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1. INTRODUCTION

Cooperating processes in multiprocessor and multiprocessing systems may
share data via shared data objects. In this article, we are interested in design-
ing and evaluating the performance of shared data objects for cooperative tasks
in multiprocessor systems. More specifically, we are interested in designing a
practical wait-free algorithm for implementing registers (or memory words) of
arbitrary length that could be read and written atomically. (Typical modern
multiprocessor systems support words of 64-bit size.)

The most commonly required consistency guarantee for shared data objects
is atomicity, also known as linearizability [Herlihy and Wing 1990]. An im-
plementation of a shared object is atomic or linearizable if it guarantees that
even when operations overlap in time, each of them appears to take effect at an
atomic time instant that lies in its respective time duration, in a way that the
effect of each operation is in agreement with the object’s sequential specifica-
tion. The latter means that if we speak of, for example, read/write objects, the
value returned by each read equals the value written by the most recent write
according to the sequence of “shrunk” operations in the time axis.

The classical well-known and simplest solution for maintaining consistency
of shared data objects enforces mutual exclusion. Mutual exclusion protects
the consistency of the shared data by allowing only one process at time to
access it. However, mutual exclusion causes large performance degradations,
especially in multiprocessor systems [Silberschatz et al. 2001; Sundell 2004]
and suffers from potential priority inversion, in which a high-priority task can
be blocked for unbounded time by a lower-priority task [Sha et al. 1990]. Several
synchronization protocols have been introduced to solve the priority inversion
problem for uniprocessor [Sha et al. 1990] and multiprocessor [Rajkumar 1990]
systems. The solution presented in [Sha et al. 1990] solves the problem for the
uniprocessor case, at the cost of limiting the schedulability of task sets and also
making the scheduling analysis of real-time systems hard. The situation is
much worse in a multiprocessor real-time system, where a task may be blocked
by another task running on a different processor [Rajkumar 1990].

Nonblocking implementation of shared data objects is an alternative ap-
proach for the problem of inter-task communication. Nonblocking mechanisms
allow multiple tasks to access a shared object at the same time, but without en-
forcing mutual exclusion to accomplish this. They offer significant advantages
over lock-based schemes because (1) they do not suffer from priority inversion;
(2) they avoid lock convoys; (3) they provide high tolerance to processor failures
(process or processor stop failures will never corrupt shared data objects); and
(4) they eliminate deadlock scenarios, involving two or more tasks both waiting
for locks held by the other. On the other hand, nonblocking protocols have to use
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more delicate strategies to guarantee data consistency than the simple enforce-
ment of mutual exclusion between the readers and the writers of the data object.

Nonblocking algorithms can be lock-free or wait-free. Lock-free [Barnes
1993; Herlihy 1993] algorithms guarantee that regardless of the contention
and the interleaving of concurrent operations, at least one operation will al-
ways make progress. However, there is a risk that the progress of other op-
erations might cause one specific operation to take unbounded time to fin-
ish. In a wait-free [Herlihy 1991] algorithm, every operation is guaranteed
to finish in a limited number of steps, regardless of the actions of the con-
current operations. Nonblocking algorithms have been shown to be of good
practical importance [Tsigas and Zhang 2001, 2002], and in the recent years,
NOBLE, which is a library of non-blocking interprocess communication objects,
has been introduced [Sundell and Tsigas 2002].

From a historic perspective, research on nonblocking algorithms stems from
the readers/writers problem. In this problem, a number of concurrent processes
are interested in reading from or writing to a shared data object (here also
called a register). A read operation as well as a write operation should take effect
atomically and return or update the entire state of the shared data object. When
the shared data object is larger than a single (atomic) word (of the word size
supported by the multiprocessor system at hand) an algorithm is needed to co-
ordinate the readers/writers so that access to the multiword data is atomic. The
classical solution is to use mutual exclusion to enforce that either (1) no read or
write operations overlap each other, or (2) no write operations overlap each other
or any read operation. These methods, normally implemented using a mutual
exclusion lock or a readers-writers lock, respectively, suffer from the drawbacks
of mutual exclusion mentioned above. Lamport [1977] introduces a lock-free
solution to the readers/writers problem with one writer. Lamport’s algorithm is
actually wait-free for the writer but lock-free for the readers, since the writer
can force a slow reader to retry indefinitely. This algorithm, followed by the
first wait-free algorithm by Peterson [1983], marked the start of long running
research efforts to construct wait-free solutions to the readers/writers problem.

This problem, also known as the problem of multiword wait-free read/write
registers, has become one of the well-studied problems in the area of nonblock-
ing synchronization, with numerous results for the construction of, for example,
(1) single-writer single-reader registers [Lamport 1986; Simpson 1990; Chen
and Burns 1997]; (2) single-writer n-reader registers [Peterson 1983; Burns and
Peterson 1987; Kirousis et al. 1987; Newman-Wolfe 1987; Kopetz and Reisinge
1993; Singh et al. 1994; Haldar and Vidyasankar 1995; Larsson et al. 2004];
(3) 2-writer n-reader registers [Bloom 1988]; and (4) m-writer n-reader regis-
ters [Vitányi and Awerbuch 1986; Peterson and Burns 1987; Israeli and Shaham
1992; Li and Vitányi 1992; Li et al. 1996; Haldar and Vidyasankar 1996].

The main goal of the algorithms in the above results is to construct wait-free
multi-word read/write registers using single-word read/write registers and not
any other synchronization primitives that may be provided by the hardware
in a system. This has been very significant, providing fundamental results in
the area of wait-free synchronization, especially when we consider the nowa-
days well-known and well-studied hierarchy of shared data objects and their
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Fig. 1. The specifications of the swap and fetch and or atomic suboperations.

synchronization power [Herlihy 1991]. Many of these solutions also involve el-
egant and symmetric ideas. Moreover, they have formed the basis for further
results in the area of nonblocking synchronization.

