
Thesis for the degree of Doctor of Philosophy

Efficient and Practical

Non-Blocking Data Structures

HÅKAN SUNDELL

Department of Computing Science
Chalmers University of Technology and Göteborg University

SE-412 96 Göteborg, Sweden

Göteborg, 2004

Efficient and Practical Non-Blocking Data Structures
HÅKAN SUNDELL
ISBN 91-7291-514-5

c© HÅKAN SUNDELL, 2004.

Doktorsavhandlingar vid Chalmers tekniska högskola
Ny serie nr 2196
ISSN 0346-718X

Technical report 30D
ISSN 1651-4971
School of Computer Science and Engineering

Department of Computing Science
Chalmers University of Technology and Göteborg University
SE-412 96 Göteborg
Sweden
Telephone + 46 (0)31-772 1000

Cover: A skip list data structure with concurrent inserts and deletes.

Chalmers Reproservice
Göteborg, Sweden, 2004

Abstract

This thesis deals with how to design and implement efficient, practical
and reliable concurrent data structures. The design method using mutual ex-
clusion incurs serious drawbacks, whereas the alternative non-blocking tech-
niques avoid those problems and also admit improved parallelism. However,
designing non-blocking algorithms is a very complex task, and a majority of
the algorithms in the literature are either inefficient, impractical or both.

We have studied how information available in real-time systems can im-
prove and simplify non-blocking algorithms. We have designed new methods
for recycling of buffers as well as time-stamps, and have applied them on
known non-blocking algorithms for registers, snapshots and priority queues.

We have designed, to the best of our knowledge, the first practical lock-
free algorithm of a skip list data structure. Using our skip list construction
we have designed a lock-free algorithm of the priority queue abstract data
type, as well as a lock-free algorithm of the dictionary abstract data type.

We have designed, to the best of our knowledge, the first practical lock-
free algorithm of a doubly linked list data structure. The algorithm supports
well-defined traversals in both directions including deleted nodes. Using our
doubly linked list construction we have designed a lock-free algorithm of
the deque abstract data type. For the lock-free algorithms presented in this
thesis, we have given correctness proofs of the strong consistency property
called linearizability and the non-blocking properties.

We have made implementations for actual systems of the algorithms
presented in this thesis and a representative set of related non-blocking as
well as lock based algorithms in the literature. We have built a framework
that combines the implementations in the form of a software library that
offers a unified and efficient interface in combination with a portable design.

We have performed empirical performance studies of the data structures
presented in this thesis in comparison with related alternative solutions. The
experiments performed on an extensive set of multi-processor systems show
significant improvements for non-blocking alternatives in general, and for
the implementations presented in this thesis in particular.

Keywords: synchronization, non-blocking, shared data structure, skip
list, doubly linked list, priority queue, dictionary, deque, snapshot, shared
register, real-time, shared memory, lock-free, wait-free, abstract data type.

4

List of Included Papers and Reports

This thesis is based on the following publications:

1. B. Allvin, A. Ermedahl, H. Hansson, M. Papatriantafilou, H. Sundell
and P. Tsigas, “Evaluating the Performance of Wait-Free Snapshots in
Real-Time Systems,” in Proceedings of SNART’99 Real Time Systems
Conference, pages 196–207, Aug. 1999.

2. H. Sundell, P. Tsigas and Y. Zhang, “Simple and Fast Wait-Free Snap-
shots for Real-Time Systems,” in Proceedings of the 4th International
Conference On Principles Of Distributed Systems, pages 91–106, Stu-
dia Informatica Universalis, Dec. 2000.

3. H. Sundell and P. Tsigas, “Space Efficient Wait-Free Buffer Sharing in
Multiprocessor Real-Time Systems Based on Timing Information,” in
Proceedings of the 7th International Conference on Real-Time Com-
puting Systems and Applications, pages 433–440, IEEE press, Dec.
2000.

4. H. Sundell and P. Tsigas, “NOBLE: A non-blocking inter-process com-
munication library,” in Proceedings of the 6th Workshop on Languages,
Compilers and Run-time Systems for Scalable Computers, Lecture
Notes in Computer Science, Springer Verlag, Mar. 2002.

5. H. Sundell and P. Tsigas, “Fast and Lock-Free Concurrent Priority
Queues for Multi-Thread Systems,” in Proceedings of the 17th Inter-
national Parallel and Distributed Processing Symposium, 11 pp., IEEE
press, Apr. 2003.

