The Non-blocking Programming Paradigm in
Large Scale Scientific Computations*

Philippas Tsigas and Yi Zhang

Department of Computing Science,
Chalmers University of Technology,
SE-412 60, Gothenburg, Sweden

Abstract. Non-blocking implementation of shared data objects is a new
alternative approach to the problem of designing scalable shared data
objects for multiprocessor systems. Non-blocking implementations allow
multiple tasks to access a shared object at the same time, but without
enforcing mutual exclusion to accomplish this. Since, in non-blocking im-
plementations of shared data objects, one process is not allowed to block
another process, non-blocking shared data objects have the following sig-
nificant advantages over lock-based ones: 1) they avoid lock convoys and
contention points (locks). 2) they provide high fault tolerance (processor
failures will never corrupt shared data objects) and eliminates deadlock
scenarios, where two or more tasks are waiting for locks held by the
other. 3) they do not give priority inversion scenarios. As shown in [I}
2|, non-blocking synchronisation has better performance in certain ap-
plication than blocking synchronisation. In this paper, we try to provide
an in depth understanding of the performance benefits of integrating
non-blocking synchronisation in scientific computing applications.

1 Introduction

Shared memory multiprocessors are ideal systems for Large Scale Scientific
Computations. Modern multiprocessors offer the shared memory programming
paradigm together with low latency and high bandwidth interprocessor com-
munication. Fast interprocessor communication gives to the programmers the
possibility of exploring fine grain parallelism in their programs. Moreover, be-
cause processors communicate with each other by using conventional memory
operations on shared memory, it is relatively easy to transfer sequential programs
into parallel ones that run on top of shared memory multiprocessors.

A shared memory multiprocessor system consists of multiple processors, pro-
vides a single address space for programming, and supports communication be-
tween processors through operations on shared memory. Applications running on
such systems may use more than one processor at the same time. Programs can
improve their execution speed by exploiting the parallelism available on such sys-
tems. Single address space shared memory provides an easy programming model

* This work was partially supported by the Swedish Research Council (VR).

R. Wyrzykowski et al. (Eds.): PPAM 2003, LNCS 3019, pp. 1114-[I124] 2004.
© Springer-Verlag Berlin Heidelberg 2004

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.
Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.

ALLGEMEIN --
Dateioptionen:
 Kompatibilität: PDF 1.3
 Für schnelle Web-Anzeige optimieren: Nein
 Piktogramme einbetten: Nein
 Seiten automatisch drehen: Nein
 Seiten von: 1
 Seiten bis: Alle Seiten
 Bund: Links
 Auflösung: [2400 2400] dpi
 Papierformat: [595.276 824.882] Punkt

KOMPRIMIERUNG --
Farbbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 300 dpi
 Downsampling für Bilder über: 450 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Maximal
 Bitanzahl pro Pixel: Wie Original Bit
Graustufenbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 300 dpi
 Downsampling für Bilder über: 450 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Maximal
 Bitanzahl pro Pixel: Wie Original Bit
Schwarzweiß-Bilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 2400 dpi
 Downsampling für Bilder über: 3600 dpi
 Komprimieren: Ja
 Komprimierungsart: CCITT
 CCITT-Gruppe: 4
 Graustufen glätten: Nein

 Text und Vektorgrafiken komprimieren: Ja

SCHRIFTEN --
 Alle Schriften einbetten: Ja
 Untergruppen aller eingebetteten Schriften: Nein
 Wenn Einbetten fehlschlägt: Warnen und weiter
Einbetten:
 Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 Nie einbetten: []

FARBE(N) --
Farbmanagement:
 Farbumrechnungsmethode: Farbe nicht ändern
 Methode: Standard
Geräteabhängige Daten:
 Einstellungen für Überdrucken beibehalten: Ja
 Unterfarbreduktion und Schwarzaufbau beibehalten: Ja
 Transferfunktionen: Anwenden
 Rastereinstellungen beibehalten: Ja