Our motivation for further studying this problem is as follows: As the afore-
mentioned solutions were using only read/write registers as components, they
necessarily have each write operation on the multiword register write the new
value in several copies (roughly speaking, as many copies as we have readers
in the system), which may be costly. However, modern computer architectures
provide hardware synchronization primitives stronger than atomic read/write
registers. Some of them are even accessible at a constant cost-factor away from
read/write accesses. We consider it a useful task to investigate how to use this
power, to the benefit of designing economical solutions for the same problem,
which can lead to structures that are more suitable for being adopted in prac-
tice. Moreover, to the best of our knowledge, none of the previous solutions have
been implemented and evaluated on real systems.

In this article, we present the READERSFIELD algorithm, a simple, efficient
wait-free algorithm for implementing multi-word n-reader/single-writer regis-
ters of arbitrary word length. In the READERSFIELD algorithm, each multiword
write operation only needs to write the new value in one copy, thus having sig-
nificantly less overhead. The algorithm uses synchronization primitives called
fetch and or and swap (c.f. Figure 1 and [Silberschatz et al. 2001]), which are
available in several modern processor architectures, to synchronize n read-
ers and a writer accessing the register concurrently. Since the READERSFIELD

algorithm is wait-free, it provides high parallelism for the accesses to the
multiword register and thus significantly improves performance. We study
the READERSFIELD algorithm together with the wait-free one in [Peterson 1983],
which is also practical and simple, and two lock-based algorithms, one us-
ing a single spin-lock and one using a readers-writer spin-lock. We design
benchmarks and study these solutions on three multiprocessor architectures
[Tanenbaum 2001]: UMA (Uniform Memory Access) Sun-Fire-880 with six pro-
cessors, ccNUMA (Non-Uniform Memory Access) SGI Origin 2000 with 29 pro-
cessors and ccNUMA SGI Origin 3800 with 128 processors.

The rest of this article is organized as follows. Section 2 describes the formal
requirements of the problem and the related algorithms that we are using in
the evaluation study. Section 3 presents our protocol. Section 4 gives the proof
of correctness and the complexity of the new protocol. Section 5 is devoted to
the experimental study comparing our wait-free protocol with previous work,
both nonblocking and lock-based. The article concludes with Section 6, with a
discussion on the contributed results and further research issues.
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2. BACKGROUND

2.1 System and Problem Model

A shared register of arbitrary length [Lamport 1977; Peterson 1983] is an ab-
stract data structure that is shared by a number of concurrent processes, which
perform read or write operations on the shared register. In this article, we make
no assumption about the relative speed of the processes (i.e., the processes are
asynchronous). One of the processes, the writer, executes write operations and
all other processes, the readers, execute read operations on the shared regis-
ter. The order of execution of steps by each process depends on the consistency
model of the underlying system. Consistency models, in general, and the con-
sistency model assumptions of the algorithms in this article are discussed in
the next subsection.

An implementation of a register consists of (1) protocols for executing the op-
erations (read and write), (2) a data structure consisting of shared subregisters,
and (3) a set of initial values for these. The protocols for the operations consist of
a sequence of operations on the subregisters, called suboperations. These sub-
operations are reads, writes or other atomic operations, such as fetch and or or
swap (cf. Figure 1), which either are available directly by the hardware or can be
implemented from other, commonly available, hardware synchronization primi-
tives, such as compare and swap or load linked/store conditional [Herlihy 1991].
Furthermore, matching the capabilities of modern multiprocessor systems, the
subregisters are assumed to be atomic and to support multiple processes.

A register implementation is wait-free [Herlihy 1991] if it guarantees that
any process will complete each operation in a finite number of steps (suboper-
ations) regardless of the execution speeds of the other processes.

For each operation O, there exists a time interval [sO , f O ] called its duration,
where sO and f O are the starting and ending times, respectively. There is a
precedence relation on the operations that form a strict partial order (denoted
’→’). For two operations a and b, a → b means that operation a ended before
operation b started. If two operations are incomparable under →, they are said
to overlap.

A reading function π for a register is a function that assigns a high-level write
operation w to each high-level read operation r such that the value returned by
r is the value that was written by w (i.e., π (r) is the write operation that wrote
the value that the read operation r read and returned).

CRITERION 2.1. A shared register is atomic iff the following three conditions
hold for all possible executions:

1. NO-IRRELEVANT. There exists no read r such that r → π (r).
2. NO-PAST. There exists no read r and write w such that π (r) → w → r.
3. NO-NEW-OLD-INVERSION. There exist no reads r1 and r2 such that r1 → r2 and

π (r2) → π (r1).

Besides atomicity, there also exist other useful consistency guarantees that
have been defined in the literature (e.g., regularity). An implementation of a
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shared object is regular [Lamport 1986] if it merely guarantees that a read of the
object that does not overlap with any write returns the latest written value of
the object and that a read that overlaps with a write either returns that written
value or the old one. The criterion for proving that a register implementation
is regular is given below:

CRITERION 2.2. A shared register is regular iff the following two conditions
hold for all possible executions:

1. NO-IRRELEVANT. There exists no read r such that r → π (r).
2. NO-PAST. There exists no read r and write w such that π (r) → w → r.

2.2 Memory Consistency Models

There are a number of different memory consistency models in the literature
and in existing systems. The system supports a given model if operations on
memory follow specific rules.

In the sequential consistency model, “the results of any execution is the same
as if the operations of all the processors were executed in some sequential order,
and the operations of each individual processor appear in this sequence in the
order specified by its program” [Lamport 1979]. This implies that assuming the
sequential consistency model, we can assume that operations performed by
the same process execute sequentially and also that all reads and writes
to subregisters are observed in the same order by all the processes/threads.
The sequential consistency model is supported by the the SGI Origin
[Silicon Graphics 1993; Culler et al. 1998] platforms.

In some consistency, models there are explicit synchronization actions that
are treated differently from ordinary memory accesses. Such actions usually
involve variables called synchronizing variables.

