra fixed space overhead due to the preallo-
cated flat-sets for each size-class, but it would also further reduce internal fragmen-
tation. Blocks larger than 32 KB are allocated directly from the operating system in-
stead of being handled in superblocks. Our implementation uses four fullness-groups
and a fullness-change-threshold of 1

4 , i.e. a superblock is not moved to a new group
until its fullness is more than 1

4 outside its current group. This prevents superblocks
from rapidly oscillating between fullness-groups. Further, we set the maximum size
for the flat-sets used in the global heap and for those in per-processor heaps to 4093
superblocks each (these values can be adjusted separately).

5.4 Results

In the evaluation we study NBMALLOC in connection with the standard “libc” al-
locator of the respective platform using the above standard benchmark applications.
On the Sun platform, for which we had the original Hoard allocator available, we
also study in connection with Hoard (version 3.7.0 on the PC and 3.4.0 on the other
platforms). To the best of our knowledge, Hoard is not available for ccNUMA SGI
IRIX platforms. Note that on the PC/Linux platform, the default “libc” malloc is in
fact Ptmalloc, a lock-based concurrent memory allocator with private per-processor
heaps by Gloger [21].

The benchmarks are intended to test scalability, fragmentation and false-sharing
behaviour, which are the evaluation criteria of a good concurrent allocator, as ex-
plained in the introduction. When performing these experiments our main goal was

Algorithmica

Fig. 4 The results from the
passive false-sharing benchmark

(a) Passive-False: PC with 2 Intel Xeon CPUs

(b) Passive-False: Sun with 6 UltraSPARC III+ CPUs

not to optimize the performance of the lock-free allocator, but rather to examine the
benefits of the lock-free design itself.

The results from the two false-sharing benchmarks, shown in Figs. 3 and 4, re-
spectively, show that NBMALLOC and Hoard induce very little false-sharing. The
standard “libc” allocator, on the other hand, suffers significantly from false-sharing as
shown by its longer and irregular runtimes. For “libc” false-sharing causes the largest
slowdown when there are few but fully concurrent threads, as they are the most likely
to get objects in the same cache-line and also access them concurrently. When the
number of threads gets larger, objects are more likely to be in different cache-lines
and also, due to time-sharing, not all threads execute at the same time. An important

Algorithmica

Fig. 4 (Continued)

(c) Passive-False: SGI Origin 2000 with 30 MIPS 10k
CPUs

observation throughout the experiments is that NBMALLOC shows consistent behav-
iour as the number of processors and memory architectures change.

The throughput results from the Larson benchmark, shown in Fig. 5, show that
NBMALLOC has good scalability, not only in the case of full concurrency (where
Hoard also shows excellent scalability), but also when the number of threads in-
creases beyond the number of processors. In that region, Hoard’s performance
quickly drops from its peak at full concurrency on the Sun (cf. Fig. 5(b)) and slowly
on the PC (cf. Fig. 5(a)).

We can actually observe more clearly the scalability properties of the lock-free
allocator in the performance diagrams on the SGI Origin 2000 platform (Fig. 5(c)).
We can observe a linear-style of throughput increase when the number of processors
increases (recall that we have 30 processors available in the Origin 2000). Further-
more, when the load on each processor increases beyond one thread, the throughput
of the lock-free allocator stays high, as is desirable for scalability. In terms of absolute
throughput, Hoard is superior to NBMALLOC on the Sun platform where we had the
possibility to compare them. On the PC/Linux platform the situation is reversed and
except for the sequential case NBMALLOC has higher throughput than both Hoard
and Ptmalloc/glibc.

The results with respect to memory consumption, in Fig. 6, show that for the Lar-
son benchmark the memory usage (and thus fragmentation) of NBMALLOC stays at
a similar or better level than Hoard (cf. Fig. 6(a) and (b)). Despite having a larger
initial overhead than single heap allocators such as the “libc” allocator the use of
per-processor heaps with thresholds scales almost as well with respect to memory
utilization.

To summarise, an interesting conclusion is that the scalability of Hoard’s ar-
chitecture is further enhanced by lock-free synchronization. Moreover, note that
NBMALLOC shows a very similar behaviour in throughput on both the UMA and
the ccNUMA systems. This is another positive implication of lock-free synchroniza-

Algorithmica

Fig. 5 The Larson benchmark:
Throughput

(a) Throughput: PC with 2 Intel Xeon CPUs

(b) Throughput: Sun with 6 UltraSPARC III+ CPUs

tion, as it means much fewer (to none) contention hot-spots. In connection with the
architecture context, this is even better, as contention hot-spots tend to cause much
larger performance penalties on NUMA than on UMA architectures.