ERWEITERT --
Optionen:
 Prolog/Epilog verwenden: Ja
 PostScript-Datei darf Einstellungen überschreiben: Ja
 Level 2 copypage-Semantik beibehalten: Ja
 Portable Job Ticket in PDF-Datei speichern: Nein
 Illustrator-Überdruckmodus: Ja
 Farbverläufe zu weichen Nuancen konvertieren: Ja
 ASCII-Format: Nein
Document Structuring Conventions (DSC):
 DSC-Kommentare verarbeiten: Ja
 DSC-Warnungen protokollieren: Nein
 Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja
 EPS-Info von DSC beibehalten: Ja
 OPI-Kommentare beibehalten: Nein
 Dokumentinfo von DSC beibehalten: Ja

ANDERE --
 Distiller-Kern Version: 5000
 ZIP-Komprimierung verwenden: Ja
 Optimierungen deaktivieren: Nein
 Bildspeicher: 524288 Byte
 Farbbilder glätten: Nein
 Graustufenbilder glätten: Nein
 Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja
 sRGB ICC-Profil: sRGB IEC61966-2.1

ENDE DES REPORTS --

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<<
 /ColorSettingsFile ()
 /AntiAliasMonoImages false
 /CannotEmbedFontPolicy /Warning
 /ParseDSCComments true
 /DoThumbnails false
 /CompressPages true
 /CalRGBProfile (sRGB IEC61966-2.1)
 /MaxSubsetPct 100
 /EncodeColorImages true
 /GrayImageFilter /DCTEncode
 /Optimize false
 /ParseDSCCommentsForDocInfo true
 /EmitDSCWarnings false
 /CalGrayProfile ()
 /NeverEmbed []
 /GrayImageDownsampleThreshold 1.5
 /UsePrologue true
 /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /AutoFilterColorImages true
 /sRGBProfile (sRGB IEC61966-2.1)
 /ColorImageDepth -1
 /PreserveOverprintSettings true
 /AutoRotatePages /None
 /UCRandBGInfo /Preserve
 /EmbedAllFonts true
 /CompatibilityLevel 1.3
 /StartPage 1
 /AntiAliasColorImages false
 /CreateJobTicket false
 /ConvertImagesToIndexed true
 /ColorImageDownsampleType /Bicubic
 /ColorImageDownsampleThreshold 1.5
 /MonoImageDownsampleType /Bicubic
 /DetectBlends true
 /GrayImageDownsampleType /Bicubic
 /PreserveEPSInfo true
 /GrayACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >>
 /ColorACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >>
 /PreserveCopyPage true
 /EncodeMonoImages true
 /ColorConversionStrategy /LeaveColorUnchanged
 /PreserveOPIComments false
 /AntiAliasGrayImages false
 /GrayImageDepth -1
 /ColorImageResolution 300
 /EndPage -1
 /AutoPositionEPSFiles true
 /MonoImageDepth -1
 /TransferFunctionInfo /Apply
 /EncodeGrayImages true
 /DownsampleGrayImages true
 /DownsampleMonoImages true
 /DownsampleColorImages true
 /MonoImageDownsampleThreshold 1.5
 /MonoImageDict << /K -1 >>
 /Binding /Left
 /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
 /MonoImageResolution 2400
 /AutoFilterGrayImages true
 /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 /ImageMemory 524288
 /SubsetFonts false
 /DefaultRenderingIntent /Default
 /OPM 1
 /MonoImageFilter /CCITTFaxEncode
 /GrayImageResolution 300
 /ColorImageFilter /DCTEncode
 /PreserveHalftoneInfo true
 /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /ASCII85EncodePages false
 /LockDistillerParams false
>> setdistillerparams
<<
 /PageSize [595.276 841.890]
 /HWResolution [2400 2400]
>> setpagedevice

The Non-blocking Programming Paradigm 1115

to programmers. Shared memory operations can be implemented in hardware or
software.

To programmers, programming for shared memory multiprocessors is similar
to traditional sequential programming for uniprocessor systems. Communication
between processors in shared memory multiprocessors is implicit and transparent
via conventional memory access instructions, such as Read/Write, that are also
used in sequential programming. Therefore, programmers do not have to consider
details of low-level communication between processors and can focus mainly on
the applications themselves. When an application is running on shared memory
multiprocessors, all processes of the application share the same address space;
traditional sequential programming also treats memory as a single address space.
Such similarity in programming between shared memory multiprocessors and
uniprocessors makes shared memory multiprocessors attractive.

