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Abstract

We present an efficient and practical lock-free implementation of a concurrent priority queue that is suitable for both fully concurrent
(large multi-processor) systems as well as pre-emptive (multi-process) systems. Many algorithms for concurrent priority queues are based
on mutual exclusion. However, mutual exclusion causes blocking which has several drawbacks and degrades the overall performance of
the system. Non-blocking algorithms avoid blocking, and several implementations have been proposed. Previously known non-blocking
algorithms of priority queues did not perform well in practice because of their complexity, and they are often based on non-available atomic
synchronization primitives. Our algorithm is based on the randomized sequential list structure called Skiplist, and a real-time extension
of our algorithm is also described. In our performance evaluation we compare our algorithm with a well-representable set of earlier
known implementations of priority queues. The experimental results clearly show that our lock-free implementation outperforms the other
lock-based implementations in practical scenarios for 3 threads and more, both on fully concurrent as well as on pre-emptive systems.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction inserts a new key-value pair into the set, andBeéeteMin
operation removes and returns the value of the key-value pair
Priority queues are fundamental data structures. From thewith the lowest key (i.e. highest priority) that was in the set.
operating system level to the user application level, they To ensure consistency of a shared data object in a concur-
are frequently used as basic components. For example, théent environment, the most common method is to use mu-
ready-queue that is used in the scheduling of tasks in manytual exclusion, i.e. some form of Iocking. Mutual exclusion
real-time systems can usually be implemented using a con-degrades the system’s overall performa[f8 as it causes
current priority queue. Consequently, the design of efficient blocking, i.e. other concurrent operations can not make any
implementations of priority queues is an area that has beenprogress while the access to the shared resource is blocked
extensively researched. A priority queue supports two opera-by the lock. Using mutual exclusion can also cause dead-
tions, thelnsert and theDeleteMin operation. The abstract  locks, priority inversion (which can be solved efficiently on
definition of a priority queue is a set of key-value pairs, Uni-processors [23] with the cost of more difficult analysis,
where the key represents a priority. Thesert operation  although not as efficient on multiprocessor systems [21])
and even starvation.
To address these problems, researchers have proposed

, non-blocking algorithms for shared data objects. Non-

* This is an extended and revised version of the paper with the same blocking methods do not involve mutual exclusion, and
title that was_presented at IPDPS 2003 and was awarded with the bestiharefore do not suffer from the problems that blocking
paper award in the algorithms category. . . .

* Corresponding author. can cause. Lock-free implementations are no_n-blocklng
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sub-operations, always at least one operation will progress.form. Greenwald has also presented an outline for a lock-
However, there is a risk for starvation as the progress of free priority queud8] based on atomic primitives that are
other operations could cause one specific operation to nevemot available in modern multiprocessor systems. However,
finish. This is although different from the type of starvation there exists an attempt for a wait-free algorithm by Barnes
that could be caused by blocking, where a single operation[2] that uses existing atomic primitives, though this algo-
could block every other operation forever, and cause star-rithm does not comply with the generally accepted definition
vation of the whole system. Wait-frg&0] algorithms are of the wait-free property. The algorithm is not yet imple-
lock-free and moreover they avoid starvation as well; in a mented and the theoretical analysis predicts worse behavior
wait-free algorithm every operation is guaranteed to finish than the corresponding sequential algorithm, which makes
in a limited number of steps, regardless of the actions of it not of practical interest.
the concurrent operations. Recently, researchers also include One common problem with many algorithms for concur-
obstruction-free [1] implementations to be non-blocking, al- rent priority queues is the lack of precise defined semantics
though this kind of implementation is weaker than lock-free of the operations. It is also seldom that the correctness with
and thus does not guarantee progress of any concurrent oprespect to concurrency is proved, using a strong property
eration. Non-blocking algorithms have been shown to be of like linearizability [13].
big practical importance in real applications [30,31], and re-  In this paper, we present a lock-free algorithm of a concur-
cently NOBLE, which is a non-blocking inter-process com- rent priority queue that is designed for efficient use in both
munication library, has been introduced [26]. pre-emptive as well as in fully concurrent environments. In-
There exist several algorithms and implementations of spired by Lotan and Shavit [17], the algorithm is based on
concurrent priority queues. The majority of the algorithms the randomized skip list [20] data structure, but in contrast
are lock-based, either with a single lock on top of a se- to [17] it is lock-free. It is also implemented using common
quential algorithm, or specially constructed algorithms us- synchronization primitives that are available in modern sys-
ing multiple locks, where each lock protects a small part of tems. The algorithm is described in detail later in this paper,
the shared data structure. Several different representationsand the aspects concerning the underlying lock-free memory
of the shared data structure are used, for example: Huntmanagement are also presented. The precise semantics of the
et al. [14] presents an implementation which is based on operations are defined and a proof is given that our imple-
heap structures, Grammatikakis et al. [7] compares differ- mentation is lock-free and linearizable. We have performed
ent structures including cyclic arrays and heaps, and mostexperiments that compare the performance of our algorithm
recently Lotan and Shavit [17] presented an implementa- with a well representative set of earlier implementations of
tion based on the skip list structure [20]. The algorithm by concurrent priority queues known, i.e. the implementation
Hunt et al. locks each node separately and uses a techniquéy Lotan and Shavit [17], Hunt et al. [14], and Jones [16].
to scatter the accesses to the heap, thus reducing the conExperiments were performed on three different platforms,
tention. Its implementation is publicly available and its per- consisting of a multiprocessor system using different oper-
formance has been documented on multi-processor systemsating systems and equipped with 2, 6 or 29 processors. Our
Jones [16] also makes use of multiple locks, but implements results show that our algorithm outperforms the other lock-
a fully dynamic tree structure, and tries to only lock the based implementations in practical scenarios for 3 threads
part of the tree necessary at each moment in time. Lotanand more, in both highly pre-emptive as well as in fully con-
and Shavit extend the functionality of the concurrent priority current environments. We also present an extended version
gqueue and assume the availability of a global high-accuracy of our algorithm that also addresses certain real-time aspects
clock. They apply a lock on each pointer, and as the multi- of the priority queue as introduced by Lotan and Shavit [17].
pointer based skip list structure is used, the number of locks  The rest of the paper is organized as follows. In Section
is significantly more than the number of nodes. Its perfor- 2 we define the properties of the systems that our imple-
mance has previously only been documented by simulation,mentation is aimed for. The actual algorithm is described
with very promising results. The algorithm by Shavit and in Section 3. In Section 4 we define the precise semantics
Zemach [24] is not addressed in this paper, as they imple-for the operations on our implementations, as well show-
ment a bounded priority queue, whereas we address the ing correctness by proving the lock-free and linearizability
general priority queues. property. The experimental evaluation that shows the per-
Israeli and Rappoport have presented a wait-free algo-formance of our implementation is presented in Section 5.
rithm for a concurrent priority queue [15]. This algorithm In Section 6 we extend our algorithm with functionality that
makes use of strong atomic synchronization primitf/ésat can be needed for specific real-time applications. We con-
have not been implemented in any currently existing plat- clude the paper in Section 7.

1The set of possible priorities is restricted.

2The algorithm requires ideal implementations of the LL/VL/SC/SC& 3The double-word compare-and-swap atomic primitive (CAS2) that
V/SC2 atomic primitives which only exist as non-efficient software im- can atomically update two arbitrary memory words, has only been im-
plementations. plemented in hardware on the 680 architectures.
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Fig. 1. Shared memory multiprocessor system structure.

