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Abstract

We present an efficient and practical lock-free implementation of a concurrent priority queue that is suitable for both fully concurrent
(large multi-processor) systems as well as pre-emptive (multi-process) systems. Many algorithms for concurrent priority queues are based
on mutual exclusion. However, mutual exclusion causes blocking which has several drawbacks and degrades the overall performance of
the system. Non-blocking algorithms avoid blocking, and several implementations have been proposed. Previously known non-blocking
algorithms of priority queues did not perform well in practice because of their complexity, and they are often based on non-available atomic
synchronization primitives. Our algorithm is based on the randomized sequential list structure called Skiplist, and a real-time extension
of our algorithm is also described. In our performance evaluation we compare our algorithm with a well-representable set of earlier
known implementations of priority queues. The experimental results clearly show that our lock-free implementation outperforms the other
lock-based implementations in practical scenarios for 3 threads and more, both on fully concurrent as well as on pre-emptive systems.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Priority queues are fundamental data structures. From the
operating system level to the user application level, they
are frequently used as basic components. For example, the
ready-queue that is used in the scheduling of tasks in many
real-time systems can usually be implemented using a con-
current priority queue. Consequently, the design of efficient
implementations of priority queues is an area that has been
extensively researched. A priority queue supports two opera-
tions, theInsert and theDeleteMin operation. The abstract
definition of a priority queue is a set of key-value pairs,
where the key represents a priority. TheInsert operation

� This is an extended and revised version of the paper with the same
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paper award in the algorithms category.
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inserts a new key-value pair into the set, and theDeleteMin
operation removes and returns the value of the key-value pair
with the lowest key (i.e. highest priority) that was in the set.

To ensure consistency of a shared data object in a concur-
rent environment, the most common method is to use mu-
tual exclusion, i.e. some form of locking. Mutual exclusion
degrades the system’s overall performance[22] as it causes
blocking, i.e. other concurrent operations can not make any
progress while the access to the shared resource is blocked
by the lock. Using mutual exclusion can also cause dead-
locks, priority inversion (which can be solved efficiently on
uni-processors [23] with the cost of more difficult analysis,
although not as efficient on multiprocessor systems [21])
and even starvation.

To address these problems, researchers have proposed
non-blocking algorithms for shared data objects. Non-
blocking methods do not involve mutual exclusion, and
therefore do not suffer from the problems that blocking
can cause. Lock-free implementations are non-blocking
and guarantee that regardless of the contention caused
by concurrent operations and the interleaving of their
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sub-operations, always at least one operation will progress.
However, there is a risk for starvation as the progress of
other operations could cause one specific operation to never
finish. This is although different from the type of starvation
that could be caused by blocking, where a single operation
could block every other operation forever, and cause star-
vation of the whole system. Wait-free[10] algorithms are
lock-free and moreover they avoid starvation as well; in a
wait-free algorithm every operation is guaranteed to finish
in a limited number of steps, regardless of the actions of
the concurrent operations. Recently, researchers also include
obstruction-free [1] implementations to be non-blocking, al-
though this kind of implementation is weaker than lock-free
and thus does not guarantee progress of any concurrent op-
eration. Non-blocking algorithms have been shown to be of
big practical importance in real applications [30,31], and re-
cently NOBLE, which is a non-blocking inter-process com-
munication library, has been introduced [26].

There exist several algorithms and implementations of
concurrent priority queues. The majority of the algorithms
are lock-based, either with a single lock on top of a se-
quential algorithm, or specially constructed algorithms us-
ing multiple locks, where each lock protects a small part of
the shared data structure. Several different representations
of the shared data structure are used, for example: Hunt
et al. [14] presents an implementation which is based on
heap structures, Grammatikakis et al. [7] compares differ-
ent structures including cyclic arrays and heaps, and most
recently Lotan and Shavit [17] presented an implementa-
tion based on the skip list structure [20]. The algorithm by
Hunt et al. locks each node separately and uses a technique
to scatter the accesses to the heap, thus reducing the con-
tention. Its implementation is publicly available and its per-
formance has been documented on multi-processor systems.
Jones [16] also makes use of multiple locks, but implements
a fully dynamic tree structure, and tries to only lock the
part of the tree necessary at each moment in time. Lotan
and Shavit extend the functionality of the concurrent priority
queue and assume the availability of a global high-accuracy
clock. They apply a lock on each pointer, and as the multi-
pointer based skip list structure is used, the number of locks
is significantly more than the number of nodes. Its perfor-
mance has previously only been documented by simulation,
with very promising results. The algorithm by Shavit and
Zemach [24] is not addressed in this paper, as they imple-
ment a bounded1 priority queue, whereas we address the
general priority queues.

Israeli and Rappoport have presented a wait-free algo-
rithm for a concurrent priority queue [15]. This algorithm
makes use of strong atomic synchronization primitives2 that
have not been implemented in any currently existing plat-

1 The set of possible priorities is restricted.
2 The algorithm requires ideal implementations of the LL/VL/SC/SC&

V/SC2 atomic primitives which only exist as non-efficient software im-
plementations.

form. Greenwald has also presented an outline for a lock-
free priority queue[8] based on atomic primitives3 that are
not available in modern multiprocessor systems. However,
there exists an attempt for a wait-free algorithm by Barnes
[2] that uses existing atomic primitives, though this algo-
rithm does not comply with the generally accepted definition
of the wait-free property. The algorithm is not yet imple-
mented and the theoretical analysis predicts worse behavior
than the corresponding sequential algorithm, which makes
it not of practical interest.

One common problem with many algorithms for concur-
rent priority queues is the lack of precise defined semantics
of the operations. It is also seldom that the correctness with
respect to concurrency is proved, using a strong property
like linearizability [13].

In this paper, we present a lock-free algorithm of a concur-
rent priority queue that is designed for efficient use in both
pre-emptive as well as in fully concurrent environments. In-
spired by Lotan and Shavit [17], the algorithm is based on
the randomized skip list [20] data structure, but in contrast
to [17] it is lock-free. It is also implemented using common
synchronization primitives that are available in modern sys-
tems. The algorithm is described in detail later in this paper,
and the aspects concerning the underlying lock-free memory
management are also presented. The precise semantics of the
operations are defined and a proof is given that our imple-
mentation is lock-free and linearizable. We have performed
experiments that compare the performance of our algorithm
with a well representative set of earlier implementations of
concurrent priority queues known, i.e. the implementation
by Lotan and Shavit [17], Hunt et al. [14], and Jones [16].
Experiments were performed on three different platforms,
consisting of a multiprocessor system using different oper-
ating systems and equipped with 2, 6 or 29 processors. Our
results show that our algorithm outperforms the other lock-
based implementations in practical scenarios for 3 threads
and more, in both highly pre-emptive as well as in fully con-
current environments. We also present an extended version
of our algorithm that also addresses certain real-time aspects
of the priority queue as introduced by Lotan and Shavit [17].

The rest of the paper is organized as follows. In Section
2 we define the properties of the systems that our imple-
mentation is aimed for. The actual algorithm is described
in Section 3. In Section 4 we define the precise semantics
for the operations on our implementations, as well show-
ing correctness by proving the lock-free and linearizability
property. The experimental evaluation that shows the per-
formance of our implementation is presented in Section 5.
In Section 6 we extend our algorithm with functionality that
can be needed for specific real-time applications. We con-
clude the paper in Section 7.

3 The double-word compare-and-swap atomic primitive (CAS2) that
can atomically update two arbitrary memory words, has only been im-
plemented in hardware on the 680×0 architectures.
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Fig. 1. Shared memory multiprocessor system structure.