6 Other Related Work

As mentioned in the introduction, concurrently with and independently from our
work on NBMALLOC, Michael presented a lock-free allocator [4] that, like our con-
tribution, is loosely based on the Hoard architecture. Despite both having started

Algorithmica

Fig. 5 (Continued)

(c) Throughput: SGI Origin 2000 with 30 MIPS 10k
CPUs

from the Hoard architecture, we have used two different approaches to achieve lock-
freedom. In Michael’s allocator each per-processor heap contains one active (i.e.
used by memory requests) and at most one inactive partially filled superblock per
size-class, plus an unlimited number of full superblocks. All other partially filled
superblocks are stored globally in per-size-class FIFO queues. It is an elegant algo-
rithmic construction, and from the scalability and throughput performance point of
view it performs excellently, as is shown in [4], in the experiments carried out on a
16-way POWER3 platform. By further studying the allocators, it is relevant to note
that: NBMALLOC and Hoard keep all partially filled superblocks in their respective
per-processor heap while the allocator in [4] does not and this may increase the poten-
tial for inducing false-sharing. NBMALLOC and Hoard also keep the partially filled
superblocks sorted by fullness and not doing so, like the allocator in [4] does, may
imply some increased risk of external fragmentation since the fullness order is used to
direct allocation requests to the more full superblocks which makes it more likely that
less full ones become empty and thus eligible for reuse. The allocator in [4], unlike
ours, uses the first-remove-then-insert approach to move superblocks around, which
in a concurrent environment could affect the fault-tolerance of the allocator and cause
unnecessary allocation of superblocks since a superblock is invisible to other threads
while it is being moved.

Another allocator that reduces the use of locks is LFMalloc [5]. It uses a method
for almost lock-free synchronization, whose implementation requires the ability to
efficiently manage CPU-data and closely interact with the operating system’s sched-
uler. To the best of our knowledge, this possibility is not directly available on all
systems. LFMalloc is also based on the Hoard design, with the difference in that it
limits each per-processor heap to at most one superblock of each size-class; when
this block is full, further memory requests are redirected to the global heap where
blocking synchronization is used and false-sharing is likely to occur.

Algorithmica

Fig. 6 The Larson benchmark:
Average memory consumption

(a) Memory consumption: PC with 2 Intel Xeon CPUs

(b) Memory consumption: Sun with 6 UltraSPARC III+
CPUs

Besides the contribution corresponding to the functionality of memory allocation,
in this work we also show a data structure implementation with lock-free and lineariz-
able operations involving more than one of its instances (“inter-object” operations).
This contribution may enable a new methodology in lock-free system components
construction (cf. next section).

7 Discussion and Future Work

The lock-free memory allocator proposed in this paper confirms our expectation that
fine-grain, lock-free synchronization is useful for scalability under increasing load in

Algorithmica

Fig. 6 (Continued)

(c) Memory consumption: SGI Origin 2000 with 30
MIPS 10k CPUs

the system. To the best of our knowledge, this, together with the allocator that was
independently presented in [4] are also the first lock-free general allocators (based
on single-word CAS) in the literature. We expect that this contribution will have an
interesting impact in the domain of memory allocators and service systems for mul-
tiprocessors. NBMALLOC has been used for memory allocation for dynamic lock-
free data structure implementations within the C++ STL library research efforts by
Dechev et al. [40].

It will be useful to study a generalization of the method for “inter-object” opera-
tions, which is illustrated here in the move operation. A general methodology in this
direction would enable combinations of known lock-free data structures (e.g. list-
structures) into larger, interconnected ones, to be integrated in systems such as the
one studied here.

Acknowledgements We would like to thank the anonymous reviewers for their detailed and helpful
comments, Håkan Sundell for interesting discussions on non-blocking methods and Maged Michael for
helpful comments on an earlier version of this paper.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.