2. System description

A typical abstraction of a shared memory multi-processor
system configuration is depicted in Fiy. Each node of the
system contains a processor together with its local memory.
All nodes are connected to the shared memory via an inter-
connection network. A set of co-operating tasks is running
on the system performing their respective operations. Each
task is sequentially executed on one of the processors, while
each processor can serve (run) many tasks at a time. The
co-operating tasks, possibly running on different processors,
use shared data objects built in the shared memory to co-
ordinate and communicate. Tasks synchronize their opera-
tions on the shared data objects through sub-operations on
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Fig. 2. The skip list data structure with 5 nodes inserted.

union Link
- word
[pdO [pointer to Nodebooleari]

union VLink
: word
[pdO [pointer to Valuepooleari]

structure Node

key,level,validLeveI: integer

value :union VLink
next[level]: union Link
prev : pointer to Node

/I Global variables
head, tail :pointer to Node
/I Local variables (for all functions/procedures)

newNode, savedNodes[maxlevepointer to Node
nodel, node2, prev, laspointer to Node
i, level : integer

top of a cache-coherent shared memory. The shared memory
might not be uniformly accessible for all nodes in the sys-
tem; processors can have different access times on different

parts of the memory. function CreateNode(levehteger, keyinteger,

valuepointer to Value)pointer to Node
Cl node:=MALLOC_NODE();
. C2 node.prev:i=NULL;
3. Algorithm C3  node.validLevel:=0;
C4  node.level:=level,

The algorithm is based on the sequential skip list data C5  node.key=key,
structure invented by Pugh [20]. This structure uses random- gg g‘:gﬁ]“'ﬁg’ dee',gya'uefalse]
ization and has a probabilistic time complexity@flog N) '
whereN is the maximum number of elements in the list.
The data structure is basically an ordered list with randomly
distributed short-cuts in order to improve search times, see
Fig. 2. The maximum height (i.e. the maximum number of . ’ :
next pointers) of the data structure is 1dg The height of standard version of the |n'1pllementat|on..
each inserted node is randomized geometrically in the way In order to make the skip list construction concurrent and

that 50% of the nodes should have height 1, 25% of the non-blocking_, we are using three of the standard atomic
nodes should have height 2 and so on. To use the data strucSynchronization primitives, Test-And-Set (TAS), Fetch-And-

ture as a priority queue, the nodes are ordered in respect 01Add (FAA) and Compare-And-Swap (CAS). Fig. 4 describes

priority (which has to be unique for each nddethe nodes the specification of these primitives which are available in
with highest priority are located first in the list. The fields of most modern platforms.

each node item are described in Fig. 3 as it is used in this im-th To msertt_or deltet(: a n(t)de_frtom tr_ﬁ]“St V‘r/]e ha\t/e tt)o crrw]anged
plementation. For all code examples in this paper, code that € respective set ot next pointers. These have to be change

is inside of small framed boxes are only used for the spe- fo?]ssten(tjlg,itibunt T?;fnf;ezsir¥nall athonncde. ok;” Sﬁtm';nl 'S
cial real-time® version of our implementation that involves 0 have additional information in each node about Its dee-
tion (or insertion) status. This additional information will
- guide the concurrent processes that might traverse into one
4In order to assign several objects the same priority, this limitation partially deleted or inserted node. When we have changed
can be overcome by building the priority (key) so that only some bits 5 hacagsary next pointers, the node is fully deleted or in-
represent the real priority and remaining bits are chosen in order to d h de is i d be i di
achieve uniqueness. serted. However, the node is mtgrprete to be inserted in
5in the sense that DeleteMin operations can only return items that the abstract sense already when inserted at the lowest level.

were fully inserted before the start of the DeleteMin operation. Thus, insert and delete operations always start with updating

Fig. 3. The basic algorithm details.

timestamps (see Secti@), and are thus not included in the
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function TAS(valuepointer to word):boolean 3.1. The basic steps of the algorithm
atomic do
i *X\?;Tjggtlhe” The main algorithm steps, for inserting a new node at an
return true ; arbitrary position in our skip list will thus be like follows: (1)
else return false find the appropriate position (i.e. previous nodes) for insert-

ing the new node, (II) atomically update the next pointers of

procedure FAA(addresgpointer to word, numbernteger) the to-be-previous nodes starting with the lowest level and

atomic do
*address := *address + number; continuing with the remaining levels in consecutive order.

_ ' The main steps of the algorithm for deleting a node at an
function CAS(addresgointer to word, oldvalueword, arbitrary position are the following: (1) find the appropriate
newvalueword):boolean L . . .

atomic do position (i.e. the node and previous nodes) for deleting, (II)
if *address = oldvalughen set the main deletion indication on the to-be-deleted node,
*address := newvalue; (111) set the deletion marks on the next pointers of the to-be-
return true ; deleted node starting with the lowest level and continuing

else return fals . . . . .
¢ with the remaining levels in consecutive order, (IV) atomi-

Fig. 4. Definitions of the Test-And-Set (TAS), Fetch-And-Add (FAA) and  Cally update the next pointers of the previous nodes of the
Compare-And-Swap (CAS) atomic primitives. to-be-deleted node starting with the lowest level and contin-
uing with the remaining levels in consecutive order from the

topmost level. As will be shown later in the detailed descrip-

tion of the algorithm, helping techniques need to be applied
in order to achieve the lock-free property, following the same
steps as the main algorithm for inserting and deleting.

Inserted node

Fig. 5. Concurrent inserting and deleting operations can accidentally delete3'2' Memory management

both nodes. . . .
As we are concurrently (with possible preemptions)

traversing nodes that will be continuously allocated and

the lowest level first, and then continue with the remaining reclaimed, we have to consider several aspects of memory
consecutive levels. In order to improve the performance of management. No node should be reclaimed and then later
concurrent operations, we have chosen for the insert opera+e-allocated while some other process is (or will be) travers-
tion to update the remaining levels starting from the second ing that node. For efficiency reasons we also need to be
lowest level going upwards, and the opposite direction was able to trust the prev pointers of deleted nodes, as we would
chosen for the delete operation. otherwise be forced to re-start the traversing from the head

One problem, that is general for non-blocking implemen- node whenever reaching a deleted node while traversing
tations that are based on the linked-list structure, arises whenand possibly incur severe performance penalties. This need
inserting a new node into the list. Because of the linked-list is especially important for operations that try to help other
structure one has to make sure that the previous node is notlelete operations in progress. Our demands on the memory
about to be deleted. If we are changing the next pointer of management therefore rules out the SMR or ROP methods
this previous node atomically with CAS, to point to the new by Michael [18] and Herlihy et al. [12], respectively, as
node, and then immediately afterwards the previous node isthey can only guarantee a limited number of nodes to be
deleted—then the new node will be deleted as well, as illus- safe, and these guarantees are also related to individual
trated in Fig.5. There are several solutions to this problem. threads and never to an individual node structure. However,
One solution is to use the CAS2 operation as it can changestronger memory management schemes as for example ref-
two pointers atomically, but this operation is not available in erence counting would be sufficient for our needs. There
any modern multiprocessor system. A second solution is to exists a general lock-free reference counting scheme by
insert auxiliary nodes [32] between each two normal nodes, Detlefs et al. [3], though based on the non-available CAS2
and the latest method introduced by Harris [9] is to use one atomic primitive.
bit of the pointer values as a deletion mark. On most mod-  For our implementation, we selected the lock-free mem-
ern 32-bit systems, 32-bit values can only be located at ad-ory management scheme invented by Valois [32] and cor-
dresses that are evenly dividable by 4, therefore bits 0 andrected by Michael and Scott [19], which makes use of the
1 of the address are always set to zero. The method is therFAA and CAS atomic synchronization primitives. Using this
to use the previously unused bit 0 of the next pointer to scheme we can assure that a node can only be reclaimed
mark that this node is about to be deleted, using CAS. Any when there is no prev pointer in the list or a local pointer
concurrentinsert operation will then be notified about the variable that points to it. A general problem with reference
deletion, when its CAS operation will fail. counting, is that it can not handle cyclic garbage (i.e. 2 or