2. System description

A typical abstraction of a shared memory multi-processor
system configuration is depicted in Fig.1. Each node of the
system contains a processor together with its local memory.
All nodes are connected to the shared memory via an inter-
connection network. A set of co-operating tasks is running
on the system performing their respective operations. Each
task is sequentially executed on one of the processors, while
each processor can serve (run) many tasks at a time. The
co-operating tasks, possibly running on different processors,
use shared data objects built in the shared memory to co-
ordinate and communicate. Tasks synchronize their opera-
tions on the shared data objects through sub-operations on
top of a cache-coherent shared memory. The shared memory
might not be uniformly accessible for all nodes in the sys-
tem; processors can have different access times on different
parts of the memory.

3. Algorithm

The algorithm is based on the sequential skip list data
structure invented by Pugh [20]. This structure uses random-
ization and has a probabilistic time complexity ofO(log N)
whereN is the maximum number of elements in the list.
The data structure is basically an ordered list with randomly
distributed short-cuts in order to improve search times, see
Fig. 2. The maximum height (i.e. the maximum number of
next pointers) of the data structure is logN . The height of
each inserted node is randomized geometrically in the way
that 50% of the nodes should have height 1, 25% of the
nodes should have height 2 and so on. To use the data struc-
ture as a priority queue, the nodes are ordered in respect of
priority (which has to be unique for each node4 ), the nodes
with highest priority are located first in the list. The fields of
each node item are described in Fig. 3 as it is used in this im-
plementation. For all code examples in this paper, code that
is inside of small framed boxes are only used for the spe-
cial real-time5 version of our implementation that involves

4 In order to assign several objects the same priority, this limitation
can be overcome by building the priority (key) so that only some bits
represent the real priority and remaining bits are chosen in order to
achieve uniqueness.

5 In the sense that DeleteMin operations can only return items that
were fully inserted before the start of the DeleteMin operation.
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Fig. 2. The skip list data structure with 5 nodes inserted.

union Link
: word
〈p,d〉  :  〈pointer to Node,boolean〉 

union VLink
: word

 〈p,d〉  :  〈pointer to Value,boolean〉 

structure Node

key,level,validLevel ,timeInsert : integer
value :union VLink
next[level]: union Link
prev : pointer to Node

// Global variables
head, tail :pointer to Node
// Local variables (for all functions/procedures)
newNode, savedNodes[maxlevel] :pointer to Node
node1, node2, prev, last :pointer to Node
i, level : integer

function CreateNode(level:integer, key:integer,
value:pointer to Value):pointer to Node
C1 node:=MALLOC_NODE();
C2 node.prev:=NULL;
C3 node.validLevel:=0;
C4 node.level:=level;
C5 node.key:=key;
C6 node.value:= 〈value,false〉  ;
C7 return node;

Fig. 3. The basic algorithm details.

timestamps (see Section6), and are thus not included in the
standard version of the implementation.

In order to make the skip list construction concurrent and
non-blocking, we are using three of the standard atomic
synchronization primitives, Test-And-Set (TAS), Fetch-And-
Add (FAA) and Compare-And-Swap (CAS). Fig. 4 describes
the specification of these primitives which are available in
most modern platforms.

To insert or delete a node from the list we have to change
the respective set of next pointers. These have to be changed
consistently, but not necessary all at once. Our solution is
to have additional information in each node about its dele-
tion (or insertion) status. This additional information will
guide the concurrent processes that might traverse into one
partially deleted or inserted node. When we have changed
all necessary next pointers, the node is fully deleted or in-
serted. However, the node is interpreted to be inserted in
the abstract sense already when inserted at the lowest level.
Thus, insert and delete operations always start with updating
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function TAS(value:pointer to word ):boolean
atomic do

if *value=0 then
*value:=1;
return true ;

else return false;

procedure FAA(address:pointer to word , number:integer)
atomic do

*address := *address + number;

function CAS(address:pointer to word , oldvalue:word,
newvalue:word):boolean

atomic do
if *address = oldvaluethen

*address := newvalue;
return true ;

else return false;

Fig. 4. Definitions of the Test-And-Set (TAS), Fetch-And-Add (FAA) and
Compare-And-Swap (CAS) atomic primitives.
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Fig. 5. Concurrent inserting and deleting operations can accidentally delete
both nodes.

the lowest level first, and then continue with the remaining
consecutive levels. In order to improve the performance of
concurrent operations, we have chosen for the insert opera-
tion to update the remaining levels starting from the second
lowest level going upwards, and the opposite direction was
chosen for the delete operation.

One problem, that is general for non-blocking implemen-
tations that are based on the linked-list structure, arises when
inserting a new node into the list. Because of the linked-list
structure one has to make sure that the previous node is not
about to be deleted. If we are changing the next pointer of
this previous node atomically with CAS, to point to the new
node, and then immediately afterwards the previous node is
deleted—then the new node will be deleted as well, as illus-
trated in Fig.5. There are several solutions to this problem.
One solution is to use the CAS2 operation as it can change
two pointers atomically, but this operation is not available in
any modern multiprocessor system. A second solution is to
insert auxiliary nodes [32] between each two normal nodes,
and the latest method introduced by Harris [9] is to use one
bit of the pointer values as a deletion mark. On most mod-
ern 32-bit systems, 32-bit values can only be located at ad-
dresses that are evenly dividable by 4, therefore bits 0 and
1 of the address are always set to zero. The method is then
to use the previously unused bit 0 of the next pointer to
mark that this node is about to be deleted, using CAS. Any
concurrentInsert operation will then be notified about the
deletion, when its CAS operation will fail.

3.1. The basic steps of the algorithm

The main algorithm steps, for inserting a new node at an
arbitrary position in our skip list will thus be like follows: (I)
find the appropriate position (i.e. previous nodes) for insert-
ing the new node, (II) atomically update the next pointers of
the to-be-previous nodes starting with the lowest level and
continuing with the remaining levels in consecutive order.

The main steps of the algorithm for deleting a node at an
arbitrary position are the following: (I) find the appropriate
position (i.e. the node and previous nodes) for deleting, (II)
set the main deletion indication on the to-be-deleted node,
(III) set the deletion marks on the next pointers of the to-be-
deleted node starting with the lowest level and continuing
with the remaining levels in consecutive order, (IV) atomi-
cally update the next pointers of the previous nodes of the
to-be-deleted node starting with the lowest level and contin-
uing with the remaining levels in consecutive order from the
topmost level. As will be shown later in the detailed descrip-
tion of the algorithm, helping techniques need to be applied
in order to achieve the lock-free property, following the same
steps as the main algorithm for inserting and deleting.

3.2. Memory management

As we are concurrently (with possible preemptions)
traversing nodes that will be continuously allocated and
reclaimed, we have to consider several aspects of memory
management. No node should be reclaimed and then later
re-allocated while some other process is (or will be) travers-
ing that node. For efficiency reasons we also need to be
able to trust the prev pointers of deleted nodes, as we would
otherwise be forced to re-start the traversing from the head
node whenever reaching a deleted node while traversing
and possibly incur severe performance penalties. This need
is especially important for operations that try to help other
delete operations in progress. Our demands on the memory
management therefore rules out the SMR or ROP methods
by Michael [18] and Herlihy et al. [12], respectively, as
they can only guarantee a limited number of nodes to be
safe, and these guarantees are also related to individual
threads and never to an individual node structure. However,
stronger memory management schemes as for example ref-
erence counting would be sufficient for our needs. There
exists a general lock-free reference counting scheme by
Detlefs et al. [3], though based on the non-available CAS2
atomic primitive.

For our implementation, we selected the lock-free mem-
ory management scheme invented by Valois [32] and cor-
rected by Michael and Scott [19], which makes use of the
FAA and CAS atomic synchronization primitives. Using this
scheme we can assure that a node can only be reclaimed
when there is no prev pointer in the list or a local pointer
variable that points to it. A general problem with reference
counting, is that it can not handle cyclic garbage (i.e. 2 or
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more nodes that should be recycled but reference each other,
and therefore each node keeps a positive reference count, al-
though they are not referenced by the main structure). How-
ever, this is not a problem with our solution, as we only ref-
erence count prev pointers, and not the next pointers as we
never need to traverse the next pointers of a deleted node.

