
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 1

Efficient and Reliable Lock-Free Memory
Reclamation Based on Reference Counting

Anders Gidenstam, Member, IEEE, Marina Papatriantafilou, Håkan Sundell and Philippas Tsigas

Abstract— We present an efficient and practical lock-free
method for semi-automatic (application-guided) memory recla-
mation based on reference counting, aimed for use with arbitrary
lock-free dynamic data structures. The method guarantees the
safety of local as well as global references, supports arbitrary
memory reuse, uses atomic primitives that are available in
modern computer systems, and provides an upper bound on the
amount of memory waiting to be reclaimed. To the best of our
knowledge, this is the first lock-free method that provides all of
these properties. We provide analytical and experimental study
of the method. The experiments conducted have shown that the
method can also provide significant performance improvements
for lock-free algorithms of dynamic data structures that require
strong memory management.

Index Terms— Memory Management, Memory Reclamation,
Semi-Automatic, Garbage Collection, Data Structures, Lock-free,
Shared Memory.

I. INTRODUCTION

MEMORY MANAGEMENT is essential for building ap-
plications utilizing dynamic concurrent data structures.

Support for memory management is available at various levels and
strengths, ranging from operating system level to language level
and from manual to automatic. Memory management involves two
main dynamic tasks, memory allocation and memory reclamation.
Memory allocation deals with the process of reserving memory
and memory reclamation deals with the process of finding unused
memory that can be reclaimed.

Concurrent algorithms for data structures and their related
memory management are commonly based on mutual exclusion.
However, mutual exclusion causes blocking and can consequently
incur serious problems such as deadlocks, priority inversion
or starvation. In addressing these problems, researchers have
been working towards enabling concurrent access to data using
algorithms which are not based on mutual exclusion. Lock-free
algorithms [17], [7] fall within this effort; they guarantee that
always at least one operation can progress, independently of
the actions taken by the concurrent operations. Wait-free [6]
algorithms satisfy the requirement of lock-free algorithms, and
moreover, guarantee that all operations finish in a finite number of

This is an extended version of the paper with the same title that appeared
in the Proceedings of the 2005 International Symposium on Parallel Archi-
tectures, Algorithms and Networks (I-SPAN 2005), Las Vegas, USA, 7-9
December, 2005, pp. 202–207, IEEE Press.

A. Gidenstam is with Department 1: Algorithms and Complexity, Max-
Planck-Institut für Informatik, 66123 Saarbrücken, GERMANY. E-mail:
andersg@mpi-inf.mpg.de

M. Papatriantafilou and P. Tsigas are with the Department of Computer
Science and Engineering, Chalmers University of Technology, SWEDEN. E-
mail: {ptrianta|tsigas}@cs.chalmers.se

H. Sundell is with the School of Business and Informatics, University
College of Borås, SWEDEN. E-mail: Hakan.Sundell@hb.se

their own steps, regardless of the actions taken by the concurrent
operations.

Lock-free and wait-free algorithms are also called non-
blocking. They make use of atomic primitives provided by the
hardware. These may be atomic read/write memory operations,
such as Compare-And-Swap and Fetch-And-Add, or a pair of
atomic read and atomic conditional write operations, such as
LoadLinked/StoreConditional. It is important in non-blocking
algorithms that the effects of the concurrent operations can be
observed by the involved processes/threads in a consistent manner.
The common consistency or safety requirement is linearizability
[12]. An implementation of a shared object is linearizable if it
guarantees that even when operations overlap in time, each of
them appears to take effect at an atomic time instant that lies in its
respective time duration, in a way that the effect of each operation
is in agreement with a sequential execution of the operations on
the object.

Dynamic data structures typically consist of a set of memory
segments, called nodes, interconnected by referencing each other
in some pattern. The references are typically implemented by
pointers (a.k.a. links), that can identify each individual node by
the means of its memory address. Each node may contain a
number of pointers which reference other nodes. In a dynamic
and concurrent data structure, arbitrary nodes can continuously
and concurrently be added or removed. As systems have limited
amount of memory, the memory occupied by these nodes needs to
be dynamically allocated from and returned to the system. Hence,
we need to have dynamic memory allocation (i.e., methods to
allocate and free memory). Furthermore, we also need dynamic
memory reclamation that can reclaim memory in a way that the
problem of dangling pointers is avoided. If a memory block is
reclaimed, while there still are pointers (either globally accessible
or owned by particular threads) referencing that block, a subse-
quent access to the memory block(s) referenced by those pointers
might be fatal to the application or even the system. The strength
of a memory reclamation scheme is basically a measurement
of its ability to avoid dangling pointers. As advanced data
structures typically involve more pointers compared to simpler
data structures, the need for stronger memory management also
typically increases.

In the context of lock-free data structures there is an important
distinction between a node being logically deleted (or deleted for
short), i.e., no longer being part of the active part of the structure,
and reclaimed, i.e., it’s memory being released for reuse. A
deleted node may still be accessed by concurrent operations while
any access to a reclaimed node is erroneous.

We call a memory reclamation method that prevents dangling
pointers in some type of references (when used correctly) safe
with respect to that type of references. Further, depending on its
strength, the method can guarantee the safety of local references

Digital Object Indentifier 10.1109/TPDS.2008.167 1045-9219/$25.00 Â© 2008 IEEE

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Authorized licensed use limited to: HOGSKOLAN I BORAS. Downloaded on May 14, 2009 at 03:01 from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 2

and/or global references. Note that a memory reclamation method
of low strength might be safe only with respect to local references.

In this paper we focus on practical and efficient memory
reclamation in the context of lock-free dynamic data structures.
For an operation of an algorithm to be lock-free, all sub-
operations must also be (at least) lock-free. Consequently, lock-
free dynamic data structures typically require lock-free memory
reclamation. Common automatic memory reclamation methods
(e.g., garbage collection; cf. subsequent subsection for examples)
may possibly work safely with the lock-free application, but they
would not preserve the lock-free property of the latter, due to
the typical use of stop-the-world and similar techniques. Our
methodology is lock-free and semi-automatic, requiring some
application guidance, namely on the nodes that should be put
under surveillance for possible future reclamation. This guidance
is to be given by the programmer of the lock-free data structure,
who has commonly the appropriate level of insight to provide it.
Before describing more precisely the contribution of this paper,
let us give an overview of related work, to facilitate putting the
new method into perspective.

Related work

There is a considerable body of research on the use of reference
counting for memory reclamation or garbage collection, starting
with classic non-deferred reference counting [2] and later deferred
reference counting [4]. Several types of optimizations, both for
compile time and for runtime have been proposed, often focused
on identifying and removing nonessential reference count updates
due to manipulation of local references [1], [24], [16]. As men-
tioned above, there are no general lock-free garbage collection
methods for practical use. However, some of the optimization
techniques for local references might be applicable also to lock-
free memory reclamation methods.

Herlihy and Moss [11] presented a garbage collector which,
as stated in the paper, is not fully lock-free (as used in our
terminology) as it cannot handle halting processes. The algorithm
was the first in the literature towards lock-free garbage collection
and was designed in a quite high level. It uses excessive ver-
sioning and copying of objects for every update and this renders
it not generally practical, as also mentioned in the same paper.
Moreover, the scheme is not a fully shared collector since it
requires the memory to be partitioned (not shared) among the
processes.

Valois [32] followed by Michael and Scott [21] presented a
memory allocation scheme for fixed-sized memory segments;
this scheme has to be used in combination with the correspond-
ing memory reclamation scheme. Lock-free memory allocation
schemes for general use have been presented by Michael [20],
Gidenstam et al. [5] and Schneider et al. [25]. In the context of
wait-free memory management, a wait-free extension of Valois’
reference counting scheme and memory allocator has been pre-
sented by Sundell [27]. Hesselink and Groote [13] have presented
a wait-free memory management scheme that is restricted to the
specific problem of sharing tokens.

Various lock-free memory reclamation schemes have been
presented in the literature. Michael [18], [19] proposed the hazard
pointer method, that focuses on local references: each thread
maintains a list of pointers (hazard pointers) of the nodes the
thread may later access; when a node is removed from the data

structure, the hazard pointer lists of all threads need to be checked
before the node is reclaimed. A similar scheme was independently
proposed by Herlihy et al. [10]. In its original form the latter
scheme uses unbounded tags and is based on the double-width
CAS atomic primitive, a compare-and-swap operation that can
atomically update two adjacent memory words. This operation is
available in some 32-bit architectures, but only in very few of the
current 64-bit architectures. More recently, in [9] Herlihy et al.
showed how to remove the tags from their method, to allow it to
be implemented using single-width compare-and-swap.

The aforementioned schemes only guarantee the safety of local
pointers from the threads and not the safety of pointers inside
dynamically allocated nodes. Hence, they cannot support arbitrary
lock-free algorithms that might require to always being able
to trust global references (i.e., pointers from within the data
structure) to nodes. This constraint can be strongly restrictive, and
may force the data-structure algorithms to retry traversals in the
possibly large data structures, with resulting large performance
penalties that increase with the level of concurrency.

Memory reclamation schemes that are based on reference
counting can guarantee the safety of global as well as local
references to objects. Valois et al. [32], [21] presented a lock-
free reference counting scheme that can be implemented using
available atomic primitives, though it is limited to be used only
with the corresponding method for memory allocation (since the
reference counter field of a node must remain intact even after
it has been reclaimed). Detlefs et al. [3] presented a scheme that
allows arbitrary reuse of reclaimed memory, but it is based on
double-word CAS, which is a compare-and-swap operation that
can atomically read and update two arbitrary memory words. This
instruction is not available in common contemporary processor
architectures. Herlihy et al. [8], [23], [9] presented a modification
of the previous scheme by Detlefs et al. to only use single-word
CAS (compare-and-swap) for the reference counting part.

A problem with reference counting techniques in concurrent
environments, which was identified in [21], is that a single local
reference from a slow thread could potentially prevent (due to the
ability to create recursive references) an arbitrary number of nodes
from being reclaimed. Consider for example a chain of nodes that
has been removed from a singly linked list in order from the front
to back, and consider also a slow thread holding a reference to the
first deleted node: this node cannot (currently) be reclaimed and
would still contain a reference to the next (subsequently) deleted
node, preventing it, too, from being reclaimed and so on.