H. Sundell, P. Tsigas / J. Parallel Distrib. Comput. 65 (2005) 609—-627 613

more nodes that should be recycled but reference each other, function ReadNext(nodeppinter to pointer to Node,
and therefore each node keeps a positive reference count, al- Ieveliir}t?ger)d:poi)ntelr to é\lode A

; R1 if (*nodel).value.dtrue then
though _th\_ey are not referenc_ed by the main structure). How Ro snode1:=HelpDelete(*node1 level)
ever, this is not a prob_lem with our solution, as we only ref- R3  node2:=READNODE((*node1).nextflevel]);
erence count prev pointers, and not the next pointers as we R4  while node2=NULLdo
never need to traverse the next pointers of a deleted node. RS *nodel:=HelpDelete(*nodel, level);

R6 node2:=READ_ NODE((*nodel).next[level]);

The memory management scheme should also support

| ; R7  return node2;
means to de-reference pointers safely. If we simply de-

reference a next pointer using the means of the programming function ScanKey(nodepinter to pointer to Node,
language, it might be that the corresponding node has been S';el"e'“”tege; keRy:nfje,\gI]er)t:(poEltelrlto ’\I‘)Ode

. . noaeZ:=RreaadNext(noael,level);
recla!med before we could access it. It can aIsp be that the S2  while node2.key < keylo
deletion mark that is connected to the next pointer was set, s3 RELEASE NODE(*nodeL);
thus marking that the node is deleted. The scheme by Val- S4 *nodel:=node2;

S5 node2:=ReadNext(nodel,level);

ois et al. supports lock-free pointer de-referencing and can
S6  return node2;

easily be adopted to handle deletion marks.
The following functions are defined for safe handling of Fig. 6. Functions for traversing and searching for nodes in the skip list

the memory management: data structure.
function MALLOC_NODE() :pointer to Node o
function READ_NODE (addrespointer to Link) :pointer to Node at the current level until it finds a node that has the same or
function COPY_NODE(nodgointer to Node) pointer to Node higher key (priority) value than the given key. It also sets
procedure RELEASE_NODE(nodgointer to Node) nodelto be the previous node of the returned node.

The functionsREAD_NODE atomically de-references
the given link and increases the reference counter for the
corresponding node. In case the deletion mark of the link ) ) ) )
is set, thecREAD NODE function then returns NULL. The The implementation of thénsert operation, see Fid,
function MALLOC_NODE allocates a new node from the ~Starts in lines 12—14 with creating the new node@wNodg
memory pool and returns a corresponding pointer with a @nd choosing its heightevel) by calling therandomLevel
reference count of one. The functicRELEASE NODE function. This function roughly simulates a repeated coin
decrements the reference counter on the corresponding giver{®SSing, counting the number of times (up to the maximum
node. If the reference counter reaches zero, the function will '€ve!) the upper (or lower if that was chosen) side of the
recursively calRELEASE_NODE on the nodes that this 0N s up from the start of the function, thus giving
node has owned pointers to (i.e. the prev pointer), and thenthe distribution associated with the skip list [20]. In lines

it reclaims the node. TREOPY NODE function increases  12—111 the implementation continues with a search phase
the reference counter for the corresponding given node.  (© find the node after whichewNodeshould be inserted.

As the details of how to efficiently apply the memory man- This search phase starts from the head node at the highest
agement scheme to our basic algorithm are not always triv- level and traverses down to the lowest level until the correct
ial, we will provide a detailed description of them together N°de is foundrfode). When going down one level, the last

with the detailed algorithm description in this section. node traversed on that level is remembersavédNodgs
for later use (this is where we should insert the new node

at that level). Now it is possible that there already exists
3.3. Traversing a node with the same priority as of the new node, this is

checked in lines 112-124, the value of the old nodede?

While traversing the nodes, processes will eventually is changed atomically with a CAS. Otherwise, in lines 125—

reach nodes that are marked to be deleted. As the proces#42 it starts trying to insert the new node starting with the
that invoked the corresponding delete (el@eleteMin) lowest level and increasing up to the level of the new node.
operation might be pre-empted, that delete operation hasThe next pointers of the nodes (to become previous) are
to be helped to finish before the traversing process canchanged atomically with a CAS. After the new node has been
continue. However, it is only necessary to help the part of inserted at the lowest level, it is possible that it is deleted
the delete operation on the current level in order to be able by a concurrent delete (e.BeleteMin) operation before it
to traverse to the next node. The functiBeadNext, see has been inserted at all levels, and this is checked in lines
Fig. 6, traverses to the next noderaddelon the given level 138 and 144.
while helping (and then setsodelto the previous node of The RemoveNode procedure, see Fig. 8, removes the
the helped one) any marked nodes in between to finish thegiven nodefrom the linked list structure at the givdevel,
deletion. The functiorScanKey, see Fig. 6, traverses in  using a given hinprevfor the previous node. It first searches
several steps through the next pointers (starting fnoie ) for the right position of the previous node according to the

3.4. Inserting and deleting nodes
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function Insert(keyinteger, valuepointer to Value): procedure RemoveNode(nodgointer to Node,
boolean prev: pointer to pointer to Node, levelinteger)
11 \TraverseTimeStamps(); RN1 while true do
2 Choose level randomly according to the skip list RN2  if node.next[levell<NULL, true Othen break;
distribution RN3 last:=ScanKey(prev,level,node.key);
I3 newNode:=CreateNode(level,key,value); RN4  RELEASE NODE(last);
14 COPY_NODE(newNode); RN5 if last=nodeor node.next[level]ENULL, true [
I5  nodel:=COPY_ NODE(head); then break;
16  for i:=maxLevel-1to 1 step-1 do RN6  if CAS(&(*prev).next[level][modefalsel]
17 node2:=ScanKey(&nodel,i,key); [mode.next[level].galsel) then
18 RELEASE_NODE(node2); RN7 node.next[level]:BNULL, trued
19 if i< level then savedNodes[i]:= RN8 break;
COPY_ NODE(nodel); RN9 if node.next[level]£NULL, true Othen break;
110  while true do RN10  Back-Off
111 node2:=ScanKey(&nodel,0,key);
112 Walue2,di=node2.value; Fig. 8. The algorithm for thd&RemoveNode procedure that removes an
113 if d=false andnode2.key=keyhen arbitrary node in the skip list data structure at a given level.
114 if CAS(&node2.valuéyalue2falsel]
Naluefalsel) then
115 RELEASE NODE(node1);
116 REI__EASE_NODE(nodeZ); function DeleteMin()pointer to Node
117 for i:=1 to level-1do _ b1 | TraverseTimeStamps(];
118 RELEASE_NODE(savedNodes]i]); —— = )
119 RELEASE_NODE(newNode); D2 [time:=getNextTimeStamp{);
120 RELEASE_NODE(newNode); D3 prev:=COPY_NODE(head);
121 return truey; D4 while truedo
122 else D5 nodel:=ReadNext(&prev,0);
123 RELEASE_NODE(node2); D6 if nodel=tailthen
124 continue; D7 RELEASE_ NODE(prev);
125 newNode.next[0]:hodeXalse] D8 RELEASE_ NODE(nodel);
126 RELEASE_NODE(node2); D9 return NULL;
127 if CAS(&nodel.next[0]imhodeXalse] retry:
mewNodefalsel) then D10 Walue,di=nodel.value;
128 RELEASE_NODE(nodel); D11 if nodel= prev.next[0].then
129 break; D12 RELEASE_NODE(nodel);
130 Back-Off D13 continue;
131 for i:=1 to level-1do D14  if d=false |and compareTimeStamp(tirhe,
132 newNode.validLevel:=i; [ nodel.timelnser0 | then
133 node1:=savedNodes[|]; D15 if CAS(&nodel.valuéyaluefalsel]Value,
134 while true do trueD) then
135 node2:=ScanK¢y(&node1,|,key); D16 nodel.prev:=prev;
136 newNode.next[i]:£hodeXalsej D17 break:
137 .RELEASE_NODE(nodEZ); D18 else gotaretry:
138 if newNode.vaIue.d«t_ue or D19 elsed=true then
CAS(&nodel.nexti],node2,newNod#)en D20 nodel:=HelpDelete(node1,0);
139 RELEASE _NODE(nodel); D21 RELEASE NODE(prev);
140 break; D22  previ=nodel;
141 Back-Off D23 for i:=0 to nodel.level-ldo
142 neWNode.valld]_eveI::Ievel; ‘ D24 repeat
143 [newNode.timelnsert:=getNextTimeStamp(); D25 Mode2, d=node1.nex]i]
144 if newNode.value.drue then newNode:= D26 until d=true or CAS(&nodel.next[i][hode2falsel]
HelpDelete(newNode,0); (mode2truel);
145 RELEASE_NODE(newNode); D27 prev:=COPY NODE(head);
146  return true ; D28 for i:=nodel.level-1to 0 step-1 do
D29 RemoveNode(nodel,&prev,i);
Fig. 7. The algorithm for thdnsert operation that inserts a new node D30 RELEASE_NODE(prev);
into the skip list data structure. D31 RELEASE_NODE(nodel);