6. H. Sundell and P. Tsigas, “Scalable and Lock-Free Concurrent Dic-
tionaries,” in Proceedings of the 19th ACM Symposium on Applied
Computing, pages 1438–1445, Mar. 2004.

7. H. Sundell and P. Tsigas, “Simple Wait-Free Snapshots for Real-Time
Systems with Sporadic Tasks” in Proceedings of the 10th International
Conference on Real-Time Computing Systems and Applications, Lec-
ture Notes in Computer Science, Springer Verlag, Aug. 2004.

8. H. Sundell and P. Tsigas, “Lock-Free and Practical Deques using
Single-Word Compare-And-Swap,” Computing Science, Chalmers Uni-
versity of Technology, Tech. Rep. 2004-02, Mar. 2004.

6

ACKNOWLEDGEMENTS

First of all and very respectfully, I want to thank my supervisor Philip-
pas Tsigas, without his great mind, effort and enthusiasm this wouldn’t
have been possible. An encouraging, cooperative and truly interested advi-
sor is something that every Ph.D. student wants, whereof I am one of the
privileged.

I am very honored to have Prof. Dr. Friedhelm Meyer auf der Heide
as my opponent. I am also honored to my grading committee, constituted
of Doc. Lenka Carr-Motycková, Doc. Peter Damaschke and Prof. Bertil
Svensson. Thank you all, for your helpful comments during the writing of
this thesis.

I am also grateful to my examinor Peter Dybjer and my local graduate
committee, constituted of Marina Papatriantafilou and Aarne Ranta, for
keeping track of my work during the years. I wish to especially thank Marina
for her countless efforts with giving feedback and suggestions to our papers.
I also wish to thank the rest of the Distributed Computing and Systems
research group for their continuous support and feedback during the years;
Niklas Elmqvist, Anders Gidenstam, Phuong Hoai Ha, Boris Koldehofe, Yi
Zhang and former group members. I especially thank Boris Koldehofe for
being my office mate and reliable friend.

This work was enabled by the great organization called ARTES, without
which I would never have got a graduate student position. ARTES have
supported the major part of this work, using the national SSF foundation.
I wish to thank Hans Hansson and Roland Grönroos for their endless work,
and also thank the other academic and industrial members of ARTES for
their support.

The inspiring and constructive environment at Chalmers has also con-
tributed to the success of this work. I wish to thank all colleagues at the
department and section, academic as well as administrative staff, faculty
and other graduate students for contributing to a very fruitful and nice en-
vironment. This mostly adheres to work, but also to free time activities as
skiing trips, dragonboat races, baseball matches, movies and dinners. Thank
you all and keep up the good work!

8

Last, but not least, I wish to thank my family and all friends. I am
forever grateful to my beloved wife Ann-Sofie, my son Tim, my parents
Kjell and Jane, my brothers Peter and Morgan, my aunt and uncle, my
parents-in-law, my other relatives and friends. I would for certain not be
here without your support.

H̊akan Sundell

Göteborg, November 2004.

Contents

1 Introduction 1
1.1 Concurrent Programming Systems 1
1.2 Shared Memory . 2

1.2.1 Consistency . 3
1.2.2 Atomic Primitives . 4

1.3 Real-Time Systems . 6
1.4 Synchronization . 8

1.4.1 Mutual Exclusion . 9
1.4.2 Non-blocking Synchronization 10
1.4.3 Consensus . 14
1.4.4 Synchronization for Real-Time Systems 14

1.5 Shared Data Structures . 18
1.5.1 Advanced Atomic Primitives 18
1.5.2 Memory Management 19
1.5.3 Register . 21
1.5.4 Snapshot . 22
1.5.5 Linked List . 23
1.5.6 Stack . 24
1.5.7 Queue . 24
1.5.8 Deque . 25
1.5.9 Priority Queue . 26
1.5.10 Dictionary . 26

1.6 Contributions . 27
1.6.1 Methods for Real-Time Systems 27
1.6.2 Algorithms of Shared Data Structures 30
1.6.3 Implementation Work 33
1.6.4 Design of Framework 36
1.6.5 Experiments . 37