Programming for shared memory multiprocessors introduces synchronisation
problems that sequential programming does not need to address. Processes in
shared memory multiprocessors communicate and coordinate with each other
through reading from and writing to shared memory locations. Such Read/Write
operations on memory can be executed simultaneously on several processors.
The final results of these operations depend on their interleaving. To maintain
consistency, synchronisation is used to guarantee that only desired interleaving
of operations can happen. There are two ways to do synchronisation in shared
memory: mutual exclusion and non-blocking synchronisation.

Mutual exclusion ensures that certain sections of code will not be executed by
more than one process simultaneously. The standard solution to mutual exclu-
sion at kernel level in uniprocessor systems is to momentarily disable interrupts
to guarantee that the operation of a shared memory object will not be preempted
before it completes. This solution is not feasible for uniprocessor systems at user
level, where users do not have the privilege to disable interrupts. In multiproces-
sor systems, where processes execute on several processors, disabling interrupts
at kernel level is too costly. In such cases, locks are used to guarantee that
only one process can access a shared memory object: before a process accesses
a shared memory object, it must get the lock associated with the object; after
accessing the object, it will release the lock. Usually only one lock protects an
object. The part of code that the process executes in order to access the object
is called code in “critical section”. If a process cannot get the lock of an object,
then another process owns the lock and is working on the object in the critical
section.

Non-blocking synchronisation is an alternative to mutual exclusion for im-
plementing shared data objects. Shared data objects implemented with non-
blocking synchronisation do not rely on mutual exclusion and do not require any
communication with the kernel. Rather, they rely on hardware atomic primitives
such as Compare-and-Swap or the pair Load-Link and Store-Conditional.

An implementation of a shared data object is called non-blocking if first it

supports concurrency: several processes can perform operations on the shared
data object concurrently; and moreover if it ensures that at any point of time

1116 P. Tsigas and Y. Zhang

some/all of the non-fault concurrent processes will complete their operations on
the object in a bounded time regardless of the speed or status of other processes.
If an implementation guarantees progress of some non-fault processes, it is called
lock-free; if it guarantees progress of all non-fault processes, it is called wait-free.
This requirement rules out the use of locks for non-blocking synchronisation: if
a process crashes while holding a lock, no process waiting for the lock can make
any progress.

Compared to mutual exclusion, non-blocking synchronisation has the follow-
ing significant advantages:

1. it avoids lock convoying effects [3]: if a process holding a lock is preempted
or delayed, any other process waiting for the lock is unable to perform any
useful work until the process holding the locks has finished its access to the
shared object.

2. it provides high fault tolerance. By the definition of non-blocking synchroni-
sation, failures of processes should never corrupt the shared data objects.
When using mutual exclusion, a process which dies during modifying a
shared object in its critical section might leave the shared object in an in-
valid state. Some kind of fault recovery technique must be used to recover
the object then.

3. it eliminates deadlock scenarios, where two or more tasks are waiting for
locks held by the other.

4. it does not give priority inversion scenarios.

Non-blocking programming paradigm is different from the lock-based pro-
gramming paradigm. In this paper, we investigate how the performance of scien-
tific computing applications is effected by adopting the non-blocking program-
ming paradigm.

2 Previous and Current Work

Previously micro-benchmarks have been widely used to evaluation the perfor-
mance of synchronisation mechanisms on small scale symmetric multiprocessors,
as well as distributed memory machines [4lbJ6//7)8] or simulators [69]. Although
micro-benchmarks are useful since they may isolate performance issues, they
do not represent the behaviours of real applications. The goal of designing effi-
cient synchronisation mechanisms is to improve performance of real applications,
which micro-benchmarks may not represent well.

For non-blocking synchronisation, many researchers proposed the use of non-
blocking synchronisation, rather than blocking one, in the design of inter-process
communication mechanisms for parallel and high performance computing. This
advocacy is intuitive, but has not been investigated on top of real and well-
understood applications; such an investigation could also reveal the effectiveness
of non-blocking synchronisation on different applications. To address this need,
n [12], Tsigas and Zhang showed how performance and speedup in parallel

The Non-blocking Programming Paradigm 1117

applications would be affected by using non-blocking rather than blocking syn-
chronisation. They performed a fair evaluation of non-blocking synchronisation
and blocking based synchronisation in the context of well-established parallel
benchmark applications.

