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ABSTRACT

Lock-free data objects offer several advantages over their
blocking counterparts, such as being immune to deadlocks
and convoying and, more importantly, being highly concur-
rent. However, composing the operations they provide into
larger atomic operations, while still guaranteeing efficiency
and lock-freedom, is a challenging algorithmic task.

We present a lock-free methodology for composing highly
concurrent linearizable objects together by unifying their lin-
earization points. This makes it possible to relatively easily
introduce atomic lock-free move operations to a wide range
of concurrent objects. Experimental evaluation has shown
that the operations originally supported by the data objects
keep their performance behavior under our methodology.
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1. INTRODUCTION

Lock-free data objects offer several advantages over their
blocking counterparts, such as being immune to deadlocks,
priority inversion, and convoying, and have been shown to
work well in practice [27, 31, 32]. They have been included
in Intel’s Threading Building Blocks Framework [17], the
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NOBLE library [27] and the Java concurrency package [20],
and will be included in the forthcoming parallel extensions
to the Microsoft .NET Framework [24]. However, the lack
of a general, efficient, lock-free method for composing them
makes it difficult for the programmer to perform multiple
operations together atomically. To efficiently glue together
multiple objects, and their respective operations, one needs
to perform an often challenging task that requires an efficient
algorithmic design for every particular composition. The
task is made difficult by the fact that lock-free data objects
are often too complicated to be trivially altered.

Composing blocking data objects also puts the program-
mer in a difficult situation, as it requires knowledge of the
way locks are handled internally (in the implementation of
the objects themselves), in order to avoid deadlocks. It is
not possible to build on lock-based components without ex-
amining their implementations and even then the drawbacks
of locking will not go away.

Software Transactional Memories (STMs) provide good
composability [13], but have problems with high overhead
and have poor support for dealing with non-transactional
code [3, 19]. They require, with few exceptions, that the
data objects are rewritten to be handled completely inside
the STM, which lowers performance compared to pure non-
blocking data objects.

1.1 Composing

With the term composing we refer to the task of binding
together multiple operations in such a way that they can
be performed as one, without any intermediate state being
visible to other processes. In the literature the term is also
used for nesting, making one data object part of another,
which is an interesting problem, but outside the scope of
this paper.

Composing lock-free concurrent data objects, in the con-
text that we consider in this paper, has been an open prob-
lem in the area of lock-free data objects. There exists cus-
tomized compositions of specific concurrent data objects, in-
cluding the composition of lock-free flat-sets by Gidenstam
et al. that constitute the foundation of a lock-free memory
allocator [9, 8], but no generic solution.

Using blocking locks to compose lock-free operations is
not a viable solution, as it would reduce the concurrency
and remove the lock-freedom guarantees of the operations.
The reason for this is that the lock-free operations would
have to acquire a lock before executing, in order to ensure
that they are not executed concurrently with any composed
operations. This would cause the operations to be executed
sequentially and lose their lock-free behavior. Simply put, a



generic way to compose concurrent objects, without foiling
the possible lock-freedom guarantees of the objects, has to
be lock-free itself.

1.2 Contributions

The main contribution of this paper is to provide a method-
ology to introduce atomic move operations, that can move
elements between objects of different types, to a large class of
already existing concurrent objects without having to make
significant changes to them. It manages this while preserv-
ing the lock-free guarantees of the object and without intro-
ducing significant performance penalties to the previously
supported operations. Move operations are an important
part of the core functionality needed when composing any
kind of containers, as they provide the possibility to shift
items between objects.

In our methodology we present a set of properties that
can be used to identify suitable concurrent objects and we
describe the mostly mechanical changes needed for our move
operation to function together with the objects. The prop-
erties required by our methodology are fulfilled by a wide va-
riety of lock-free data objects, among them lock-free stacks,
queues, lists, skip-lists, priority queues, hash-tables and dic-
tionaries [30, 23, 29, 7, 28, 34, 21, 14].