Contributions of this article

This paper combines the strength of reference counting with the
efficiency of hazard pointers, into a general lock-free memory
reclamation scheme, with the aim of keeping only the advan-
tages of the involved techniques while avoiding the respective
drawbacks. The new memory reclamation method, called BE-
WARE&CLEANUP, is lock-free and offers linearizable operations
to the application, is compatible with arbitrary schemes for mem-
ory allocation, can be implemented using commonly available
atomic primitives and guarantees the safety of local as well as
global references. BEWARE&CLEANUP also guarantees that only
a bounded amount of memory could be temporarily withheld from
reclamation by any thread. Like the hazard pointers method, the
new method is application-guided in the sense that it requires
information from the application regarding which nodes should

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Authorized licensed use limited to: HOGSKOLAN I BORAS. Downloaded on May 14, 2009 at 03:01 from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 3

be put under surveillance for possible future reclamation. Table I
summarizes the properties of the presented method in contrast
with the other lock-free reclamation methods in the literature.
These properties are explained in more detail in Section II.

The rest of the paper is organized as follows. Section II de-
scribes the solution requirements for the problem we are focusing
on, followed by a description of the system model, presented
in Section III. The proposed method, BEWARE&CLEANUP, is
described in Section IV. In Section V we show the correctness of
BEWARE&CLEANUP by proving the lock-free and linearizability
properties, as well as by proving an upper bound on the amount
of memory that can be withheld from reclamation by the BE-
WARE&CLEANUP method . Section VI presents an experimental
evaluation of BEWARE&CLEANUP in the context of use in a lock-
free data structure. We conclude the paper with Section VII.

II. PROBLEM DESCRIPTION AND SOLUTION REQUIREMENTS

We focus on solving the memory reclamation problem in the
context of dynamic lock-free data structures. As explained in
the introduction, such data structures typically consist of nodes,
i.e., memory segments, interconnected by referencing each other
using pointers (to their memory addresses), also called links. The
operation to gain access to a referenced node through a link is
called dereferencing. Some nodes are typically permanent parts
of the data structure, all other nodes are part of the data structure
only when they are referenced by a node that itself is a part of
the data structure. In a dynamic and concurrent data structure,
arbitrary nodes can continuously and concurrently be added or
removed from the data structure. As systems have limited amount
of memory, the memory occupied by these nodes needs to be
dynamically allocated from and returned to the system.

In a concurrent environment, before freeing a node, it should be
checked that there are no remaining references to it; this should
also include possible local references to a node that any thread
might have, as a read or write access to the memory of a reclaimed
node might be fatal to the correctness of the data structure and/or
to the whole system. This is the memory reclamation problem. To
correctly decide about reclaiming nodes, the memory reclamation
method should thus satisfy the following property:

Property 1: The memory reclamation method should only
reclaim nodes that are not part of the data structure and for which
there cannot be any future accesses by any thread.

It should also always be possible to predict the maximum
amount of memory that is used by the data structure, thus adding
the following requirement to the memory reclamation method:

Property 2: At any time, there should exist an upper bound
on the number of nodes that is not part of the data structure, but
not yet reclaimed to the system.

These properties can be very hard to achieve, as local references
to nodes might not be accessible globally, e.g., they might be
stored in processor registers. Therefore, memory reclamation
systems typically need to interact with the involved threads and
also get involved into how these threads access the nodes, e.g.,
by providing special operations for dereferencing links and by
demanding that the data structure implementation explicitly calls
the memory reclamation system when a node has been logically
deleted.

Moreover, when used for supporting lock-free dynamic data
structure implementations, the memory reclamation method also
has to guarantee these features:

Local Memory

Processor 1

Local Memory

Processor 2

Local Memory

Processor n

Shared Memory

Interconnection Network

. . .

Fig. 1. Shared memory multiprocessor system structure.

Property 3: All operations of the memory reclamation method
for communication with the application (or data structure imple-
mentation) should be lock-free and linearizable.

In order to minimize the total amount of occupied memory for
the various data structures, the following property is useful:

Property 4: The memory that is reclaimed by the method
should be accessible for any arbitrary future reuse in the system;
i.e., the memory reclamation method should be compatible with
the memory allocator (the system’s default allocator or other
allocator that can be used).

In a concurrent environment it may frequently occur that a
thread is holding a local reference to a node that has been logically
deleted (i.e., removed from the data structure) by some other
thread. In these cases it may be very useful for the first thread to
still be able to use the links in the deleted node, e.g., in search
procedures in large data structures:

Property 5: A thread that has a local reference to a node,
should also be able to dereference all links that are contained in
that node.

The BEWARE&CLEANUP method proposed in this paper ful-
fills all of these properties in addition to the property of only using
atomic primitives that are commonly available in modern systems.
As with the hazard pointers method, the method proposed here
needs some application-guidance, namely information on which
nodes have become logically deleted (i.e., may eventually cease
to be live) and thus are targets for future reclamation. Table I
shows a comparison with previously presented lock-free memory
reclamation schemes with respect to these properties. All of the
schemes fulfill properties 1 and 3, whereas only a subset of the
other properties is met by each of the previous schemes.

III. SYSTEM MODEL

A typical abstraction of a shared memory multi-processor
system configuration is depicted in Fig. 1. Each node of the
system contains a processor together with its local memory. All
nodes are connected to the shared memory via an interconnection
network. A set of co-operating tasks is running on the system
performing their respective operations. Each task is sequentially
executed on one of the processors, while each processor can serve
(run) many tasks via multiprogramming. The co-operating tasks,
possibly running on different processors, use shared data objects
built in the shared memory to co-ordinate and communicate. Tasks
synchronize their operations on the shared data objects through
sub-operations on top of a cache-coherent shared memory. The
shared memory is not necessarily uniformly accessible for all
nodes in the system; processors can have different access times
to different parts of the shared memory.

The shared memory system should support atomic read and
write operations of single memory words, as well as stronger
atomic primitives for synchronization. In this paper we use the

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Authorized licensed use limited to: HOGSKOLAN I BORAS. Downloaded on May 14, 2009 at 03:01 from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 4

Guarantees the Bounded number Compatible with Suffices with
safety of shared of unreclaimed standard memory single-word

references deleted nodes allocators compare-and-swap
(Property 5) (Property 2) (Property 4)

New method: BEWARE&CLEANUP Yes Yes Yes Yes
LFRC [3] Yes No e Yes No a

Pass-the-buck [9], [10] No Yes Yes Yes b

SLFRC [9], [8] Yes No e Yes Yes c

SMR [18], [19] No Yes Yes Yes d

Valois et al. [32], [21] Yes No e No Yes

aThe LFRC method uses the double-word compare-and-swap (DCAS) atomic primitive.
bThe pass-the-buck (PTB) method originally used the double-width compare-and-swap atomic primitive.
cThe SLFRC method is based on the LFRC and the pass-the-buck (PTB) method.
dThe hazard pointers method uses only atomic reads and writes.
eThese reference-count-based schemes allow arbitrary long chains of deleted nodes that recursively reference each other to be created. In addition, deleted

nodes that cyclically reference each other (i.e., cyclic garbage) will never be reclaimed.

TABLE I

PROPERTIES OF DIFFERENT APPROACHES TO LOCK-FREE MEMORY RECLAMATION.

procedure FAA(address:pointer to word, number:integer)
atomic do

*address := *address + number;

function CAS(address:pointer to word, oldvalue:word, newvalue:word):boolean
atomic do

if *address = oldvalue then *address := newvalue; return true;
else return false;

Fig. 2. The Fetch-And-Add (FAA) and Compare-And-Swap (CAS) atomic
primitives.

atomic primitives Fetch-And-Add (FAA) and Compare-And-Swap
(CAS); see Fig. 2 for a description. These read-modify-write style
operations are available on most common architectures or can
be easily derived from other synchronization primitives with the
same or higher consensus number [22], [15].

IV. THE BEWARE&CLEANUP LOCK-FREE METHOD

We first describe the basic idea of the BEWARE&CLEANUP

method and in subsequent subsections we give a more detailed
description. In order to fulfill all the requested properties de-
scribed in Section II as well as in order to provide an efficient
and practical method, the aim of BEWARE&CLEANUP is to devise
a reference counting method which can also employ the hazard
pointer (HP) scheme of Michael [18], [19]. Roughly speaking,
hazard pointers are used to guarantee the safety of local references
while reference counts are used to guarantee safety of internal
links in the data structure. Thus, the reference count of each node
indicates the number of globally accessible links that reference
that node.

Recall that according to the hazard-pointers method, each
thread maintains a list of pointers to nodes the thread may later
access. When a node is removed from the data structure (i.e., it
becomes logically deleted), it is included in a deletion list. Before
freeing the memory segment occupied by the deleted node, the
hazard-pointer lists of all threads are checked for references to
the node. If any hazard pointer references the node, the latter
cannot be reclaimed at this time and will remain in the deletion
list. The number of hazard pointers needed for each thread (i.e.,
the value of k) is estimated as in the original HP method [18],
[19] by determining the maximal number of simultaneously used

local references by any thread in any procedure and nesting of
calls.

Program 1 describes the node structure used in BE-
WARE&CLEANUP. As in the HP scheme, each thread maintains
a list of nodes that it has deleted but not yet reclaimed. This is
called its deletion list. A thread scans its deletion list for nodes
that can be reclaimed when the length of the list has reached a
certain threshold (i.e., THRESHOLD S); this is set as in the HP
method, i.e., depending on the number of local references used per
thread. Some of the deleted nodes might not be reclaimable (i.e.,
safe to reclaim) due to hazard pointers pointing to them, while
some deleted nodes might not be reclaimable due to a positive
reference count adherent to links. Thus, it is important to keep the
number of references from links to deleted nodes to a minimum.

To bound the size of deletion lists (hence the amount of
memory that is deleted and not yet returned to the system), BE-
WARE&CLEANUP performs a clean-up procedure. This procedure
can update links in deleted nodes and, hence, the reference count
of deleted nodes referenced by other deleted nodes, provided that
the following property is satisfied by the lock-free algorithm that
implements the data structure and uses the BEWARE&CLEANUP

method:
Assumption 1: Each link in a deleted node that references

another deleted node, can be replaced with a reference to an active
node, with retained semantics for all of the involved threads.

