
Scalable and Lock-Free Concurrent Dictionaries

Håkan Sundell
Computing Science

Chalmers University of Technology
Göteborg, Sweden

phs@cs.chalmers.se

Philippas Tsigas
Computing Science

Chalmers University of Technology
Göteborg, Sweden

tsigas@cs.chalmers.se

Categories and Subject Descriptors
E.1 [Data Structures]: Distributed Data Structures

General Terms
Algorithms, Performance, Reliability, Experimentation

Keywords
Concurrent, non-blocking, dictionary, shared memory

ABSTRACT
We present an efficient and practical lock-free implemen-
tation of a concurrent dictionary that is suitable for both
fully concurrent (large multi-processor) systems as well as
pre-emptive (multi-process) systems. Many algorithms for
concurrent dictionaries are based on mutual exclusion. How-
ever, mutual exclusion causes blocking which has several
drawbacks and degrades the system’s overall performance.
Non-blocking algorithms avoid blocking, and are either lock-
free or wait-free. Our algorithm is based on the randomized
sequential list structure called Skiplist, and implements the
full set of operations on a dictionary that is suitable for prac-
tical settings. In our performance evaluation we compare
our algorithm with the most efficient non-blocking imple-
mentation of dictionaries known. The experimental results
clearly show that our algorithm outperforms the other lock-
free algorithm for dictionaries with realistic sizes, both on
fully concurrent as well as pre-emptive systems.

1. INTRODUCTION
Dictionaries (also called sets) are fundamental data struc-

tures. From the operating system level to the user appli-
cation level, they are frequently used as basic components.
Consequently, the design of efficient implementations of dic-
tionaries is a research area that has been extensively re-
searched. A dictionary supports five operations, the In-
sert, the FindKey, the DeleteKey, the FindValue and the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’04, March 14-17, 2004, Nicosia, Cyprus
Copyright 2004 ACM 1-58113-812-1/03/04 ...$5.00.

DeleteValue operation. The abstract definition of a dictio-
nary is a set of key-value pairs, where the key is an unique
integer associated with a value. The Insert operation in-
serts a new key-value pair into the dictionary and the Find-
Key/DeleteKey operation finds/removes and returns the value
of the key-value pair with the specified key that was in the
dictionary. The FindValue/DeleteValue operation finds /
removes and returns the key of the key-value pair with the
specified value that was in the dictionary.

To ensure consistency of a shared data object in a con-
current environment, the most common method is mutual
exclusion, i.e. some form of locking. Mutual exclusion de-
grades the system’s overall performance [12] as it causes
blocking, i.e. other concurrent operations can not make any
progress while the access to the shared resource is blocked by
the lock. Mutual exclusion can also cause deadlocks, priority
inversion (which can be solved efficiently on uni-processors
[11] with the cost of more difficult analysis, although not as
efficient on multiprocessor systems [10]) and even starvation.

Researchers have addressed these problems by propos-
ing non-blocking algorithms for shared data objects. Non-
blocking methods do not involve mutual exclusion, and there-
fore do not suffer from the problems that blocking can cause.
Non-blocking algorithms are either lock-free or wait-free.
Lock-free implementations guarantee that regardless of the
contention caused by concurrent operations and the inter-
leaving of their sub-operations, always at least one operation
will progress. However, there is a risk for starvation as the
progress of some operations could cause some specific other
operations to never finish. This is although different from
the type of starvation that could be caused by blocking,
where a single operation could block every other operation
forever, and cause starvation of the whole system. Wait-free
[4] algorithms are lock-free and moreover they avoid star-
vation as well. In a wait-free algorithm every operation is
guaranteed to finish in a limited number of its own steps,
regardless of the actions of the concurrent operations. Non-
blocking algorithms have been shown to be of big practical
importance [16] to high-performance applications, and re-
cently NOBLE, which is a non-blocking inter-process com-
munication library, has been introduced [13].

There exist several algorithms and implementations of
concurrent dictionaries. The majorities of the algorithms are
lock-based, constructed with either a single lock on top of
a sequential algorithm, or specially constructed algorithms
using multiple locks, where each lock protects a part of the
shared data structure. However, most lock-based algorithms
[2] are based on the theoretical PRAM model which is shown

to be unrealistic [1]. As the time complexity of the search
operation of a dictionary is significant, most algorithms are
based on tree or heap structures as well as tree-like struc-
tures as the Skiplist [9]. Previous non-blocking dictionar-
ies are though based on arrays or ordered lists as done by
Valois [17]. The path of using concurrent ordered lists for
constructing non-blocking dictionaries has been improved by
Harris [3], and lately [6] presented a significant improvement
by using a new memory management method [7]. However,
Valois [17] presented an incomplete idea of how to design a
concurrent Skiplist.

One common problem with many algorithms for concur-
rent dictionaries is the lack of precise defined semantics of
the operations. Previously known non-blocking dictionar-
ies only implements a limited set of operations, disregarding
the FindValue and DeleteValue operations. It is also seldom
that the correctness with respect to concurrency is proved,
using a strong property like linearizability [5].

In this paper we present a lock-free algorithm of a con-
current dictionary that is designed for efficient use in both
pre-emptive as well as in fully concurrent environments. In-
spired by the incomplete attempt by Valois [17], the algo-
rithm is based on the randomized Skiplist [9] data structure.
It is also implemented using common synchronization primi-
tives that are available in modern systems. The algorithm is
described in detail later in this paper, and the aspects con-
cerning the underlying lock-free memory management are
also presented. The precise semantics of the operations are
defined and we give a proof that our implementation is lock-
free and linearizable.