Our methodology is based on the idea of decomposing and
then arranging lock-free operations appropriately so that
their linearization points can be combined to form new com-
posed lock-free operations. The linearization point of a con-
current operation is the point in time where the operation
can be said to have taken effect. Most concurrent data ob-
jects that are not read- or write-only support an insert and
a remove operation, or a set of equivalent operations that
can be used to modify its content. These two types of opera-
tions can be composed together using the method presented
in this paper to make them appear to take effect simultane-
ously. By doing this we provide a lock-free atomic operation
that can move elements between objects of different types.
To the best of our knowledge this is the first time that such
a general scheme has been proposed.

As a proof of concept we show how to apply our method
on two commonly used concurrent data objects, the lock-
free queue by Michael and Scott [23] and the lock-free stack
by Treiber [30]. Experimental results on an Intel multipro-
cessor system show that the methodology presented in the
paper, applied to the previously mentioned lock-free imple-
mentations, offers significantly better performance and scal-
ability than a composition method based on locking. The
proposed method does this in addition to its qualitative ad-
vantages regarding progress guarantees that lock-freedom
offers. Moreover, the experimental evaluation has shown
that the operations originally supported by the data objects
keep their performance behavior while used as part of our
methodology.

2. THE MODEL

The model considered is the standard shared memory
model, where a set of memory locations can be read from
and written to, by a number of processes that progress asyn-
chronously. Concurrent data objects are composed of a sub-
set of these memory locations together with a set of oper-
ations that can use read and write instructions, as well as
other atomic instructions, such as compare-and-swap (CAS).
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We require all concurrent data objects to be linearizable to
assure correctness.

Linearizability is a commonly used correctness criterion
introduced by Herlihy and Wing [16]. Each operation on a
concurrent object consists of an invocation and a response.
A sequence of such operations makes up a history. Opera-
tions in a concurrent history can be placed in any order if
they occur concurrently, but an operation that finishes be-
fore another one is invoked must appear before the latter.
If the operations in any actual concurrent history can be re-
ordered in such a way, so that the history is equivalent to a
correct sequential history, then the concurrent object is lin-
earizable. One way of looking at linearizability is to think
that an operation takes effect at a specific point in time,
the linearization point. All operations can then be ordered
according to the linearization point to form a sequential his-
tory.

3. THE METHODOLOGY

The methodology that we present can be used to unify
the linearization points of a remove and an insert operation
for any two concurrent objects, given that they fulfill certain
requirements. We call a concurrent object that fulfills these
requirements a move-candidate object.

3.1 Characterization

DEFINITION 1. A concurrent object is a move-candidate
if it fulfills the following requirements:

1. It implements linearizable operations for insertion and
removal of a single element.

2. Insert and remove operations invoked on different in-
stances of the object can succeed simultaneously.

8. The linearization points of the successful insert and re-
move operations can be associated with successful CAS
operations, (on a pointer), by the process that invoked
it. Such an associated successful CAS can never lead
to an unsuccessful insert or remove operation.

4. The element to be removed is accessible before the lin-
earization point.

To implement a move operation, the equivalent of a re-
move and insert operation needs to be available or be imple-
mented. A generic insert or remove operation would be very
difficult to write, as it must be tailored specifically to the
concurrent object, which motivates the first requirement.

Requirement 2 is needed since a move operation tries to
perform the removal and insertion of an element at the same
time. If a successful removal invalidates an insertion, or
the other way around, then the move operation can never
succeed. This could happen when the insert and remove
operations share locks between them or when they are using
memory management schemes such as hazard pointers [22],
if not dealt with explicitly. With shared locks there is the
risk of deadlocks, when the process could be waiting for
itself to release the lock in the remove operation, before it
can acquire the same lock in the insert operation. Hazard
pointers, which are used to mark memory that cannot yet
be reused, could be overwritten if the same pointers are used
in both the insert and remove operations.