The memory management scheme should also support
means to de-reference pointers safely. If we simply de-
reference a next pointer using the means of the programming
language, it might be that the corresponding node has been
reclaimed before we could access it. It can also be that the
deletion mark that is connected to the next pointer was set,
thus marking that the node is deleted. The scheme by Val-
ois et al. supports lock-free pointer de-referencing and can
easily be adopted to handle deletion marks.

The following functions are defined for safe handling of
the memory management:

function MALLOC_NODE() :pointer to Node
function READ_NODE(address:pointer to Link) :pointer to Node
function COPY_NODE(node:pointer to Node) :pointer to Node
procedure RELEASE_NODE(node:pointer to Node)

The functionsREAD_NODE atomically de-references
the given link and increases the reference counter for the
corresponding node. In case the deletion mark of the link
is set, theREAD_NODE function then returns NULL. The
functionMALLOC_NODE allocates a new node from the
memory pool and returns a corresponding pointer with a
reference count of one. The functionRELEASE_NODE
decrements the reference counter on the corresponding given
node. If the reference counter reaches zero, the function will
recursively callRELEASE_NODE on the nodes that this
node has owned pointers to (i.e. the prev pointer), and then
it reclaims the node. TheCOPY_NODE function increases
the reference counter for the corresponding given node.

As the details of how to efficiently apply the memory man-
agement scheme to our basic algorithm are not always triv-
ial, we will provide a detailed description of them together
with the detailed algorithm description in this section.

3.3. Traversing

While traversing the nodes, processes will eventually
reach nodes that are marked to be deleted. As the process
that invoked the corresponding delete (e.g.DeleteMin)
operation might be pre-empted, that delete operation has
to be helped to finish before the traversing process can
continue. However, it is only necessary to help the part of
the delete operation on the current level in order to be able
to traverse to the next node. The functionReadNext , see
Fig. 6, traverses to the next node ofnode1on the given level
while helping (and then setsnode1to the previous node of
the helped one) any marked nodes in between to finish the
deletion. The functionScanKey , see Fig. 6, traverses in
several steps through the next pointers (starting fromnode1)

function ReadNext(node1:pointer to pointer to Node,
level:integer):pointer to Node
R1 if (*node1).value.d=true then
R2 *node1:=HelpDelete(*node1,level);
R3 node2:=READ_NODE((*node1).next[level]);
R4 while node2=NULLdo
R5 *node1:=HelpDelete(*node1,level);
R6 node2:=READ_ NODE((*node1).next[level]);
R7 return node2;

function ScanKey(node1:pointer to pointer to Node,
level:integer, key:integer):pointer to Node
S1 node2:=ReadNext(node1,level);
S2 while node2.key < keydo
S3 RELEASE_NODE(*node1);
S4 *node1:=node2;
S5 node2:=ReadNext(node1,level);
S6 return node2;

Fig. 6. Functions for traversing and searching for nodes in the skip list
data structure.

at the current level until it finds a node that has the same or
higher key (priority) value than the given key. It also sets
node1to be the previous node of the returned node.

3.4. Inserting and deleting nodes

The implementation of theInsert operation, see Fig.7,
starts in lines I2–I4 with creating the new node (newNode)
and choosing its height (level) by calling therandomLevel
function. This function roughly simulates a repeated coin
tossing, counting the number of times (up to the maximum
level) the upper (or lower if that was chosen) side of the
coin turns up from the start of the function, thus giving
the distribution associated with the skip list [20]. In lines
I5–I11 the implementation continues with a search phase
to find the node after whichnewNodeshould be inserted.
This search phase starts from the head node at the highest
level and traverses down to the lowest level until the correct
node is found (node1). When going down one level, the last
node traversed on that level is remembered (savedNodes)
for later use (this is where we should insert the new node
at that level). Now it is possible that there already exists
a node with the same priority as of the new node, this is
checked in lines I12–I24, the value of the old node (node2)
is changed atomically with a CAS. Otherwise, in lines I25–
I42 it starts trying to insert the new node starting with the
lowest level and increasing up to the level of the new node.
The next pointers of the nodes (to become previous) are
changed atomically with a CAS. After the new node has been
inserted at the lowest level, it is possible that it is deleted
by a concurrent delete (e.g.DeleteMin) operation before it
has been inserted at all levels, and this is checked in lines
I38 and I44.

The RemoveNode procedure, see Fig. 8, removes the
givennodefrom the linked list structure at the givenlevel,
using a given hintprevfor the previous node. It first searches
for the right position of the previous node according to the
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function Insert(key:integer, value:pointer to Value):
boolean

I1 TraverseTimeStamps();

I2 Choose level randomly according to the skip list
distribution

I3 newNode:=CreateNode(level,key,value);
I4 COPY_NODE(newNode);
I5 node1:=COPY_ NODE(head);
I6 for i:=maxLevel-1to 1 step-1 do
I7 node2:=ScanKey(&node1,i,key);
I8 RELEASE_NODE(node2);
I9 if i< level then savedNodes[i]:=

COPY_ NODE(node1);
I10 while true do
I11 node2:=ScanKey(&node1,0,key);
I12  〈value2,d〉  :=node2.value;
I13 if d=false andnode2.key=keythen
I14 if CAS(&node2.value, 〈value2,false〉  ,

 〈value,false〉  ) then
I15 RELEASE_NODE(node1);
I16 RELEASE_NODE(node2);
I17 for i:=1 to level-1do
I18 RELEASE_NODE(savedNodes[i]);
I19 RELEASE_NODE(newNode);
I20 RELEASE_NODE(newNode);
I21 return true2;
I22 else
I23 RELEASE_NODE(node2);
I24 continue;
I25 newNode.next[0]:= 
I26 RELEASE_NODE(node2);
I27 if CAS(&node1.next[0], 〈node2,false〉  ,

〈node2,false〉  ,

 〈newNode,false〉  ) then
I28 RELEASE_NODE(node1);
I29 break;
I30 Back-Off
I31 for i:=1 to level-1do
I32 newNode.validLevel:=i;
I33 node1:=savedNodes[i];
I34 while true do
I35 node2:=ScanKey(&node1,i,key);
I36 newNode.next[i]:= 〈node2,false〉  ;
I37 RELEASE_NODE(node2);
I38 if newNode.value.d=true or

CAS(&node1.next[i],node2,newNode)then
I39 RELEASE_NODE(node1);
I40 break;
I41 Back-Off
I42 newNode.validLevel:=level;

I43 newNode.timeInsert:=getNextTimeStamp();

I44 if newNode.value.d=true then newNode:=
HelpDelete(newNode,0);

I45 RELEASE_NODE(newNode);
I46 return true ;

Fig. 7. The algorithm for theInsert operation that inserts a new node
into the skip list data structure.

key of node in line RN3. It verifies in line RN5 thatnode
is still part of the linked list structure at the present level.
In line RN6 it tries to removenodeby changing the next
pointer of the previous node using the CAS sub-operation.
If the CAS failed, possibly because of concurrent changes to
theprevnode, the whole procedure retries. As this procedure
can be invoked concurrently on the same node argument,
it synchronizes with the possibly other invocations in lines

procedure RemoveNode(node:pointer to Node,
prev: pointer to pointer to Node, level:integer)

RN1 while true do
RN2 if node.next[level]= 〈NULL, true〉  then break;
RN3 last:=ScanKey(prev,level,node.key);
RN4 RELEASE_NODE(last);
RN5 if last=nodeor node.next[level]= 〈NULL, true〉  

then break;
RN6 if CAS(&(*prev).next[level], 〈node,false〉  ,

 〈node.next[level].p,false〉  ) then
RN7 node.next[level]:= 〈NULL, true〉 ;
RN8 break;
RN9 if node.next[level]= 〈NULL, true〉 then break;
RN10 Back-Off