Concurrent dictionaries are often used as building blocks
for concurrent hash tables, where each branch (or bucket) of
the hash table is represented by a dictionary. In an optimal
setting, the average size of each branch is comparably low,
i.e. less than 10 nodes, as in [6]. However, in practical set-
tings the average size of each branch can vary significantly.
For example, a hash table can be used to represent the words
of a book, where each branch contains the words that begin
with a certain letter. Therefore it is not unreasonable to
expect dictionaries with sizes of several thousands nodes.

We have performed experiments that compare the perfor-
mance of our algorithm with one of the most efficient imple-
mentations of non-blocking dictionaries known [6]. As the
previous algorithm did not implement the full set of opera-
tions of our dictionary, we also performed experiments with
the full set of operations, compared with a simple lock-based
Skiplist implementation. Experiments were performed on
two different platforms, consisting of a multiprocessor sys-
tem using different operating systems and equipped with ei-
ther 2 or 64 processors. Our results show that our algorithm
outperforms the other lock-free implementation with realis-
tic sizes and number of threads, in both highly pre-emptive
as well as in fully concurrent environments.

The rest of the paper is organized as follows. In Section 2
we describe the type of systems that our implementation is
aimed for. The actual algorithm is described in Section 3.
In Section 4 we define the precise semantics for the opera-
tions on our implementations, as well showing correctness by
proving the lock-free and linearizability property. The ex-
perimental evaluation that shows superior performance for
our implementation is presented in Section 5. We conclude
the paper with Section 6.

Local Memory

Processor 1

Local Memory

Processor 2

Local Memory

Processor n

Shared Memory

Interconnection Network

. . .

Figure 1: Shared Memory Multiprocessor System
Structure

2. SYSTEM DESCRIPTION
A typical abstraction of a shared memory multi-processor

system configuration is depicted in Figure 1. Each node of
the system contains a processor together with its local mem-
ory. All nodes are connected to the shared memory via an
interconnection network. A set of co-operating tasks is run-
ning on the system performing their respective operations.
Each task is sequentially executed on one of the processors,
while each processor can serve (run) many tasks at a time.
The co-operating tasks, possibly running on different proces-
sors, use shared data objects built in the shared memory to
co-ordinate and communicate. Tasks synchronize their oper-
ations on the shared data objects through sub-operations on
top of a cache-coherent shared memory. The shared mem-
ory may not though be uniformly accessible for all nodes in
the system; some processors can have slower access than the
others.

3. ALGORITHM
The algorithm is an extension and modification of the par-

allel Skiplist data structure presented in [14]. The sequential
Skiplist data structure which was invented by Pugh [9], uses
randomization and has a probabilistic time complexity of
O(log N) where N is the maximum number of elements in
the list. The data structure is basically an ordered list with
randomly distributed short-cuts in order to improve search
times. The maximum height (i.e. the maximum number of
next pointers) of the data structure is log N . The height of
each inserted node is randomized geometrically in the way
that 50% of the nodes should have height 1, 25% of the nodes
should have height 2 and so on. To use the data structure as
a dictionary, every node contains a key and its correspond-
ing value. The nodes are ordered in respect of key (which
has to be unique for each node), the nodes with lowest keys
are located first in the list. The fields of each node item are
described in Figure 2 as it is used in this implementation. In
all code figures in this section, arrays are indexed starting
from 0.

In order to make the Skiplist construction concurrent and
non-blocking, we are using three of the standard atomic syn-
chronization primitives, Test-And-Set (TAS), Fetch-And-Add
(FAA) and Compare-And-Swap (CAS). See the full version
of this paper [15] for a brief description of those primitives.

3.1 Memory Management
As we are concurrently (with possible preemptions) travers-

ing nodes that will be continuously allocated and reclaimed,
we have to consider several aspects of memory management.
No node should be reclaimed and then later re-allocated
while some other process is traversing this node. This can
be solved for example by careful reference counting. We

structure Node
key,level,validLevel,version: integer
value : pointer to word
next[level],prev : pointer to Node

// Global variables
head,tail : pointer to Node
// Local variables (for all functions/procedures)
node1,node2,newNode,savedNodes[maxlevel+1] : pointer to Node
prev,last,stop : pointer to Node
key1,key2,step,jump,version,version2: integer

function CreateNode(level:integer, key:integer,
value:pointer to word):pointer to Node

C1 node:=MALLOC NODE();
C2 node.prev:=NULL;
C3 node.validLevel:=0;
C4 node.level:=level;
C5 node.key:=key;
C6 node.value:=value;
C7 return node;

procedure ReleaseReferences(node:pointer to Node)
R1 node.validLevel:=0;
R2 if node.prev then
R3 prev:=node.prev;
R4 node.prev:=NULL;
R5 RELEASE NODE(prev);

function SearchLevel(last:pointer to pointer to Node,
level:integer, key:integer): pointer to Node