i

ii Contents

2 Wait-Free Snapshot 39
2.1 Introduction . 40
2.2 System and Problem Description 42

2.2.1 Real-time Multiprocessor System Configuration 42
2.2.2 The Model . 43

2.3 The Protocol . 44
2.3.1 The unbounded version 44
2.3.2 Bounding the Construction 46

2.4 Experiments . 52
2.5 Conclusions and Future Work 54

3 Wait-Free Shared Buffer 57
3.1 Introduction . 58
3.2 System and Problem Description 60

3.2.1 Real-Time Multiprocessor System Configuration . . . 60
3.2.2 The Model . 61

3.3 The Protocol . 62
3.3.1 The Unbounded Algorithm 62
3.3.2 Bounding the Time-Stamps 65

3.4 Implementation . 69
3.5 Examples . 71
3.6 Conclusions . 72

4 NOBLE 73
4.1 Introduction . 74
4.2 Design and Features of NOBLE 75

4.2.1 Usability-Scope . 76
4.2.2 Easy to use . 76
4.2.3 Easy to Adapt . 79
4.2.4 Efficiency . 80
4.2.5 Portability . 80
4.2.6 Adaptable for different programming languages 81

4.3 Examples . 82
4.4 Experiments . 83
4.5 Conclusions . 89

5 Lock-Free Priority Queue 91
5.1 Introduction . 92
5.2 System Description . 95
5.3 Algorithm . 96

Contents iii

5.4 Correctness . 104
5.5 Experiments . 110

5.5.1 Low or Medium Concurrency 110
5.5.2 Full concurrency . 120
5.5.3 Results . 120

5.6 Extended Algorithm . 122
5.7 Related Work with Skip Lists 127
5.8 Conclusions . 128

6 Lock-Free Dictionaries 131
6.1 Introduction . 132
6.2 System Description . 135
6.3 Algorithm . 135

6.3.1 Memory Management 136
6.3.2 Traversing . 139
6.3.3 Inserting and Deleting Nodes 142
6.3.4 Helping Scheme . 146
6.3.5 Value Oriented Operations 147

6.4 Correctness . 149
6.5 Experiments . 159
6.6 Related Work with Skip Lists 165
6.7 Conclusions . 166

7 Lock-Free Deque and Doubly Linked List 167
7.1 Introduction . 168
7.2 System Description . 171
7.3 The Algorithm . 171

7.3.1 The Basic Steps of the Algorithm 174
7.3.2 Memory Management 175
7.3.3 Pushing and Popping Nodes 176
7.3.4 Helping and Back-Off 182
7.3.5 Avoiding Cyclic Garbage 185

7.4 Correctness Proof . 186
7.5 Experimental Evaluation . 194
7.6 Operations for a Lock-Free Doubly Linked List 198
7.7 Conclusions . 204

8 Conclusions 205

9 Future Work 209

iv Contents

List of Figures

1.1 Three processes communicating using message passing (left)
versus shared memory (right) 2

1.2 Uniform versus non-uniform memory access (UMA vs NUMA)
architecture for multiprocessor systems 3

1.3 Example of possible scenario with concurrent read and write
operations to shared memory with a relaxed consistency model. 4

1.4 The Test-And-Set (TAS), Fetch-And-Add (FAA) and Compare-
And-Swap (CAS) atomic primitives. 5

1.5 The “Test and Test-And-Set” spinning lock. 6
1.6 Example of real-time terminology used for periodic tasks. . . 8
1.7 In a lock-free solution each operation may have to retry an

arbitrary number of steps depending on the behavior of the
concurrent operations. 11

1.8 In a wait-free solution each operation is guaranteed to finish
in a limited number of its own steps. The worst case execu-
tion time of each operation is therefore deterministic and not
dependent of the behavior of concurrent operations. 13

1.9 Example of timing information available in real-time system . 17
1.10 A snapshot data structure with five components 22
1.11 Three processes accessing different parts of the shared linked

list . 24

2.1 Shared Memory Multiprocessor System Structure 43
2.2 Pseudocode for the Unbounded Snapshot Algorithm 44
2.3 Unbounded Snapshot Protocol 45
2.4 Intuitive presentation of the atomicity/linearizability crite-

rion satisfied by our wait-free solution 47
2.5 A cyclic buffer with several updater tasks and one snapshot

task . 48

v

vi Contents

2.6 The bounded Snapshot protocol 49
2.7 Estimating the buffer length - worst case scenario 49
2.8 Pseudo-code for the Bounded Snapshot Algorithm 50
2.9 Descriptions of Scenarios for experiment 52
2.10 Experiment with 1 Scan and 10 Update processes - Scan task

comparison . 53
2.11 Experiment with 1 Scan and 10 Update processes - Update

task comparison . 54

3.1 Shared Memory Multiprocessor System Structure 61
3.2 Architecture of the Algorithm 62
3.3 The unbounded algorithm . 63
3.4 The Register Structure . 63
3.5 Rapidly Increasing Tags . 65
3.6 Tag Range . 66
3.7 Tag Value Recycling . 68
3.8 Tag Reuse . 69
3.9 Algorithm changes for bounded tag size 70
3.10 The registers located on each processor as a column of the

matrix . 71
3.11 Code to be implemented on each involved processor. 72

4.1 Experiments on SUN Enterprise 10000 - Solaris 85
4.2 Experiments on SGI Origin 2000 - Irix 86
4.3 Experiments on Dual Pentium II - Win32 87
4.4 Experiments on Dual Pentium II - Linux 88