D32 RELEASE NODE(nodel); /* Delete the node */
D33 return value;

key of nodein line RN3. It verifies in line RN5 thahode Fig. 9. The algorithm for théeleteMin operation that removes the first
is still part of the linked list structure at the present level. node in the skip list data structure.

In line RNG6 it tries to removenodeby changing the next

pointer of the previous node using the CAS sub-operation.

If the CAS failed, possibly because of concurrent changes toRN2, RN5, RN7 and RN9 in order to avoid executing sub-
theprevnode, the whole procedure retries. As this procedure operations that have already been performed.

can be invoked concurrently on the same node argument, The DeleteMin operation, see Fig9, starts from the

it synchronizes with the possibly other invocations in lines head node and finds the first nodevdel) in the list that
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function HelpDelete(nodgointer to Node, In fully concurrent systems though, the helping strategy
levelinteger):pointer to Node can downgrade the performance significantly. Therefore the
H1 for i:=level to node.level-1do ; i i
Ho repeat algorithm, after a number of consecutive failed attempts
H3 Mode2, @=node.next]i]; to help concurrenDeleteMin operations that hinders the
H4 until d=true or CAS(&node.next[ijmode2false] progress of the current operation, puts the operation into
s modzz‘lueﬂ); back-off mode. When in back-off mode, the thread does
prev:i=node.prev; H H H H H H H
H6  if not prevor level >prev.alidLevel then nothing for a whﬂe, and in thls way avqlds disturbing the
H7 prev:=COPY NODE((head); concurrent operations that mlght othe_r\lee progress slower.
H8 for i:=maxLevel-1to level step-1 do The duration of the back-off is proportional to the number of
:?o gosl_eé:géar’\‘l’éeggzpf%"v'é')‘Ode-k‘?y)? threads, and for each consecutive entering of back-off mode
= node2); . . . . . .
HI1 elseCOPY_ NODE(prev) during one operation invocation, the duration is increased
H12 RemoveNode(node,&prev,level); exponentially.

H13 RELEASE_NODE(node);
H14 return prev;

Fig. 10. The algorithm for thélelpDelete procedure that help concurrent 3.6. Use with other memory management schemes

delete operations to finish. ] ]
As described earlier we have chosen the lock-free ref-

erence counting method by Valoj82] and Michael and

) ) ~ Scott [19], because this was the only practical and lock-free
does not have its deletion mark on the value set, see linesyarhage collection scheme that could enable the algorithm
D3-D15. It tries to set this deletion mark in line D15 us- 5 ay0id restarts from the head node when traversing through
ing the CAS primitive, and if it succeeds it also writes a e skip list. This feature is very important for scalability
valid pointer to the prev field of the node. This prev field \ith respect to increasing concurrency, as the number of
is necessary in order to increase the performance of con-concyrrent deletions of nodes in the skip list will then also
currentHelpDelete functions, these operations otherwise jncrease.
would have to search for the previous node in order to com-  ygwever, if we can sacrifice this feature of our algorithm
plete the deletion. The next step is to mark the deletion bits {4t allows better scalability, and instead always restart from
of the next pointers in the node, starting with the lowest e head node when reaching a node marked as deleted while
level and going upwards, using the CAS primitive in each (4yersing, other memory management schemes could be
step, see lines D23—F)26. Afteryvards in lines D27-D29 it applied. As we then no longer would need to be able to
starts the actual deletion by calling tRemoveNode pro- guarantee safety of the prev pointer of a deleted node, the
cedure, starting at the highest level and continuing down- gpRr [18] or ROP [12] schemes could be applied. The hazard
wards. The reason for doing the deletion in decreasing Orderpointer style of garbage collection can guarantee that all
of levels is that concurrent search operations also start at thggqg) pointers to nodes that each process holds will not be

highest level and proceed downwards, in this way the con- recjaimed for reuse until the corresponding hazard pointer
current search operations will sooner avoid traversing this 5 ¢leared.

node. The needed main modification of our algorithm would
simply be to remove line D16, so that the prev pointer
3.5. Helping is never set. All local variables that point to nodes, in-

cluding the savedNodes array, need to be associated with

The algorithm has been designed for pre-emptive as well corresponding hazard pointers. Thus, the interface to the

as fully concurrent systems. In order to achieve the lock-free new memory management is done as before through the
property (that at least one thread is doing progress) on pre-MALLOC_NODE READ_NODE COPY_NODEand RE-
emptive systems, whenever a search operation finds a node EASE_NODE functions. The READ_NODE function

that is about to be deleted, it calls thielpDelete function should de-reference a pointer and set the corresponding
and then proceeds searching from the previous node of thehazard pointer, unless the pointer was marked when the
deleted. ThédelpDelete function, see FiglO0, tries to fulfill function instead returns NULL. ThHeOPY_NODHunction

the deletion on the current level and returns a reference tocould be implemented by copying the corresponding hazard
the previous node when the deletion is completed. It starts pointer to another one, though most of the time it can be
in lines H1-H4 with setting the deletion mark on all next optimized to be obsolete. THRELEASE_NODHunction is
pointers in case they have not been set. In lines H5-H6 it simply implemented by clearing the corresponding hazard
checks if the node given in the prev field is valid for deletion pointer, and subsequent calls can mostly be optimized to be
on the current level, otherwise it searches for the correct obsolete. Care must be taken for functions that returns safe
previous nodegrey) in lines H7—H10. The actual deletion pointers, such aklelpDelete, so that the calling functions

of this node on the current level takes place in line H12 by know which particular hazard pointer that is associated with
calling theRemoveNode procedure. the corresponding pointer.
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3.7. Related work with skip lists operations and then introduce two definitions concerning
concurrency aspects in general.