S1 node1:=*last;
S2 stop:=NULL;
S3 while true do
S4 node2:=GET UNMARKED(node1.next[level]);
S5 if node2=NULL then
S6 if node1=*last then
S7 *last:=HelpDelete(*last,level);
S8 node1:=*last;
S9 else if node2.key≥key then
S10 COPY NODE(node1);
S11 if (node1.validLevel¿level or node1=*last or node1=stop)

and node1.key¡key and node1.key≥(*last).key then
S12 if node1.validLevel≤level then
S13 RELEASE NODE(node1);
S14 node1:=COPY NODE(*last);
S15 node2:=ScanKey(&node1,level,key);
S16 RELEASE NODE(node2);
S17 return node1;
S18 RELEASE NODE(node1);
S19 stop:=node1;
S20 if IS MARKED((*last).value) then
S21 *last:=HelpDelete(*last,level);
S22 node1:=*last;
S23 else if node2.key≥(*last).key then
S24 node1:=node2;
S25 else
S26 if IS MARKED((*last).value) then
S27 *last:=HelpDelete(*last,level);
S28 node1:=*last;

function Insert(key:integer, value:pointer to word):boolean
I1 Choose level randomly according to the Skiplist distribution
I2 newNode:=CreateNode(level,key,value);
I3 COPY NODE(newNode);
I4 savedNodes[maxLevel]:=head;
I5 for i:=maxLevel-1 to 0 step -1 do
I6 savedNodes[i]:=SearchLevel(&savedNodes[i+1],i,key);
I7 if maxLevel-1>i≥level-1 then

RELEASE NODE(savedNodes[i+1]);
I8 node1:=savedNodes[0];
I9 while true do
I10 node2:=ScanKey(&node1,0,key);
I11 value2:=node2.value;
I12 if not IS MARKED(value2) and node2.key=key then
I13 if CAS(&node2.value,value2,value) then
I14 RELEASE NODE(node1);
I15 RELEASE NODE(node2);
I16 for i:=1 to level-1 do
I17 RELEASE NODE(savedNodes[i]);
I18 RELEASE NODE(newNode);

I19 RELEASE NODE(newNode);
I20 return true2;
I21 else
I22 RELEASE NODE(node2);
I23 continue;
I24 newNode.next[0]:=node2;
I25 RELEASE NODE(node2);
I26 if CAS(&node1.next[0],node2,newNode) then
I27 RELEASE NODE(node1);
I28 break;
I29 Back-Off
I30 newNode.version:=newNode.version+1;
I31 newNode.validLevel:=1;
I32 for i:=1 to level-1 do
I33 node1:=savedNodes[i];
I34 while true do
I35 node2:=ScanKey(&node1,i,key);
I36 newNode.next[i]:=node2;
I37 RELEASE NODE(node2);
I38 if IS MARKED(newNode.value) then
I39 RELEASE NODE(node1);
I40 break;
I41 if CAS(&node1.next[i],node2,newNode) then
I42 newNode.validLevel:=i+1;
I43 RELEASE NODE(node1);
I44 break;
I45 Back-Off
I46 if IS MARKED(newNode.value) then

newNode:=HelpDelete(newNode,0);
I47 RELEASE NODE(newNode);
I48 return true;

function FindKey(key: integer):pointer to word
F1 last:=COPY NODE(head);
F2 for i:=maxLevel-1 to 0 step -1 do
F3 node1:=SearchLevel(&last,i,key);
F4 RELEASE NODE(last);
F5 last:=node1;
F6 node2:=ScanKey(&last,0,key);
F7 RELEASE NODE(last);
F8 value:=node2.value;
F9 if node2.key 6=key or IS MARKED(value) then
F10 RELEASE NODE(node2);
F11 return NULL;
F12 RELEASE NODE(node2);
F13 return value;

function DeleteKey(key: integer):pointer to word
return Delete(key,false,NULL);

function Delete(key: integer, delval:boolean,
value:pointer to word):pointer to word

D1 savedNodes[maxLevel]:=head;
D2 for i:=maxLevel-1 to 0 step -1 do
D3 savedNodes[i]:=SearchLevel(&savedNodes[i+1],i,key);
D4 node1:=ScanKey(&savedNodes[0],0,key);
D5 while true do
D6 if not delval then value:=node1.value;
D7 if node1.key=key and (not delval or node1.value=value)

and not IS MARKED(value) then
D8 if CAS(&node1.value,value,GET MARKED(value)) then
D9 node1.prev:=COPY NODE(savedNodes[(node1.level-1)/2]);
D10 break;
D11 else continue;
D12 RELEASE NODE(node1);
D13 for i:=0 to maxLevel-1 do
D14 RELEASE NODE(savedNodes[i]);
D15 return NULL;
D16 for i:=0 to node1.level-1 do
D17 repeat
D18 node2:=node1.next[i];
D19 until IS MARKED(node2) or CAS(&node1.next[i],

node2,GET MARKED(node2));
D20 for i:=node1.level-1 to 0 step -1 do
D21 prev:=savedNodes[i];
D22 while true do
D23 if node1.next[i]=1 then break;
D24 last:=ScanKey(&prev,i,node1.key);
D25 RELEASE NODE(last);
D26 if last 6=node1 or node1.next[i]=1 then break;
D27 if CAS(&prev.next[i],node1,

GET UNMARKED(node1.next[i])) then

Figure 2: The algorithm, part 1(2).