The intuition behind this assumption is the following: Consider
a thread t holding a local reference to a deleted node d. Now,
the most common reason for t to be interested in dereferencing
any of the links in d is that t was traversing the linked data
structure when the node d was deleted by another thread. In this
situation t needs to find its way back to the active part of the
data structure again. One option for t would be to restart the
traversal from the/one of the structure’s root pointers, but this
makes traversing operations extremely inefficient in cases where
there is a significant number of concurrent delete operations. To
avoid this, many algorithms for lock-free data structures make
use of the pointers in deleted nodes to search for an active node
to continue the traversal from [14], [29], [30]. In most such
algorithms any traversal through a chain of deleted nodes to reach
an active node can be replaced by a shortcut to the first active

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Authorized licensed use limited to: HOGSKOLAN I BORAS. Downloaded on May 14, 2009 at 03:01 from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 5

Program 1 The Node structure used in BEWARE&CLEANUP.
structure Node

mm ref: integer /* Initially 0 */
mm trace: boolean /* Initially false */
mm del: boolean /* Initially false */
... /* Arbitrary user data and links follow */
link[NR LINKS NODE]: pointer to Node /* initially NULL */

Program 2 BEWARE&CLEANUP: global and local variables.
/* Global variables */
HP[NR THREADS][NR INDICES]:pointer to Node; /* Initially NULL */
DL Nodes[NR THREADS][THRESHOLD C]:pointer to Node; /* Initially

NULL */
DL Claims[NR THREADS][THRESHOLD C]:integer; /* Initially 0 */
DL Done[NR THREADS][THRESHOLD C]:boolean; /* Initially false */

/* Local static variables */
threadId: integer; /* Unique and fixed number for each thread between

0 and NR THREADS-1. */
dlist: integer; /* Initially ⊥ */
dcount: integer; /* Initially 0 */
DL Nexts[THRESHOLD C]: integer;

/* Local temporary variables */
node, node1, node2, old: pointer to Node;
thread, index, new dlist, new dcount: integer;
plist: array of pointer to Node;

node in the chain without affecting the effect of the traversal.
This property is used by BEWARE&CLEANUP to clean-up links
in deleted nodes.

The clean-up works as follows: as described earlier, besides
hazard pointers, nodes in the deletion lists are possibly unavailable
for reclamation due to links from other deleted nodes. These
nodes might be in the same deletion list or in some other thread’s
deletion list. For this reason, the deletion lists of all threads are
accessible for reading by any thread. When the length of a thread’s
deletion list reaches a certain threshold (THRESHOLD C) the
thread performs a clean-up of all nodes in its deletion list. If
none of these nodes become reclaimable after the clean-up, this
must be due to references from nodes in the deletion lists of other
threads, and thus the thread tries to perform a clean-up of all other
threads’ deletion lists as well. As this procedure is repeated until
the length of the deletion list is below the threshold, the amount
of deleted nodes that are not yet reclaimed is bounded. The actual
calculation of THRESHOLD C is described in Section V-B.
THRESHOLD S is set according to the HP scheme and is less
than or equal to THRESHOLD C.

A. Overview of Application Programming Interface

The following functions and procedures are defined for safe
handling of the reference counted nodes in a user program or
data structure:

function DeRefLink(link:pointer to pointer to Node): pointer
to Node

The function DeRefLink safely dereferences the given link,
setting a hazard pointer to the dereferenced node, thus guarantee-
ing the safety of future accesses to the returned node. In particular
the calling thread can safely dereference and/or update any links
in the returned node subsequently.
procedure ReleaseRef(node:pointer to Node)

The procedure ReleaseRef should be called when the given

Program 3 Reference counting interface functions and proce-
dures.
function DeRefLink(link:pointer to pointer to Node): pointer to Node
D1 Choose index such that HP[threadId][index]=NULL
D2 while true do
D3 node := *link;
D4 HP[threadId][index] := node;
D5 if *link = node then
D6 return node;

procedure ReleaseRef(node:pointer to Node)
R1 Choose index such that HP[threadId][index]=node
R2 HP[threadId][index]:= NULL;

function CompareAndSwapRef(link:pointer to pointer to Node,
old: pointer to Node, new: pointer to Node): boolean

C1 if CAS(link,old,new) then
C2 if new �= NULL then
C3 FAA(&new.mm ref,1);
C4 new.mm trace:=false;
C5 if old �= NULL then FAA(&old.mm ref,-1);
C6 return true;
C7 return false;

procedure StoreRef(link:pointer to pointer to Node,
node:pointer to Node)

S1 old := *link;
S2 *link := node;
S3 if node �= NULL then
S4 FAA(&node.mm ref,1);
S5 node.mm trace:=false;
S6 if old �= NULL then FAA(&old.mm ref,-1);

function NewNode : pointer to Node
NN1 node := Allocate the memory of node (e.g., using malloc)
NN2 node.mm ref := 0; node.mm trace := false; node.mm del := false;
NN3 Choose index such that HP[threadId][index]=NULL
NN4 HP[threadId][index] := node;
NN5 return node;

procedure DeleteNode(node:pointer to Node)
DN1 ReleaseRef(node);
DN2 node.mm del := true; node.mm trace := false;
DN3 Choose index such that DL Nodes[threadId][index]=NULL
DN4 DL Done[threadId][index]:=false;
DN5 DL Nodes[threadId][index]:=node;
DN6 DL Nexts[index]:=dlist;
DN7 dlist := index; dcount := dcount + 1;
DN8 while true do
DN9 if dcount = THRESHOLD C then CleanUpLocal();
DN10 if dcount ≥ THRESHOLD S then Scan();
DN11 if dcount = THRESHOLD C then CleanUpAll();
DN12 else break;

node will not be accessed by the current thread anymore. It clears
the corresponding hazard pointer.
function CompareAndSwapRef(link:pointer to pointer to
Node,old:pointer to Node, new:pointer to Node): boolean

The function CompareAndSwapRef is used to update a link
for which there might be concurrent updates. It returns true if
the update was successful and false otherwise. The thread calling
CompareAndSwapRef should have a hazard pointer to the node
that is to be stored in the link.
procedure StoreRef(link:pointer to pointer to Node,
node:pointer to Node)

The procedure StoreRef should be used when updating a link
where there cannot be any concurrent updates. The requirements
are that the thread calling StoreRef has a hazard pointer to the
node that should be stored, and that no other thread could possibly
write concurrently to the link (in that case CompareAndSwap-

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Authorized licensed use limited to: HOGSKOLAN I BORAS. Downloaded on May 14, 2009 at 03:01 from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 6

Ref should be invoked instead).
function NewNode:pointer to Node

The function NewNode allocates a new node. A hazard pointer
is set to the node to guarantee the safety of future accesses to it.
procedure DeleteNode(node:pointer to Node)

The procedure DeleteNode should be called when a node has
been logically removed from the data structure and its memory
should eventually be reclaimed. The user operation that called
DeleteNode is responsible1 for removing all references to the
deleted node from the active nodes in the data structure. This
is similar to what is required when calling a memory allocator
directly in a sequential data structure. However, independently
of the state at the call of DeleteNode and of when concurrent
operations eventually remove their (own or created) references
to the deleted node, BEWARE&CLEANUP will not reclaim the
deleted node until it is safe to do so, i.e., when there are no threads
that could potentially access the node anymore, thus completely
avoiding the possibility of dangling pointers.

In Section IV-D we give an example of how these functions
can be used in the context of a lock-free queue algorithm based
on linked lists.

Callbacks: The following functions are callbacks that have to
be defined by the designer of each specific data structure. They
are called by BEWARE&CLEANUP.

procedure CleanUpNode(node:pointer to Node)
The procedure CleanUpNode makes sure that all references

from the links in the given node point to active nodes, thus
removing redundant reference chains passing through an arbitrary
number of deleted nodes.
procedure TerminateNode(node:pointer to Node, concur-
rent:boolean)

TerminateNode makes sure that none of the node’s contained
links have any claim on any other node. TerminateNode is called
on a deleted node when there are no claims from any other node
or thread to the node.2 When the argument concurrent is
false BEWARE&CLEANUP guarantees that there cannot be any
concurrent updates of the node, thereby allowing TerminateNode
to use the cheaper StoreRef instead of CompareAndSwapRef to
update the node’s links.

B. Auxiliary procedures

Auxiliary operations that are defined for internal use by the
reference counting algorithm:

procedure Scan()
It searches through all not yet reclaimed nodes deleted by this

thread and reclaims those that do not have any matching hazard
pointer and do not have any counted references adhering from
any links contained in any of the nodes in the system.
procedure CleanUpLocal()

It aims at updating nodes deleted by this thread so that all
their links referencing other deleted nodes are replaced with links

1After the call of DeleteNode, concurrent operations may still use refer-
ences to the deleted node, and might even temporary add links to it, although
concurrent operations that observe a deleted node are supposed to eventually
remove all references and links to it.

2In principle this procedure could be provided by the memory manager,
but in practice it is more convenient to let the user decide the memory layout
of the node records. All node records would still be required to start with the
mm ref, mm trace and mm del fields.