Definition 2.3 (Synchronizing Variable). [Dubois et al. 1986] Synchronizing
variables are the shared variables that are used to control the concurrency
between several processes.

To allow the system to distinguish between accesses to synchronizing vari-
ables and to other shared variables at run time, synchronizing variables are re-
quired to be accessed via synchronization instructions like atomic read-modify-
write or special load/store instructions [Dubois et al. 1986]. Therefore, accesses
to such hardware-recognized synchronizing variables are implicitly assumed to
use synchronization instructions supported by the system.

One consistency model that distinguishes such variables and is common
in multiprocessor systems, such as the SPARC architectures [CORPORATE
SPARC International 1994], is the weak consistency model [Dubois et al. 1986]:

Definition 2.4 (Weak Consistency). A multiprocessor is weak consistent if:

1. Accesses to global synchronizing variables are strongly ordered (i.e., sequen-
tially consistent).

2. No access to a synchronizing variable is issued in a processor before all
previous global data accesses have been performed.
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Fig. 2. The shared variables used by Peterson’s algorithm. The number of readers is n. BUF1 holds
the initial register value. All other variables are initialized to 0 or false.

3. No access to global data is issued by a processor before a previous access to
a synchronizing variable has been performed.

Peterson’s algorithm and the lock-based alogorithms studied in this article
require sequential consistency. The memory consistency model assumed by the
READERSFIELD algorithm need not satisfy sequential consistency; instead, it
only needs to satisfy the following properties: (for ease of reference later in the
article, we call them the Cache Weak Consistency properties).

Definition 2.5 (Cache Weak Consistency (CWC)). A multiprocessor is cache
weak consistent if:

1. Accesses to global synchronizing variables are Cache Consistent [Goodman
1989]. The cache consistency requires that accesses to the same memory
location be sequentially consistent.

2. No access to a synchronizing variable is issued in a processor before all
previous global data accesses have been performed.

3. No access to global data is issued by a processor before a previous access to
a synchronizing variable has been performed.

The cache weak consistency model is even weaker than the weak consistency
model, in particular with respect to the first restriction.

2.3 Peterson’s Shared Multiword Register

Peterson [1983] describes an implementation of an atomic shared multiword
register for one writer and many (n) readers. The protocol does not use any
other atomic suboperations than reads and writes and is described below.

The idea is to use n + 2 shared buffers, each of which can hold a value of the
register, together with a set of shared handshake variables to make sure that
the writer does not overwrite all buffers that are being read by some reader
and that each reader chooses a stable but up-to-date buffer to read from. The
shared variables are shown in Figure 2 and the protocols for the read and write
operations are shown in Algorithm 1.
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Algorithm 1. Peterson’s algorithm. Lower-case variables are local variables.

Read operation by reader r:
PR1 READING[r] := !WRITING[r];
PR2 flag1 := WFLAG;
PR3 sw1 := SWITCH;
PR4 read BUF1;
PR5 flag2 := WFLAG;
PR6 sw2 := SWITCH;
PR7 read BUF2;
PR8 if (READING[r] == WRITING[r])
PR9 return the value in COPYBUF[r];
PR10 else if ((sw1 != sw2) || flag1 || flag2)
PR11 return the value read from BUF2;
PR12 else
PR13 return the value read from BUF1;

Write operation:
PW1 WFLAG := true;
PW2 write to BUF1;
PW3 SWITCH := !SWITCH;
PW4 WFLAG := false;
PW5 for (each reader r)
PW6 if (READING[r] != WRITING[r])
PW7 write to COPYBUF[r];
PW8 WRITING[r] := READING[r];
PW9 write to BUF2;

In the algorithm, each reader r has three choices regarding where to get the
current register value, namely BUF1, BUF2, and COPYBUF[r]. The primary
alternative for a reader is BUF1, which it reads at line PR4. However, if there
is a concurrent write, the writer might write to BUF1 (line PW2) while reader
r is reading the same buffer. The flags WFLAG and SWITCH are used to detect
most of these conflicts. A reader reads WFLAG and SWITCH both before (lines
PR2 and PR3) and after (lines PR5 and PR6) it reads BUF1. The writer sets
WFLAG to true (line PW1) before it begins to write to BUF1 (line PW2) and flips
SWITCH (line PW3) and resets WFLAG to false (line PW4) after it has updated
BUF1. Through this handshake mechanism, reader r can detect if (1) the writer
was writing to BUF1 when it started to read it, (2) the writer was writing to
BUF1 when it finished reading that buffer, or (3) the writer did a complete write
of BUF1 (i.e., lines PW1 to PW4) while r was reading that buffer (in this case,
SWITCH has been flipped). In all these cases r cannot assume it managed to
read BUF1 correctly.

However, by using WFLAG and SWITCH alone, a reader cannot detect the
case where the writer managed to complete an even number of writes to BUF1,
since in those cases, SWITCH will be back to its original value. The per-reader
flags READING[r] and WRITING[r] are used to handle these cases. A reader r
makes READING[r] opposite to the writer’s corresponding flag WRITING[r] at
the beginning of each read operation (line PR1). This is a signal to the writer
that it should write the register value also to COPYBUF[r] (lines PW6 and
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PW7). When the writer has written COPYBUF[r], it sets WRITING[r] equal to
READING[r] (line PW8) to signal the reader that COPYBUF[r] now contains
a valid register value. If the reader detects this signal (line PR8) (i.e., when
the writer performed lines PW6 to PW8 after the reader performed line PR1
but before it reached line PR8), then the reader can safely return the value in
COPYBUF[r] as the current register value.

If the reader did not detect this signal, then it can examine (line PR10) the
values it read from WFLAG and SWITCH to determine whether it read a correct
value from BUF1 or not. This test (line PR10) is now safe, since to fool it, the
writer must have flipped SWITCH (line PW3) at least twice, since the reader
was at line PR3, and in that case, the writer should have written to COPYBUF[r]
and signaled the reader (at line PR8) as described above.