D28 node1.next[i]:=1;
D29 break;
D30 if node1.next[i]=1 then break;
D31 Back-Off
D32 RELEASE NODE(prev);
D33 for i:=node1.level to maxLevel-1 do
D34 RELEASE NODE(savedNodes[i]);
D35 RELEASE NODE(node1);
D36 RELEASE NODE(node1);
D37 return value;

function FindValue(value: pointer to word):integer
return FDValue(value,false);

function DeleteValue(value: pointer to word):integer
return FDValue(value,true);

function FDValue(value: pointer to word, delete: boolean):integer
V1 jump:=16;
V2 last:=COPY NODE(head);

next jump:
V3 node1:=last;
V4 key1:=node1.key;
V5 step:=0;
V6 while true do
V7 ok=false;
V8 version:=node1.version;
V9 node2:=node1.next[0];
V10 if not IS MARKED(node2) and node2 6=NULL then
V11 version2:=node2.version;
V12 key2:=node2.key;
V13 if node1.key=key1 and node1.validLevel¿0 and

node1.next[0]=node2 and node1.version=version
and node2.key=key2 and node2.validLevel¿0 and
node2.version=version2 then ok:=true;

V14 if not ok then
V15 node1:=node2:=ReadNext(&last,0);
V16 key1:=key2:=node2.key;
V17 version2:=node2.version;
V18 RELEASE NODE(last);
V19 last:=node2;
V20 step:=0;
V21 if node2=tail then
V22 RELEASE NODE(last);
V23 return ⊥;
V24 if node2.value=value then
V25 if node2.version=version2 then

V26 if not delete or Delete(key2,true,value)=value then
V27 RELEASE NODE(last);
V28 return key2;
V29 else if ++step≥jump then
V30 COPY NODE(node2);
V31 if node2.validLevel=0 or node2.key 6=key2 then
V32 RELEASE NODE(node2);
V33 node2:=ReadNext(&last,0);
V34 if jump≥4 then jump:=jump/2;
V35 else jump:=jump+jump/2;
V36 RELEASE NODE(last);
V37 last:=node2;
V38 goto next jump;
V39 else
V40 key1:=key2;
V41 node1:=node2;

function HelpDelete(node:pointer to Node,
level:integer):pointer to Node

H1 for i:=level to node.level-1 do
H2 repeat
H3 node2:=node.next[i];
H4 until IS MARKED(node2) or CAS(&node.next[i],

node2,GET MARKED(node2));
H5 prev:=node.prev;
H6 if not prev or level ≥ prev.validLevel then
H7 prev:=COPY NODE(head);
H8 else COPY NODE(prev);
H9 while true do
H10 if node.next[level]=1 then break;
H11 for i:=prev.validLevel-1 to level step -1 do
H12 node1:=SearchLevel(&prev,i,node.key);
H13 RELEASE NODE(prev);
H14 prev:=node1;
H15 last:=ScanKey(&prev,level,node.key);
H16 RELEASE NODE(last);
H17 if last 6=node or node.next[level]=1 then break;
H18 if CAS(&prev.next[level],node,

GET UNMARKED(node.next[level])) then
H19 node.next[level]:=1;
H20 break;
H21 if node.next[level]=1 then break;
H22 Back-Off
H23 RELEASE NODE(node);
H24 return prev;

Figure 3: The algorithm, part 2(2).

1 2 4

3

Inserted node

Deleted node

Figure 4: Concurrent insert and delete operation
can delete both nodes.

have selected the lock-free memory management scheme in-
vented by Valois [17] and corrected by Michael and Scott
[8], which makes use of the FAA and CAS atomic synchro-
nization primitives.

To insert or delete a node from the list we have to change
the respective set of next pointers. These have to be changed
consistently, but not necessary all at once. Our solution is to
have additional information on each node about its deletion
(or insertion) status. This additional information will guide
the concurrent processes that might traverse into one par-
tially deleted or inserted node. When we have changed all
necessary next pointers, the node is fully deleted or inserted.

One problem, that is general for non-blocking implemen-
tations that are based on the linked-list structure, arises
when inserting a new node into the list. Because of the

linked-list structure one has to make sure that the previous
node is not about to be deleted. If we are changing the next
pointer of this previous node atomically with CAS, to point
to the new node, and then immediately afterwards the pre-
vious node is deleted - then the new node will be deleted as
well, as illustrated in Figure 4. There are several solutions
to this problem. One solution is to use the CAS2 operation
as it can change two pointers atomically, but this opera-
tion is not available in any existing multiprocessor system.
A second solution is to insert auxiliary nodes [17] between
each two normal nodes, and the latest method introduced
by Harris [3] is to use one bit of the pointer values as a dele-
tion mark. On most modern 32-bit systems, 32-bit values
can only be located at addresses that are evenly dividable
by 4, therefore bits 0 and 1 of the address are always set to
zero. The method is then to use the previously unused bit
0 of the next pointer to mark that this node is about to be
deleted, using CAS. Any concurrent Insert operation will
then be notified about the deletion, when its CAS operation
will fail.

Another memory management issue is how to de-reference
pointers safely. If we simply de-reference the pointer, it
might be that the corresponding node has been reclaimed
before we could access it. It can also be that bit 0 of the
pointer was set, thus marking that the node is deleted, and
therefore the pointer is not valid. The following functions

are defined for safe handling of the memory management:

function MALLOC NODE():pointer to Node
function READ NODE(address:pointer to pointer to Node)

:pointer to Node
function COPY NODE(node:pointer to Node):pointer to Node
procedure RELEASE NODE(node:pointer to Node)

The function MALLOC NODE allocates a new node from
the memory pool of pre-allocated nodes and RELEASE NODE
decrements the reference counter on the corresponding given
node. If the reference count reaches zero, then it calls the
ReleaseReferences function that will call RELEASE NODE
on the nodes that this node has owned pointers to, and then
it reclaims the node. The function COPY NODE increases
the reference counter for the corresponding given node and
READ NODE de-reference the given pointer and increase
the reference counter for the corresponding node. In case
the de-referenced pointer is marked, the function returns
NULL.