Program 4 Example of user defined callback functions.
procedure TerminateNode(node:pointer to Node, concurrent:boolean)
TN1 if not concurrent then
TN2 for all x where link[x] of node is reference-counted do
TN3 StoreRef(node.link[x],NULL);
TN4 else for all x where link[x] of node is reference-counted do
TN5 repeat node1 := node.link[x];
TN6 until CompareAndSwapRef(&node.link[x],node1,NULL);

procedure CleanUpNode(node:pointer to Node)
CN1 for all x where link[x] of node is reference-counted do

retry:
CN2 node1:=DeRefLink(&node.link[x]);
CN3 if node1 �= NULL and node1.mm del then
CN4 node2:=DeRefLink(&node1.link[x]);
CN5 CompareAndSwapRef(&node.link[x],node1,node2);
CN6 ReleaseRef(node2);
CN7 ReleaseRef(node1);
CN8 goto retry;
CN9 ReleaseRef(node1);

Program 5 Internal operations.
procedure CleanUpLocal()
CL1 index := dlist;
CL2 while index �= ⊥ do
CL3 node:=DL Nodes[threadId][index];
CL4 CleanUpNode(node);
CL5 index := DL Nexts[index];

procedure CleanUpAll()
CA1 for thread := 0 to NR THREADS-1 do
CA2 for index := 0 to THRESHOLD C-1 do
CA3 node:=DL Nodes[thread][index];
CA4 if node �= NULL and not DL Done[thread][index] then
CA5 FAA(&DL Claims[thread][index],1);
CA6 if node = DL Nodes[thread][index] then
CA7 CleanUpNode(node);
CA8 FAA(&DL Claims[thread][index],-1);

procedure Scan()
SC1 index := dlist;
SC2 while index �= ⊥ do
SC3 node:=DL Nodes[threadId][index];
SC4 if node.mm ref = 0 then
SC5 node.mm trace := true;
SC6 if node.mm ref �= 0 then
SC7 node.mm trace := false;
SC8 index := DL Nexts[index];
SC9 plist := ∅; new dlist:=⊥; new dcount:=0;
SC10 for thread := 0 to NR THREADS-1 do
SC11 for index := 0 to NR INDICES-1 do
SC12 node := HP[thread][index];
SC13 if node �= NULL then
SC14 plist := plist + node;
SC15 Sort and remove duplicates in array plist
SC16 while dlist �= ⊥ do
SC17 index := dlist;
SC18 node:=DL Nodes[threadId][index];
SC19 dlist := DL Nexts[index];
SC20 if node.mm ref = 0 and node.mm trace and node �∈ plist then
SC21 DL Nodes[threadId][index]:=NULL;
SC22 if DL Claims[threadId][index] = 0 then
SC23 TerminateNode(node,false);
SC24 Free the memory of node
SC25 continue;
SC26 TerminateNode(node,true);
SC27 DL Done[threadId][index]:=true;
SC28 DL Nodes[threadId][index]:=node;
SC29 DL Nexts[index]:=new dlist;
SC30 new dlist := index;
SC31 new dcount := new dcount + 1;
SC32 dlist := new dlist;
SC33 dcount := new dcount;

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Authorized licensed use limited to: HOGSKOLAN I BORAS. Downloaded on May 14, 2009 at 03:01 from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 7

that reference live nodes instead. It invokes the callback function
CleanUpNode on every node in the thread’s deletion list.
procedure CleanUpAll()

It invokes the callback function CleanUpNode on every node
in the deletion lists of all threads. This updates all links in deleted
nodes that reference other deleted nodes, to reference live nodes
instead.

C. Detailed description of the method

DeRefLink (Program 3), first reads the pointer to a node stored
in *link at line D3. Then at line D4 it sets one of the thread’s
hazard pointers to point to the node. At line D5 it verifies that the
link still points to the same node as before. If *link still points
to the node, it knows that the node is not yet reclaimed and that
it cannot be reclaimed until the hazard pointer now pointing to it
is released. If *link has changed since the last read, it retries.

ReleaseRef (Program 3), removes this thread’s hazard pointer
pointing to node. Note that if node is deleted, has a reference
count of zero, and no other hazard pointers are pointing to it, then
the node can be reclaimed by Scan (invoked by the thread that
called DeleteNode on the node).

CompareAndSwapRef (Program 3), performs a common
CAS on the link and updates the reference counts of the respective
nodes accordingly. Line C4 notifies any concurrent Scan that the
reference count of new has been increased. Note that the node
new is safe to access during CompareAndSwapRef since the
thread calling CompareAndSwapRef is required to have a hazard
pointer pointing to it. At line C5 the reference count of old is
decreased. The previous reference count must have been greater
than zero since *link referenced the node old.

StoreRef (Program 3), is valid to use only when there are no
concurrent updates of *link. After updating *link at line S2
StoreRef increases the reference count of node at line S4. This is
safe since the thread calling StoreRef is required to have a hazard
pointer to node. Line S5 notifies any concurrent Scan that the
reference count of node is non-zero. At line S6 the reference
count of old is decreased. The previous reference count must
have been greater than zero since *link referenced the node
old.

NewNode (Program 3), allocates memory for the new node
from the underlying memory allocator and initializes the header
fields each node must have. It also sets a hazard pointer to the
node.

DeleteNode (Program 3), marks the node node as logically
deleted at line DN2. Then at the lines DN3 to DN7 the node
is inserted into this thread’s deletion list. By clearing DL Done
at line DN4, before writing the pointer at line DN5, concurrent
CleanUpAll operations can access the node and tidy up its
references.

If the number of deleted nodes in this thread’s deletion list is
larger than or equal to THRESHOLD S a Scan is performed. It
will then reclaim all nodes in the list that are not referenced by
other nodes or threads.

If the thread’s deletion list is now full, that is, it contains
THRESHOLD C nodes, the thread will first run CleanUpLocal
at line DN9 to make sure that all of its deleted nodes only point
to nodes that were alive when CleanUpLocal started. Then, it
runs Scan at line DN10. If Scan is unable to reclaim any node
at all then the thread will run CleanUpAll , which cleans up the
nodes in all threads’ deletion lists.

Callbacks: TerminateNode (Program 4), should clear all links
in the node node by writing NULL to them. This is done by
using either CompareAndSwapRef or StoreRef , depending on
whether there might be concurrent updates of these links or not
(as indicated by the argument concurrent).

CleanUpNode (Program 4), should make sure that none of the
links in the node node points to nodes that were deleted before
this invocation of CleanUpNode started.

Auxiliary procedures: Scan (Program 5), reclaims all nodes
deleted by the current thread that are not referenced by any other
node or any hazard pointer. To determine which of the deleted
nodes can safely be reclaimed, Scan first sets the mm trace bit
of all deleted nodes that have reference count zero (lines SC1 to
SC8). The check at line SC6 ensures that the reference count was
indeed zero when the mm trace bit was set.

Then Scan records all active hazard pointers of all threads in
plist (lines SC9 to SC15). In the lines SC16 to SC31 Scan
traverses all not yet reclaimed nodes deleted by this thread. For
each of these nodes the tests at line SC20 determine if (i) the
reference count is zero, (ii) the reference count has consistently
been zero since before the hazard pointers were read (indicated by
the mm trace bit being set) and (iii) the node is not referenced
by any hazard pointer. If all three of these conditions are true,
the node is not referenced and Scan checks if there may be
concurrent CleanUpAll operations working on the node at line
SC22. If there are no such CleanUpAll operations, Scan uses
TerminateNode to release all references the node might contain
and then reclaims the node (lines SC23 and SC24). In case
there might be concurrent CleanUpAll operations accessing the
node, Scan uses the concurrent version of TerminateNode to
set all the node’s contained links to NULL. By setting the
DL Done flag at line SC27, before the node is reinserted into the
list of unreclaimed nodes at line SC28, subsequent CleanUpAll
operations cannot prevent any subsequent Scan from reclaiming
this node.

CleanUpLocal (Program 5), traverses the thread’s deletion list
and calls CleanUpNode on each of the nodes in it to make sure
that their contained links do not reference any node that was
already deleted when CleanUpLocal started.

CleanUpAll (Program 5), traverses the DL Nodes arrays (i.e.,
the deletion lists) of all threads and tries to make sure that none
of the nodes it finds contain links to nodes that were already
deleted when CleanUpAll started. The tests at line CA4 prevent
CleanUpAll from interfering with Scan for nodes that have no
references left. The test at line CA6 prevents CleanUpAll from
accessing a node that Scan has already reclaimed. If the node is
still present in DL Nodes[thread][index] at line CA6 then
a concurrent Scan accessing this node must be before line SC21
or be after line SC28 without having reclaimed the node.

D. Example application

The BEWARE&CLEANUP method can be applied for memory
reclamation in lock-free algorithms for dynamic data structures in
a straightforward manner, in a similar way to previously presented
lock-free memory reclamation schemes. Program 6 shows the
lock-free queue algorithm by Valois et al. [31], [21] as it would
be integrated with the BEWARE&CLEANUP memory reclamation
method. A further and more extensive example of a lock-free
algorithm using BEWARE&CLEANUP is the lock-free doubly
linked list data structure in [30].

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Authorized licensed use limited to: HOGSKOLAN I BORAS. Downloaded on May 14, 2009 at 03:01 from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 8

Program 6 Example of a queue algorithm using the BE-
WARE&CLEANUP memory reclamation method.
structure QNode

mm ref: integer
mm trace: boolean
mm del: boolean
next: pointer to QNode
value: pointer to Value

/* Global variables */
head, tail:pointer to QNode

procedure InitQueue()
IQ1 node := NewNode(); node.next := NULL;
IQ2 head := NULL; StoreRef(&head,node);
IQ3 tail:= NULL; StoreRef(&tail,node);

function Dequeue():pointer to Value
DQ1 while true do
DQ2 node := DeRefLink(&head);
DQ3 next := DeRefLink(&node.next);
DQ4 if next = NULL then
DQ5 ReleaseRef(node); return NULL;
DQ6 if CompareAndSwapRef(&head,node,next)
DQ7 then break;
DQ8 ReleaseRef(node); ReleaseRef(next);
DQ9 DeleteNode(node);
DQ10 value := next.value; ReleaseRef(next);
DQ11 return value;

procedure Enqueue(value:pointer to Value)
EQ1 node := NewNode(); node.next := NULL; node.value := value;
EQ2 old := DeRefLink(&tail);
EQ3 prev := old;
EQ4 repeat
EQ5 while prev.next �= NULL do
EQ6 prev2 := DeRefLink(&prev.next);
EQ7 if old �= prev then ReleaseRef(prev);
EQ8 prev := prev2;
EQ9 until CompareAndSwapRef(&prev.next,NULL,node);
EQ10 CompareAndSwapRef(&tail,old,node);
EQ11 if old �= prev then ReleaseRef(prev);
EQ12 ReleaseRef(old); ReleaseRef(node);

E. Algorithm extensions

For simplicity reasons, the BEWARE&CLEANUP method in this
paper is described with a fixed number of threads. However, the
method can easily be extended to a dynamic number of threads
using a similar extension to the one that extents HP to dynamic
number of threads [19]. The global matrix of hazard pointers (HP)
can be turned into a linked list of arrays. The deletion lists can
also be linked into a global chain, and as the size of the deletion
lists changes, old redundant deletion lists can be safely reclaimed
by using an additional HP scheme for memory reclamation.

V. CORRECTNESS PROOF

In this section we present the correctness proof of the BE-
WARE&CLEANUP method. The outcome of the correctness proof
are the following theorems that state the most important properties
of the BEWARE&CLEANUP method.