Requirement 3 requires that the linearization points can
be associated with successful CAS operations. The lineariza-
tion points are usually provided together with the algorith-
mic description of each object. Implementations that use
the LL/SC! pair for synchronization can be translated to
ones that use CAS by using the construction by Doherty et
al. that implements the LL/SC functionality from CAS [6].
The requirement also states that the CAS operation should
be on a variable holding a pointer. This is not a strict re-
quirement; the reason for it is that the DCAS operation used
in our methodology often needs to be implemented in soft-
ware due to lack of hardware support for such an operation.
By only working with pointers it makes it easier to identify
words that are taking part in a DCAS operation. The last
part, which requires the linearization point of an operation
to be part of the process that invoked it, prevents concur-
rent data objects from using some of the possible helping
schemes, but not the majority of them. For example, it
does not prevent using the commonly used helping schemes
where the process that helps another process is not the one
that defines the linearization point of the process helped. As
described in Section 1.2, there is a large class of well-known
basic and advanced data objects that fulfills this require-
ment.

Requirement 4 is necessary as the insert operation needs
to be invoked with the removed element as an argument.
The element is usually available before the linearization point,
but there are data objects where the element is never re-
turned by the remove operation, or is accessed after the
linearization point for efficiency reasons.

3.2 The Algorithm

The main part of the algorithm is the actual move op-
eration, which is described in the following section. Our
move operation makes heavy use of a DCAS operation that
is described in detail in Section 3.2.2.

3.2.1 The Move Operation

The main idea behind the move operation is based on the
observation that the linearization points of many concur-
rent objects’ operations is a CAS and that by combining
these CASs and performing them simultaneously, it would
be possible to compose operations. A move operation does
not need an expensive general multi-word CAS, so an effi-
cient two word CAS customized for this particular operation
is good enough. We would like to simplify the utilization of
this idea as much as possible, and for this reason we worked
towards three goals when we designed the move operation:

e The changes required to adapt the concurrent data
object should be minimal and be possible to perform
mechanically.

e The performance impact on the normal operations of
the concurrent data objects should be minimized.

e The move operation should be lock-free if the insert
and remove operations are lock-free.

With these goals in mind we decided that the easiest and
most generic way would be to reuse the remove and insert

1L (Load-Link) and SC (Store-Conditional) are used to-
gether. LL reads a value from a memory location and SC
can then only write a new value at the same location if the
memory location has not been written to since the last LL.
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operations that are already supported by the object. By def-
inition a move-candidate operation has a linearization point
that consists of a successful CAS. We call the part of the
operation prior to this linearization point the init-phase and
the part after it the cleanup-phase. The move can then be
seen as taking place in five steps:

1st step. The init-phase of the remove operation is per-
formed. If the removal fails, due for example to the
element not existing, the move is aborted. Otherwise
the arguments to the CAS at the potential lineariza-
tion point are stored. By requirement 4 of the defini-
tion of a move-candidate, the element to be moved can
now be accessed.

2nd step. The init-phase of the insert operation is per-
formed using the element received in the previous step.
If the insertion fails, due for example to the object
being full, the move is aborted. Otherwise the argu-
ments to the CAS at the potential linearization point
are stored.

3rd step. The CASs that define the linearization points,
one for each of the two operations, are performed to-
gether atomically using a DCAS operation with the
stored CAS arguments. Step two is redone if the DCAS
failed due to a conflict in the insert operation. Steps
one and two are redone if the conflict was in the remove
operation.

4th step. The cleanup-phase for the insert operation is per-
formed.

5th step. The cleanup-phase for the remove operation is
performed.

To be able to divide the insert and remove operations into
the init- and cleanup-phases without resorting to code du-
plication, it is required to replace all possible linearization
point CASs with a call to the scas operation. The task of
the scas operation is to restore control to the move opera-
tion and store the arguments intended for the CAS that was
replaced. The scas operation is described in Algorithm 3
and comes in two forms, one to be called by the insert oper-
ations and one to be called by the remove operations. They
can be distinguished by the fact that the scas for removal
requires the element to be moved as an argument. If the
scas operation is invoked as part of a normal insert or re-
move, it reverts back to the functionality of a normal CAS.
This should minimize the impact on the normal operations.