This paper describes the fifstiock-free algorithm of a
skip list data structure. Very similar constructions have ap- Definition 1. We denote withZ, the abstract internal state
peared in the literature afterwards, by Fraser [6], Fomitchev of a priority queue at the time. L, is viewed as a set of
[4] and Fomitchev and Ruppert [5]. As both Fraser's and pairs (p, v) consisting of a unique priority anda corre-
Fomitchev’s constructions appeared quite some time latersponding valuev. The operations that can be performed on
in the literature than ours, it was not possible to compare the priority queue artnsert (1) andDeleteMin (DM). The
them in our original publications. However, we have recently time ¢1 is defined as the time just before the atomic execu-
studied the other's approaches and have found some sigtion of the operation that we are looking at, and the time
nificant differences, although the main ideas are essentiallyr, is defined as the time just after the atomic execution of
the same. The differences are mainly related to performancethe same operation. The return valugroie; is returned by
issues: an Insert operation that has succeeded to update an exist-
ing node, the return value dfue is returned by arnsert
operation that succeeds to insert a new node. In the follow-
cSng expressions that defines the sequential semantics of our
operations, the syntax i : 01, S2, whereS is the condi-
tional state before the operati@dy, and S, is the resulting
OIstate after performing the corresponding operation:

e Compared to Fraser's approach, our skip list construc-
tion does not suffer from possible restarts of the full
search phase from the head level when reaching a delete
node, as our nodes also contains a backlink pointer that
is set at the time of deletion. This enables us to step
one step backwards when reaching a deleted node, an
to directly remove the deleted node. Both Fraser’s and

our construction uses arrays for remembering positions, (p1, ) & Ly : I1({p1, v1)) = true,
though Fraser unnecessarily remembers also the succes-
sor on each level which could incur performance penal- Ly = Ly U{{p1, v1)}, 1)

ties through the garbage collector used.

,V1,) € Ly 1 1 , U = truey,
e Compared to Fomitchev's and Fomitchev and Ruppert's (P1v1a) € Loy = {pr vao)) €

approach, their construction does not use an array for re- Ly = Ly \ {{p1, v17)} U {{p1, v1,)}, (2)
membering positions, which forces their construction to )
perform two full search phases when inserting or delet- (p1,v1) = {{(minp, v)|(p, v) € Ly}
ing nodes. In addition to have backlink pointers in or- - DM1() = _

: :DM10 = (p1,v1), L, =L 1, v1)}, 3
der to be able to step back when reaching a deleted 0= {prva). Lep = Loy \ {1, v)} @)
node, their construction also uses an extra pointer mark Ly, =0:DM1() = L. 4)

that is set (using an extra and expensive CAS opera-
tion) on the predecessor node in order to earlier notify
concurrent operations of the helping duty. In our con- Definition 2. In a global time model each concurrent oper-
struction we only have one backlink pointer for all lev- ationOp “occupies” a time intervalbop, fopl on the linear
els of a node, because of a performance trade-off be-time axis (bop < fop). The precedence relation (denoted
tween the usefulness for helping operations and the costby ‘—’) is a relation that relates operations of a possible
that keeping extra pointers could incur for the garbage execution,Op; — Op, means thaOp; ends beforeOp,
collection. starts. The precedence relation is a strict partial order. Op-
erations incomparable under are calledoverlapping The
overlapping relation is denoted ljyand is commutative, i.e.
4. Correctness Op; || Op, andOp, || Op;. The precedence relation is ex-
tended to relate sub-operations of operations. Consequently,
In this section we present the proof of our algorithm. We if Op, — Op,, then for any sub-operations; and op»
first prove that our algorithm is linearizabJ&3] and then  of Op,; andOp,, respectively, it holds thaip; — op>. We
that it is lock-free. A set of definitions that will help us also define the direct precedence relatiery, such that if
to structure and shorten the proof is first explained in this Op;—40p,, thenOp; — Op, and moreover there exists no
section. We start by defining the sequential semantics of ouroperationOp; such thatOp; — Op; — Op,.

8 0ur results were submitted for reviewing in October 2002 and pub- Definition 3. In order for an implementation of a shared
lished as a technical repoj27] in January 2003. It was officially pub-  concurrent data object to be linearizafl8], for every con-
lished in April 2003[28], receiving a best paper award, and an extended current execution there should exist an equal (in the sense of
version was also published in March 20{RB]. Very similar construc- L . .
tions have appeared in the literature afterwards, by Fraser in Februarythe effect) and Va“.d (i-e. it Shoulld respegt the semantics of
2004[6], Fomitchev in November 200B!] and Fomitchev and Ruppert  the shared data object) sequential execution that respects the

in July 2004[5]. partial order of the operations in the concurrent execution.
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Next we are going to study the possible concurrent exe- Lemma 3. Anlinsert operation which updated ((p, v)) =
cutions of our implementation. First we need to define the truey), takes effect atomically at one statement
interpretation of the abstract internal state of our implemen-

tation. Proof. The decision point for arinsert operation which

updates {({p, v)) = truep), is when the CAS will succeed
Definition 4. The pair({p, v) is present (p, v) € L) in the in line 114. The state of the listZ(,) directly before pass-
abstract internal state of our implementation, when there ing the decision point must have beén _) € L,,, other-
is a next pointer from a present node on the lowest level wise the CAS would have failed. The state of the list di-
of the skip list that points to a node that contains the pair rectly after passing the decision point will kg, v) € L;,.
{p, v), and this node is not marked as deleted with the mark Consequently, the linearizability point will be the CAS sub-
on the value. operation in line 114, as this statement will then match the
semantics in EqQe. O

Lemma 1. The definition of the abstract internal state for
our implementation is consistent with all concurrent opera- Lemma 4. A DeleteMin operations which fail$DM () =
tions examining the state of the priority queue. 1), takes effect atomically at one statement

Proof. As the next and value pointers are changed using the Proof. The decision point for arDeleteMin operations
CAS operation, we are sure that all threads see the samewhich fails (DM () = L), is when the hidden read sub-
state of the skip list, and therefore all changes of the abstractoperation of theReadNextsub-operation in line D5 suc-
internal state will appear to be atomicl_] cessfully reads the next pointer on lowest level that equals
the tail node. The state of the lisL{() directly before the

Definition 5. The decision point of an operation is defined Passing of the decision point must have been = §.

as the atomic statement where the result of the operation isConsequently, the linearizability point will be the hidden
finitely decided, i.e. independent of the result of any sub- réad sub-operation of the next pointer in line DS, as this
operations after the decision point, the operation will have Statement will then match the semantics in ). (T

the same result. We define the verification point of an op-

eration to be the atomic statement where a sub-state of theLemma 5. A DeleteMin operation which succeeds
priority queue is read, and this sub-state is verified to have (DM() = (p1, v1) where (p1, v1) = {(minp, v)|(p,v) €
certain properties before the passing of the decision point. L,,}), takes effect atomically at one statement

We also define the state-change point as the atomic state-

ment where the operation changes the abstract internal stat
of the priority queue after it has passed the corresponding
decision point.

Proof. The decision point for arDeleteMin operation
which succeeds is when the CAS sub-operation in line
D15 (see Fig.9) succeeds. The state of the lidt,) di-

. . . . rectly before passing of the decision point must have been
We will now use these points in order to show the exis- y P g P

i d location i tion hist ¢ int where th (p1,v1) € Ly, otherwise the CAS would have failed. The
ence and focation In execution history of a poInt Wnere the o0 ¢ he ist directly after passing the CAS sub-opertion

concu.rrent operatjon can bg viewed as it occurred atomi- in line D15 (i.e. the state-change point) will bg, ) ¢ Li,.
cally, i.e. thelinearizability point The state of the list at the time of the read sub-operation of
the next pointer in D11 (i.e. the verification point) must have
been(py, v1) = {(Minp, v)|(p,v) € L;}. Unfortunately
this does not completely match the semantic definition of
the operation in Eq. (3).