Theorem 1: BEWARE&CLEANUP is a lock-free and lineariz-
able method for memory reclamation.

Theorem 2: The number of deleted but not yet reclaimed by
BEWARE&CLEANUP nodes in the system is bounded from above
by

N2 · (k + lmax + α + 1),

where N is the number of threads in the system, k is the number
of hazard pointers per thread, lmax is the maximum number of

links a node can contain and α is the maximum number of links
in live nodes that may transiently point to a deleted node.

The above theorems are proved below using a series of lemmas.
We first prove that BEWARE&CLEANUP does not reclaim mem-
ory that could still be accessed; then we prove an upper bound
on the amount of such deleted but unreclaimed garbage there can
be accumulated; last we prove that the method is linearizable and
lock-free [12]. A set of definitions that will help us to structure
and shorten the proof is given first.

Definition 1: Let Ft denote the state of the pool of free nodes
at time t. We interpret n ∈ Ft to be true when n has been freed
as per line SC24 in Scan. Any linearizable, preferably lock-free,
memory allocator can be used to manage the free pool.

Definition 2: Let n ∈ HPt(p) denote that thread p has a
verified hazard pointer set to point to node n at time t. A verified
hazard pointer is one that has been or will be returned by a
DeRefLink or NewNode operation. The array of hazard pointers
in the implementation, the array HP, may also contain pointers
temporarily set by DeRefLink operations that will be forced to
retry, but these are not considered as part of the HPt(p) sets.

Definition 3: Let n ∈ DLt(p) denote that node n is deleted
and is awaiting reclamation in the dlist of thread p at time t.

Definition 4: Let Delt(n) denote that the node n is marked
as logically deleted at time t. Note that the deletion mark is not
removed until the node is returned to the free pool.

Definition 5: A shared link is either a global shared variable
visible to the application or a pointer variable residing inside
a node. Specifically, the elements in the per thread arrays of
hazard pointers, HP, and the per thread arrays of deleted nodes,
DL Nodes, are not considered as shared links, since these are
internal to BEWARE&CLEANUP.

Definition 6: Let Links(n) denote the set of shared links
(pointers) present in node n.

Definition 7: Let lx �→t nx denote that the shared link lx
points to node nx at time t and lx �→t ⊥ that the shared link
lx contains null at time t.

Definition 8: Let Reft(n) denote a set containing the shared
links that point to node n at time t.

Definition 9: A node n is said to be reclaimable at time t iff
Reft(n) = ∅, Delt(n) is true and ∀p : n /∈ HPt(p).

Definition 10: A memory reclamation method is safe iff it
never reclaims a node that is not reclaimable at the time of
reclamation.

The API operations of the memory reclamation method need
to be shown that are linearizable (atomic); namely, this applies
to operations DeRefLink (DRL), ReleaseRef (RR), NewNode
(NN), DeleteNode (DN), CompareAndSwapRef (CASR) and
StoreRef (SR). For the safety and correctness of the memory
reclamation the internal operations are also involved directly; for
brevity, we introduce shorter variants of their names, namely: TN
for TerminateNode, SCAN for Scan, CUN for CleanUpNode,
CUL for CleanUpLocal and CUA for CleanUpAll .

In the following expressions which define the sequential se-
mantics of our operations, the syntax is S1 : O1, S2, where S1

is the conditional state before the operation O1 and S2 is the
resulting state after the operation has been performed.

Definition 11: The sequential semantics of the operations:
DeRefLink

∃n1.l1 �→t1 n1 : DRL(l1) = n1, n1 ∈ HPt2(pcurr) (1)

l1 �→t1 ⊥ : DRL(l1) = ⊥, (2)

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Authorized licensed use limited to: HOGSKOLAN I BORAS. Downloaded on May 14, 2009 at 03:01 from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 9

ReleaseRef

n ∈ HPt1(pcurr) : RR(n), n /∈ HPt2(pcurr) (3)

NewNode

∃n1.n1 ∈ Ft1 : NN() = n1, n1 /∈ Ft2 ∧ Reft2(n1) = 0
∧¬Delt2(n1) ∧ n1 ∈ HPt2(pcurr)

(4)

DeleteNode

n1 ∈ HPt1(pcurr) : DN(n1), Delt2(n1)
∧n1 ∈ DLt2(pcurr) ∧ n1 /∈ HPt2(pcurr)

(5)

CompareAndSwapRef

l1 �→t1 ⊥ ∧ n2 ∈ HPt1(pcurr) : CASR(l1,⊥,n2) = True,
l1 �→t2 n2 ∧ l1 ∈ Reft2(n2) ∧ n2 ∈ HPt2(pcurr)

(6)
∃n1 . l1 �→t1 n1 ∧ n2 = n1 : CASR(l1,n2,⊥) = True,

l1 �→t2 ⊥ ∧ l1 /∈ Reft2(n2)
(7)

∃n1 . l1 �→t1 n1 ∧ n2 = n1∧
n3 ∈ HPt1(pcurr) ∧ l1 ∈ Reft1(n2) :

CASR(l1,n2,n3) = True, l1 �→t2 n3 ∧ l1 /∈ Reft2(n2)
∧l1 ∈ Reft2(n3) ∧ n3 ∈ HPt2(pcurr)

(8)
∃n1 . l1 �→t1 n1 ∧ n1
= n2 ∧ n3 ∈ HPt1(pcurr) :

CASR(l1,n2,n3) = False,
l1 �→t2 n1 ∧ n3 ∈ HPt2(pcurr)

(9)

Scan

: Scan(), ∀ni ∈ DLt1(pcurr).(ni ∈ Ft2∧
(∀nx s.t. lx �→t1 nx ∧ lx ∈ Links(ni).
lx /∈ Reft2(nx)) ∨ (∃pj .ni ∈ HPt1(pj))∨
(∃nj .nj /∈ Ft1 ∧ ∃lx ∈ Links(nj).lx �→t1 ni)

(10)

TerminateNode (Implemented by the application programmer).

n1 ∈ DLt1(pcurr) : TerminateNode(n1, c),
∀lx ∈ Links(n1).(lx �→t2 ⊥∧
∀nx s.t. lx �→t1 nx . lx
∈ Reft2(nx))

(11)

CleanUpNode (Implemented by the application programmer).

∃pi.n1 ∈ DLt1(pi) ∧ Delt1(n1) : CleanUpNode(n1),
∀lx ∈ Links(n1).(lx �→t2 ⊥∨
(∃nx.lx �→t2 nx ∧ ¬Delt1(nx)))

(12)

CleanUpLocal

: CleanUpLocal(),
∀ni ∈ DLt1(pcurr).(∀lx ∈ Links(ni).
lx �→t2 ⊥ ∨ (∃nx.lx �→t2 nx ∧ ¬Delt1(nx)))

(13)

CleanUpAll

: CleanUpAll(),
∀pi.(∀nj ∈ DLt1(pi).(∀lx ∈ Links(nj).
lx �→t2 ⊥ ∨ (∃nx.lx �→t2 nx ∧ ¬Delt1(nx))))

(14)

StoreRef (Should only be used to update links in nodes that are
inaccessible to all other threads.)

l1 �→t1 ⊥ ∧ n2 ∈ HPt1(pcurr) : SR(l1,n2),
l1 �→t2 n2 ∧ l1 ∈ Reft2(n2) ∧ n2 ∈ HPt2(pcurr)

(15)

∃n1.l1 �→t1 n1 ∧ n2 ∈ HPt1(pcurr) : SR(l1,n2),
l1 �→t2 n2 ∧ l1 /∈ Reft2(n1)∧
l1 ∈ Reft2(n2) ∧ n2 ∈ HPt2(pcurr)

(16)

A. Safety

In this section we prove that BEWARE&CLEANUP is safe, i.e.,
it only reclaims nodes that are reclaimable.

Lemma 1: If a node n is reclaimable at time t1 then
Reft(n) = ∅ for all t ≥ t1.

Proof: Assume towards a contradiction that a node n was
reclaimable at time t1 and that later at time t2 Ref(n)t2
= ∅.
The definition of reclaimable, Definition 9, implies that at time
t1 there were no shared links pointing to n and no thread had a
hazard pointer to n.

Then, clearly, n has to have been stored to some shared link l

after time t1 and before t2. There are only two operations that can
update a shared link: StoreRef (SR) and CompareAndSwapRef
(CASR). However both of these operations require that the thread
issuing the operation has a hazard pointer to n at that time. There
are two cases:
(i) The thread has had a hazard pointer set to n already before
time t1. This is impossible since there were no hazard pointers
to n at time t1.
(ii) The thread set the hazard pointer to n at a time later than t1.
This is impossible as the only way to set a hazard pointer to an
existing node is the DeRefLink operation. This operation requires
that there is a shared link pointing to n to dereference and at time
t1 there are no such links. (See also Lemma 7, the linearizability
proof for DeRefLink .)

Thus, since there cannot be any threads capable of using
StoreRef or CompareAndSwapRef to update a link to point to
n at time t1 or later, we have that Reft(n) = ∅ for all t ≥ t1.

Lemma 2: A node n returned by a DeRefLink(l1) operation
performed by a thread p is not reclaimable and cannot become
reclaimable before a corresponding ReleaseRef (n) operation is
performed by the same thread.

Proof: The node n is not reclaimable when DeRefLink
returns because p has set a hazard pointer to point to n at line
D4. Furthermore, line D5 verifies that n is referenced by l1 also
after the hazard pointer was set. This guarantees that n cannot
have become reclaimable between line D3 and D4 since n is still
referenced by a shared link.3

Lemma 3: The mm ref field together with the hazard pointers
provide an approximation of the Reft(n) set in a way that does
not affect the safety of BEWARE&CLEANUP.

Proof: The reference count field, mm ref, in each node
approximates the set of links referencing n, Reft(n), at any time
t. As such the mm ref field of a node n is only guaranteed to
be accurate when there are no ongoing4 operations concerning n.
The only operations that may change the mm ref field of a node
n are CompareAndSwapRef and StoreRef .

For the memory reclamation method the critical aspect of the
Reft(n) set is to know whether it is empty or non-empty to
determine if the node is reclaimable or not. In particular, the
important case is when the mm ref field is to be increased, since
delaying a decrease of the reference count will not compromise
the safety of the memory reclamation method.