In this paper, we try to provide an in depth understanding of the performance
benefits of integrating non-blocking synchronisation in scientific computing ap-
plications.

3 Performance Impact of Non-blocking

As shown in [Il2], non-blocking synchronisation gives better performance in cer-
tain applications than the respective blocking synchronisation. The fact that
non-blocking synchronisation avoids lock convoying effects is believed to be
one of the main contributors to the performance improvement that comes with
non-blocking synchronisation. Lock convoying effects are caused because of pre-
emption of the processes running the applications. From our experience with
non-blocking synchronisation, preemption of processes does contribute to per-
formance degradation on applications with blocking based synchronisation. But
it is not the only fact that effect the performance. We performed a set of ex-
periments by running different scientific computing applications with exclusive
use and without exclusive use on a cache coherent multiprocessor machine. The
results we received with exclusive use are, of course, better than the results with-
out exclusive use due to less frequent preemption. However, the performance gap
between blocking and non-blocking synchronisation does not narrow much when
changing from non-exclusive use to exclusive use. Avoiding the lock convoy ef-
fects only contributes a small part into the performance improvement that comes
with non-blocking synchronisation.

On modern cache-coherent shared memory multiprocessors, the cache be-
haviour of an application also effect the performance of the application. The
speed of improvement of processor speed exceeds the speed of improvement of
memory accessing speed. This results to a bigger and bigger speed gap between
processor speed and memory accessing speed. Cache, a small and fast memory
located close to processors, is introduced to reduce the performance gap. How-
ever when the data required by a processor is not in the cache, a cache miss,
takes place and operations on memory still need to be performed. Therefore
cache misses are expensive for the performance of a program. Researchers of
parallel applications are developing cache-conscious algorithms and applications
to minimise cache misses during the execution of the application.

The performance difference between blocking and non-blocking synchroni-
sation in applications on cache-coherent shared memory machines makes it in-
teresting to investigate the cache behaviour of different synchronisation mecha-
nisms.

Applications with blocking synchronisation usually use a lock to protect
shared variables. When shared variables need to be updated, a lock must be
acquired. Then variables can be computed and updated. After the variables

1118 P. Tsigas and Y. Zhang

are updated, the lock must be released. A scenario of such operations from the
Spark98 [10] is given in figure 1.

spark_setlock (lockid

);
wlcol][0] += A[Anext][0][0]*v[i][O] +;
wlcol]|[1] += A[Anext][0][1]=v[i][O] +;
w[col][2] += A[Anext][0][2]*v[i][0] + ;
spark_unsetlock (lockid);

Fig. 1. Lock-based operations in Spark98

when they update the shared variables, the operation that acquires the lock
and the operations that update shared variables may cause cache misses. The
lock usually become a memory bottleneck as all process want to access and
modify it. The lock is usually not located at the same cache line with the shared
variables which it protects.

Comparing it with blocking synchronisation, non-blocking synchronisation
has better cache behaviour. The code for the same operation in the non-blocking
programming paradigm is given in figure Bl Here, only the operations on the
shared variables themselves may cause cache misses.

dfad(&w[col][0], A[Anext][0][0]*v[i][0] +)
dfad(&w[col |[1], A[Anext][0][1]*xv[i][0] +)5
dfad(&w[col|[2], A[Anext][0][2]*v[i][0] + s

Fig. 2. The non-blocking version of the previous operations in Spark98

Comparing the two programming paradigms, the non-blocking one requires
low number of memory accesses and suffer less from cache misses. When the ac-
cessing pattern of shared memory is irregular, the cache system cannot predicate
its pattern and the application has more chances to suffer from cache misses. To
verify the above claim, we designed and performed the experiments described in
next section.