Fig. 8. The algorithm for theRemoveNode procedure that removes an
arbitrary node in the skip list data structure at a given level.

function DeleteMin():pointer to Node

D1 TraverseTimeStamps();

D2 time:=getNextTimeStamp();

D3 prev:=COPY_ NODE(head);
D4 while truedo
D5 node1:=ReadNext(&prev,0);
D6 if node1=tailthen
D7 RELEASE_ NODE(prev);
D8 RELEASE_ NODE(node1);
D9 return NULL;

retry:
D10  〈value,d〉  

 

:=node1.value;
D11 if node1 = prev.next[0].pthen
D12 RELEASE_NODE(node1);
D13 continue;

D14 if d=false and compareTimeStamp(time,

node1.timeInsert)> 0 then
D15 if CAS(&node1.value, 〈value,false〉  ,

 〈node2,false〉  ,

 〈value,
true〉  ) then

D16 node1.prev:=prev;
D17 break;
D18 else gotoretry;
D19 elsed=true then
D20 node1:=HelpDelete(node1,0);
D21 RELEASE_NODE(prev);
D22 prev:=node1;
D23 for i:=0 to node1.level-1do
D24 repeat
D25  〈node2,d〉 :=node1.next[i];
D26 until d= true or CAS(&node1.next[i], 

 〈node2,true〉  );
D27 prev:=COPY_NODE(head);
D28 for i:=node1.level-1to 0 step-1 do
D29 RemoveNode(node1,&prev,i);
D30 RELEASE_NODE(prev);
D31 RELEASE_NODE(node1);
D32 RELEASE_NODE(node1); /* Delete the node */
D33 return value;

Fig. 9. The algorithm for theDeleteMin operation that removes the first
node in the skip list data structure.

RN2, RN5, RN7 and RN9 in order to avoid executing sub-
operations that have already been performed.

The DeleteMin operation, see Fig.9, starts from the
head node and finds the first node (node1) in the list that
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function HelpDelete(node:pointer to Node,
level:integer):pointer to Node
H1 for i:=level to node.level-1do
H2 repeat
H3  〈node2,d〉  :=node.next[i];
H4 until d= true or CAS(&node.next[i], 〈node2,false〉, 

 〈node2,true〉  );
H5 prev:=node.prev;
H6 if not prevor level    > prev.validLevel then
H7 prev:=COPY_NODE(head);
H8 for i:=maxLevel-1to level step-1 do
H9 node2:=ScanKey(&prev,i,node.key);
H10 RELEASE_NODE(node2);
H11 elseCOPY_NODE(prev);
H12 RemoveNode(node,&prev,level);
H13 RELEASE_NODE(node);
H14 return prev;

-

Fig. 10. The algorithm for theHelpDelete procedure that help concurrent
delete operations to finish.

does not have its deletion mark on the value set, see lines
D3–D15. It tries to set this deletion mark in line D15 us-
ing the CAS primitive, and if it succeeds it also writes a
valid pointer to the prev field of the node. This prev field
is necessary in order to increase the performance of con-
currentHelpDelete functions, these operations otherwise
would have to search for the previous node in order to com-
plete the deletion. The next step is to mark the deletion bits
of the next pointers in the node, starting with the lowest
level and going upwards, using the CAS primitive in each
step, see lines D23–D26. Afterwards in lines D27–D29 it
starts the actual deletion by calling theRemoveNode pro-
cedure, starting at the highest level and continuing down-
wards. The reason for doing the deletion in decreasing order
of levels is that concurrent search operations also start at the
highest level and proceed downwards, in this way the con-
current search operations will sooner avoid traversing this
node.

3.5. Helping

The algorithm has been designed for pre-emptive as well
as fully concurrent systems. In order to achieve the lock-free
property (that at least one thread is doing progress) on pre-
emptive systems, whenever a search operation finds a node
that is about to be deleted, it calls theHelpDelete function
and then proceeds searching from the previous node of the
deleted. TheHelpDelete function, see Fig.10, tries to fulfill
the deletion on the current level and returns a reference to
the previous node when the deletion is completed. It starts
in lines H1–H4 with setting the deletion mark on all next
pointers in case they have not been set. In lines H5–H6 it
checks if the node given in the prev field is valid for deletion
on the current level, otherwise it searches for the correct
previous node (prev) in lines H7–H10. The actual deletion
of this node on the current level takes place in line H12 by
calling theRemoveNode procedure.

In fully concurrent systems though, the helping strategy
can downgrade the performance significantly. Therefore the
algorithm, after a number of consecutive failed attempts
to help concurrentDeleteMin operations that hinders the
progress of the current operation, puts the operation into
back-off mode. When in back-off mode, the thread does
nothing for a while, and in this way avoids disturbing the
concurrent operations that might otherwise progress slower.
The duration of the back-off is proportional to the number of
threads, and for each consecutive entering of back-off mode
during one operation invocation, the duration is increased
exponentially.

3.6. Use with other memory management schemes

As described earlier we have chosen the lock-free ref-
erence counting method by Valois[32] and Michael and
Scott [19], because this was the only practical and lock-free
garbage collection scheme that could enable the algorithm
to avoid restarts from the head node when traversing through
the skip list. This feature is very important for scalability
with respect to increasing concurrency, as the number of
concurrent deletions of nodes in the skip list will then also
increase.

However, if we can sacrifice this feature of our algorithm
that allows better scalability, and instead always restart from
the head node when reaching a node marked as deleted while
traversing, other memory management schemes could be
applied. As we then no longer would need to be able to
guarantee safety of the prev pointer of a deleted node, the
SMR [18] or ROP [12] schemes could be applied. The hazard
pointer style of garbage collection can guarantee that all
local pointers to nodes that each process holds will not be
reclaimed for reuse until the corresponding hazard pointer
is cleared.

The needed main modification of our algorithm would
simply be to remove line D16, so that the prev pointer
is never set. All local variables that point to nodes, in-
cluding the savedNodes array, need to be associated with
corresponding hazard pointers. Thus, the interface to the
new memory management is done as before through the
MALLOC_NODE, READ_NODE, COPY_NODEandRE-
LEASE_NODE functions. The READ_NODE function
should de-reference a pointer and set the corresponding
hazard pointer, unless the pointer was marked when the
function instead returns NULL. TheCOPY_NODEfunction
could be implemented by copying the corresponding hazard
pointer to another one, though most of the time it can be
optimized to be obsolete. TheRELEASE_NODEfunction is
simply implemented by clearing the corresponding hazard
pointer, and subsequent calls can mostly be optimized to be
obsolete. Care must be taken for functions that returns safe
pointers, such asHelpDelete, so that the calling functions
know which particular hazard pointer that is associated with
the corresponding pointer.
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3.7. Related work with skip lists

This paper describes the first6 lock-free algorithm of a
skip list data structure. Very similar constructions have ap-
peared in the literature afterwards, by Fraser [6], Fomitchev
[4] and Fomitchev and Ruppert [5]. As both Fraser’s and
Fomitchev’s constructions appeared quite some time later
in the literature than ours, it was not possible to compare
them in our original publications. However, we have recently
studied the other’s approaches and have found some sig-
nificant differences, although the main ideas are essentially
the same. The differences are mainly related to performance
issues:

• Compared to Fraser’s approach, our skip list construc-
tion does not suffer from possible restarts of the full
search phase from the head level when reaching a deleted
node, as our nodes also contains a backlink pointer that
is set at the time of deletion. This enables us to step
one step backwards when reaching a deleted node, and
to directly remove the deleted node. Both Fraser’s and
our construction uses arrays for remembering positions,
though Fraser unnecessarily remembers also the succes-
sor on each level which could incur performance penal-
ties through the garbage collector used.