3.2 Traversing
The functions for traversing the nodes are defined as fol-

lows:

function ReadNext(node1:pointer to pointer to Node
,level:integer):pointer to Node

function ScanKey(node1:pointer to pointer to Node
,level:integer,key:integer):pointer to Node

While traversing the nodes, processes will eventually reach
nodes that are marked to be deleted. As the process that
invoked the corresponding Delete operation might be pre-
empted, this Delete operation has to be helped to finish
before the traversing process can continue. However, it is
only necessary to help the part of the Delete operation on
the current level in order to be able to traverse to the next
node. The function ReadNext, traverses to the next node on
the given level while helping any deleted nodes in between
to finish the deletion. The function ScanKey, traverses in
several steps through the next pointers at the current level
until it finds a node that has the same or higher key than
the given key. The argument node1 in the ReadNext and
ScanKey functions are continuously updated to point to the
previous node of the returned node. The full version of
this paper [15] contains a more complete description of the
ReadNext and ScanKey functions.

However, the use of the safe ReadNext and ScanKey op-
erations for traversing the Skiplist, will cause the perfor-
mance to be significantly lower compared to the sequential
case where the next pointers are used directly. As the nodes,
which are used in the lock-free memory management scheme,
will be reused for the same purpose when re-allocated again
after being reclaimed, the individual fields of the nodes that
are not part of the memory management scheme will be
intact. The validLevel field can therefore be used for indi-
cating if the current node can be used for possibly traversing
further on a certain level. A value of 0 indicates that this
node can not be used for traversing at all, as it is possi-
bly reclaimed or not yet inserted. As the validLevel field is
only set to 0 directly before reclamation in line R1, a pos-
itive value indicates that the node is allocated. A value of
n + 1 indicated that this node has been inserted up to level
n. However, the next pointer of level n on the node may
have been marked and thus indicating possible deletion at

that level of the node. As the node is not reclaimed the key
field is intact, and therefore it is possible to traverse from
the previous node to the current position. By increasing
the reference count of the node before checking the vali-
dLevel field, it can be assured that the node stays allocated
if it was allocated directly after the increment. Because the
next pointers are always updated to point (regardless of the
mark) either to nothing (NULL) or to a node that is part of
the memory management, allocated or reclaimed, it is pos-
sible in some scenarios to traverse directly through the next
pointers. This approach is taken by the SearchLevel func-
tion, see Figure 2, which traverses rapidly from an allocated
node last and returns the node which key field is the high-
est key that is lower than the searched key at the current
level. During the rapid traversal it is checked that the cur-
rent key is within the search boundaries in line S23 and S11,
otherwise the traversal restarts from the last node as this
indicates that a node has been reclaimed and re-allocated
while traversed. When the node suitable for returning has
been reached, it is checked that it is allocated in line S11
and also assured that it then stays allocated in line S10. If
this succeeds the node is returned, otherwise the traversal
restarts at node last. If this fails twice, the traversal are
done using the safe ScanKey operations in lines S12 to S16,
as this indicates that the node possibly is inserted at the
current level, but the validLevel field has not yet been up-
dated. In case the node last is marked for deletion, it might
have been deleted at the current level and thus it can not
be used for traversal. Therefore the node last is checked if
it is marked in lines S6, S20 and S26. If marked, the node
last will be helped to fully delete on the current level and
last is set to the previous node.

3.3 Inserting and Deleting Nodes
The implementation of the Insert operation, see Figure 2,

starts in lines I4-I10 with a search phase to find the node
after which the new node (newNode) should be inserted.
This search phase starts from the head node at the highest
level and traverses down to the lowest level until the correct
node is found (node1). When going down one level, the last
node traversed on that level is remembered (savedNodes)
for later use (this is where we should insert the new node
at that level). Now it is possible that there already exists a
node with the same key as of the new node, this is checked
in lines I12-I23, the value of the old node (node2) is changed
atomically with a CAS. Otherwise, in lines I24-I45 it starts
trying to insert the new node starting with the lowest level
increasing up to the level of the new node. The next pointers
of the (to be previous) nodes are changed atomically with
a CAS. After the new node has been inserted at the lowest
level, it is possible that it is deleted by a concurrent Delete
operation before it has been inserted at all levels, and this
is checked in lines I38 and I46. The FindKey operation, see
Figure 2, basically follows the Insert operation.