Proof. The decision point for arinsert operation which However, none of the other concurrent operations lineariz-
succeeds I(({p,v)) = true), is when the CAS sub- ability points is dependent on the to-be-deleted node’s state
operation in line 127 (see Figl) succeeds, all following as marked or not marked during the time interval from the
CAS sub-operations will eventually succeed, and line verification point to the state-change point. Clearly, the lin-
sert operation will finally returntrue. The state of the  earizability points of Lemma 2 is independent during this
list (L;,) directly before the passing of the decision point time interval, as the to-be-deleted node must be different
must have beerp, ) ¢ L, otherwise the CAS would from the correspondingp, v) term, as Lemma 2 views the
have failed. The state of the list directly after passing the to-be-deleted node as present during the time interval. The
decision point will be(p, v) € L,,. Consequently, the lin- linearizability point of Lemma 3 is independent during the
earizability point will be the CAS sub-operation in line time interval, as the to-be-deleted node must be different
127, as this statement will then match the semantics in from the correspondingp, v) term, otherwise the CAS sub-
Eq. (1). O operation in line D15 of this operation would have failed.

Lemma 2. An Insert operation which succeedg ({p, v))
= true), takes effect atomically at one statement
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The linearizability point of Lemmd is independent, as that linearizability points consist of atomic operations and are
linearizability point depends on the head node’s next pointer therefore ordered in time, no linearizability point can occur
pointing to the tail node or not. Finally, the linearizability atthe very same time as any other linearizability point, there-
point of this lemma is independent, as the to-be-deleted nodefore giving a unique and consistent ordering of the overlap-
would be different from the correspondingi, v1) term, ping operations. [

otherwise the CAS sub-operation in line D15 of this opera-

tion invocation would have failed. . .
. Lemma 8. With respect to the retries caused by synchro-
Therefore all together, we could safely interpret the to-be- ~~ . : .
nization one operation will always do progress regardless

deleted node to be not present already directly after passing . ;
the verification point (p, ) ¢ Ly,). Consequently, the lin- of the actions by the other concurrent operations
earizability point will be the read sub-operation of the next
pointer in line D11, as this statement will then match the Proof. We now examine the possible execution paths of our
semantics in Eq. (3). O implementation. There are several potentially unbounded
loops that can delay the termination of the operations. We
call these loops retry-loops. If we omit the conditions that are
because of the operations semantics (i.e. searching for the
correct position etc.), the retry-loops take place when sub-
operations detect that a shared variable has changed value.
This is detected either by a subsequent read sub-operation
or a failed CAS. These shared variables are only changed
concurrently by other CAS sub-operations. According to the
definition of CAS, for any number of concurrent CAS sub-
operations, exactly one will succeed. This means that for
Opy — OP,. #0p3.0py =4 OPs, any subsequent retry, there must be one CAS that succeeded.
#0p;.0py =4 Op, => OpL =4 Op,  (5) As this succeeding CAS will cause its retry loop to exit,
Op, | Op, = and our implementation does not cqntaﬁn any cycli_c depen-
O, =4 Op, ® Opy =4 Opy (©) dencies between retry-loops that exit with CAS, this means
’ that the correspondingpsert or DeleteMin operation will
Op; =4 Op, = Op, = Op,, (7) progress. Consequently, independent of any number of con-
current operations, one operation will always progress.

Definition 6. We define the relatior= as the total order
and the relation=; as the direct total order between all
operations in the concurrent execution. In the following for-
mulas, E1 = E» means that if£1 holds thenE> holds
as well, and® stands for exclusive or (i.e: & b means
(a Vv b) A—=(a ADb)):

Op, = Opy, Op, = Op; = Op; = Ops. (8)

Theorem 1. The algorithm implements a lock-free and lin-

Lemma 6. The operations that are directly totally ordered ~€arizable priority queue
using formulab, form an equivalent valid sequential execu-

tion. Proof. Following from Lemmass and 7 and using the di-
rect total order we can create an identical (with the same
Proof. If the operations are assigned their direct total order Semantics) sequential execution that preserves the partial or-
(Op, =4 Op,) by formula 5 then also the linearizability ~der of the operations in a concurrent execution. Following
points of Op, are executed before the respective points of from Definition 3, the implementation is therefore lineariz-
Op,. Inthis case the operations semantics behave the same agble. As the semantics of the operations are basically the
in the sequential case, and therefore all possible executionssame as in the skip list [20], we could use the corresponding

will then be equivalent to one of the possible sequential proof of termination. This together with Lemma 8 and that
executions. [ the state is only changed at one atomic statement (Lemmas

1, 2, 3, 5, 4), gives that our implementation is lock-freé]

Lemma 7. The operations that are directly totally ordered
using formula6 can be ordered unique and consistesmtd

) . . . 5. Experiments
form an equivalent valid sequential execution

We have performed experiments using 1 up to 28 threads
Proof. Assume we order the overlapping operations accord- on three different platforms, each with different levels of
ing to their linearizability points. As the state before as real concurrency, architecture and operating system. Besides
well as after the linearizability points is identical to the our implementation, we also performed the same experi-
corresponding state defined in the semantics of the respecments with four lock-based implementations. These are; (1)
tive sequential operations in Egs. (1)-(4), we can view the a single-lock protected skip list, (2) the implementation us-
operations as occurring at the linearizability point. As the ing multiple locks and skip lists by Lotan and Shavit [17],
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Fig. 11. Experiment with priority queues and low or medium concurrency, with initial 100 or 1000 nodes, using spinlocks for mutual exclusion.

(3) the heap-based implementation using multiple locks by DeleteMin operations. The dictionaries are initialized with

Hunt et al.[14], and (4) the tree-based implementation by 100 or 1000 nodes before the start of the experiments. The

Jones [16]. As Lotan and Shavit implements the real-time implementation by Jones uses system semaphores for the

properties as presented in Section 6 but Hunt et al. does notmutual exclusion. All other lock-based implementations

we used both the ordinary as well the real-time version of were evaluated using simple spin-locksand as well using

our implementation. system semaphores. The results from these experiments
The key values of the inserted nodes are randomly cho-are shown in Fig. 11 for the spinlock-based implementa-

sen between 0 andd00,000x* n, wheren is the number of  tions and in Fig. 12 for the semaphore-based, both together

threads. Each experiment is repeated 50 times, and an avemwith the new lock-free implementation. The average ex-

age execution time for each experiment is estimated. Exactlyecution time is drawn as a function of the number of

the same sequential operations are performed for all differ- threads.

ent implementations compared. A clean-cache operation is

performed just before each sub-experiment. All implemen- 5 2 Fy|| concurrency

tations are written in C and compiled with the highest op-

timization level, except from the atomic primitives, which

are written in assembler.

In order to evaluate our algorithm with full concurrency
we also used a SGI Origin 2000 250 MHz system run-
ning Irix 6.5 with 29 processors. With the exception for the
implementation by Jones which can only use semaphores,
all lock-based implementations were only evaluated using

To get a highly pre-emptive environment, we performed simple spin-locks, as those are always more efficient than
our experiments on a Compaq dual-processor Pentium I
450MHz PC running Linux. A set of experiments was ——— ' _
also performed on a Sun Ultra 880 with 6 pProcessors run- The spln-lpcks used in our experiments are of the “Test anq Te§t-And-

. . . Set” type, which means that they only execute the TAS atomic primitive
ning Solaris 9. In our eXp?nmentS ?aCh concurrent thread after having read the lock variable to be zero. In common shared memory
performs 10,000 sequential operations, randomly chosengrchitectures as such based on cache coherence protocols, this means that
with a distribution of 50%lnsert operations versus 50% the spinning will normally be done locally on the cache contents.

5.1. Low or medium concurrency
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Fig. 12. Experiment with priority queues and low or medium concurrency, with initial 100 or 1000 nodes, using semaphores for mutual exclusion.