If the DCAS operation used is a software implementa-
tion that uses helping, it might be required to use hazard
pointers to disallow reclaiming of the memory used by it.
In those cases the hazard pointers can be given as an ar-
gument to the scas operation and they will be brought to
the DCAS operation. The DCAS operation provided in this
paper uses helping and takes advantage of the support for
hazard pointers.

If the DCAS in step 3 should fail, this could be for one of
two reasons. First, it could fail because the CAS for the in-
sert failed. In this case the init-phase for the insert needs to
be redone before the DCAS can be invoked again. Second,
it could fail because the CAS for the remove failed. Now
we need to redo the init-phase for the remove, which means



that the insert operation needs to be aborted. For concur-
rent objects such as linked lists and stacks there might not
be a preexisting way for the insert to abort, so code to handle
this scenario must be inserted. The code necessary usually
amounts to freeing allocated memory and then return. The
reason for this simplicity is that the abort always occurs be-
fore the operation has reached its linearization point. If the
insertion operation can fail for reasons other than conflicts
with another operation, there is also a need for the remove
operation to be able to handle the possibility of aborting.

Depending on whether one uses a hardware implementa-
tion of a DCAS or a software implementation, it might also
be required to alter all accesses to memory words that could
take part in DCAS, so that they access the word via a special
read-operation designed for the DCAS.

A concurrent object that is a move-candidate (Definition
1) and has implemented all the above changes is called a
move-ready concurrent object. This is described formally in
the following definition.

DEFINITION 2. A concurrent object is move-ready if it is

a move-candidate and has implemented the following changes:

1. The CAS at each linearization point in the insert and
remove operations have been changed to scas.

2. The insert (and remove) operation(s) can abort if the
scas returns ABORT.

3. (All memory locations that could be part of a scas are
accessed via the read operation.)

The changes required are mostly mechanical once the object
has been found to adhere to the move-ready definition. This
object can then be used by our move operation to move
items between different instances of any concurrent move-
ready objects. Requirement 3 is not required for systems
with a hardware based DCAS.

Theorem 2 in Section 4 states that the move operation is
linearizable and lock-free if used together with two move-
ready lock-free concurrent data objects.

3.2.2 DCAS

The DCAS operation performs a CAS on two distinct
words atomically (See Algorithm 1 for its semantics). It
is unfortunately not commonly available in hardware, some
say for good reasons [5], so for our experiments it had to be
implemented in software. There are several different multi-
word compare-and-swap methods available in the literature
[18, 2, 15, 10, 1, 25, 26, 12] and ours uses the same basic
idea as in the solution by Harris et al.

Lock-freedom is achieved by using a two-phase locking
scheme with helping?. First an attempt is made to change
both the words involved, using a normal CAS, to point to
a descriptor that holds all information required for another
process to help the DCAS complete. See lines pio and pia
in Algorithm 4. If any of the CASs fail, the DCAS is un-
successful as both words need to match their old value. In
this case, if one of the CASs succeeded, its corresponding
word must be reverted back to its old value. When a word
holds the descriptor it cannot be changed by any other non-
helping process, so if both CASs are successful, the DCAS

2Lock-freedom does not exclude the use of locks, in contrast
to its definition-name, if the locks can be revoked.
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Algorithm 1 Semantics of the DCAS operation.

struct DCASDesc
word old;, olds, new;, news
word *xptry, *xptro
[word *hp;, xhpa]
word res

dres DCAS(desc)

if (xdesc.ptry # desc.oldy)
return FIRSTFAILED

if (xdesc.ptro # desc.oldsz)
return SECONDFAILED

s*desc.ptr; «— desc.new;

xdesc.ptro <« desc.news

return SUCCESS

as a whole is successful. The two words can now be changed
one at a time to hold their respective new values. See lines
p2s and Dp2o.