The Delete operation, see Figure 2, starts in lines D1-D4
with a search phase to find the first node which key is equal
or higher than the searched key. This search phase starts
from the head node at the highest level and traverses down
to the lowest level until the correct node is found (node1).
When going down one level, the last node traversed on that
level is remembered (savedNodes) for later use (this is the
previous node at which the next pointer should be changed
in order to delete the targeted node at that level). If the

found node is the correct node, it tries to set the deletion
mark of the value field in line D8 using the CAS primi-
tive, and if it succeeds it also writes a valid pointer (which
corresponding node will stay allocated until this node gets
reclaimed) to the prev field of the node in line D9. This
prev field is necessary in order to increase the performance
of concurrent HelpDelete operations, these otherwise would
have to search for the previous node in order to complete
the deletion. The next step is to mark the deletion bits of
the next pointers in the node, starting with the lowest level
and going upwards, using the CAS primitive in each step,
see lines D16-D19. Afterwards in lines D20-D32 it starts the
actual deletion by changing the next pointers of the previ-
ous node (prev), starting at the highest level and continuing
downwards. The reason for doing the deletion in decreas-
ing order of levels, is that concurrent operations that are in
the search phase also start at the highest level and proceed
downwards, in this way the concurrent search operations will
sooner avoid traversing this node. The procedure performed
by the Delete operation in order to change each next pointer
of the previous node, is to first search for the previous node
and then perform the CAS primitive until it succeeds.

The algorithm has been designed for pre-emptive as well
as fully concurrent systems. In order to achieve the lock-
free property (that at least one thread is doing progress)
on pre-emptive systems, whenever a search operation finds
a node that is about to be deleted, it calls the HelpDelete
operation and then proceeds searching from the previous
node of the deleted. The HelpDelete operation, see Figure
3, tries to fulfill the deletion on the current level and returns
when it is completed. It starts in lines H1-H4 with setting
the deletion mark on all next pointers in case they have not
been set. In lines H5-H6 it checks if the node given in the
prev field is valid for deletion on the current level, otherwise
it starts the search at the head node. In lines H11-H16 it
searches for the correct node (prev). The actual deletion of
this node on the current level takes place in line H18. Lines
H10-H22 will be repeated until the node is deleted at the
current level. This operation might execute concurrently
with the corresponding Delete operation as well with other
HelpDelete operations, and therefore all operations synchro-
nize with each other in lines D23, D26, D28, D30, H10, H17,
H19 and H21 in order to avoid executing sub-operations that
have already been performed.

In fully concurrent systems though, the helping strategy
can downgrade the performance significantly. Therefore the
algorithm, after a number of consecutive failed attempts to
help concurrent Delete operations that stops the progress
of the current operation, puts the current operation into
back-off mode. When in back-off mode, the thread does
nothing for a while, and in this way avoids disturbing the
concurrent operations that might otherwise progress slower.
The duration of the back-off is proportional to the number of
threads, and for each consecutive entering of back-off mode
during one operation invocation, the duration is increased
exponentially.

3.4 Value Oriented Operations
The FindValue and DeleteValue operations, see Figure 3,

traverse from the head node along the lowest level in the
Skiplist until a node with the searched value is found. In
every traversal step, it has to be assured that the step is
taken from a valid node to a valid node, both valid at the

same time. The validLevel field of the node can be used to
safely verify the validity, unless the node has been reclaimed.
The version field is incremented by the Insert operation
in line I30, after the node has been inserted at the lowest
level, and directly before the validLevel is set to indicate
validity. By performing two consecutive reads of the version
field with the same contents, and successfully verifying the
validity in between the reads, it can be concluded that the
node has stayed valid from the first read of the version until
the successful validity check. This is done is lines V8-V13.
If this fails, it restarts and traverses the safe node last one
step using the ReadNext function in lines V14-V21. After a
certain number (jump) of successful fast steps, an attempt
to advance the last node to the current position is performed
in lines V29-V38. If this attempt succeeds, the threshold
jump is increased by 1 1/2 times, otherwise it is halved.
The traversal is continued until a node with the searched
value is reached in line V24 or that the tail node is reached
in line V21. In case the found node should be deleted, the
Delete operation is called for this purpose in line V26.

4. CORRECTNESS
We have defined a well precised semantics of the oper-

ations on our dictionary implementation, described in the
full version of this paper [15]. We have proved that our al-
gorithm is linearizable [5] and that it is lock-free. Because
of space constraints we have moved the full details of the
proofs to the full version of the paper, and only present a
brief description of the linearizability points [5]:

An Insert operation which succeeds takes effect atomically
at the CAS sub-operation in line I26.

An Insert operation which updates takes effect atomically
at the CAS sub-operation in line I13.

A FindKey operation which succeeds takes effect atom-
ically at the read sub-operation of the value field in line
F8.

A FindKey operation which fails takes effect atomically at
either i) the read sub-operation of READ NODE in line N2
or N5 (from K1 or K5, from F6), ii) the read sub-operation
of the value field in line F8.

A DeleteKey operation which succeeds takes effect atom-
ically at the CAS sub-operation in line D8.

A DeleteKey operations which fails takes effect atomi-
cally at either i) the read sub-operation of READ NODE
in line N2 or N5 (from K1 or K5, from D4), ii) the read
sub-operation of the value field in line D6.

A FindValue operation which succeed takes effect atom-
ically at the read sub-operation of the value field in line
V24.

A FindValue operation which fails takes effect atomically
at either i) the hidden read sub-operation of the next pointer
of node node1 in the READ NODE function in line N2 or
N5 (from V15), ii) the read sub-operation of the value field
in line V24, iii) the read sub-operation of the head node in
line V2, iv) the concurrent successful CAS sub-operation on
marking the value field in line D8 that can be ordered before
the read sub-operation of the same value field in line V24,
and after the read sub-operation of the head node in line
V2.

A DeleteValue operation which succeeds takes effect atom-
ically at the CAS sub-operation in line D8.