References

1. Gidenstam, A., Papatriantafilou, M., Tsigas, P.: Allocating memory in a lock-free manner. In: Proc. of
the 13th Annual European Symp. on Algorithms (ESA’05). LNCS, vol. 3669, pp. 329–342. Springer,
Berlin (2005)

2. Berger, E.D.: Memory management for high-performance applications. Ph.D. Thesis, The University
of Texas at Austin, Department of Computer Sciences (2002)

Algorithmica

3. Berger, E., McKinley, K., Blumofe, R., Wilson, P.: Hoard: A scalable memory allocator for mul-
tithreaded applications. In: ASPLOS-IX: 9th Int. Conf. on Architectural Support for Programming
Languages and Operating Systems, pp. 117–128 (2000)

4. Michael, M.: Scalable lock-free dynamic memory allocation. In: Proc. of SIGPLAN 2004 Conf. on
Programming Languages Design and Implementation. ACM SIGPLAN Notices. ACM, New York
(2004)

5. Dice, D., Garthwaite, A.: Mostly lock-free malloc. In: ISMM’02 Proc. of the 3rd Int. Symp. on Mem-
ory Management. ACM SIGPLAN Notices, pp. 163–174. ACM, New York (2002)

6. Michael, M.M.: Safe memory reclamation for dynamic lock-free objects using atomic reads and
writes. In: Proceedings of the 21st ACM Symposium on Principles of Distributed Computing, pp. 21–
30. ACM, New York (2002)

7. Michael, M.M.: Hazard pointers: Safe memory reclamation for lock-free objects. IEEE Trans. Parallel
Distrib. Syst. 15, 491–504 (2004)

8. Herlihy, M., Luchangco, V., Moir, M.: The repeat offender problem: A mechanism for supporting
dynamic-sized, lock-free data structures. In: Proceedings of the 16th International Symposium on
Distributed Computing (DISC’02). LNCS, vol. 2508, pp. 339–353. Springer, Berlin (2002)

9. Valois, J.D.: Lock-free data structures. Ph.D. Thesis, Rensselaer Polytechnic Institute, Department of
Computer Science, Troy, New York (1995)

10. Michael, M.M., Scott, M.L.: Correction of a memory management method for lock-free data struc-
tures. Technical Report TR599, University of Rochester, Computer Science Department (1995)

11. Detlefs, D.L., Martin, P.A., Moir, M., Guy L. Steele, J.: Lock-free reference counting. In: Proceedings
of the 20th Annual ACM Symposium on Principles of Distributed Computing, pp. 190–199. ACM,
New York (2001)

12. Herlihy, M., Luchangco, V., Martin, P., Moir, M.: Nonblocking memory management support for
dynamic-sized data structures. ACM Trans. Comput. Syst. 23, 146–196 (2005)

13. Gidenstam, A., Papatriantafilou, M., Sundell, H., Tsigas, P.: Practical and efficient lock-free garbage
collection based on reference counting. In: Proc. of the 8th International Symp. on Parallel Architec-
tures, Algorithms, and Networks (I-SPAN), pp. 202–207. IEEE Comput. Soc., Los Alamitos (2005)

14. Schneider, S., Antonopoulos, C., Nikolopoulos, D.: Scalabel locality-conscious multithreaded mem-
ory allocation. In: Proceedings of the 2006 International Symposium on Memory Management
(ISMM’06), pp. 84–94. ACM, New York (2006)

15. Massalin, H., Pu, C.: A lock-free multiprocessor OS kernel. Technical Report CUCS-005-91 (1991)
16. Massalin, H.: Synthesis: an efficient implementation of fundamental operating system services. Ph.D.

Thesis, Columbia University (1992)
17. Greenwald, M., Cheriton, D.R.: The synergy between non-blocking synchronization and operating

system structure. In: Operating Systems Design and Implementation, pp. 123–136 (1996)
18. Greenwald, M.B.: Non-blocking synchronization and system design. Ph.D. Thesis, Stanford Univer-

sity (1999)
19. SGI: The standard template library for C++ (2003). http://www.sgi.com/tech/stl/Allocators.html
20. Blumofe, R.D., Leiserson, C.E.: Scheduling multithreaded computations by work stealing. J. Assoc.

Comput. Mach. 46, 720–748 (1999)
21. Gloger, W.: Wolfram Gloger’s malloc homepage (2003). http://www.malloc.de/en/
22. Steensgaard, B.: Thread-specific heaps for multi-threaded programs. In: ISMM 2000 Proc. of the

Second Int. Symp. on Memory Management. ACM SIGPLAN Notices, vol. 36(1). ACM, New York
(2000)

23. Herlihy, M.P., Wing, J.M.: Linearizability: A correctness condition for concurrent objects. ACM
Trans. Program. Lang. Syst. 12, 463–492 (1990)

24. Barnes, G.: A method for implementing lock-free shared data structures. In: Proc. of the 5th Annual
ACM Symp. on Parallel Algorithms and Architectures, SIGACT and SIGARCH, pp. 261–270 (1993).
Extended abstract