If another process wants to access a word that is involved
in a DCAS, it first needs to help the DCAS operation finish.
The process knows that a word is used in a DCAS if it is
pointing to a descriptor. This is checked at line pss4 in the
read operation. In our experiments we have marked the
descriptor pointer by setting its least significant bit to one.
This is a method introduced by Harris et al. [11] and it is
possible to use since we assume that the word will contain a
pointer and that pointers will be aligned to the word size of
the system. Using the information in the descriptor it tries
to perform the same steps as the initiator, but marks the
pointer to the descriptor it tries to swap in with its thread
id. This is done to avoid the ABA-problem, which can occur
since CAS cannot distinguish a word that has been changed
from A to B and then back to A again, from a word whose
value has remained A. Unless taken care of in this manner,
the ABA-problem could cause the DCAS to succeed multiple
times, one for each helping process.

Our DCAS differs from the one by Harris et al. in that i) it
has support for reporting which, if any, of the operations has
failed, ii) it does not need to allocate an RDCSSDescriptor
as it only changes two words, iii) it has support for hazard
pointers, and iv) it requires two fewer CASs in the uncon-
tended case. These are, however, minor differences and for
our methodology to function it is not required to use our
specific implementation. Performance gains and practical-
ity reasons account for the introduction of the new DCAS.
The DCAS is linearizable and lock-free according to Theo-

rem 1.

4. PROOF

THEOREM 1. The DCAS is lock-free and linearizable with
possible linearization points at pio, pi7, and pzs, and follows
the semantics as specified in Algorithm 1.

Due to space constraints, we direct the reader to the tech-
nical report for the proof [4].

THEOREM 2. The move operation is linearizable and lock-
free if applied to two lock-free move-ready concurrent objects.

Proor. We consider DCAS an atomic operation as shown
by Theorem 1. All writes, except the ones done by the DCAS
operation, are process local and can as such be ignored.



Algorithm 2 Basic operations.

Algorithm 3 Move operation.

bool remove ([key] ,xitem)
while (unsuccessful)

result < scas(ptr, old, new, element, [hp])
// Only needed when insert can fail
[if (result=ABORT )]

[abort ]

[return false]

bool insert ([key],item)
while (unsuccessful)

result < scas(ptr, old, new,[hp])
if (result=ABORT)

abort

return false

The move operation starts with an invocation of the re-
move operation. If it fails, it means that there were no ele-
ments to remove from the object and that the linearization
point must lie somewhere in the remove operation, since re-
quirement 1 of the definition of a move-candidate states that
the operations should be linearizable. If the process reaches
the first scas call, the insert operation is invoked with the
element to be removed as an argument. If the insert fails
before it reached the second scas call, it was not possible
to insert the element. In this case the insfailed variable
is not set at line m32 and scas will abort the remove opera-
tion. The linearization point in this case is somewhere in the
insert operation. In both these scenarios, whether it is the
remove or the insert operation that fails, the move operation
as a whole is aborted.

If the process reached the second scas call, the one in the
insert operation, the DCAS operation is invoked. If it is
successful, then both the insert and remove operation must
have succeeded according to requirement 3 of the definition
of a move-candidate. By requirement 1, they can only suc-
ceed once, which makes the DCAS the linearization point.
If the DCAS fails nothing is written to the shared mem-
ory and either the insert or both the remove and the insert
operations are restarted.

Since the insert and remove operations are lock-free, the
only reason for the DCAS to fail is that another process has
made progress in their insertion or removal of an element.
This makes the move operation as a whole lock-free. []

S. CASE STUDY

To get a better understanding of how our methodology
can be used in practice, we apply it to two commonly used
concurrent objects, the lock-free queue by Michael and Scott
[23] and the lock-free stack by Treiber [30]. The objects use
hazard pointers for memory management and the selection
of them is motivated in the paper by Michael [22].