A DeleteValue operation which fails takes effect atomi-
cally at the same statement as the FindValue operation.

5. EXPERIMENTS
We have performed experiments on both the limited set

of operations on a dictionary (i.e. the Insert, FindKey and
DeleteKey operations), as well as on the full set of opera-
tions on a dictionary (i.e. also including the FindValue and
DeleteValue operations).

In our experiments with the limited set of operations on
a dictionary, each concurrent thread performed 20000 se-
quential operations, whereof the first 50 up to 10000 of the
totally performed operations are Insert operations, and the
remaining operations was randomly chosen with a distri-
bution of 1/3 Insert operations versus 1/3 FindKey and
1/3 DeleteKey operations. For the systems which also in-
volve preemption, a synchronization barrier was performed
between the initial insertion phase and the remaining oper-
ations. The key values of the inserted nodes was randomly
chosen between 0 and 1000000 ∗ n, where n is the number
of threads. Each experiment was repeated 50 times, and an
average execution time for each experiment was estimated.
Exactly the same sequential operations were performed for
all different implementations compared. Besides our imple-
mentation, we also performed the same experiment with the
lock-free implementation by Michael [6] which is the most
recently claimed to be one of the most efficient concurrent
dictionaries existing.

Our experiments with the full set of operations on a dic-
tionary, was performed similarly to the experiments with the
limited set of operations, except that the remaining opera-
tions after the insertion phase was randomly chosen with a
distribution of 1/3 Insert operations versus 15/48 FindKey,
15/48 DeleteKey, 1/48 FindValue and 1/48 DeleteValue op-
erations. Each experiment was repeated 10 times. Besides
our implementation, we also performed the same experiment
with a lock-based implementation of Skiplists using a single
global lock.

The Skiplist-based implementations have a fixed level of
10, which corresponds to an expected optimal performance
with an average of 1024 nodes. All lock-based implementa-
tions are based on simple spin-locks using the TAS atomic
primitive. A clean-cache operation was performed just be-
fore each sub-experiment using a different implementation.
All implementations are written in C and compiled with the
highest optimization level, except from the atomic primi-
tives, which are written in assembler.

The experiments were performed using different number
of threads, varying from 1 to 30. To get a highly pre-emptive
environment, we performed our experiments on a Compaq
dual-processor 450 MHz Pentium II PC running Linux. In
order to evaluate our algorithm with full concurrency we
also used a SGI Origin 2000 system running Irix 6.5 with
64 195 MHz MIPS R10000 processors. The results from the
experiment with a limited set of operations on the SGI and
the Linux systems are shown in Figure 5. The results of
the additional experiments are available in the full version
of this paper [15]. The average execution time is drawn as a
function of the number of threads. Observe that the scale is
different on each figure in order to clarify the experiments on
the individual implementations as much as possible. For the
SGI system and the limited set of operations, our lock-free
algorithm shows a negative time complexity with respect to
the size, though for the full set of operations the performance
conforms to be averagely the same independently of the size.
Our conjecture for this behavior is that the performance of

the ccNUMA memory model of the SGI system increases
significantly when the algorithm works on disjoint parts of
the memory (as will occur with large sizes of the dictionary),
while the time spent by the search phase of the operation
will vary insignificantly because of the expected logarithmic
time complexity. On the other hand, for the full set of oper-
ations, there will be corresponding performance degradation
because of the linear time complexity for the value oriented
operations. However, for the algorithm by Michael [6] the
benefit for having disjoint access to the memory is insignif-
icant compared to the performance degradation caused by
the linear time complexity.

Our lock-free implementation scales best compared to the
other implementation, having best performance for realistic
sizes and any number of threads, i.e. for sizes larger or equal
than 500 nodes, independently if the system is fully concur-
rent or involves a high degree of pre-emptions. On scenarios
with the full set of operations our algorithm performs better
than the simple lock-based Skiplist for more than 3 threads
on any system.

6. CONCLUSIONS
We have presented a lock-free algorithmic implementation

of a concurrent dictionary. The implementation is based on
the sequential Skiplist data structure and builds on top of
it to support concurrency and lock-freedom in an efficient
and practical way. Compared to the previous attempts to
use Skiplists for building concurrent dictionaries our algo-
rithm is lock-free and avoids the performance penalties that
come with the use of locks. Compared to the previous non-
blocking concurrent dictionary algorithms, our algorithm in-
herits and carefully retains the basic design characteristic
that makes Skiplists practical: logarithmic search time com-
plexity. Previous non-blocking algorithms did not perform
well on dictionaries with realistic sizes because of their linear
or worse search time complexity. Our algorithm also imple-
ments the full set of operations that is needed in a practical
setting.

An interesting future work would be to investigate if it
is suitable and how to change the Skiplist level reactively
to the current average number of nodes. Another issue is
how to choose and change the lengths of the fast jumps in
order to get maximum performance of the FindValue and
DeleteValue operations.

We compared our algorithm with the most efficient non-
blocking implementation of dictionaries known. Experiments
show that our implementation scales well, and for realistic
number of nodes our implementation outperforms the other
implementation, for all cases on both fully concurrent sys-
tems as well as with pre-emption.

We believe that our implementation is of highly practical
interest for multi-threaded applications.

7. REFERENCES
[1] J. Aspnes and M. Herlihy. Wait-free data structures in

the asynchronous PRAM model. In ACM Symposium
on Parallel Algorithms and Architectures, pages
340–349, 2000.