4 Experiments

The purpose of these experiments is to compare the performance of applications
that use blocking synchronisation and non-blocking synchronisation. We mea-
sured the time each application spend in different parts of the application; we
also measure the number of cache misses generated by the application. All of our
experiments were perform on a SGI Origin 2000 machine with 29 processors. A
brief introduction of the system we used is given below.

The Non-blocking Programming Paradigm 1119

4.1 SGI Origin 2000 Platform

The SGI Origin2000 [7] is a typical commercial cache coherent non-uniform mem-
ory access (ccNUMA) machine. It has an aggressive, scalable distributed shared
memory (DSM) architecture. The ccNUMA architecture maintain a unified,
global coherent memory and all resources are managed by a single copy of the op-
erating system. The architecture is much more tightly integrated than in other re-
cent commercial distributed shared memory (DSM) systems. A hardware-based
directory cache coherency scheme ensures that data held in memory is consis-
tent on a system-wide basis. Comparing with cache snooping, such a scheme
keeps both absolute memory latency and the ratio of remote to local latency
low, and provides remote memory bandwidth equal to local memory bandwidth
(780MB/s each) [7].

In SGI Origin 2000, two processors form a node and share the same secondary
cache. Directory based cache coherent protocol maintains coherence between
nodes within one machine. The machine we use has twenty-nine 250MHz MIPS
R10000 CPUs with 4MB L2 cache and 20GB main memory.

The SGI Origin 2000 provides two groups of transactional instructions that
can be used to implement any other transactional synchronisation operations.
The one used in this paper contains two simple operations, load_linked and
store_conditional. The load_linked (or LL) loads a word from the memory
to a register. The matching store_conditional (or SC) stores back possibly a
new value into the memory word, unless the value at the memory word has been
modified in the meantime by another process. If the word has not been modified,
the store succeeds and a 1 is returned. Otherwise the, store_conditional fails,
the memory is not modified, and a 0 is returned.

For more information on the SGI Origin 2000 the reader is referred to [7/I1].

4.2 Experiments and Results

The first application that we used is the Spark98 kernel suite. Spark98 kernels
is a collection of sparse matrix kernels for shared memory and message passing
systems. Spark98 kernels have been developed to facilitate system builders with
a set of example sparse matrix codes that are simple, realistic, and portable.
Each kernel performs a sequence of sparse matrix vector product operations us-
ing matrices that are derived from a family of three dimensional finite element
earthquake applications. The multiplication of a sparse matrix by a dense vec-
tor is central to many computer applications, including scheduling applications
based on linear programming and applications that simulate physical systems.
More information about Spark98 can be found in [I0].

In [2], we showed that the non-blocking version of Spark98 performs better
than the lock-based version and also better than the reduction-based version
of Spark98. In this section, we examine the reason that the non-blocking ver-
sion performs better than both blocking versions. More specifically, we want
to identify the part of the application that has been improved. We measured
for the lock-based version the execution time spend in critical section. For the

1120 P. Tsigas and Y. Zhang

Time breakdown (Spark98)
140

120 H

z M|ock-free
E Ccomputation
E Cbarrier
= Eunlock
[l m ml _ - Hlock

Number of Processors

Fig. 3. Time breakdown of different Spark98 version

non-blocking version of the application, which has been improved by adopting
the non-blocking synchronisation, we measured the time spend on the lock-free
computing part. For all version, the time spend on barrier synchronisation is
measured. All versions use barrier operations to synchronise process in different
execution phase. Furthermore, the reduction-based version of Spark98 heavily
rely on barriers to avoid lock operation. Figure [3] shows the results we have ob-
served. When the number of processors is small, the reduction-based version of
Spark98 performs the best: almost all the execution time is dedicated to com-
putation. On the other side, the lock-based and non-blocking versions spend
substantial time in synchronisation. On the other hand, when the number of
processors becomes larger than 12, the speedup of the reduction-based version
of Spark98 stops and the time spend on barrier synchronisation increases as the
number of processors increases. The lock-based version can keep its speedup up
to 24 processors. Although it is not the best one at the beginning, the non-
blocking version performs the best when number of processors become larger
than 8. The time spend in lock-free computing and the real computation keep
the speedup nicely up to 28 processors. The time spend in barriers is almost con-
stant for the non-blocking version; but for the lock-based and reduction-based
ones, the time is almost zero for 2 processors and it is twice as much as non-
blocking version when the number of processors reach 28. The larger the time
spend in barriers, the more uneven the working load is distributed among pro-
cessors. The non-blocking version seems to evenly distribute the working load
among the processors.