5.1 Shared Memory Multiprocessor System Structure 95
5.2 The skip list data structure with 5 nodes inserted. 95
5.3 The Node structure. 96
5.4 Concurrent insert and delete operation can delete both nodes. 96
5.5 The Fetch-And-Add (FAA) and Compare-And-Swap (CAS)

atomic primitives. 97
5.6 Functions for traversing the nodes in the skip list data structure. 99
5.7 The algorithm for the Insert operation. 100
5.8 The algorithm for the DeleteMin operation. 101
5.9 The algorithm for the RemoveNode function. 102
5.10 The algorithm for the HelpDelete function. 103
5.11 Experiment with priority queues and high contention, with

initial 100 nodes, using spinlocks for mutual exclusion. 111

Contents vii

5.12 Experiment with priority queues and high contention, with
initial 1000 nodes, using spinlocks for mutual exclusion. . . . 112

5.13 Experiment with priority queues and high contention, with
initial 100 nodes, using semaphores for mutual exclusion. . . 113

5.14 Experiment with priority queues and high contention, with
initial 1000 nodes, using semaphores for mutual exclusion. . . 114

5.15 Experiment with priority queues and high contention, with
initial 100 or 1000 nodes . 115

5.16 Experiment with priority queues and high contention, run-
ning with average 100-10000 nodes 116

5.17 Experiment with priority queues and high contention, varying
percentage of insert operations, with initial 1000 (for 10-40 %)
or 0 (for 60-90 %) nodes. Part 1(3). 117

5.18 Experiment with priority queues and high contention, varying
percentage of insert operations, with initial 1000 (for 10-40 %)
or 0 (for 60-90 %) nodes. Part 2(3). 118

5.19 Experiment with priority queues and high contention, varying
percentage of insert operations, with initial 1000 (for 10-40 %)
or 0 (for 60-90 %) nodes. Part 3(3). 119

5.20 Maximum timestamp increasement estimation - worst case
scenario . 123

5.21 Timestamp value recycling . 125
5.22 Deciding the relative order between reused timestamps 125
5.23 Creation, comparison, traversing and updating of bounded

timestamps. 126

6.1 Example of a Hash Table with Dictionaries as branches. . . . 134
6.2 Shared memory multiprocessor system structure 135
6.3 The skip list data structure with 5 nodes inserted. 136
6.4 Concurrent insert and delete operation can delete both nodes. 136
6.5 The Fetch-And-Add (FAA) and Compare-And-Swap (CAS)

atomic primitives. 137
6.6 The basic algorithm details. 138
6.7 The algorithm for the traversing functions. 139
6.8 The algorithm for the SearchLevel function. 141
6.9 The algorithm for the Insert function. 143
6.10 The algorithm for the FindKey function. 144
6.11 The algorithm for the DeleteKey function. 145
6.12 The algorithm for the HelpDelete function. 146
6.13 The algorithm for the FindValue function. 148

viii Contents

6.14 Experiment with dictionaries and high contention on SGI Ori-
gin 2000, initialized with 50,100,...,10000 nodes 160

6.15 Experiment with full dictionaries and high contention on SGI
Origin 2000, initialized with 50,100,...,10000 nodes 161

6.16 Experiment with dictionaries and high contention on Linux
Pentium II, initialized with 50,100,...,10000 nodes 162

6.17 Experiment with full dictionaries and high contention on Linux
Pentium II, initialized with 50,100,...,10000 nodes 163