[2] L. Boug, J. Gabarr, and X. Messeguer. Concurrent
AVL revisited: Self-balancing distributed search trees.
Research Report RR95-45, LIP, ENS Lyon, 1995.

[3] T. L. Harris. A pragmatic implementation of
non-blocking linked lists. In Proceedings of the 15th

0

5000

10000

15000

20000

25000

0 5 10 15 20 25 30

E
xe

cu
tio

n
T

im
e

(m
s)

Threads

Dictionary with High Contention - SGI MIPS, 64 Processors

NEW ALGORITHM 50
NEW ALGORITHM 100
NEW ALGORITHM 200
NEW ALGORITHM 500
NEW ALGORITHM 1000
NEW ALGORITHM 2000
NEW ALGORITHM 5000
NEW ALGORITHM 10000

0

20000

40000

60000

80000

100000

120000

140000

0 5 10 15 20 25 30

E
xe

cu
tio

n
T

im
e

(m
s)

Threads

Dictionary with High Contention - SGI MIPS, 64 Processors

LOCK-FREE MICHAEL 50
LOCK-FREE MICHAEL 100
LOCK-FREE MICHAEL 200
LOCK-FREE MICHAEL 500
LOCK-FREE MICHAEL 1000
LOCK-FREE MICHAEL 2000
LOCK-FREE MICHAEL 5000
LOCK-FREE MICHAEL 10000

0

500

1000

1500

2000

2500

3000

3500

0 5 10 15 20 25 30

E
xe

cu
tio

n
T

im
e

(m
s)

Threads

Dictionary with High Contention - Linux Pentium II, 2 Processors

NEW ALGORITHM 50
NEW ALGORITHM 100
NEW ALGORITHM 200
NEW ALGORITHM 500
NEW ALGORITHM 1000
NEW ALGORITHM 2000
NEW ALGORITHM 5000
NEW ALGORITHM 10000

0

10000

20000

30000

40000

50000

60000

0 5 10 15 20 25 30

E
xe

cu
tio

n
T

im
e

(m
s)

Threads

Dictionary with High Contention - Linux Pentium II, 2 Processors

LOCK-FREE MICHAEL 50
LOCK-FREE MICHAEL 100
LOCK-FREE MICHAEL 200
LOCK-FREE MICHAEL 500
LOCK-FREE MICHAEL 1000
LOCK-FREE MICHAEL 2000
LOCK-FREE MICHAEL 5000
LOCK-FREE MICHAEL 10000

Figure 5: Experiment with dictionaries and high contention, initialized with 50,100,...,10000 nodes

International Symposium of Distributed Computing,
pages 300–314, Oct. 2001.

[4] M. Herlihy. Wait-free synchronization. ACM
Transactions on Programming Languages and
Systems, 11(1):124–149, Jan. 1991.

[5] M. Herlihy and J. Wing. Linearizability: a correctness
condition for concurrent objects. ACM Transactions
on Programming Languages and Systems,
12(3):463–492, 1990.

[6] M. M. Michael. High performance dynamic lock-free
hash tables and list-based sets. In Proceedings of the
14th ACM Symposium on Parallel Algorithms and
Architectures, pages 73–82, 2002.

[7] M. M. Michael. Safe memory reclamation for dynamic
lock-free objects using atomic reads and writes. In
Proceedings of the 21st ACM Symposium on Principles
of Distributed Computing, pages 21–30, 2002.

[8] M. M. Michael and M. L. Scott. Correction of a
memory management method for lock-free data
structures. Technical report, Computer Science
Department, University of Rochester, 1995.

[9] W. Pugh. Skip lists: a probabilistic alternative to
balanced trees. Communications of the ACM,
33(6):668–676, 1990.

[10] R. Rajkumar. Real-time synchronization protocols for
shared memory multiprocessors. In Proceedings of the
10th International Conference on Distributed
Computing Systems, pages 116–123, 1990.

[11] L. Sha, R. Rajkumar, and J. Lehoczky. Priority
inheritance protocols: An approach to real-time
synchronization. IEEE Transactions on Computers,
39(9):1175–1185, Sept. 1990.

[12] A. Silberschatz and P. Galvin. Operating System
Concepts. Addison Wesley, 1994.

[13] H. Sundell and P. Tsigas. NOBLE: A non-blocking
inter-process communication library. In Proceedings of
the 6th Workshop on Languages, Compilers and
Run-time Systems for Scalable Computers, Lecture
Notes in Computer Science. Springer Verlag, 2002.

[14] H. Sundell and P. Tsigas. Fast and lock-free
concurrent priority queues for multi-thread systems.
In Proceedings of the 17th International Parallel and
Distributed Processing Symposium. IEEE press, 2003.

[15] H. Sundell and P. Tsigas. Scalable and lock-free
concurrent dictionaries, extended version. Technical
report, Computing Science, Chalmers University of
Technology, Dec. 2003.

[16] P. Tsigas and Y. Zhang. Integrating non-blocking
synchronisation in parallel applications: Performance
advantages and methodologies. In Proceedings of the
3rd ACM Workshop on Software and Performance,
pages 55–67. ACM Press, 2002.

[17] J. D. Valois. Lock-Free Data Structures. PhD thesis,
Rensselaer Polytechnic Institute, Troy, New York,
1995.