The cache behaviour of these applications are shown in figure . As it was
described at the beginning of this section, in the SGI Origin 2000 machine, two
processors within one node share the same secondary cache. Therefore, only one
secondary cache memory caches the main memory in the two-processor case.

The Non-blocking Programming Paradigm 1121

When the number of processors is larger than 2, the cache coherent protocol
becomes active in order to maintain coherence between several secondary caches.
A memory access operation in one node may invalidate a secondary cache line in
another node. This is why there is a large difference on the number of secondary
cache misses between the 2-processor and the 4-processor experiments shown in
figure[4]

From figure @] the number of cache misses keeps increasing for the reduction-
based version; but it keeps decreasing for the lock-based version and the non-
blocking version after reaching 4 processors. The number of cache misses for
the non-blocking version is always the smallest compared to both the other two
versions. When the number of cache misses becomes stable, after 16 processors,
it is less than one third of the respective number for the lock-based version which
is also stable. The number of cache misses for the reduction-based version keeps
increasing as the number of processors increases.

Secondary Cache Missing (Spark8)

9000000

o 8000000

‘g 7000000

E 6000000

§ 5000000

O

2 4000000 .

$ 3000000

£ H

£ 2000000

2 g
e (o L E

0

2

EImv E rmv O nmv

Number of Processors

Fig. 4. Cache miss of different Spark98 version

Another application we investigated in this paper is Volrend. Volrend is an
application from the SPLASH2 parallel application benchmark [12]. It renders
three dimensional volume data into an image using a ray-casting method [13].
The volume data are read only. Its inherent data referencing pattern on data
that are written (task queues and image data) is migratory, while its induced
pattern at page granularity involves multiple producers with multiple consumers.
Both the read accesses to the read only volume and the write accesses to task
queues and image data are fine grained, so it suffers both fragmentation and
false sharing.

As shown in [2], there is also a large performance difference between the lock-
based version and the non-blocking version. We perform the same experiments
as we did with Spark98 to investigate the time distribution and cache behaviour
of both version.

1122 P. Tsigas and Y. Zhang

Time breakdown {Volrend)

[
[

origin _]
origin -:-]

origin
origin
origin
origin
origin

origin
lockfree 1]

lockfree [T1 1
lockfree |11

lockfree
lockfree
lockfree
lockfree
lockfree

2 4 8 12 16 20 24 28

Hbarrier M lock/lock-free O computation ‘ Number of Processors

Fig. 5. Time breakdown of different Volrend version

Secondary Data Cache Missing (Volrend)

1000000
900000
800000
700000
600000
500000
400000
300000
200000

0

2 4 8 12 16 20 24 28
Hlock-based Wnon-blocking \

Number of cache missing

Number of Processors

Fig. 6. Cache miss of different Volrend version

The time breakdown for Volrend is shown in figure Bl In the figure, the execu-
tion time stops to decrease for the lock-based version when there are more than
12 processors. The time spend in synchronisation increases dramatically when
the number of processors reaches 16. But the non-blocking version continues to
perform well up to 28 processors and the time spend in lock-free computing is
negligible. The time spend in barriers is also almost constant for the non-blocking
version of Volrend; but this time doubles for the lock-based version from 2 pro-
cessors to 28 processors, which means that the non-blocking version offers more
fair and balanced working load to processors. The even and balanced working
load also contributes to the performance improvements.

The cache behaviour of the two versions of Volrend is shown in figure
There is also a large jump on the number of cache misses between 2-processor

The Non-blocking Programming Paradigm 1123

and 4-processor as Spark98. In the figure, the non-blocking version also has
smaller number of cache misses than the lock-based version in all cases. When
all numbers become stable after we reach 20 processors, the number of cache
misses for the non-blocking version is about two third of the respective number
for the lock-based version.