If the test at line PR10 indicates that the reader did not read BUF1 correctly,
then the reader can safely return the value it read from BUF2 (line PR7) instead.
The value read from BUF2 is safe because, for the writer to interfere with both
the reading of BUF1 (line PR4) and the reading of BUF2 (line PR7), the writer
must execute both its write of BUF1 (line PW1) and its write of BUF2 (line PW9)
before the reader reached line PR8, and in that case, it should have written to
COPYBUF[r] and signaled the reader (at line PR8) as described above.

Peterson’s algorithm is designed for sequentially consistent shared memory.
On shared memory multiprocessors that have a weaker memory consistency
model, memory barriers need to be inserted at appropriate places in the al-
gorithm. A memory barrier ensures that all preceding memory accesses by a
processor have completed before any subsequent one takes effect. To ensure
sufficient memory consistency, memory barriers are needed (1) before line PR1,
(2) after each line from line PR1 until line PR8, (3) before line PW1, and (4) af-
ter each line from line PW1 until line PW9 except after line PW5. Note that
memory barriers are not needed during the bulk reads or writes of a register
value, only before and after such reads or writes.

Peterson’s implementation is simple and efficient in most cases, however, a
high-level write operation potentially has to write n+2 copies of the new value
and all high-level reads read at least two copies of the value, which can be quite
expensive when the register is large. Although it is unlikely that one can do
better using only read/write subregisters, it may be possible to come up with
more efficient solutions if we consider also using other atomic suboperations.
Many are available on most modern systems, such as those discussed in the
previous subsection. Our new register implementation uses such additional
suboperations to implement high-level multiword read and write operations
that only need to read or write one copy of the register value.

We have decided to comparatively study our method with Peterson’s al-
gorithm because (1) they are both designed for the 1-writer n-reader shared
register problem, and (2) compared to other more general solutions based on
weaker subregisters (which are much weaker than what common multiproces-
sor machines provide) Peterson’s algorithm involves the least communication
overhead among the processes, without requiring unbounded timestamps or
methods to bound the unbounded version [Haldar and Vitányi 2002; Israeli
and Li 1993].
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Algorithm 2. A spin-lock algorithm with exponential back-off.

spin lock(int *lock)
backoff := 1;
while (swap(lock, 1))

backoff := 2 * backoff;
spin for backoff iterations;

spin unlock(int *lock)
*lock := 0;

Algorithm 3. A readers-writers spin-lock algorithm with exponential back-off.

struct rwlock t
int lock
int rlock
int readers

writer lock(rwlock t *lock)
spin lock(&lock−>lock);

writer unlock(rwlock t *lock)
spin unlock(&lock−>lock);

reader lock(rwlock t *lock)
spin lock(&lock−>rlock);
lock−>readers := lock−>readers + 1;
if (lock−>readers == 1)

spin lock(&lock−>lock);
spin unlock(&lock−>rlock);

reader unlock(rwlock t *lock)
spin lock(&lock−>rlock);
lock−>readers := lock−>readers - 1
if (lock−>readers == 0)

spin unlock(&lock−>lock);
spin unlock(&lock−>rlock);

2.4 Mutual-Exclusion Based Solutions

For giving an even broader perspective in the experimental evaluation, we
also study the performance of two mutual-exclusion-based register imple-
mentations, one that uses a single spin-lock with exponential back-off (see
Algorithm 2) and another that uses a readers-writers spin-lock (see Algorithm 3
and Silberschatz et al. [2001]) with exponential back-off to protect the shared
register. Both assume sequential consistency. On machines without sequential
consistency, memory barriers need to be inserted last in spin lock and first in
spin unlock . This ensures that all reads and writes inside a critical section will
be performed after the lock is acquired and will be completed before the lock is
released.

The readers-writers spin-lock is similar to the spin-lock but allows readers
to access the register concurrently with other readers. The memory barriers
in the spin-lock operations are sufficient for correctness on machines without
sequential consistency.

How the locks are used to implement an atomic register algorithm can be
seen in Algorithm 4. The prefix “r” (resp. “w”) before “lock” and “unlock” is to
be replaced with “spin” or “reader” (resp. “writer”) to use the spinlock or the
readers-writers lock, respectively.

3. THE READERSFIELD ALGORITHM

The idea of the READERSFIELD algorithm is to remove the need for reading or writ-
ing several buffers during a read and write operation, by utilizing the atomic
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Fig. 3. The constants and shared variables used by the READERSFIELD algorithm. The number of
readers is n. Initially BUF[0] holds the register value and SYNC points to this buffer while all
reader-bits are 0.

Algorithm 4 . A multiword register algorithm based on spin-locks or the
readers-writers spin-lock.

Read operation by reader r:
LR1 r lock(lock);
LR2 read BUF;
LR3 r unlock(lock);

“r” is exchanged for “spin” or “reader”

Write operation:
LW1 w lock(lock);
LW2 write BUF;
LW3 w unlock(lock);

“w” is exchanged for “spin” or “writer”

synchronization primitives available on modern multiprocessor systems. These
primitives are used for the communication between the readers and the writer,
to help the former find the most recently written values and the latter find the
“clean” space to write the new value.

The READERSFIELD algorithm uses n + 2 shared buffers that each can hold
a value of the register. The number of buffers is the same as for Peterson’s
algorithm, which matches the lower bound on the required number of buffers.
An informal argument is that the number of buffers cannot be less for any
wait-free implementation because each of the n readers may be reading from
one buffer concurrently with a write, and the write should not overwrite the
last written value (since one of the readers might start to read again before the
new value is completely written).

The shared variables used by the algorithm are presented in Figure 3. The
shared buffers are in the (n+2)-element array BUF. The atomic variable SYNC
is used to synchronize the readers and the writer. This variable consists of two
fields: (1) the pointer field, which contains the index of the buffer in BUF that
contains the most recent value written to the register, and (2) the reading-bit
field, which holds a handshake bit for each reader. Each reading-bit is set when
the corresponding reader has read the value presently contained in the pointer
field.