However, although the mm ref field of a node n to be stored in
a shared link by a CompareAndSwapRef or StoreRef operation

3Note: Between D3 and D5 n might have been moved away from l1 and
then moved back again. Further, between D3 and D4 the “original” n could
actually have been removed and reclaimed and then the same memory could
be reused for a new node n which is stored in l1 before D5. This is also not
a problem as the “new” n is what the DeRefLink really returns.

4Consider any crashed operations as ongoing.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Authorized licensed use limited to: HOGSKOLAN I BORAS. Downloaded on May 14, 2009 at 03:01 from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 10

is not increased in the same atomic time instant as the operation
takes effect, it does not matter for the safety of the memory
reclamation method. That is so since the thread performing the
operation is required to have set a hazard pointer to the node
n before the operation was started and keep it until after the
operation has finished. Thus n is clearly not reclaimable during
the duration of the operation.

Lemma 4: The operation Scan will never reclaim a node n

that is not reclaimable.
Proof: Scan is said to reclaim a node n when it is returned

to the pool of free memory, which takes place at line SC24.
Assume that Scan reclaimed a node n at time t3 and let time

t1 and t2 denote the time Scan executed line SC5 and line SC20
for the node n, respectively. It is possible to make two useful
observations:
(i) First, note that there exists no thread p such that n ∈ HP (p)

during the whole interval between t1 and t2 since such a hazard
pointer would have been detected by Scan (lines SC10 - SC14).
Consequently, any thread that is able to access n after time t3
must have dereferenced (with DeRefLink) a shared link pointing
to n after time t1.
(ii) Second, since Scan is reclaiming the node, we know that the
mm trace field of n, which were set to true at line SC5, and the
mm ref field, which was verified to be zero at line SC6, still had
those values when line SC20 was reached. This implies that:
(i) There were no StoreRef or CompareAndSwapRef operations
to store n in a shared link that started before t1 and had not
finished before t2. This is so since the hazard pointers to n, which
are required by these operations, would have been detected when
Scan searched the hazard pointers at lines SC10 - SC14.
(ii) There were no StoreRef or CompareAndSwapRef operations
to store n in a shared link that finished between t1 and t2, as such
an operation would have cleared the mm trace field and thereby
would have caused the comparison at SC20 to fail.
Therefore, there were no ongoing StoreRef or CompareAnd-
SwapRef operations to store n in a shared link at the time
Scan executed line SC5 and, consequently, as these operations
are the only ones that can increase the mm ref field, we have
Reft1(n) = ∅. Further, because of (ii) there cannot have been
any StoreRef or CompareAndSwapRef operation to store n in
a shared link that started and finished between t1 and t2.

Since Reft1(n) = ∅, no DeRefLink operation can finish by
successfully dereferencing n after time t1, unless n is stored to
a shared link after time t1. However, as we have seen above,
such a store operation must begin after time t1 and finish after
time t2 and the thread performing it must therefore, by our first
observation that no single thread could have held a hazard pointer
to n during the whole interval between t1 and t2, have derefer-
enced n after t1. This is a clearly a contradiction and therefore
it is impossible for any thread to successfully dereference n after
time t1.

From the above we have that Reft(n) = ∅ for t ≥ t1 and
∀p . n /∈ HPt(p) for t ≥ t2 and therefore, since t3 > t2 > t1, n

is reclaimable at time t3 .
Lemma 5: The operation Scan never reclaims a node n that

is accessed by a concurrent CleanUpAll operation.
Proof: Assume, w.l.o.g., that n is stored at position i in

the DL Nodes array of Scan. Before reclaiming the node, Scan
writes NULL into DL Nodes[i] (line SC21) and then checks that
DL Claims[i] is zero (line SC22).

Before accessing node n, the CleanUpAll operation reads n

from DL Nodes[i] (line CA3), then increases DL Claims[i] (line
CA5) and then verifies that DL Nodes[i] still contains n (line
CA6).

Now, for a concurrent CleanUpAll operation to also access n,
it has to perform both reads of DL Nodes[i] (line CA3 and line
CA5) before Scan performs line SC21. But then DL Claims[i]
has been increased (line CA3) and Scan will detect this at line
SC22 and will not reclaim the node. If, on the other hand,
Scan reads a claim-count of 0 at line SC22, then the concurrent
CleanUpAll operation will read NULL from DL Nodes[i] at line
CA6 and will not access the node.

Theorem 3: BEWARE&CLEANUP is a safe memory reclama-
tion method that guarantees the safety of both local and global
references.

Proof: The theorem follows from Lemmas 2, 3, 4 and 5.

B. Bounding the number of deleted but unreclaimed nodes

Lemma 6: For each thread p the maximum number of deleted
but not reclaimed nodes in DL(p) is at most N ·(k+lmax+α+1),
where N is the number of threads in the system, k is the number
of hazard pointers per thread, lmax is the maximum number of
links a node can contain and α is the maximum number of links
in live nodes that may transiently point to a deleted node.5

Proof: The only operation that increases the size of DL(p)

is DeleteNode and when |DL(p)| reaches THRESHOLD C it
runs CleanUpAll before attempting to reclaim nodes.

First consider the case where there are no concurrent DeleteN-
ode operations by other threads. In this case there cannot be any
deleted nodes that point to nodes in DL(p) left in the system after
p’s CleanUpAll is done. So, what may prevent p from reclaiming
one particular node in DL(p)? The node might have: (i) a hazard
pointer pointing to it, or (ii) there might be some live nodes
still pointing to it. The number of links in live nodes, α, that
might point to a deleted node depends on the application data-
structure using the memory reclamation method. Recall that we
require that any application operation that deletes a node must
also remove all references to that node from all live nodes in the
data-structure before the delete is completed. This ensures that
there are at all times at most N · α links in live nodes that point
to deleted nodes. So, in the absence of concurrent DeleteNode
operations the maximum number of nodes in DL(p) that a Scan
is unable to reclaim is N · (k + α).

In cases where there are concurrent DeleteNode operations,
there are three cases to consider: (i) Additional nodes that hold
pointers to the nodes in DL(p) might be deleted after the start of
p’s CleanUpAll and prevent p’s Scan from reclaiming any node.
In that case p has to repeat the loop in DeleteNode again and call
CleanUpAll and Scan again. This is fine in the lock-free setting,
since some concurrent operation has made progress (i.e., by
deleting other nodes). (ii) Some concurrent DeleteNode operation
may get delayed or crash. If this happens when the operation
executes between line DN2 and DN5 or between SC22 and SC23
in its call to Scan, it will “hide” one deleted node that might
contain links that point to nodes in DL(p) from p’s CleanUpAll .
In this way any other thread can prevent p from reclaiming up
to lmax nodes in DL(p). (iii) Finally, concurrent CleanUpAll
operations might prevent p from reclaiming reclaimable nodes

5Note that the numbers lmax and α depend only on the application.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Authorized licensed use limited to: HOGSKOLAN I BORAS. Downloaded on May 14, 2009 at 03:01 from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 11

by claiming them for performing CleanUpNode operations on
them. However, if such a node is encountered p’s Scan will use
TerminateNode to set the links of the node to NULL and set the
DL Done flag for the node, which prevents future CleanUpAll
operations from preventing the node from being reclaimed. If p

needs to repeat the Scan, it can only be prevented from reclaiming
at most N of the reclaimable nodes it failed to reclaim due to
concurrent CleanUpAlls during the previous Scan.

So, the maximum number of nodes in DL(p) that p cannot
reclaim is less than N · (k + lmax + α + 1).

Lemma 6 directly implies theorem 2 and the following corol-
lary.

Corollary 1: The cleanup threshold, THRESHOLD C, used
by BEWARE&CLEANUP should be set to N · (k + lmax +α+1).

C. Linearizability

Lemma 7: The DeRefLink (DRL(l1) = n1) operation is
atomic.

Proof: A DeRefLink(DRL) operation has direct interactions
with the CompareAndSwapRef (CASR) operations that target
the same link and the memory reclamation in Scan. A CASR
operation takes effect before the DRL operation iff the CAS
instruction at line C1 is executed before *link is read at line
D5 in DRL.

A Scan that reads the hazard pointer set by DRL at line D4,
after the latter was set, will not free the node dereferenced by
DRL (the test at line SC20 in Scan prevents this). If a concurrent
Scan read the hazard pointer in question, after it was set by DRL,
then it will not free the node. If Scan read the hazard pointer in
question, before it was set by DRL, then Scan will detect that
the reference count of the node is non-zero or has been non-zero
during the execution of the Scan operation.

Lemma 8: The ReleaseRef (RR(n1)) operation is atomic.
Proof: The operation ReleaseRef takes effect at line R2

when the hazard pointer to the node is set to NULL.
Lemma 9: The NewNode (NN() = n1) operation is atomic

if the memory allocator that is used to manage the pool of free
memory itself is linearizable.

Proof: The operation NewNode takes effect when the
memory for the new node is removed from the pool of free
memory. For a linearizable memory allocator this will take place
at a well-defined time instant.

Lemma 10: The DeleteNode (DN(n1)) operation is atomic.
Proof: The operation DeleteNode takes effect when the

node is marked as deleted at line DN2.
Lemma 11: The CompareAndSwapRef (CASR(l1, n1, n2))

operation is atomic.
Proof: The CASR operation has direct interactions with

other CASR and DeRefLink operations that target the same link
and with the memory reclamation in Scan. A CASR operation
takes effect when the CAS instruction at line C1 is executed.

Lemma 12: The StoreRef (SR(l1, n1)) operation is atomic.
Proof: The StoreRef (SR(l1, n1)) operation has direct

interactions with the memory reclamation in Scan.
A SR operation takes effect when the FAA instruction at line

S6 is executed, or at line S2 otherwise.
Lemma 13: The reclamation of a deleted node n by Scan is

atomic.
Proof: Scan is said to reclaim a node n when that node is

returned to the pool of free memory, which takes place at line

SC24. This action is atomic, since the memory allocator’s free
operation is linearizable and Lemmas 4 and 5 guarantee that no
other operation/thread can access the node concurrently.

Theorem 4: BEWARE&CLEANUP correctly implements a lin-
earizable memory reclamation method.

Proof: This follows from Lemmas 7, 8, 9, 10, 11 and 12.