25. Herlihy, M.: Wait-free synchronization. ACM Trans. Program. Syst. 11, 124–149 (1991)
26. Rinard, M.C.: Effective fine-grain synchronization for automatically parallelized programs using op-

timistic synchronization primitives. ACM Trans. Comput. Syst. 17, 337–371 (1999)
27. Valois, J.D.: Lock-free linked lists using compare-and-swap. In: Proc. of the 14th Annual ACM Symp.

on Principles of Distributed Computing (PODC ’95), pp. 214–222. ACM, New York (1995)
28. Tsigas, P., Zhang, Y.: A simple, fast and scalable non-blocking concurrent fifo queue for shared mem-

ory multiprocessor systems. In: Proc. of the 13th Annual ACM Symp. on Parallel Algorithms and
Architectures, pp. 134–143. ACM, New York (2001)

http://www.sgi.com/tech/stl/Allocators.html
http://www.malloc.de/en/

Algorithmica

29. Harris, T.L.: A pragmatic implementation of non-blocking linked lists. In: Proc. of the 15th Int. Conf.
on Distributed Computing, pp. 300–314. Springer, Berlin (2001)

30. Hoepman, J.H., Papatriantafilou, M., Tsigas, P.: Self-stabilization of wait-free shared memory objects.
J. Parallel Distrib. Comput. 62, 766–791 (2002)

31. Moir, M.: Practical implementations of non-blocking synchronization primitives. In: Proc. of the 16th
Annual ACM Symp. on Principles of Distributed Computing, pp. 219–228 (1997)

32. Papatriantafilou, M., Tsigas, P.: Wait-free consensus in “in-phase” multiprocessor systems. In: Symp.
on Parallel and Distributed Processing (SPDP ’95), pp. 312–319. IEEE Comput. Soc., Los Alamitos
(1995)

33. Papatriantafilou, M., Tsigas, P.: On self-stabilizing wait-free clock synchronization. Parallel Process.
Lett. 7, 321–328 (1997)

34. Sundell, H., Tsigas, P.: Fast and lock-free concurrent priority queues for multi-thread systems. In:
Proc. of the 17th IEEE/ACM Int. Parallel and Distributed Processing Symp. (IPDPS 03). IEEE Press,
New York (2003)

35. Valois, J.D.: Implementing lock-free queues. In: Proc. of the Seventh Int. Conf. on Parallel and Dis-
tributed Computing Systems, pp. 64–69 (1994)

36. Michael, M.M.: High performance dynamic lock-free hash tables and list-based sets. In: Proc. of the
14th Annual ACM Symp. on Parallel Algorithms and Architectures (SPAA-02), pp. 73–82. ACM,
New York (2002)

37. Jayanti, P.: A complete and constant time wait-free implementation of CAS from LL/SC and vice
versa. In: Proceedings of the 12th International Symposium on Distributed Computing (DISC ’98).
Lecture Notes in Computer Science, vol. 1499, pp. 216–230. Springer, Berlin (1998)

38. IBM: IBM System/370 Extended Architecture, Principles of Operation (1983). Publication No. SA22-
7085

39. Larson, P.P.Å., Krishnan, M.: Memory allocation for long-running server applications. In: ISMM’98
Proc. of the 1st Int. Symp. on Memory Management. ACM SIGPLAN Notices, pp. 176–185. ACM,
New York (1998)

40. Dechev, D., Pirkelbauer, P., Stroustrup, B.: Lock-free dynamically resizable arrays. In: Proc. of the
10th Int. Conf. on Principles of Distributed Systems OPODIS’06. LNCS, vol. 4305, pp. 142–156.
Springer, Berlin (2006)

	NBmalloc: Allocating Memory in a Lock-Free Manner
	Abstract
	Introduction
	Related Work
	Document Structure

	Background and Problem Description
	Concurrent Memory Allocators
	Separate handling of thread-local allocations

	Non-blocking Synchronization

	NBmalloc
	Architecture
	Managing Superblocks: The Flat-Set Data Structure
	Operations on Bounded Non-blocking Flat-Sets
	How to Move a Shared Reference: Moving Items between Flat-Sets
	Dereferencing a superblock reference

	Managing Blocks within a Superblock
	Interacting with NBmalloc

	Correctness of the Non-blocking Flat-Set Algorithm
	The SB_Deref and Move operations
	The flat-set Insert and Get_Any operations

	Experimental Study
	Systems
	Benchmarks
	Implementation
	Results

	Other Related Work
	Discussion and Future Work
	Acknowledgements
	Open Access
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