A reader (Algorithm 5) uses fetch and or to atomically read the value of SYNC
and set its reading-bit. Then it reads the value from the buffer pointed to by
the pointer field.
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Algorithm 5. The read and write operations of the READERSFIELD algorithm.
The trace-array and oldwptr are static, i.e. stay intact between write operations.
They are both initialized to zero.

Read operation by reader r:
R1 readerbit := 1 << (r + PTRFIELDLEN);
R2 rsync := fetch and or(&SYNC, readerbit);
R3 rptr := rsync & PTRFIELD;
R4 read BUF[rptr]

Write operation:
W1 choose newwptr such that newwptr != oldwptr and

newwptr != trace[r] for all r; /* oldwptr initialized to ⊥*/
W2 write BUF[newwptr];
W3 wsync := swap(&SYNC, 0 | newwptr); /* Clears all reading bits */
W4 oldwptr := newwptr;

usedwptr := wsync & PTRFIELD;
W5 for each reader r
W6 if (wsync & (1 << (r + PTRFIELDLEN)))
W7 trace[r] := usedwptr;

The writer (Algorithm 5) needs to keep track of the buffers that are available
for use. To do this, it stores the index of the buffer where it last saw each
reader, in a n-element array trace, in persistent local memory. At the beginning
of each write, the writer selects a buffer index to write to. This buffer should be
(1) different from the last one it used and (2) with no reader possibly using it.
The writer writes the new value to that buffer and then uses the suboperation
swap to atomically read SYNC and update it with the new buffer index and
cleared reading-bits. The old value read from SYNC is then used to update the
trace array for those readers whose reading-bit was set.

The maximum number of readers is given by the size of the words that the
two atomic primitives used can handle. If we use 64-bit words, we can support
58 readers, as 6 bits are needed for the pointer field to be able to distinguish
between 58 + 2 buffers. The number of readers can be extended beyond the
limit of the wordsize by using a multiword fetch and or and multiword swap.
That could either be available in hardware or be implemented in software and
need only work for consecutive words in memory.

4. ANALYSIS

4.1 Correctness Proof

In this section, we show that the READERSFIELD algorithm satisfies the atomicity
criteria given earlier in the article, by assuming only the cache weak consis-
tency model. The fact that an algorithm that assumes a certain memory consis-
tency model works correctly on stronger models, implies that the READERSFIELD

algorithm works correctly on systems like the SGI Origin and SPARC archi-
tectures which support the sequential consistency and the weak consistency
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models, respectively [Silicon Graphics 1993; Culler et al. 1998; CORPORATE
SPARC International 1994].

First of all, we prove a couple of important properties of the READERSFIELD

algorithm. Note that the SYNCH variable in the READERSFIELD algorithm is a
synchronizing variable. It is only accessed through two synchronization instruc-
tions: fetch and or and swap.

LEMMA 4.1. Let w be a write-operation that wrote the buffer index ptr read
by a read-operation r to SYNC. There exists no write-operation w′ issued after
w (by the unique writer) that can write to the buffer BUF[ptr] before r finishes
reading the buffer.

PROOF. We prove the lemma by contradiction. Assume there exists such a
write-operation w′.

If there exist write-operations w′′ so that r ’s R2 → w′′’s W3 → w′’s W1, let w∗

be the earliest of the set of w′′. Since (1) r atomically sets its reading bit in SYNC
while reading SYNC (line R2), and (2) its reading bit in SYNC is unchanged
until the next write-operation w∗ (line W3), the buffer index ptr that r is using
will be recorded in the writer’s local variable trace[r] by w∗ (lines W3-W7).
Since w∗’s W3 → w′’s W1 and lines W4-W7 operate on the unique writer’s
local variables, w′ will choose a buffer-to-write different from BUF[trace[r]] (or
BUF[ptr]) until r finishes reading BUF[trace[r]] and the corresponding reader
issues another read-operation. Note that both w∗ and w′ are issued by the same
process—the unique writer, and that two read/write suboperations that belong
to the same process and have local data or control dependence between them
will be executed in program order [Adve and Gharachorloo 1996].

Otherwise, the writer’s local variable oldwptr will be unchanged, since it is
set to the buffer index ptr by w (line W4), which is also the the buffer index that
r is using. Note that w’s W3 has been completed due to the hypothesis. Since
w′ is issued after w by the same process (the unique writer), w′ will choose a
buffer-to-write different from BUF[oldwptr] (or BUF[ptr]) (line W1).

That means w′ never uses the buffer BUF[ptr] before r finishes reading this
buffer, a contradiction.

The following lemma proves that the read-operation only returns the value
that either is the initial value BUF[⊥] or has been completely written by a write
operation.

LEMMA 4.2. For each complete read r, there exists a corresponding write π (r).

PROOF. We prove the lemma by contradiction. Assume there is a read r
returning a value v that neither is the initial value BUF [⊥] nor has completely
written by a write operation. Since v �= BUF [⊥], r read a buffer index ptr �=⊥
from the global synchronizing variable SYNC (line R2 in Figure 5) that had been
written by a write operation w (line W3). Since accesses to SYNC is sequentially
consistent due to the first requirement of the cache weak consistency model
(CWC), w’s swap operation (line W3) precedes r ’s fetch and or (line R2) (i.e. w’s
W3 → r ’s R2). Since (1) w’s write suboperation to the global variable BUF[ptr]
(line W2) had been performed before w’s swap (line W3) was issued due to the
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CWC second requirement (i.e., w’s W2 → w’s W3), and (2) r ’s f etch and or
(line R2) had been performed before r ’s read suboperation to BUF[ptr] (line
R4) was issued due to the CWC third requirement (i.e., r ’s R2 → r ’s R4), w’s W2
→ r ’s R4 or, in the other words, w’s write to BUF[ptr] precedes r ’s read from
BUF[ptr].