Priority Queue with average 100 nodes - SGI Mips, 29 Processors Priority Queue with average 1000 nodes - SGI Mips, 29 Processors
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Fig. 13. Experiment with priority queues and full concurrency, running with average 100 or 1000 nodes.

semaphores on fully concurrent systems. In the first exper- 100, 200, 500, 1000, 2000, 5000 or 10,000 nodes. The results
iments each concurrent thread performs 10,000 sequentiafrom these experiments are shown in Flg.. The average
operations, randomly chosen with a distribution of 50%o execution time is drawn as a function of the number of
sert operations versus 50%eleteMin operations, oper-  threads.
ating on dictionaries that are initialized with 100 or 1000  In order to examine the scalability with respect to size
nodes. The results from these experiments are shown in Fig.in the non contended or low concurrency situations for all
13. The average execution time is drawn as a function of theincluded implementations, we ran experiments with 1 or 2
number of threads. threads, where the dictionaries were initialized with 100,
For the two implementations of our algorithm we also 200, 500, 1000, 2000, 5000 or 10,000 nodes. The results
ran experiments, where the dictionaries were initialized with from these experiments are shown in Fig. 15. The average
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Fig. 14. Experiment with priority queues and full concurrency, running with average 100-10,000 nodes.
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Fig. 15. Experiment with priority queues and no or low concurrency, running with average 100-10,000 nodes.

execution time is drawn as a function of the average numbertention management mechanism that was designed for sim-
of nodes. pler locks. The single-lock protected skip list performs bet-
We have also performed experiments with altered distri- ter than both Lotan and Shavit and Hunt et al. in all sce-
bution of Insert operations, varied between 10% upto 90%. narios, using either semaphores or simple spin-locks. The
For the distribution of 10-40% inserts the dictionary was implementation by Jond46] shows a performance slightly
initialized with 1000 nodes, and for 60—90% inserts the dic- worse or better than the single-lock skip list when exposed
tionary was initialized as empty. The results from these ex- to pre-emption, though for full concurrency the performance
periments are shown in Figs6 and 17. The average execu- decreases almost to the implementation by Lotan and Shauvit,
tion time is drawn as a function of the number of threads. because of the high overhead connected with semaphores.
Our lock-free implementation scales best compared to all
5 3. Results other involved implementations except the single-lock skip
list, having best performance already with 3 threads, inde-

From the results we can conclude that all of the implemen- Pendently if the system is fully concurrent or involves pre-
tations scale similarly with respect to the average size of the €MPtions. Compared to the single-lock skip list, our lock-
queue. The implementation by Lotan and Shavit [17] scales free implementation perform_s close_ly or slightly better for
linearly with respect to increasing number of threads when full concurrency, though having rapidly better performance
having full concurrency, although when exposed to pre- ywth increasing Ieve_I of pre-emption. C!early, our Iopk—frge
emption its performance is highly dependent on the usage|mplementat|on retains the logarithmic time complex!ty with
of semaphores, with simple spin-locks the performance de-€SPect to the size. However, the normal and real-time ver-
creases very rapidly. The implementation by Hunt et al. [14] SIONS of our |mplementat|0_n sh_ow slightly different behav-
shows better but similar behavior for full concurrency. How- 1°F: dué to se.ve.ral competing time factors. The factors are
ever, it is instead severely punished by using semaphores2Mong many; (i) the real-time version can mark nodes as
on systems with pre-emption, because of its built-in con- deleted in parallel, (ii) with larger sizes the accesses get
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Fig. 16. Experiment with priority queues and full concurrency, varying percentage (between 10 and 40 %) of insert operations, with initial 2000 nodes

more distributed with resulting lower contention, (iii) the free implementations, and for 60—-90% it shows slightly or
logarithmic time complexity from the nature of the skip list, significantly better performance. However, neither of the al-
and (iv) the overhead and contention hot-spot on the sharedtered scenarios is practically reasonable as long-term sce-
memory that is connected with the usage of time-stamps innarios as the priority queues then will have either ever-
the real-time version. increasing or almost average zero sizes. An ever-increasing
Even though the implementation by Lotan and Shavit is priority queue will be highly impractical in the concern of
also based on a skip list with a similar approach as our algo- memory, and for a priority queue with an average size of
rithm, it performs significantly slower, especially on systems zero it would suffice with much simpler data structures than
with pre-emption. This performance penalty is because of skip lists or trees.
several reasons; (i) there are very many locks involved, each
which must be implemented using an atomic primitive hav-
ing almost the same contention as a CAS operation, (ii) the 6. Extended algorithm
competition for the locks is comparingly high and increases
rapidly with the level in the skip list, with resulting conflicts When we have concurretitsert and DeleteMin oper-
and waiting on the execution of the blocking operations crit- ations we might want to have certain real-time properties
ical sections (which if possibly pre-empted gets very long), of the semantics of thBeleteMin operation, as expressed
and (iii) the high overhead caused by the garbage collectionin [17]. The DeleteMin operation should only return items
scheme. The algorithms by Hunt et al. and Jones are alsothat have been inserted by &rsert operation that finished
penalized by the drawbacks of many locks, with increasing before theDeleteMin operation started. To ensure this we
number of conflicts and blockings with higher level in the are adding timestamps to each node. When the node is fully
tree or heap structure. inserted its timestamp is set to the current time. Whenever
For the experiments with altered distribution bfsert the DeleteMin operation is invoked it first checks the cur-
operations and full concurrency, the hierarchy among the rent time, and then discards all nodes that have a timestamp
involved implementations are quite different. For 10-40% that is after this time. In the code of the implementation
Insert operations the implementation by Hunt et al. shows (see Figs. 6—8 and 10), the additional statements that in-
similar performance as the single-lock skip list and our lock- volve timestamps are marked within the framed boxes. The
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Fig. 17. Experiment with priority queues and full concurrency, varying percentage (between 60 and 90%) of insert operations, with initial 0 nodes.

functiongetNextTimeStampee Fig21, creates anewtimes- delayed by lower priority tasks) and withp(i) denote the
tamp. The functiorcompareTimeStamsee Fig. 21, com-  set of tasks with higher priority than task, the response
pares if the first timestamp is less, equal or higher than thetime R; for taskt; can be formulated as
second one and returns the valuek,0 or 1, respectively.
A_s we are only using the timestamps for relative com- R =C; +B; + Z [&—‘ C. (9)
parisons, we do not need real absolute time, only that the '
timestamps are monotonically increasing. Therefore we can
implement the time functionality with a shared counter; the The summand in the above formula gives the time that task
synchronization of the counter is handled using CAS. How- 7; may be delayed by higher priority tasks. For systems
ever, the shared counter usually has a limited size (i.e. 32scheduled with dynamic priorities, there are other ways to
bits) and will eventually overflow. Therefore the values of calculate the response timgdl].
the timestamps have to be recycled. We will do this by ex- Now we examine some properties of the timestamps that
ploiting information that are available in real-time systems, can exist in the system. Assume that all tasks call either the
with a similar approach as in [25]. Insert or DeleteMin operation only once per iteration. As
We assume that we haveperiodic tasks in the system, each call togetNextTimeStampill introduce a new times-
indexedr;...7,. For each task; we will use the standard tamp in the system, we can assume that every task invoca-
notationsT;, C;, R; and D; to denote the period (i.e. min  tion will introduce one new timestamp. This new timestamp
period for sporadic tasks), worst case execution time, worsthas a value that is the previously highest known value plus
case response time and deadline, respectively. The deadlin@ne. We assume that the tasks always execute within their

jehp) ' Y

of a task is less or equal to its period. response timegR with arbitrary many interruptions, and that
For a system to be safe, no task should miss its deadlinesthe execution time” is comparably small. This means that
i.e.Vi | R;<D;. the increment of highest timestamp respective the write to a