D. Proof of the Lock-free Property

Lemma 14: With respect to the retries caused by synchro-
nization, among a set of concurrent operations of the BE-
WARE&CLEANUP method, there will always be one operation
that will make progress, regardless of the actions of the other
concurrent operations.

Proof: We now examine the possible execution paths of our
implementation. The operations ReleaseRef , NewNode, Stor-
eRef and CompareAndSwapRef do not contain any loops and
will thus always do progress regardless of the actions by the other
concurrent operations. In the remaining concurrent operations
there are several potentially unbounded loops that can delay the
termination of the operations. We call these loops retry-loops.
If we omit the conditions that are because of the operations
semantics (i.e., searching for the correct criteria etc.), then these
loops retries when sub-operations detect that a shared variable has
changed value from what was expected. This change is detected
either by a subsequent read sub-operation or by a failed CAS.
These shared variables are only changed concurrently by other
CAS sub-operations. The read operation in line D5 will possibly
fail because of a successful CAS operation in lines C1, TN7
or CN5. Likewise, the CAS operations in lines C1, TN7 or
CN5 will possibly fail if one of the other CAS operations has
been successful. According to the definition of CAS, for any
number of concurrent CAS sub-operations on a word, exactly
one will succeed. This means that for any subsequent retry, there
must be one CAS that succeeded. As this succeeding CAS will
cause its retry loop to exit, and our implementation does not
contain any cyclic dependencies between retry-loops that exit with
CAS, this means that the corresponding DeRefLink operation or
TerminateNode sub-operation will progress.

In the operation DeleteNode there are calls to three sub-
operations, CleanUpLocal , Scan and CleanUpAll which con-
tains loops, inside an unbounded loop. The loop in the sub-
operation CleanUpNode, used by CleanUpLocal and CleanU-
pAll , is bounded in the absence of concurrent DeleteNode
operations because of Assumption 1. If there are concurrent
DeleteNode operations, CleanUpNode may have to loop only
due to their progress, i.e., if they set the mm del bit on additional
nodes, they might force the loop in CleanUpNode to continue.
So CleanUpNode is lock-free. The loops in CleanUpAll are all
bounded and the loop in CleanUpLocal and in Scan are bounded
since the size of the DL Nodes list is bounded by Theorem 2. The
loop in DeleteNode is also bounded by the bound in Theorem 2.

Consequently, independent of any number of concurrent oper-
ations, one operation will always progress.

Theorem 5: BEWARE&CLEANUP is a lock-free memory
reclamation method.

Proof: The theorem follows from Lemma 14.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Authorized licensed use limited to: HOGSKOLAN I BORAS. Downloaded on May 14, 2009 at 03:01 from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 12

E. On the time complexity of the operations

In the following we count memory reads, writes and atomic
synchronization primitives as single steps.

Lemma 15: The operations NewNode, ReleaseRef , Stor-
eRef and CompareAndSwapRef have worst-case time complex-
ity O(k), O(k), O(1) and O(1), respectively, regardless of the
number of concurrent operations. k is the number of hazard
pointers per thread.

Proof: The lemma follows from Lemma 14 and the defini-
tions of the operations in Program 3.

Since the other operations of the memory reclamation method
are lock-free there are no upper bounds on the worst-case number
of steps needed to complete an operation in the presence of con-
currently progressing operations. However, under the assumption
of no concurrent operations, we have the following worst-case
bounds.

Lemma 16: The operation DeRefLink has worst-case time
complexity O(k), where k is the number of hazard pointers per
thread, in the absence of concurrent operations.

Proof: It is easy to see that the only way DeRefLink can
remain in the unbounded loop starting at line D2 is if the contents
of *link changes between line D3 and D5. This contradicts the
assumption of the existence of no concurrent operations. Finding
a free hazard pointer at line D1 takes O(k) reads.

A worst-case execution of DeleteNode involves calls to
CleanUpLocal , Scan and CleanUpAll (lines DN9-10) and it is
easy to see that the worst-case time complexity of CleanUpAll
overshadows the other two sub-operations. However, CleanUpAll
uses the CleanUpNode operation, which is to be provided by the
data structure or application using BEWARE&CLEANUP.

Let TCUN denote the worst-case time complexity of
CleanUpNode.

Lemma 17: The operations CleanUpAll and DeleteNode have
a worst-case time complexity of

O(N2(k + lmax + α + 1)TCUN))

in the absence of concurrent operations, where N is the number
of threads in the system, k is the number of hazard pointers per
thread, lmax is the maximum number of links a node can contain
and α is the maximum number of links in live nodes that may
transiently point to a deleted node.

Proof: The operation CleanUpAll applies CleanUpNode to
all nodes in the deletion lists of all threads. By the assumption
above on the worst-case complexity of CleanUpNode and by the
maximum number of deleted but unreclaimed nodes we get the
worst case time complexity of the lemma.

A worst-case execution of DeleteNode involves calls to
CleanUpLocal , Scan and CleanUpAll (lines DN9-10), of which
CleanUpAll dominates the other. Hence, the worst-case time
complexity is given by the same asymptotic formula.

Note that a reasonable upper bound of TCUN is O(lmaxN2 ·
(k + lmax + α + 1)), since CleanUpNode may in the worst case
have to traverse a maximal length chain of all deleted nodes for
each link in the node being cleaned. Since the total size of the
deletion lists is N2 ·(k+ lmax +α+1) it is reasonable to consider
that a maximal length chain of deleted nodes is no longer than
this.

Discussion on the expected case: The worst case time com-
plexity for a DeleteNode operation seems rather high. However,
one must bear in mind that the worst case only occurs in a very

particular situation which is extremely rare in practice. For the
worst case to occur, first, each thread has to fill it’s deletion list
with nodes. If THRESHOLD S < THRESHOLD C, all nodes
in the thread’s deletion list must be unreclaimable each time Scan
is called. This implies that O(N(k + lmax + α + 1)) DeleteNode
operations must be performed by each thread before this situation
can occur. Furthermore, the nodes in the deletion lists must
be chained together in such a way that the maximal chains of
deleted but unreclaimed nodes contain all deleted nodes and are
not broken up in small pieces early on during the CleanUpAll
operation.

One interesting observation is that in BEWARE&CLEANUP

the worst-case time complexity of the operations (in absence
of concurrent operations) is low and predictable for all oper-
ations, except for DeleteNode. For a pure reference counting
approach any operation that decreases a reference count, such as
ReleaseRef , CompareAndSwapRef and StoreRef , can trigger
the reclamation of an arbitrary number of nodes.

VI. EXPERIMENTAL STUDY

We have performed a set of experiments for observing the
average overhead of using the BEWARE&CLEANUP lock-free
memory reclamation in comparison to previous lock-free memory
reclamation methods supporting reference counting. For this pur-
pose we have chosen the lock-free algorithm of a deque (double-
ended queue) data structure by Sundell and Tsigas [29], [26]. As
presented, the implementation of this algorithm uses the lock-free
memory reclamation with reference counting by Valois et al. [32],
[21]. In order to fit better with the BEWARE&CLEANUP method,
the recursive calls in the deque algorithm were unrolled.

In our experiments, each concurrent thread performed 10000
randomly chosen sequential operations on a shared deque, with
an equal distribution among the PushRight, PushLeft, PopRight
and PopLeft operations. Each experiment was repeated 50 times,
and an average execution time among them was computed. Each
thread executed the same sequence of operations for all different
implementations compared; the sequences are random and were
computed off-line, prior to the actual execution.

The experiments were performed using different number of
threads, varying from 1 to 16 with increasing steps. In our
experiments we compare two implementations of the lock-free
deque; (i) using the lock-free memory reclamation by Valois et al.,
and (ii) using the new lock-free memory reclamation (including
support for dynamic number of threads) with k = 6 hazard
pointers per thread (this is set as in the HP method, i.e., depending
on the number of local references used per thread). To the best of
our knowledge, these are the only memory reclamation methods
which: (i) satisfy the demands of the lock-free deque algorithm
(as well as other common lock-free algorithms that need to
traverse through nodes which may concurrently be deleted, such
as the Queue algorithm used for the example in Program 6) and
(ii) are based on available hardware atomic primitives. Both deque
implementations use an individual implementation of a shared
fixed-size memory pool (i.e., free-list) for memory allocation and
freeing. Two different platforms were used, with varying number
of processors and level of shared memory distribution. Firstly,
we performed our experiments on a 4-processor Xeon PC running
Linux. In order to evaluate the BEWARE&CLEANUP method with
higher concurrency we also used a 8-processor SGI Origin 2000
system running Irix 6.5. A clean-cache operation was performed

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Authorized licensed use limited to: HOGSKOLAN I BORAS. Downloaded on May 14, 2009 at 03:01 from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 13

 0

 50

 100

 150

 200

 250

 300

 350

 2 4 6 8 10 12 14 16

E
xe

cu
tio

n
T

im
e

(m
s)

Threads

Lock-Free Deque - Linux Xeon, 4 Processors

VALOIS ET AL
BEWARE&CLEANUP

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 2 4 6 8 10 12 14 16

E
xe

cu
tio

n
T

im
e

(m
s)

Threads

Lock-Free Deque - SGI Origin 2000, 8 Processors

VALOIS ET AL
BEWARE&CLEANUP

Fig. 3. Experimental results on two multi-processor platforms of performing a random set of operations on a lock-free doubly-ended queue (deque);
implemented with either the memory reclamation by Valois et al. or with the new method.

just before each sub-experiment. All implementations are written
in C and compiled with the highest optimization level. The atomic
primitives are written in assembly, where systems (e.g., SGI)
lacking native CAS support are using the corresponding LL/SC
instructions instead, see [22]. The results from the experiments
are shown in Fig. 3. The average execution time is drawn as a
function of the number of threads.

From the experimental results, we see that the BE-
WARE&CLEANUP lock-free memory reclamation method outper-
forms the corresponding method by Valois et al. for any number of
threads. The advantage of using the BEWARE&CLEANUP method
appears to be even more significant for systems with non-uniform
memory architecture. A possible reason for this increased advan-
tage could be that the increased memory contention caused by
several threads concurrently traversing potentially long (compared
to the total data structure size) chains of deleted nodes has a
larger impact on the system performance in non-uniform memory
architectures than in uniform memory architectures.