Therefore, r returns the value v that has not completely written by a write
operation only if there exists a write operation w′ that was issued after w (due
to only one writer) and was using the buffer BUF[ptr] that r was reading. From
Lemma 4.1, there exists no such write operation w′, a contradiction.

In the following lemmas, we use Lemma 4.2 implicitly.

LEMMA 4.3. For each read operation r it holds that π (r)’s W3 → r’s R2.

PROOF. We prove the lemma by contradiction. Assume that r ’s R2 → π (r)’s
W3. Note that r ’s R2 and π (r)’s W3 are sequentially consistent due the CWC
first requirement. Let w∗ be the write operation that writes the buffer index ptr
read by r to SYNC. We have w∗’s W3 → r ’s R2 (due to the CWC first requirement)
and w∗ �= π (r). From the CWC second requirement, w∗ has completely written
to BUF[ptr] (line W2) before writing ptr to SYNC (line W3). From the CWC
third requirement, only after r has successfully read ptr from SYNC, it starts
to read BUF[ptr]. Therefore, r can read the value written by π (r) only if π (r)
has overwritten BUF[ptr] before r reads BUF[ptr].

However, since w∗’s W3 → (r ’s R2 →) π (r)’s W3 and there is only one writer,
π (r) is issued after w∗. From Lemma 4.1, π (r) cannot write to BUF[ptr] before
r finishes reading the buffer, a contradiction.

LEMMA 4.4. For each read operation r it holds that here exists no write w
such that π (r)’s W3 → w’s W3 → r’s R2.

PROOF. We prove the lemma by contradiction. Assume there exists such a
write w: π (r)’s W3 → w’s W3 → r ’s R2. Following the CWC first requirement,
the buffer index written to SYNC by π (r) has been overwritten by w before r
reads SYNC. Let w∗ be the write operation writing to SYNC the buffer index ptr
that r reads (w∗ may be w). Since accesses to SYNC are sequentially consistent,
π (r)’s W3 → w∗’s W3, i.e. w∗ �= π (r).

—If π (r) chose a buffer index ptr ′ different from ptr, π (r) had completely writ-
ten to BUF[ptr ′] �= BU F [ptr] (line W2) before writing ptr ′ to SYNC due
to the CWC second requirement. On the other hand, only after successfully
reading the buffer index ptr from SYNC (line R2), r starts to read the buffer
BUF[ptr] (line R4) due to the CWC third requirement. That means r reads
a buffer different from the buffer to which π (r) wrote, or r reads a value that
was not written by π (r).

—If π (r) chose the same buffer-index ptr as w∗ does, the value π (r) wrote to
BUF[ptr] (line W2) is overwritten by w∗. Indeed, since there is only one
writer, π (r)’s W3 was issued (but may not be completed) before w∗’s W2 is
issued. Following the CWC second requirement, π (r) had completely writ-
ten to BUF[ptr] before π (r)’s W3 was issued. Following the CWC third
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requirement, w∗ started to write to BUF[ptr] after π (r)’s W3 had completed.
That means w∗ started to write to BUF[ptr] after π (r) had completely writ-
ten to BUF[ptr]. Since w∗ wrote the buffer index ptr to SYNC (line W3)
(due to the definition of w∗), w∗ completely overwrote the value that π (r) had
written to BUF[ptr] (line W2) due to the CWC second requirement. On the
order hand, only after successfully reading the buffer index ptr from SYNC
(line R2), r starts to read the buffer BUF[ptr] (line R4) due to the CWC third
requirement. That means r cannot read the value written by π (r).

In all the cases, r cannot read the value written by π (r), a contradiction to
the definition of π (r).

We now prove that the READERSFIELD algorithm satisfies the conditions in
Lamport’s criterion [Lamport 1986] (see Criterion 2.1 in Section 2) on the cache
weak consistency model, which guarantee atomicity.

LEMMA 4.5. The READERSFIELD algorithm satisfies condition “No-irrelevant”.

PROOF. From Lemma 4.3, we have π (r)’s W3 → r ’s R2. Since the starting
time-point of π (r) is before π (r)’s W3 and r ’s R2 is before the ending time-point
of r, the starting time-point of π (r) is before the ending time-point of r, or
r �→ π (r).

LEMMA 4.6. The READERSFIELD algorithm satisfies condition “No-past”.

PROOF. We prove the lemma by contradiction. Assume there are a read r and
a write w such that π (r) → w → r. Since π (r) → w → r, π (r)’s W3 → w’s W3
→ r ’s R2. From Lemma 4.4, such a write w does not exist, a contradiction.

LEMMA 4.7. The READERSFIELD algorithm satisfies condition “No N-O
inversion”.

PROOF. We prove the lemma by contradiction. Assume there are reads r1 and
r2 such that r1 → r2 and π (r2) → π (r1). We have r1’s R2 → r2’s R2 and π (r2)’s
W3 → π (r1)’s W3. From Lemma 4.3, we have π (r1)’s W3 → r1’s R2. Therefore,
π (r2)’s W3 → π (r1)’s W3 → (r1’s R2 →) r2’s R2. From Lemma 4.4, there exists
no write w such that π (r2)’s W3 → w’s W3 → r2’s R2, a contradiction.

With the correctness of the proposed wait-free algorithm established, let us
focus on its complexity, also in comparison with Peterson’s wait-free algorithm.

4.2 Complexity

The complexity of a read operation is of order O(m), where m is the size of
the register, for both the READERSFIELD algorithm and Peterson’s algorithm
[Peterson 1983]. However, in Peterson’s algorithm the reader may have to read
the value up to 3 times, while in the READERSFIELD algorithm the reader will
only read the value once but has to use the fetch and or suboperation once. A
write operation in the READERSFIELD algorithm writes one value of size m and
then traces the n readers. The complexity of the write operation is therefore of
order O(n+m). For Peterson’s algorithm, however, the writer must, in the worst
case, write to n + 2 buffers of size m, thus its complexity is of order O(n · m).
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As the size of registers and the number of threads increase, the READERSFIELD

algorithm is expected to perform significantly better than Peterson’s algorithm
with respect to the writer. With respect to the readers, the handshake mecha-
nism used in the READERSFIELD algorithm can be more expensive compared to
the one used by Peterson’s, but on the other hand, the READERSFIELD algorithm
only needs to read one m-word buffer, whereas Peterson’s need to read at least
two and sometimes three buffers.