5.1 Queue

The first task is to see if the queue is a move-candidate as
defined by Definition 1:

1. The queue fulfills the first requirement by providing de-
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thread local variables

desc, ltarget , lskey, ltkey, insfailed

M1 bool move(source, target,
M2 desc «— new DCASDesc

M3 desc.res <« UNDECIDED

M4 [lskey « skey, ltkey « tkey]

M5 ltarget «— target

M6 result < source.remove ([lskey], tmp)
M7 desc «— 0

M8 return result

[skey, tkey])

Mo fbool scas(ptr,
Mi0 if (desc # 0)
M11 desc.ptry «—
M12 desc.oldy «—
M13 desc .new; <«
M14 [desc.hpi « hp]

M15 insfailed « true

M16 result «— ltarget.insert ([ltkey],
M17 if (insfailed)

M18 return ABORT

M19 return result

M20 else

M21 return cas(ptr,old ,new)

old , element ,

[hp])

new ,
ptr

old
new

element )

m22 fbool scas(ptr, old, new, [hp])
m23 if (desc # 0)

M24 desc.ptra «— ptr

M25 desc.olds «— old

M26 desc.newy «— new

M27 [desc.hps <« hp]

M28 result «— DCAS(desc, true)
M29 if (result != SUCCESS)

M30 desc <« new DCASDesc(desc)
M31 desc.res « UNDECIDED

M32 insfailed « false

M33 if (result = FIRSTFAILED)
M34 return ABORT

M35 if(result = SECDNDFAILED)
M36 return false

M37 return true

M38 else

M39 return cas(ptr,old ,new)

queue and enqueue operations, which have been shown
to be linearizable [23].

2. The insert and remove operations share hazard point-
ers in the original implementation. By using a separate
set of hazard pointers for the dequeue operation we ful-
fill requirement number 2, as no other information is
shared between two instances of the object.

3. The linearization points can be found on lines qs4, and
Q14 and both consist of a successful CAS, which is what
requirement number 3 asks for. There is also a lin-
earization point at line q29, but it is not taken in the
case of a successful dequeue. These linearization points
were provided together with the algorithmic descrip-
tion of the object, which is usually the case for the
concurrent linearizable objects that exist in the litera-
ture.

4. The linearization point for the dequeue is on line qa4
and the value that is read in case of a successful CAS
is available on line q3s, which must be executed before
line qsa.

The above simple observations give us the following lemma
in a straightforward way.



Algorithm 4 Double word compare-and-swap.

Algorithm 5 Lock-free queue by Michael and Scott [23].

D1 dres DCAS(desc, initiator)

p2 [if(—initiator)]

D3 [hp:s < desc.hpi, hps < desc.hps]
D4 if(desc.res = SUCCESS V SECONDFAILED)

D5 if (desc is marked)

D6 cas(desc.ptry, desc, desc.olds)

D7 else

D8 cas(desc.ptry, desc, desc.old;)

D9 return desc.res

pio if(initiatorA-cas(desc.ptry, desc.old;, desc))
D11 return FIRSTFAILED

D12

D13 mdesc < mark(unmark(desc),threadID)

D14 p2set <« cas(desc.ptry, desc.olds, mdesc)
pi1s if (np2set)

D16 if (*xdesc.ptrz.ptr # desc)

D17 cas(desc.res, UNDECIDED, SECONDFAILED)
D18 if (desc.res = SUCCESS)

D19 return desc.res

D20 if (desc.res = SECONDFAILED)

D21 cas(desc.ptry, desc, desc.old:)

D22 return desc.res

D23

D24 cas(desc.res, UNDECIDED, mdesc)

D25 if (desc.res = SECONDFAILED)

D26 if (p2set) cas(desc.ptra, mdesc, desc.oldsz)
D27 return desc.res

D28 cas(desc.ptry, desc, desc.new;)

D29 cas (desc.ptra, desc.res, desc.news)

D30 desc.res <« SUCCESS

D31 return desc.res

D32 word read (*ptr)

D33 result « xptr

D34 while(result is DCASDesc)
D35 hpg < result

D36 if (hpg = *ptr)

D37 DCAS(result , false)
D38 result « xptr

D39 return result

LEMMA 1. The queue by Michael and Scott is a move-
candidate.