• Compared to Fomitchev’s and Fomitchev and Ruppert’s
approach, their construction does not use an array for re-
membering positions, which forces their construction to
perform two full search phases when inserting or delet-
ing nodes. In addition to have backlink pointers in or-
der to be able to step back when reaching a deleted
node, their construction also uses an extra pointer mark
that is set (using an extra and expensive CAS opera-
tion) on the predecessor node in order to earlier notify
concurrent operations of the helping duty. In our con-
struction we only have one backlink pointer for all lev-
els of a node, because of a performance trade-off be-
tween the usefulness for helping operations and the cost
that keeping extra pointers could incur for the garbage
collection.

4. Correctness

In this section we present the proof of our algorithm. We
first prove that our algorithm is linearizable[13] and then
that it is lock-free. A set of definitions that will help us
to structure and shorten the proof is first explained in this
section. We start by defining the sequential semantics of our

6 Our results were submitted for reviewing in October 2002 and pub-
lished as a technical report[27] in January 2003. It was officially pub-
lished in April 2003[28], receiving a best paper award, and an extended
version was also published in March 2004[29]. Very similar construc-
tions have appeared in the literature afterwards, by Fraser in February
2004 [6], Fomitchev in November 2003[4] and Fomitchev and Ruppert
in July 2004[5].

operations and then introduce two definitions concerning
concurrency aspects in general.

Definition 1. We denote withLt the abstract internal state
of a priority queue at the timet . Lt is viewed as a set of
pairs 〈p, v〉 consisting of a unique priorityp anda corre-
sponding valuev. The operations that can be performed on
the priority queue areInsert (I ) andDeleteMin (DM). The
time t1 is defined as the time just before the atomic execu-
tion of the operation that we are looking at, and the time
t2 is defined as the time just after the atomic execution of
the same operation. The return value oftrue2 is returned by
an Insert operation that has succeeded to update an exist-
ing node, the return value oftrue is returned by anInsert
operation that succeeds to insert a new node. In the follow-
ing expressions that defines the sequential semantics of our
operations, the syntax isS1 : O1, S2, whereS1 is the condi-
tional state before the operationO1, andS2 is the resulting
state after performing the corresponding operation:

〈p1,_〉 /∈ Lt1 : I1(〈p1, v1〉) = true,

Lt2 = Lt1 ∪ {〈p1, v1〉}, (1)

〈p1, v11〉 ∈ Lt1 : I1(〈p1, v12〉) = true2,

Lt2 = Lt1 \ {〈p1, v11〉} ∪ {〈p1, v12〉}, (2)

〈p1, v1〉 = {〈minp, v〉|〈p, v〉 ∈ Lt1}
: DM1() = 〈p1, v1〉, Lt2 = Lt1 \ {〈p1, v1〉}, (3)

Lt1 = ∅ : DM1() = ⊥. (4)

Definition 2. In a global time model each concurrent oper-
ationOp “occupies” a time interval[bOp, fOp] on the linear
time axis (bOp < fOp). The precedence relation (denoted
by ‘→’) is a relation that relates operations of a possible
execution,Op1 → Op2 means thatOp1 ends beforeOp2
starts. The precedence relation is a strict partial order. Op-
erations incomparable under→ are calledoverlapping. The
overlapping relation is denoted by‖ and is commutative, i.e.
Op1 ‖ Op2 andOp2 ‖ Op1. The precedence relation is ex-
tended to relate sub-operations of operations. Consequently,
if Op1 → Op2, then for any sub-operationsop1 and op2
of Op1 andOp2, respectively, it holds thatop1 → op2. We
also define the direct precedence relation→d , such that if
Op1→dOp2, thenOp1 → Op2 and moreover there exists no
operationOp3 such thatOp1 → Op3 → Op2.

Definition 3. In order for an implementation of a shared
concurrent data object to be linearizable[13], for every con-
current execution there should exist an equal (in the sense of
the effect) and valid (i.e. it should respect the semantics of
the shared data object) sequential execution that respects the
partial order of the operations in the concurrent execution.
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Next we are going to study the possible concurrent exe-
cutions of our implementation. First we need to define the
interpretation of the abstract internal state of our implemen-
tation.

Definition 4. The pair〈p, v〉 is present (〈p, v〉 ∈ L) in the
abstract internal stateL of our implementation, when there
is a next pointer from a present node on the lowest level
of the skip list that points to a node that contains the pair
〈p, v〉, and this node is not marked as deleted with the mark
on the value.

Lemma 1. The definition of the abstract internal state for
our implementation is consistent with all concurrent opera-
tions examining the state of the priority queue.

Proof. As the next and value pointers are changed using the
CAS operation, we are sure that all threads see the same
state of the skip list, and therefore all changes of the abstract
internal state will appear to be atomic.�

Definition 5. The decision point of an operation is defined
as the atomic statement where the result of the operation is
finitely decided, i.e. independent of the result of any sub-
operations after the decision point, the operation will have
the same result. We define the verification point of an op-
eration to be the atomic statement where a sub-state of the
priority queue is read, and this sub-state is verified to have
certain properties before the passing of the decision point.
We also define the state-change point as the atomic state-
ment where the operation changes the abstract internal state
of the priority queue after it has passed the corresponding
decision point.

We will now use these points in order to show the exis-
tence and location in execution history of a point where the
concurrent operation can be viewed as it occurred atomi-
cally, i.e. thelinearizability point.

Lemma 2. An Insert operation which succeeds(I (〈p, v〉)
= true), takes effect atomically at one statement.

Proof. The decision point for anInsert operation which
succeeds (I (〈p, v〉) = true), is when the CAS sub-
operation in line I27 (see Fig.7) succeeds, all following
CAS sub-operations will eventually succeed, and theIn-
sert operation will finally returntrue. The state of the
list (Lt1) directly before the passing of the decision point
must have been〈p,_〉 /∈ Lt1, otherwise the CAS would
have failed. The state of the list directly after passing the
decision point will be〈p, v〉 ∈ Lt2. Consequently, the lin-
earizability point will be the CAS sub-operation in line
I27, as this statement will then match the semantics in
Eq. (1). �

Lemma 3. AnInsert operation which updates(I (〈p, v〉) =
true2), takes effect atomically at one statement.

Proof. The decision point for anInsert operation which
updates (I (〈p, v〉) = true2), is when the CAS will succeed
in line I14. The state of the list (Lt1) directly before pass-
ing the decision point must have been〈p,_〉 ∈ Lt1, other-
wise the CAS would have failed. The state of the list di-
rectly after passing the decision point will be〈p, v〉 ∈ Lt2.
Consequently, the linearizability point will be the CAS sub-
operation in line I14, as this statement will then match the
semantics in Eq.2. �

Lemma 4. A DeleteMin operations which fails(DM() =
⊥), takes effect atomically at one statement.

Proof. The decision point for anDeleteMin operations
which fails (DM() = ⊥), is when the hidden read sub-
operation of theReadNextsub-operation in line D5 suc-
cessfully reads the next pointer on lowest level that equals
the tail node. The state of the list (Lt ) directly before the
passing of the decision point must have beenLt = ∅.
Consequently, the linearizability point will be the hidden
read sub-operation of the next pointer in line D5, as this
statement will then match the semantics in Eq. (4). �

Lemma 5. A DeleteMin operation which succeeds
(DM() = 〈p1, v1〉 where 〈p1, v1〉 = {〈minp, v〉|〈p, v〉 ∈
Lt1}), takes effect atomically at one statement.

Proof. The decision point for anDeleteMin operation
which succeeds is when the CAS sub-operation in line
D15 (see Fig.9) succeeds. The state of the list (Lt ) di-
rectly before passing of the decision point must have been
〈p1, v1〉 ∈ Lt3, otherwise the CAS would have failed. The
state of the list directly after passing the CAS sub-opertion
in line D15 (i.e. the state-change point) will be〈p,_〉 /∈ Lt4.
The state of the list at the time of the read sub-operation of
the next pointer in D11 (i.e. the verification point) must have
been〈p1, v1〉 = {〈minp, v〉|〈p, v〉 ∈ Lt1}. Unfortunately
this does not completely match the semantic definition of
the operation in Eq. (3).