5 Conclusion

In this paper, we investigate the reason that non-blocking synchronisation per-
forms better than blocking synchronisation in scientific applications. We ob-
served applications using non-blocking synchronisation generate less cache misses
than the ones using lock-based synchronisation. Non-blocking synchronisation
also balances better the work load among the processors when compared with
lock-based synchronisation. Low number of cache misses and balanced work load
are the two main reasons that give non-blocking synchronisation better per-
formance. To help parallel programmers who are not experts on non-blocking
synchronisation to use non-blocking synchronisation in their applications, a li-
brary that supports non-blocking synchronisation called NOBLE [14] has been
developed at Chalmers University of Technology, Sweden. The library provides
a collection of the most commonly used data types and protocols.

References

1. Tsigas, P., Zhang, Y.: Evaluating the performance of non-blocking synchronisation
on shared-memory multiprocessors. In: Proceedings of the ACM SIGMETRICS
2001/Performance 2001, ACM press (2001) 320-321

2. Tsigas, P., Zhang, Y.: Integrating non-blocking synchronisation in parallel applica-
tions: Performance advantages and methodologies. In: Proceedings of the 3rd ACM
Workshop on Software and Performance (WOSP’02), ACM press (2002) 55-67

3. Kopetz, H., Reisinge, J.: The non-blocking write protocol NBW: A solution to
a real-time synchronisation problem. In: Proceedings of the Real-Time Systems
Symposium, Raleigh-Durham, NC, IEEE Computer Society Press (1993) 131-137

4. FEichenberger, A., Abraham, S.: Impact of load imbalance on the design of soft-
ware barriers. In: Proceedings of the 1995 International Conference on Parallel
Processing. (1995) 63-72

5. Kumar, S., Jiang, D., Singh, J.P., Chandra, R.: Evaluating synchronization on
shared address space multiprocessors: Methodology and performance. In: Proceed-
ings of the ACM SIGMETRICS International Conference on Measurement and
Modeling of Computing Systems (SIGMETRICS-99). Volume 27,1., ACM Press
(1999) 23-34

6. Kaumlgi, A., Burger, D., Goodman, J.R.: Efficient synchronization: Let them eat
QOLB. In: 24th Annual International Symposium on Computer Architecture (24th
ISCA’97), Computer Architecture News, ACM SIGARCH (1997) 170-180

7. Laudon, J., Lenoski, D.: The SGI origin: A ccNUMA highly scalable server. In:
Proceedings of the 24th Annual International Symposium on Computer Architec-
ture (ISCA-97). Volume 25,2 of Computer Architecture News., New York, ACM
Press (1997) 241-251

1124 P. Tsigas and Y. Zhang

8.

10.

11.

12.

13.

14.

Michael, M.M., Scott, M.L.: Nonblocking algorithms and preemption-safe locking
on multiprogrammed shared memory multiprocessors. Journal of Parallel and
Distributed Computing 51 (1998) 1-26

Lim, B.H., Agarwal, A.: Reactive synchronization algorithms for multiprocessors.
In: Proceedings of the Sixth International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS VI), ACM press
(1994) 25-35

O’Hallaron, D.R.: Spark98: Sparse matrix kernels for shared memory and message
passing systems. Technical Report CMU-CS-97-178, CMU (1997)

Cortesi, D.: Origin 2000 and onyx2 performance tuning and optimization guide.
http://techpubs.sgi.com/library/, SGI Inc. (1998)

Woo, S.C., Ohara, M., Torrie, E., Singh, J.P., Gupta, A.: The SPLASH-2 programs:
Characteriation and methodological considerations. In: Proceedings of the 22nd
Annual International Symposium on Computer Architecture, ACM Press (1995)
24-37

Nieh, J., Levoy, M.: Volume rendering on scalable shared memory mimd archi-
tectures. In: Proceeding of the 1992 Workshop on Volume Visualization. (1992)
1724

Sundell, H., Tsigas, P.: Noble: A non-blocking inter-process communication library.
In: Proceedings of the Sixth Workshop on Languages, Compilers and Run-time
Systems for Scalable Computers. (2002)

	Introduction
	Previous and Current Work
	Performance Impact of Non-blocking
	Experiments
	SGI Origin 2000 Platform
	Experiments and Results

	Conclusion