After making sure that the queue is a move-candidate
we need to replace the CAS operations at the linearization
points on lines qs4 and @14 with calls to the scas operation.
If we are using a software implementation of DCAS we also
need to alter all lines where words are read that could be
part of a DCAS;, so that they access them via the read oper-
ation. For the queue these changes need to be done on lines
Q6, Q7, Q8, Q10, Q23, Q24, Q25, Q26, and qa2s.

One must also handle the case of scas returning ABORT in
the enqueue. Since there has been no change to the queue,
the only thing to do before returning from the operation is
to free up the allocated memory on line qis. The enqueue
cannot fail so there is no need to handle the ABORT result
value in the dequeue operation.

The move operation can now be used with the queue. In
Section 6 we evaluate the performance of the move-ready
queue when combined with another queue, and when com-
bined with the Treiber stack.

5.2 Stack

Once again we first check to see if the stack fulfils the
requirements of the move-candidate definition:

1. The push and pop operations are used to insert and
remove elements and it has been shown that they are
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Q1 bool enqueue(val)
Q2 node <— new Node
Q3 node.next «— 0
Q4 node.val «— wval
Q5 while(true)

Q6 ltail «— read(tail)

Q7 hp; <« 1ltail; if(hp; != read(tail) continue
Q8 Inext <« read(ltail.next)

Q9 hps < Ilnext

Q10 if (ltail !'= read(tail)) continue
Q11 if (lnext = 0

Q12 cas(tail ,1tail ,lnext)

Q13 continue

Q14 res < scas(ltail.next,0,node,hp;)
Q15 if (res = abort)

Q16 free node

Q17 return false

Q18 if (res = true)

Q19 cas(tail ,1tail ,node)

Q20 return true

Q21 bool dequeue(xval)

Q22 while (true)

Q23 lhead « read(head)

Q24 hps <« lhead; if(hps != read(head) continue
Q25 ltail <« read(tail)

Q26 Inext <« read(lhead.next)

Q27 hpys < lnext

Q28 if (lhead!=read(head)) continue
Q29 if (lnext=0) return false

Q30 if (lhead==ltail)

Q31 cas(tail ,1tail ,lnext)

Q32 continue

Q33 *val «— lnext.val

Q34 if (scas(head,lhead ,lnext ,val 6 hps)
Q35 free lhead

Q36 return true

linearizable. Vafeiadis has, for example, given a formal
proof of this [33].

2. There is nothing shared between instances of the ob-
ject, so the push and pop operations can succeed si-
multaneously.

3. The linearization points on lines s7 and s22 are both
CAS operations. The linearization point on line si7
is not a CAS, but it is only taken when the source
stack is empty and when the move can not succeed.
The conditions in the definition only require successful
operations to be associated to a successful CAS.

4. The element to be removed is available on line so1,
which is before the linearization point on line s22.

The above simple observations give us the following lemma
in a straightforward way.

LEMMA 2. The stack by Treiber is a move-candidate.

To make the stack object move-ready we change the CAS
operations on lines s7 and s22 to point to scas instead. We
also need to change the read of top on lines ss, si5, and s19,
if we are using a software implementation of DCAS, so that
it goes via the read operation. Since push can be aborted
we also need to add a check after line s7 that looks for this
condition and frees allocated memory.

The stack is now move-ready and can be used to atomi-
cally move elements between instances of the stack and other
move-ready objects, such as the previously described queue.
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Figure 1: Results from the queue/stack evaluation without back-off.
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Figure 2: Results from the queue evaluation without back-off.
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Figure 3: Results from the stack evaluation without back-off.
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Figure 4: Results from the queue/stack evaluation with back-off.
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Figure 5: Results from the queue evaluation with back-off.
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Figure 6: Results from the stack evaluation with back-off.
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Algorithm 6 Lock-free stack by Treiber [30].

s1 bool push(val)

s2 node « new Node
s3 node.val «— wval
s4 while(true)