However, none of the other concurrent operations lineariz-
ability points is dependent on the to-be-deleted node’s state
as marked or not marked during the time interval from the
verification point to the state-change point. Clearly, the lin-
earizability points of Lemma 2 is independent during this
time interval, as the to-be-deleted node must be different
from the corresponding〈p, v〉 term, as Lemma 2 views the
to-be-deleted node as present during the time interval. The
linearizability point of Lemma 3 is independent during the
time interval, as the to-be-deleted node must be different
from the corresponding〈p, v〉 term, otherwise the CAS sub-
operation in line D15 of this operation would have failed.
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The linearizability point of Lemma4 is independent, as that
linearizability point depends on the head node’s next pointer
pointing to the tail node or not. Finally, the linearizability
point of this lemma is independent, as the to-be-deleted node
would be different from the corresponding〈p1, v1〉 term,
otherwise the CAS sub-operation in line D15 of this opera-
tion invocation would have failed.

Therefore all together, we could safely interpret the to-be-
deleted node to be not present already directly after passing
the verification point (〈p,_〉 /∈ Lt2). Consequently, the lin-
earizability point will be the read sub-operation of the next
pointer in line D11, as this statement will then match the
semantics in Eq. (3). �

Definition 6. We define the relation⇒ as the total order
and the relation⇒d as the direct total order between all
operations in the concurrent execution. In the following for-
mulas,E1 �⇒ E2 means that ifE1 holds thenE2 holds
as well, and⊕ stands for exclusive or (i.e.a ⊕ b means
(a ∨ b) ∧ ¬(a ∧ b)):

Op1 →d Op2,�Op3.Op1 ⇒d Op3,

�Op4.Op4 ⇒d Op2 �⇒ Op1 ⇒d Op2 (5)

Op1 ‖ Op2 �⇒
Op1 ⇒d Op2 ⊕ Op2 ⇒d Op1, (6)

Op1 ⇒d Op2 �⇒ Op1 ⇒ Op2, (7)

Op1 ⇒ Op2,Op2 ⇒ Op3 �⇒ Op1 ⇒ Op3. (8)

Lemma 6. The operations that are directly totally ordered
using formula5, form an equivalent valid sequential execu-
tion.

Proof. If the operations are assigned their direct total order
(Op1 ⇒d Op2) by formula 5 then also the linearizability
points ofOp1 are executed before the respective points of
Op2. In this case the operations semantics behave the same as
in the sequential case, and therefore all possible executions
will then be equivalent to one of the possible sequential
executions. �

Lemma 7. The operations that are directly totally ordered
using formula6 can be ordered unique and consistent, and
form an equivalent valid sequential execution.

Proof. Assume we order the overlapping operations accord-
ing to their linearizability points. As the state before as
well as after the linearizability points is identical to the
corresponding state defined in the semantics of the respec-
tive sequential operations in Eqs. (1)–(4), we can view the
operations as occurring at the linearizability point. As the

linearizability points consist of atomic operations and are
therefore ordered in time, no linearizability point can occur
at the very same time as any other linearizability point, there-
fore giving a unique and consistent ordering of the overlap-
ping operations. �

Lemma 8. With respect to the retries caused by synchro-
nization, one operation will always do progress regardless
of the actions by the other concurrent operations.

Proof. We now examine the possible execution paths of our
implementation. There are several potentially unbounded
loops that can delay the termination of the operations. We
call these loops retry-loops. If we omit the conditions that are
because of the operations semantics (i.e. searching for the
correct position etc.), the retry-loops take place when sub-
operations detect that a shared variable has changed value.
This is detected either by a subsequent read sub-operation
or a failed CAS. These shared variables are only changed
concurrently by other CAS sub-operations. According to the
definition of CAS, for any number of concurrent CAS sub-
operations, exactly one will succeed. This means that for
any subsequent retry, there must be one CAS that succeeded.
As this succeeding CAS will cause its retry loop to exit,
and our implementation does not contain any cyclic depen-
dencies between retry-loops that exit with CAS, this means
that the correspondingInsert or DeleteMin operation will
progress. Consequently, independent of any number of con-
current operations, one operation will always progress.�

Theorem 1. The algorithm implements a lock-free and lin-
earizable priority queue.

Proof. Following from Lemmas6 and 7 and using the di-
rect total order we can create an identical (with the same
semantics) sequential execution that preserves the partial or-
der of the operations in a concurrent execution. Following
from Definition 3, the implementation is therefore lineariz-
able. As the semantics of the operations are basically the
same as in the skip list [20], we could use the corresponding
proof of termination. This together with Lemma 8 and that
the state is only changed at one atomic statement (Lemmas
1, 2, 3, 5, 4), gives that our implementation is lock-free.�

5. Experiments

We have performed experiments using 1 up to 28 threads
on three different platforms, each with different levels of
real concurrency, architecture and operating system. Besides
our implementation, we also performed the same experi-
ments with four lock-based implementations. These are; (1)
a single-lock protected skip list, (2) the implementation us-
ing multiple locks and skip lists by Lotan and Shavit [17],
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Fig. 11. Experiment with priority queues and low or medium concurrency, with initial 100 or 1000 nodes, using spinlocks for mutual exclusion.

(3) the heap-based implementation using multiple locks by
Hunt et al.[14], and (4) the tree-based implementation by
Jones [16]. As Lotan and Shavit implements the real-time
properties as presented in Section 6 but Hunt et al. does not,
we used both the ordinary as well the real-time version of
our implementation.

The key values of the inserted nodes are randomly cho-
sen between 0 and 1,000,000∗ n, wheren is the number of
threads. Each experiment is repeated 50 times, and an aver-
age execution time for each experiment is estimated. Exactly
the same sequential operations are performed for all differ-
ent implementations compared. A clean-cache operation is
performed just before each sub-experiment. All implemen-
tations are written in C and compiled with the highest op-
timization level, except from the atomic primitives, which
are written in assembler.

5.1. Low or medium concurrency

To get a highly pre-emptive environment, we performed
our experiments on a Compaq dual-processor Pentium II
450 MHz PC running Linux. A set of experiments was
also performed on a Sun Ultra 880 with 6 processors run-
ning Solaris 9. In our experiments each concurrent thread
performs 10,000 sequential operations, randomly chosen
with a distribution of 50%Insert operations versus 50%

DeleteMin operations. The dictionaries are initialized with
100 or 1000 nodes before the start of the experiments. The
implementation by Jones uses system semaphores for the
mutual exclusion. All other lock-based implementations
were evaluated using simple spin-locks,7 and as well using
system semaphores. The results from these experiments
are shown in Fig. 11 for the spinlock-based implementa-
tions and in Fig. 12 for the semaphore-based, both together
with the new lock-free implementation. The average ex-
ecution time is drawn as a function of the number of
threads.

5.2. Full concurrency

In order to evaluate our algorithm with full concurrency
we also used a SGI Origin 2000 250 MHz system run-
ning Irix 6.5 with 29 processors. With the exception for the
implementation by Jones which can only use semaphores,
all lock-based implementations were only evaluated using
simple spin-locks, as those are always more efficient than

7 The spin-locks used in our experiments are of the “Test and Test-And-
Set” type, which means that they only execute the TAS atomic primitive
after having read the lock variable to be zero. In common shared memory
architectures as such based on cache coherence protocols, this means that
the spinning will normally be done locally on the cache contents.
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Fig. 13. Experiment with priority queues and full concurrency, running with average 100 or 1000 nodes.

semaphores on fully concurrent systems. In the first exper-
iments each concurrent thread performs 10,000 sequential
operations, randomly chosen with a distribution of 50%In-
sert operations versus 50%DeleteMin operations, oper-
ating on dictionaries that are initialized with 100 or 1000
nodes. The results from these experiments are shown in Fig.
13. The average execution time is drawn as a function of the
number of threads.