Using the above, we have the following theorems:

THEOREM 4.8. The READERSFIELD algorithm constructs a multireader, single-
writer, m-word sized register using n + 2 buffers of size m words each.

THEOREM 4.9. The complexity of a read operation for the READERSFIELD algo-
rithm is O(m) memory operations. The complexity of a write operation is O(n+m)
memory operations.

5. PERFORMANCE STUDY

In our experimental study the performance of the proposed algorithm was
evaluated in comparison with: (1) Peterson’s algorithm [Peterson 1983], (2) a
spinlock-based implementation with exponential backoff and (3) a readers-
writers spinlock with an exponential backoff (see Section 2 for descriptions
of the respective algorithms).

5.1 Method

We measured the number of successful read and write operations during a fixed
period of time: the higher this number (throughput) the better the performance.
In each test one thread is the writer and the rest of the threads are the readers.
Two sets of experiments have been done: (1) one set with low contention and
(2) one set with high contention. During the high-contention experiments, each
thread reads or writes continuously with no delay between successive accesses
to the multi-word register. During the low-contention experiments, each thread
waits for a time-interval between successive accesses to the multiword register.
This time interval is much longer than the time used by one write or read. Ex-
periments have been performed for different number of threads and for different
sizes of the register. The runs for the different register types were interleaved
for each setting of number of threads and size of the register. The caches of the
processors are flushed before each run. On one of the platforms (in particular
the NUMA Origin 3800), the experiment was one among many concurrent pro-
cesses. This could raise a concern that competing workloads might affect the
experiment (e.g., by causing high loads on the interconnect or forcing our bench-
mark to use widely distributed processors and memory banks in the machine).
However, in the data from our experiments, there are very few indications of
such interference and, moreover, as the runs for the different registers are in-
terleaved, such interference would be able to systematically favor or disfavor
one type of register only if its intensity and effect could closely follow the phases
of the experiment (i.e., only if the systems’ load was deliberately designed to
play the role of an adversary for the experiment, which can hardly be the case).
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5.2 Systems

The performance of the READERSFIELD algorithm has been measured on both
UMA (Uniform Memory Architecture) and NUMA (Non Uniform Memory Ar-
chitecture) multiprocessor systems [Tanenbaum 2001]. The difference between
UMA and NUMA is how the memory is organized. In a UMA system, all proces-
sors have the same latency and bandwidth to the memory. In a NUMA system,
processors are placed in nodes and each node has some of the memory directly
attached to it. The processors of one node have fast access to the memory at-
tached to that node, but accesses to memory on another node are made over the
interconnect network and are therefore significantly slower.

The three different systems we used are:

—An UMA Sun SunFire 880 with 6 900MHz UltraSPARC III+ (8MB L2 cache)
processors running Solaris 9.

—A ccNUMA SGI Origin 2000 with 29 250MHz MIPS R10000 (4MB L2 cache)
processors running IRIX 6.5.

—A ccNUMA SGI Origin 3800 with 128 500MHz MIPS R14000 (8MB L2 cache)
processors running IRIX 6.5.

The systems were used nonexclusively, but for the SGI systems, the batch-
system guarantees that the required number of CPUs was available. The swap
and fetch and or suboperations were implemented by the swap hardware in-
struction [Weaver and Germond 2000] and a lock-free subroutine using the
compare and swap hardware instruction on the SunFire machine. As the Sun-
Fire does not ensure sequential consistency, memory barriers were inserted
in Peterson’s algorithm and the lock-based algorithms as described in Sec-
tion 2. Regarding the SGI Origin machines, swap and fetch and or were im-
plemented by the system-provided [Cortesi 2004] synchronization primitives
lock test and set and fetch and or, respectively. The SGI Origin platforms

ensure sequential consistency [Culler et al. 1998], so no memory barriers were
needed there.

5.3 Results

Following the analysis and the diagrams presenting the experiments’ outcome,
it is clear that the performance of the lock-based solutions is not even near the
figures of the wait-free algorithms unless the number of threads is minimal
(two) and the size of the register is small. Moreover, as expected following the
analysis, the READERSFIELD algorithm performs at least as well and, in the large-
size register cases, better than Peterson’s wait-free solution.

In the following paragraphs, we provide a more detailed discussion of the
experimental results illustrated in the figures. Note that the high contention
results are presented on an exponential scale, whereas the low contention results
use a linear scale in the figures.

More specifically, on the UMA SunFire the READERSFIELD algorithm outper-
forms the others for large registers under both low and high contention (see
Figures 4 and 5). The worst performer under high contention is the spinlock,
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(b) 8192 word register, high contention.

Fig. 4. Average number of reads or writes per thread on the UMA SunFire 880 at high contention.

which is particularly vulnerable to threads being preempted inside the critical
section, something that is increasingly likely as the number of threads exceed
the number of processors. Under low contention the differences are, as expected,
much less pronounced.

On the NUMA Origin 2000 platform (Figures 6(a)–8(b)) and on the NUMA
Origin 3800 platform (Figures 9(a)–10(b)), we observe the effect of the partic-
ular architecture, namely that the possibility to cause high contention on a
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Fig. 5. Average number of reads or writes per thread on the UMA SunFire 880 at low contention.

synchronization variable significantly affects the performance of the solutions.
By observing the performance diagrams for this case, we still see the writer
in the READERSFIELD algorithm performs significantly better than the writer in
Peterson’s algorithm in both the low- and high-contention scenarios.