S5 ltop < read(top)

S6 node.next <« ltop

S7 res « scas(top,ltop ,hnode)
S8 if (res = abort)

S9 free node

S10 return false

S11 if (res = true)

S12 return true

s13 bool pop(val)

s14 while (true)

S15 ltop < read(top)
S16 if (1top = 0)

S17 return false
S18 hp « ltop

S19 if (read(top) !=
S20 continue

S21 val «— ltop.val
S22 if (scas(top,ltop ,ltop.next,val))
S23 free ltop

S24 return true

ltop)

In the next section we evaluate the performance of the move-
ready stack when combined with another stack as well as
when combined with the Michael and Scott queue.

6. EXPERIMENTS

The evaluation was performed on a machine with an Intel
Core i7 950 3 GHz processor and 6 GB DDR3-1333 memory.
All experiments were based on either two queues, two stacks,
or one queue and one stack. The stack used was the lock-
free stack by Treiber and the queue was the lock-free queue
by Michael and Scott [30, 23].

Each thread randomly performs operations from a set of
either just move operations, or just insert/remove opera-
tions, or both move and insert/remove operations. A total
of five million operations were distributed evenly to between
one and sixteen threads and each trial was run fifty times.

For reference we compared the lock-free concurrent ob-
jects with blocking implementations of the same objects,
using test-test-and-set to implement the locks. We did the
experiments both with and without a backoff function. The
backoff function was used to lower the contention so that
every time a thread failed to acquire the lock or, in case of
the lock-free objects, failed to insert or remove an element
due to a conflict, the time it waited before trying again was
doubled.

All implementations used the same lock-free memory man-
ager. Freed nodes are placed on a local list with a capacity of
200 nodes. When the list is full it is placed on a global lock-
free stack. A process that requires more nodes accesses the
global stack to get a new list of free nodes. Hazard pointers
were used to prevent nodes in use from being reclaimed.

Two load distributions were tested, one with high con-
tention and one with low contention, where each thread did
some local work for a variable amount of time after they
had performed an operation on the object. The work time is
picked from a normal distribution and the work takes around
0.1us per operation on average for the high contention dis-
tribution and 0.5us per operation on the low contention dis-
tribution.
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The total time taken for all threads to finish their allotted
operations with no backoff function, excluding the time it
took to perform the local work, is shown in Figures 1, 2, 3,
4, 5 and 6. The local work time was subtracted from the
result to emphasize the synchronization overhead.

7. DISCUSSION

The results for only the remove/insert operations show
that the lock-free versions scale with the number of threads,
while the blocking drops in performance when the contention
rises. With only move operations, the result is similar for the
queue, whereas for the lock-free stack, the result is worse.

The main difference introduced by adding a backoff is that
the gap between the high contention and low contention sce-
nario gets smaller, for both the blocking and the lock-free
version. One can also see, that for the stack, the result
is much better with the backoff than without, for both ver-
sions. However, it is typically hard to predict the contention
level, which often varies during runtime, making it difficult
to design an optimal backoff function that works well during
both high and low contention.

The graphs with the result of all operations can be seen
as an average between the two other graphs and shows that
the lock-free data objects scale quite well. It should also
be noted that it is not possible to combine a blocking move
operation with non-blocking insert/remove operations.

8. CONCLUSION

We present a lock-free methodology for composing highly
concurrent linearizable objects by unifying their lineariza-
tion points. Our methodology introduces atomic move op-
erations that can move elements between objects of different
types, to a large class of already existing concurrent objects
without having to make significant changes to them.

Our experimental results demonstrate that the methodol-
ogy presented in the paper, applied to the classical lock-free
implementations, offers better performance and scalability
than a composition method based on locking. These results
also demonstrate that it does not introduce noticeable per-
formance penalties to the previously supported operations
of the concurrent objects.

Our methodology can also be easily extended to support
n operations on n distinct objects, for example to create
functions that remove an item from one object and insert it
into n others atomically.
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