VII. CONCLUSIONS

We have presented BEWARE&CLEANUP, which is, to the
best of our knowledge, the first lock-free method for mem-
ory reclamation based on reference counting that has all the
following features: (i) guarantees the safety of local as well
as global references, (ii) provides an upper bound of deleted
but not yet reclaimed nodes, (iii) is compatible with arbitrary
memory allocation schemes, and (iv) uses atomic primitives which
are available in modern architectures. BEWARE&CLEANUP is
application guided and is aimed for use with arbitrary lock-free
dynamic data structures.

Besides the analytical study, we have also presented an experi-
mental study which gives evidence that the BEWARE&CLEANUP

lock-free memory reclamation scheme can, in the respects of per-
formance and reliability, significantly improve implementations of
lock-free dynamic data structures that require the safety of global
references in dynamic nodes. We believe that our implementation
is of highly practical interest for multi-processor applications. We
are incorporating it into the NOBLE [28] library.

REFERENCES

[1] J. M. Barth. Shifting garbage collection overhead to compile time.
Communications of the ACM, 20(7):513–518, July 1977.

[2] G. E. Collins. A method for overlapping and erasure of lists. Commu-
nications of the ACM, 3(12):655–657, 1960.

[3] D. L. Detlefs, P. A. Martin, M. Moir, and G. L. Steele. Lock-free
reference counting. In Proceedings of the 20th annual ACM symposium
on Principles of distributed computing, pages 190–199. ACM Press,
Aug. 2001.

[4] L. D. Deutsch and D. G. Bobrow. An efficient, incremental, automatic
garbage collector. Communications of the ACM, 19(9):522–526, Sept.
1976.

[5] A. Gidenstam, M. Papatriantafilou, and P. Tsigas. Allocating memory
in a lock-free manner. In Proceedings of the 13th Annual European
Symposium on Algorithms (ESA ’05), volume 3669 of Lecture Notes in
Computer Science, pages 329–242. Springer Verlag, Oct. 2005.

[6] M. Herlihy. Wait-free synchronization. ACM Transaction on Program-
ming and Systems, 11(1):124–149, Jan. 1991.

[7] M. Herlihy. A methodology for implementing highly concurrent data
objects. ACM Transactions on Programming Languages and Systems,
15(5):745–770, 1993.

[8] M. Herlihy, V. Luchangco, P. Martin, and M. Moir. Dynamic-sized lock-
free data structures. In Proceedings of the 21st annual symposium on
Principles of distributed computing, pages 131–131. ACM Press, 2002.

[9] M. Herlihy, V. Luchangco, P. Martin, and M. Moir. Nonblocking
memory management support for dynamic-sized data structures. ACM
Transactions on Computer Systems, 23(2):146–196, 2005.

[10] M. Herlihy, V. Luchangco, and M. Moir. The repeat offender problem:
A mechanism for supporting dynamic-sized, lock-free data structure. In
Proceedings of 16th International Symposium on Distributed Computing
(DISC 2002), volume 2508 of Lecture Notes in Computer Science, pages
339–353. Springer Verlag, Oct. 2002.

[11] M. P. Herlihy and J. E. B. Moss. Lock-free garbage collection for
multiprocessors. IEEE Transactions on Parallel and Distributed Systems,
3(3):304–311, May 1992.

[12] M. P. Herlihy and J. M. Wing. Linearizability: A correctness condition
for concurrent objects. ACM Transactions on Programming Languages
and Systems, 12(3):463–492, July 1990.

[13] W. H. Hesselink and J. F. Groote. Wait-free concurrent memory
management by create and read until deletion (CaRuD). Distributed
Computing, 14(1):31–39, Jan. 2001.

[14] M. Hoffman, O. Shalev, and N. Shavit. The baskets queue. In
Proceedings of the 11th International Conference On the Principles Of
Distributed Systems (OPODIS ’07), volume 4878 of Lecture Notes in
Computer Science, pages 401–414. Springer-Verlag, 2007.

[15] P. Jayanti. A complete and constant time wait-free implementation
of CAS from LL/SC and vice versa. In Proceedings of the 12th
International Symposium on Distributed Computing (DISC ’98), volume
1499 of Lecture Notes in Computer Science, pages 216–230. Springer
Verlag, Sept. 1998.

[16] P. Joisha. Overlooking roots: A framework for making nondeferred
reference-counting garbage collection fast. In M. Sagiv, editor, ISMM’07
Proceedings of the Fifth International Symposium on Memory Manage-
ment, pages 141–158, Montréal, Canada, Oct. 2007. ACM Press.

[17] L. Lamport. Concurrent reading and writing. Commun. ACM,
20(11):806–811, 1977.

[18] M. M. Michael. Safe memory reclamation for dynamic lock-free objects

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Authorized licensed use limited to: HOGSKOLAN I BORAS. Downloaded on May 14, 2009 at 03:01 from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 14

using atomic reads and writes. In Proceedings of the 21st Annual
Symposium on Principles of Distributed Computing (PODC ’02), pages
21–30. ACM Press, 2002.

[19] M. M. Michael. Hazard pointers: Safe memory reclamation for lock-
free objects. IEEE Transactions on Parallel and Distributed Systems,
15(8):491–504, Aug. 2004.

[20] M. M. Michael. Scalable lock-free dynamic memory allocation. In
Proceedings of SIGPLAN 2004 Conference on Programming Languages
Design and Implementation (PLDI ’04), pages 35–46. ACM Press, June
2004.

[21] M. M. Michael and M. L. Scott. Correction of a memory management
method for lock-free data structures. Technical Report TR599, Univer-
sity of Rochester, Computer Science Department, Dec. 1995.

[22] M. Moir. Practical implementations of non-blocking synchronization
primitives. In Proceedings of the 16th annual ACM Symposium on
Principles of Distributed Computing (PODC ’97), pages 219–228, 1997.

[23] M. Moir, V. Luchangco, and M. Herlihy. Lock-free implementation of
dynamic-sized shared data structure. US Patent WO 2003/060705 A3,
Jan. 2003.

[24] Y. G. Park and B. Goldberg. Reference escape analysis: Optimizing
reference counting based on the lifetime of references. In Proceedings
of the Symposium on Partial Evaluation and Semantics-Based Program
Manipulation, volume 26, 9 of ACM SIGPLAN NOTICES, pages 178–
189, New York, June 1991. ACM Press.

[25] S. Schneider, C. Antonopoulos, and D. Nikolopoulos. Scalable locality-
conscious multithreaded memory allocation. In Proceedings of the 2006
International Symposium on Memory Management (ISMM ’06), pages
84–94. ACM, June 2006.

[26] H. Sundell. Efficient and Practical Non-Blocking Data Structures. PhD
thesis, Chalmers University of Technology, Nov. 2004.

[27] H. Sundell. Wait-free reference counting and memory management. In
Proceedings of the 19th International Parallel & Distributed Processing
Symposium (IPDPS ’05), page 24b. IEEE, Apr. 2005.

[28] H. Sundell and P. Tsigas. NOBLE: A non-blocking inter-process com-
munication library. In Proceedings of the 6th Workshop on Languages,
Compilers and Run-time Systems for Scalable Computers, 2002.

[29] H. Sundell and P. Tsigas. Lock-free and practical deques using single-
word compare-and-swap. In Proceedings of the 8th International
Conference on Principles of Distributed Systems (OPODIS ’04), volume
3544 of Lecture Notes in Computer Science, pages 240–255. Springer
Verlag, Dec. 2004.

[30] H. Sundell and P. Tsigas. Practical and lock-free doubly linked lists.
In Proceedings of the 2007 International Conference on Parallel and
Distributed Processing Techniques and Applications (PDPTA ’07), pages
264–270. CSREA Press, June 2007.

[31] J. D. Valois. Implementing lock-free queues. In Proceedings of the
Seventh International Conference on Parallel and Distributed Computing
Systems, pages 64–69, Oct. 1994.

[32] J. D. Valois. Lock-Free Data Structures. PhD thesis, Rensselaer
Polytechnic Institute, 1995.

Anders Gidenstam’s research interests include non-
blocking operating system services, concurrent data
structures and algorithms for multiprocessor and
multicore computers. He received a M.Sc. degree
in computer science and engineering in 2001 at
Chalmers University of Technology and in 2007
he received a Ph.D. degree in computer science
at the same university. He is currently a PostDoc
researcher at Max Planck Institute for Computer
Science, Saarbrücken, Germany.

Marina Papatriantafilou is an associate pro-
fessor at the Department of Computer Science
and Engineering, Chalmers University of Tech-
nology, Sweden. She received the Diploma and
PhD degrees from the Department of Computer
Engineering and Informatics, University of Patras,
Greece. She has also worked at the National Re-
search Institute for Mathematics and Computer Sci-
ence in the Netherlands (CWI), Amsterdam and
at the Max-Planck Institute for Computer Sci-
ence (MPII) Saarbruecken, Germany. She is in-

terested in research on distributed and multiprocessor computing, includ-
ing synchronization, communication/coordination, and networking issues
(http://www.cse.chalmers.se/˜ptrianta/).

Håkan Sundell’s main research interests are in
efficient shared data structures for practical multi-
thread programming on multiprocessor and multi-
core computers. He is known as a pioneer in the
Swedish IT-history with roots in the early 80’s
emerging programming community. He received
a M.Sc. degree in computer science in 1996 at
Göteborg University. Between the years 1995-1999
he worked as a senior consultant and systems pro-
grammer within the telecommunication and multi-
media industry. In 2004 he received a Ph.D. degree

in computer science at Chalmers University of Technology. At present he is a
senior lecturer at the School of Business and Informatics, University College
of Borås, Sweden.

Philippas Tsigas’ research interests include data
sharing for multiprocessor/multicore systems, inter-
process communication and coordination in parallel
systems, fault-tolerant computing, mobile comput-
ing and information visualization. He received a
BSc in Mathematics from the University of Patras,
Greece and a PhD in Computer Engineering and
Informatics from the same University. Philippas was
at the National Research Institute for Mathematics
and Computer Science, Amsterdam, the Netherlands
(CWI), and at the Max-Planck Institute for Com-

puter Science, Saarbrücken, Germany, before. At present he is an associate
professor at the Department of Computing Science at Chalmers University of
Technology, Sweden (www.cse.chalmers.se/˜tsigas).

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Authorized licensed use limited to: HOGSKOLAN I BORAS. Downloaded on May 14, 2009 at 03:01 from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