Recall that the writer, following Peterson’s algorithm, may have to
write to more buffers as the number of readers grow. The writer of
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Fig. 6. Average number of operations per thread with 14 threads and high contention on NUMA
Origin 2000.

the READERSFIELD algorithm has no such problems. This phenomenon, though,
has a seemingly positive side-effect in Peterson’s algorithm; namely, as the
writer becomes slower, the chances that the readers have to read their individ-
ual buffers (apart from the two buffers used by all readers), become smaller.
On the other hand the readers will read old data they might already have
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Fig. 7. Average number of operations per thread with a register size of 8192 words and high
contention on NUMA Origin 2000.

read. Hence, the difference in the readers’ performance for the two wait-free
algorithms under high contention becomes smaller (Figures 6(a) and 7(a)).

The difference in behaviour between readers and writers under high
contention and a varying number of threads can be studied in detail in
Figure 7(a) and Figure 7(b). Some observations based on the results are (1) the
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Fig. 8. Average number of operations per thread with low contention on NUMA Origin 2000.

readers/writers lock does well in terms of read operations while the writer
suffers significantly since a write can be locked out by preceding and concur-
rent overlapping reads, and (2) the READERSFIELD algorithm’s advantage over
Peterson’s for the readers decreases when the number of threads increases,
while it increases for the writer. In the lock-based algorithms, threads can
easily be starved. Regarding the readers/writers lock, the writer will never get
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Fig. 9. Average number of reads or writes per thread on NUMA Origin 3800 at high contention.

access to the buffer while at least one reader is reading. So in the worst case, if
readers take overlapping turns reading the buffer, the writer can be shut out
indefinitely. For the spinlock, there is no such difference between readers and
the writer, so any thread can get an unfair share of accesses to the register. On
NUMA architectures, some threads might have the lock in their local memory.
They will have much higher chances to get the lock again, compared to other
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Fig. 10. Average number of reads or writes per thread on NUMA Origin 3800 at low contention.

threads that have to go over the interconnect network to access it. The effect is
most visible for a single thread, which is the reason we see irregular behaviour
for the lock based registers in Figure 7(b). When looking at a single thread
like this, the luck of the writer plays a large role in the result. As we can see
in Figure 7(a), the mean taken over all threads is much more consistent over
different runs.
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Fig. 11. The average number of reads or writes per thread for the READERSFIELD algorithm and
Peterson’s algorithm compared with themselves for different number of threads under high con-
tention. Run on NUMA Origin 2000.

Under low contention, the two NUMA Origin platforms (Figures 8 and
10) show similar behaviour. In the experiments with varying register size
(Figures 8 (a) and 10 (a)) there is a break in the number of operations per thread
at a certain register size which is attributed to the increased amount of inter-
connect traffic needed at the larger sizes. The two wait-free algorithms show
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(a) The READERSFIELD algorithm, number of writes
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Fig. 12. The number of writes per thread for the READERSFIELD algorithm and Peterson’s algorithm
compared with themselves for different number of threads under high contention. Run on NUMA
Origin 2000.

good scalability behaviour across different number of threads (Figures 8 (b) and
10 (b)) with the READERSFIELD algorithm having an advantage over Peterson’s.
The average number of operations per thread for the readers/writers lock is
also good, although as discussed above the writer is likely to be locked out
most of the time. The large drop at 10 threads for the readers/writers lock in
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Fig. 13. Average number of operations per thread at high contention and 28 threads on NUMA
Origin 2000.

Figure 10 (b) was seen in all our runs and can be attributed to the NUMA
Origin 3800’s nonuniform memory interconnect architecture, following similar
argumentation as in the previous paragraph.

In Figures 11 and 12, we can see how the performance of the READERSFIELD

algorithm and Peterson’s algorithm changes both with the number of words in
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the register and the number of threads. The READERSFIELD algorithm is more
sensitive to the addition of threads than Peterson’s algorithm on this plat-
form, due to increased contention for the trace variables. For larger words, the
difference becomes smaller and smaller and eventually the READERSFIELD algo-
rithm outperforms Peterson’s. On the writer’s side, we see that Peterson’s algo-
rithm loses performance to a higher degree with increasing number of threads
than the READERSFIELD algorithm algorithm does. The similar and characteristic
shape of the performance curves for both algorithms are due to the properties
of the particular multiprocessor hardware (e.g., cache-line and page size and
the interconnect bandwidth). Figure 13 directly compares the performance of
the READERSFIELD algorithm and Peterson’s algorithm for 28 threads from the
experiments on the NUMA Origin 2000 system above. Here we can see that
although Peterson’s algorithm maintains an advantage in the number of read
operations until a large register size, the READERSFIELD algorithm has an in-
creasing advantage in the number of write operations.

6. CONCLUSIONS AND DISCUSSION

This article presents the READERSFIELD algorithm, a simple and efficient algo-
rithm for atomic registers (memory words) of multiple-word length. The sim-
plicity and the good time complexity of the algorithm are achieved via the use of
two common synchronization primitives. The correctness of the READERSFIELD

algorithm is shown assuming only a weak consistency underlying memory ac-
cess model. The paper also presents a performance evaluation of (i) the READ-
ERSFIELD algorithm; (ii) a previously known practical algorithm that is based
only on read and write operations; and (iii) two mutual-exclusion-based regis-
ters. The evaluation is performed on three different well-known multiprocessor
systems.

Further, it is worth noticing that the READERSFIELD algorithm can easily be
converted to a regular register for an arbitrary number of readers, by using a
set of SYNC variables. Instead of a single one-word swap, the writer performs
a sequence of swaps on an array of words. Each reader has a bit in one of
the words in the array. The criterion for a regular register holds with similar
proofs as for the atomic register as the proofs for No-Irrelevant and No-Past
only involves buffers and the SYNC variable for one reader. Only in the proof
for No-New-Old-inversion are different readers involved.

Shared objects are commonly used in parallel/multithreaded applications.
Results like this and further research along this line are, therefore, sig-
nificant towards providing better support for efficient synchronization and
communication.
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