For the two implementations of our algorithm we also
ran experiments, where the dictionaries were initialized with

100, 200, 500, 1000, 2000, 5000 or 10,000 nodes. The results
from these experiments are shown in Fig.14. The average
execution time is drawn as a function of the number of
threads.

In order to examine the scalability with respect to size
in the non contended or low concurrency situations for all
included implementations, we ran experiments with 1 or 2
threads, where the dictionaries were initialized with 100,
200, 500, 1000, 2000, 5000 or 10,000 nodes. The results
from these experiments are shown in Fig. 15. The average
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Fig. 15. Experiment with priority queues and no or low concurrency, running with average 100–10,000 nodes.

execution time is drawn as a function of the average number
of nodes.

We have also performed experiments with altered distri-
bution of Insert operations, varied between 10% upto 90%.
For the distribution of 10–40% inserts the dictionary was
initialized with 1000 nodes, and for 60–90% inserts the dic-
tionary was initialized as empty. The results from these ex-
periments are shown in Figs.16 and 17. The average execu-
tion time is drawn as a function of the number of threads.

5.3. Results

From the results we can conclude that all of the implemen-
tations scale similarly with respect to the average size of the
queue. The implementation by Lotan and Shavit [17] scales
linearly with respect to increasing number of threads when
having full concurrency, although when exposed to pre-
emption its performance is highly dependent on the usage
of semaphores, with simple spin-locks the performance de-
creases very rapidly. The implementation by Hunt et al. [14]
shows better but similar behavior for full concurrency. How-
ever, it is instead severely punished by using semaphores
on systems with pre-emption, because of its built-in con-

tention management mechanism that was designed for sim-
pler locks. The single-lock protected skip list performs bet-
ter than both Lotan and Shavit and Hunt et al. in all sce-
narios, using either semaphores or simple spin-locks. The
implementation by Jones[16] shows a performance slightly
worse or better than the single-lock skip list when exposed
to pre-emption, though for full concurrency the performance
decreases almost to the implementation by Lotan and Shavit,
because of the high overhead connected with semaphores.

Our lock-free implementation scales best compared to all
other involved implementations except the single-lock skip
list, having best performance already with 3 threads, inde-
pendently if the system is fully concurrent or involves pre-
emptions. Compared to the single-lock skip list, our lock-
free implementation performs closely or slightly better for
full concurrency, though having rapidly better performance
with increasing level of pre-emption. Clearly, our lock-free
implementation retains the logarithmic time complexity with
respect to the size. However, the normal and real-time ver-
sions of our implementation show slightly different behav-
ior, due to several competing time factors. The factors are
among many; (i) the real-time version can mark nodes as
deleted in parallel, (ii) with larger sizes the accesses get
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Fig. 16. Experiment with priority queues and full concurrency, varying percentage (between 10 and 40 %) of insert operations, with initial 1000 nodes.

more distributed with resulting lower contention, (iii) the
logarithmic time complexity from the nature of the skip list,
and (iv) the overhead and contention hot-spot on the shared
memory that is connected with the usage of time-stamps in
the real-time version.

Even though the implementation by Lotan and Shavit is
also based on a skip list with a similar approach as our algo-
rithm, it performs significantly slower, especially on systems
with pre-emption. This performance penalty is because of
several reasons; (i) there are very many locks involved, each
which must be implemented using an atomic primitive hav-
ing almost the same contention as a CAS operation, (ii) the
competition for the locks is comparingly high and increases
rapidly with the level in the skip list, with resulting conflicts
and waiting on the execution of the blocking operations crit-
ical sections (which if possibly pre-empted gets very long),
and (iii) the high overhead caused by the garbage collection
scheme. The algorithms by Hunt et al. and Jones are also
penalized by the drawbacks of many locks, with increasing
number of conflicts and blockings with higher level in the
tree or heap structure.

For the experiments with altered distribution ofInsert
operations and full concurrency, the hierarchy among the
involved implementations are quite different. For 10–40%
Insert operations the implementation by Hunt et al. shows
similar performance as the single-lock skip list and our lock-

free implementations, and for 60–90% it shows slightly or
significantly better performance. However, neither of the al-
tered scenarios is practically reasonable as long-term sce-
narios as the priority queues then will have either ever-
increasing or almost average zero sizes. An ever-increasing
priority queue will be highly impractical in the concern of
memory, and for a priority queue with an average size of
zero it would suffice with much simpler data structures than
skip lists or trees.

6. Extended algorithm

When we have concurrentInsert andDeleteMin oper-
ations we might want to have certain real-time properties
of the semantics of theDeleteMin operation, as expressed
in [17]. TheDeleteMin operation should only return items
that have been inserted by anInsert operation that finished
before theDeleteMin operation started. To ensure this we
are adding timestamps to each node. When the node is fully
inserted its timestamp is set to the current time. Whenever
theDeleteMin operation is invoked it first checks the cur-
rent time, and then discards all nodes that have a timestamp
that is after this time. In the code of the implementation
(see Figs. 6–8 and 10), the additional statements that in-
volve timestamps are marked within the framed boxes. The
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Fig. 17. Experiment with priority queues and full concurrency, varying percentage (between 60 and 90%) of insert operations, with initial 0 nodes.

functiongetNextTimeStamp, see Fig.21, creates a new times-
tamp. The functioncompareTimeStamp, see Fig. 21, com-
pares if the first timestamp is less, equal or higher than the
second one and returns the values−1,0 or 1, respectively.

As we are only using the timestamps for relative com-
parisons, we do not need real absolute time, only that the
timestamps are monotonically increasing. Therefore we can
implement the time functionality with a shared counter; the
synchronization of the counter is handled using CAS. How-
ever, the shared counter usually has a limited size (i.e. 32
bits) and will eventually overflow. Therefore the values of
the timestamps have to be recycled. We will do this by ex-
ploiting information that are available in real-time systems,
with a similar approach as in [25].

We assume that we haven periodic tasks in the system,
indexed�1...�n. For each task�i we will use the standard
notationsTi , Ci , Ri andDi to denote the period (i.e. min
period for sporadic tasks), worst case execution time, worst
case response time and deadline, respectively. The deadline
of a task is less or equal to its period.

For a system to be safe, no task should miss its deadlines,
i.e. ∀i | Ri�Di .

For a system scheduled with fixed priority, the response
time for a task in the initial system can be calculated using
the standard response time analysis techniques [11]. If we
with Bi denote the blocking time (the time the task can be

delayed by lower priority tasks) and withhp(i) denote the
set of tasks with higher priority than task�i , the response
timeRi for task�i can be formulated as

Ri = Ci + Bi +
∑
j∈hp(i)

⌈
Ri

Tj

⌉
Cj . (9)

The summand in the above formula gives the time that task
�i may be delayed by higher priority tasks. For systems
scheduled with dynamic priorities, there are other ways to
calculate the response times[11].

Now we examine some properties of the timestamps that
can exist in the system. Assume that all tasks call either the
Insert or DeleteMin operation only once per iteration. As
each call togetNextTimeStampwill introduce a new times-
tamp in the system, we can assume that every task invoca-
tion will introduce one new timestamp. This new timestamp
has a value that is the previously highest known value plus
one. We assume that the tasks always execute within their
response timesR with arbitrary many interruptions, and that
the execution timeC is comparably small. This means that
the increment of highest timestamp respective the write to a
node with the current timestamp can occur anytime within
the interval for the response time. The maximum time for an
Insert operation to finish is the same as the response time
Ri for its task�i . The minimum time between two index
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Fig. 18. Maximum timestamp increasement estimation—worst case sce-
nario.

increments is when the first increment is executed at the end
of the first interval and the next increment is executed at
the very beginning of the second interval, i.e.Ti − Ri . The
minimum time between the subsequent increments will then
be the periodTi . If we denote withLTv the maximum life-
time that the timestamp with valuev exists in the system,
the worst case scenario in respect of growth of timestamps
is shown in Fig.18.