For a system scheduled with fixed priority, the response node with the current timestamp can occur anytime within
time for a task in the initial system can be calculated using the interval for the response time. The maximum time for an
the standard response time analysis techniques [11]. If welnsert operation to finish is the same as the response time
with B; denote the blocking time (the time the task can be R; for its taskz;. The minimum time between two index
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Fig.' 18. Maximum timestamp increasement estimation—worst case sce- Now we denote withtraversethe maximum time it takes

narto. to traverse through the whole list from one position and
getting back, assuming the list has the maximum 8ize

increments is when the first increment is executed at the end

of the first interval and the next increment is executed at N = Xn: thraverseJ - i (&raverse) —n (14)

the very beginning of the second interval, iTe.— R;. The T T ’

. . . . =0
minimum time between the subsequent increments will then '

i=0

be the periodr;. If we denote withLT, the maximum life- , N +n 15
time that the timestamp with value exists in the system, traverse~ —_— 1 - (15)
the worst case scenario in respect of growth of timestamps i=0 T;

is shown in Fig.18.
The formula for estimating the maximum difference in
value between two existing timestamps in any execution

The worst case scenario is that directly after the timestamp
of one node gets traversed, it gets outdated. Therefore we

becomes as follows: get
n max LT, = fancient* (16)
ma LT v ancien raverse
MaxTag— Z ([ xve{(’;;:oo} v—‘ N 1) . (10) vel0..00}
i=0 ' Putting all together we get

Now we have to bound the value of Mm@y oo} LT,.
When comparing timestamps, the absolute value of these MaxTag
i i i max; R;
are not important, only the relative values. Our method is N 420+ ZZO[ G ]_‘

that we continuously traverse the nodes and replace outdated - Tk
<2 T
i=0 T, leo Tl

timestamps with a newer timestamp that has the same com-
parison result. We traverse and check the nodes at the rate

of one step to the right for every invocation of bisert or (17)
DeleteMin operation. With outdated timestamps we define

timestamps that are older (i.e. lower) than any timestamp

value that is in use by any runnirigeleteMin operation. The above equation gives us a bound on the length of the
We denote wittAncientValthe maximum difference thatwe  «yindow” of active timestamps for any task in any possible

allow between the highest known timestamp value and the gyecytion. In the unbounded construction the tasks, by pro-
timestamp value of a node, before we call this timestamp gycing larger timestamps every time they slide this window

+1

outdated. on thel[0, ..., co] axis, always to the right. The approach
" Fmax: R now, is instead of sliding this window on the $6t. . ., co]
AncientVal= ) ’V T] ]—‘ (11) from left to right, to cyclically slide it on 40, ..., X] set of
i

consecutive natural numbers, see Hi§. Now at the same

time we have to give a way to the tasks to identify the order

of the different timestamps because the order of the physical

numbers is not enough since we are re-using timestamps.

The idea is to use the bound that we have calculated for the
NI nog span of different active timestamps. Let us then take a task

AncientVal= ) {Mﬁ >3 (Mt) —n, (12) that has observed as the lowest timestamp at some invo-
i=0 Ti i=0 Ti cation t. When this task runs again a§ it can conclude

that the active timestamps are going to be betweeand

(v; + MaxTag modX. On the other hand, we should make

- sure that in this intervdb;, . . ., (v; +MaxTag mod X] there
i=0 T; are no old timestamps. By looking closer at Eqg. (10) we

i=0

If we denote withtgncientthe maximum time it takes
for a timestamp value to be outdated counted from its first
occurrence in the system, we get the following relation:

1

AncientVal+ n
fancient< ——, 1 (13)
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0 X /I Global variables
timeCurrent:integer
checked:pointer to Node

/I Local variables
time,newtime,safeTimanteger
current,node,nexipointer to Node

t-z t-l function compareTimeStamp(timefteger,
time2integer):integer
Cl if timel=time2then return O;
C2 if ime2=MAX_TIME then return -1;
C3 if timel>time2and (timel-time2x MAX_TAG or
can conclude that all the other tasks have written values to t'”':/‘fAlj( “’?Xéiﬂd (t'mtel't”lnez“MAx_T'ME)
. . . . < M
their registers with timestamps that are at ndaixTagless 5 = enretum &

: C4  elsereturn-1;
thanwv; at the time that wrote the valuey;. Consequently

Fig. 20. Deciding the relative order between reused timestamps.

if we use an interval that has double the sizeMdxTag function getNextTimeStamp(nteger

7' can conclude that old timestamps are all on the interval Gl repeat
. — MaxTag mod X 1 G2 time:=timeCurrent;

[(vi e Vil . . G3 if (time+1) MAX_ TIME then newtime:=time+1;
Therefore we can use a timestamp field with double the G4 elsenewtime:=0;

size of the maximum possible value of the timestamp. G5  until CAS(&timeCurrent,time,newtime);

G6  return newtime;

TagFieldSize= MaxTagx 2,

procedure TraverseTimeStamps()

TaaFieldBits= [l TagFieldSizé. T1 safeTime:=timeCurrent;
agFieldBits= [log, TagFieldSiz¢ T2  if safeTime ANCIENT VAL then
; . : : T3 safeTime:=safeTime-ANCIENT_ VAL;
In th,'s way 7" will be able to |qent|fy thaty, v2, vs, va T4  elsesafeTime:=safeTime+MAX_TIME-ANCIENT VAL

(see Fig.20) are all new values if> + d3 < MaxTagand T5  while true do

can also conclude that: T6 node:=READ_ NODE(checked);
T7 current:=node;

V3 < V4 < V1 < V2. T8 next:=ReadNext(&node,0);

T9 RELEASE_NODE(node);

The mechanism that will generate new timestamps ina ~ T10  if compareTimeStamp(safeTime,

. . . next.timelnsert) 0 then
cyclical order and also compare timestamps is presented |, next timelnsert-=safeTime:

in Fig. 21 together with the code for traversing the nodes. T12 if CAS(&checked,current,nexthen
Note that the extra properties of the priority queue that are ~ T13 RELEASE NODE(current);
achieved by using timestamps are not complete with respect T4 break;

to thelnsert operations that finishes with an update. These s RELEASE_NODE(next)

update operations will behave the same as for the standard-ig. 21. creation, comparison, traversing and updating of bounded times-
version of the implementation. tamps.

Besides from real-time systems, the presented technique
can also be useful in non real-time systems as well. For ex-
ample, consider a systemof= 10 threads, where the min-
imum time between two invocations would Be= 10ns, to use skip lists for building concurrent priority queues our
and the maximum response tinfke= 1,000,000,000 ns (i.e. algorithm is lock-free and avoids the performance penalties
after 1 s we would expect the thread to have crashed). Assumthat come with the use of locks. Compared to the previous
ing a maximum size of the lis¥ = 10,000, we will have a lock-free/wait-free concurrent priority queue algorithms, our
maximum timestamp differenddaxTag < 1,000010,030, algorithm inherits and carefully retains the basic design char-
thus needing 31 bits. Given that most systems have 32-bitacteristic that makes skip lists practical: simplicity. Previous
integers and that many modern systems handle 64 bits asjock-free/wait-free algorithms did not perform well because

well, it implies that this technique is practical for also non Of their complexity; furthermore they were often based on
real-time systems. atomic primitives that are not available in today’s systems.

We compared our algorithm with some of the most ef-
ficient implementations of priority queues known. Experi-
7. Conclusions ments show that our implementation scales well, and with 3
threads or more our implementation outperforms the corre-
We have presented a lock-free algorithmic implementa- sponding lock-based implementations, for all cases on both
tion of a concurrent priority queue. The implementation is fully concurrent systems as well as with pre-emption.
based on the sequential skip list data structure and builds on We believe that our implementation is of highly practical
top of it to support concurrency and lock-freedom in an effi- interest for multi-threaded applications. We are currently
cient and practical way. Compared to the previous attemptsincorporating it into the NOBLH26] library.
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