The formula for estimating the maximum difference in
value between two existing timestamps in any execution
becomes as follows:

MaxTag=
n∑
i=0

(⌈
maxv∈{0..∞} LTv

Ti

⌉
+ 1

)
. (10)

Now we have to bound the value of maxv∈{0..∞} LTv.
When comparing timestamps, the absolute value of these
are not important, only the relative values. Our method is
that we continuously traverse the nodes and replace outdated
timestamps with a newer timestamp that has the same com-
parison result. We traverse and check the nodes at the rate
of one step to the right for every invocation of anInsert or
DeleteMin operation. With outdated timestamps we define
timestamps that are older (i.e. lower) than any timestamp
value that is in use by any runningDeleteMin operation.
We denote withAncientValthe maximum difference that we
allow between the highest known timestamp value and the
timestamp value of a node, before we call this timestamp
outdated.

AncientVal=
n∑
i=0

⌈
maxj Rj
Ti

⌉
. (11)

If we denote withtancient the maximum time it takes
for a timestamp value to be outdated counted from its first
occurrence in the system, we get the following relation:

AncientVal=
n∑
i=0

⌊
tancient
Ti

⌋
>

n∑
i=0

(
tancient
Ti

)
− n, (12)

tancient<
AncientVal+ n∑n

i=0

1

Ti

, (13)
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Fig. 19. Timestamp value recycling.

Now we denote withttraversethe maximum time it takes
to traverse through the whole list from one position and
getting back, assuming the list has the maximum sizeN .

N =
n∑
i=0

⌊
ttraverse
Ti

⌋
>

n∑
i=0

(
ttraverse
Ti

)
− n, (14)

ttraverse<
N + n∑n

i=0

1

Ti

. (15)

The worst case scenario is that directly after the timestamp
of one node gets traversed, it gets outdated. Therefore we
get

max
v∈{0..∞} LTv = tancient+ ttraverse. (16)

Putting all together we get

MaxTag

<

n∑
i=0






N + 2n+

∑n

k=0

⌈
maxj Rj
Tk

⌉

Ti
∑n

l=0

1

Tl




+ 1


 .

(17)

The above equation gives us a bound on the length of the
“window” of active timestamps for any task in any possible
execution. In the unbounded construction the tasks, by pro-
ducing larger timestamps every time they slide this window
on the[0, . . . ,∞] axis, always to the right. The approach
now, is instead of sliding this window on the set[0, . . . ,∞]
from left to right, to cyclically slide it on a[0, . . . , X] set of
consecutive natural numbers, see Fig.19. Now at the same
time we have to give a way to the tasks to identify the order
of the different timestamps because the order of the physical
numbers is not enough since we are re-using timestamps.
The idea is to use the bound that we have calculated for the
span of different active timestamps. Let us then take a task
that has observedvi as the lowest timestamp at some invo-
cation �. When this task runs again as�′, it can conclude
that the active timestamps are going to be betweenvi and
(vi + MaxTag)modX. On the other hand, we should make
sure that in this interval[vi, . . . , (vi+MaxTag)modX] there
are no old timestamps. By looking closer at Eq. (10) we
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Fig. 20. Deciding the relative order between reused timestamps.

can conclude that all the other tasks have written values to
their registers with timestamps that are at mostMaxTagless
thanvi at the time that� wrote the valuevi . Consequently
if we use an interval that has double the size ofMaxTag,
�′ can conclude that old timestamps are all on the interval
[(vi −MaxTag)modX, . . . , vi].

Therefore we can use a timestamp field with double the
size of the maximum possible value of the timestamp.

TagFieldSize= MaxTag∗ 2,

TagFieldBits= ⌈
log2TagFieldSize

⌉
.

In this way �′ will be able to identify thatv1, v2, v3, v4
(see Fig.20) are all new values ifd2 + d3 < MaxTagand
can also conclude that:

v3 < v4 < v1 < v2.

The mechanism that will generate new timestamps in a
cyclical order and also compare timestamps is presented
in Fig. 21 together with the code for traversing the nodes.
Note that the extra properties of the priority queue that are
achieved by using timestamps are not complete with respect
to theInsert operations that finishes with an update. These
update operations will behave the same as for the standard
version of the implementation.

Besides from real-time systems, the presented technique
can also be useful in non real-time systems as well. For ex-
ample, consider a system ofn = 10 threads, where the min-
imum time between two invocations would beT = 10 ns,
and the maximum response timeR = 1,000,000,000 ns (i.e.
after 1 s we would expect the thread to have crashed).Assum-
ing a maximum size of the listN = 10,000, we will have a
maximum timestamp differenceMaxTag< 1,000,010,030,
thus needing 31 bits. Given that most systems have 32-bit
integers and that many modern systems handle 64 bits as
well, it implies that this technique is practical for also non
real-time systems.

7. Conclusions

We have presented a lock-free algorithmic implementa-
tion of a concurrent priority queue. The implementation is
based on the sequential skip list data structure and builds on
top of it to support concurrency and lock-freedom in an effi-
cient and practical way. Compared to the previous attempts

// Global variables
timeCurrent:integer
checked:pointer to Node
// Local variables
time,newtime,safeTime:integer
current,node,next:pointer to Node

function compareTimeStamp(time1:integer,
time2:integer):integer
C1 if time1=time2then return 0;
C2 if time2=MAX_ TIME then return -1;
C3 if time1> time2and (time1-time2)≤ MAX_TAG or

time1< time2and (time1-time2+MAX_TIME)
≤ MAX_TAG then return 1;

C4 else return -1;

function getNextTimeStamp():integer
G1 repeat
G2 time:=timeCurrent;
G3 if (time+1)≠ MAX_ TIME then newtime:=time+1;
G4 elsenewtime:=0;
G5 until CAS(&timeCurrent,time,newtime);
G6 return newtime;

procedure TraverseTimeStamps()
T1 safeTime:=timeCurrent;
T2 if safeTime≥ ANCIENT_VAL then
T3 safeTime:=safeTime-ANCIENT_ VAL;
T4 elsesafeTime:=safeTime+MAX_ TIME-ANCIENT_VAL;
T5 while true do
T6 node:=READ_ NODE(checked);
T7 current:=node;
T8 next:=ReadNext(&node,0);
T9 RELEASE_NODE(node);
T10 if compareTimeStamp(safeTime,

next.timeInsert)> 0 then
T11 next.timeInsert:=safeTime;
T12 if CAS(&checked,current,next)then
T13 RELEASE_NODE(current);
T14 break;
T15 RELEASE_NODE(next);

Fig. 21. Creation, comparison, traversing and updating of bounded times-
tamps.

to use skip lists for building concurrent priority queues our
algorithm is lock-free and avoids the performance penalties
that come with the use of locks. Compared to the previous
lock-free/wait-free concurrent priority queue algorithms, our
algorithm inherits and carefully retains the basic design char-
acteristic that makes skip lists practical: simplicity. Previous
lock-free/wait-free algorithms did not perform well because
of their complexity; furthermore they were often based on
atomic primitives that are not available in today’s systems.

We compared our algorithm with some of the most ef-
ficient implementations of priority queues known. Experi-
ments show that our implementation scales well, and with 3
threads or more our implementation outperforms the corre-
sponding lock-based implementations, for all cases on both
fully concurrent systems as well as with pre-emption.

We believe that our implementation is of highly practical
interest for multi-threaded applications. We are currently
incorporating it into the NOBLE[26] library.
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