7.1 Shared Memory Multiprocessor System Structure 170
7.2 The doubly linked list data structure. 171
7.3 The Fetch-And-Add (FAA) and Compare-And-Swap (CAS)

atomic primitives. 172
7.4 Concurrent insert and delete operation can delete both nodes. 173
7.5 Illustration of the basic steps of the algorithms for insertion

and deletion of nodes at arbitrary positions in the doubly
linked list. 174

7.6 The basic algorithm details. 177
7.7 The algorithm for the PushLeft operation. 178
7.8 The algorithm for the PushRight operation. 179
7.9 The algorithm for the PopLeft function. 180
7.10 The algorithm for the PopRight function. 181
7.11 The algorithm for the HelpDelete sub-operation. 183
7.12 The algorithm for the HelpInsert sub-function. 184
7.13 The algorithm for the RemoveCrossReference sub-operation. . 186
7.14 Experiment with deques and high contention. 195
7.15 Experiment with deques and high contention, logarithmic

scales. 196
7.16 The algorithm for the Next operation. 199
7.17 The algorithm for the Prev operation. 200
7.18 The algorithm for the Read function. 200
7.19 The algorithm for the InsertBefore operation. 201
7.20 The algorithm for the InsertAfter operation. 202
7.21 The algorithm for the Delete function. 203

List of Tables

1.1 An example of consensus numbers for common atomic prim-
itives. 14

3.1 Example task scenario on eight processors 69

4.1 The shared data objects supported by NOBLE 77
4.2 The shared data objects supported by NOBLE (continued) . 78
4.3 The distribution characteristics of the random operations . . 83

ix

x LIST OF TABLES

Chapter 1

Introduction

This thesis deals with how to design efficient algorithms of data structures
that can be shared among several execution entities (i.e. computer pro-
grams), where each execution entity can be either a process or a thread.
Thus, the data structures can be accessed concurrently by the execution
entities; either in an interleaved manner where the execution entities gets
continuously pre-empted, or fully in parallel.

1.1 Concurrent Programming Systems

The definition of a modern computer suitable for concurrent programming
is quite involved. Depending on the number of processors that are closely
connected to each other, a computer can be either a uni- or multi-processor
system. The computer system can also be constructed out of several separate
computation nodes, where each node (which can be a computer system of
its own, either a uni- or multi-processor) is physically separated from the
others, thus forming a distributed system.

These computation nodes and whole computer systems can be tied to-
gether using either a shared memory system or a message passing system.
Depending on how physically separated each computation node is from the
others, the system is interpreted as a single computer or as a cluster system.

In a message passing system, the inter-communication between each
computation node is done by exchanging information packages over the sup-
ported inter-connection network. A shared memory system gives a higher
abstraction level, and gives the impression to the connected computation
nodes of the existence of a global memory with shared access possibilities.
See Figure 1.1 for an example scenario where three processes are communi-

2 CHAPTER 1. INTRODUCTION

P1

P3

P2

P1

P3

P2

Message passing Shared memory

Figure 1.1: Three processes communicating using message passing (left)
versus shared memory (right)

cating using message passing versus shared memory techniques.

1.2 Shared Memory

The real memory that constitutes the shared memory can be either centrally
located or distributed in parts over the individual computation nodes. The
inter-node communication network needed in order to establish the shared
memory, can be implemented in either hardware or software on top of mes-
sage passing hardware.

The shared memory system can be either uniformly distributed as in the
uniform memory access (UMA) architecture [5] or non-uniformly distributed
as in the non-uniform memory access (NUMA) architecture [68]. In a NUMA
system, the response time of a memory access depends on the actual distance
between the processor and the real memory, although it is the same for each
processor on the same node. For the UMA system, the response time for
memory accesses is the same all over the system, see Figure 1.2. An example
of a UMA system is the Sun Starfire [24] architecture, and the SGI Origin
[70] and the Sun Wildfire [42] architectures are examples of modern NUMA
systems.

The shared memory implementations on computer systems with clearly
physically separated computation nodes are usually called distributed shared
memory.

As the bandwidth of the memory bus or inter-node network is limited,
it is important to avoid contention on the shared memory if possible. Heavy
contention can lead to significantly lower overall performance of the shared
memory system (especially for NUMA systems), and therefore memory ac-

1.2. SHARED MEMORY 3

CPU

Cache

CPU

Cache

CPU

Cache
. . .

Memory

bus

CPU CPU. . .

Cache Bus

Memory

CPU CPU. . .

Cache Bus

Memory

CPU CPU. . .

Cache Bus

Memory

. . .

UMA

NUMA

Figure 1.2: Uniform versus non-uniform memory access (UMA vs NUMA)
architecture for multiprocessor systems

cesses from each processor should if possible be coordinated to work on
different parts of the memory and at different points in time.

1.2.1 Consistency

In order for concurrent programs to coordinate the possibly parallel accesses
to the shared memory and achieve a consistent view of the shared memory’s
state, it is necessary that the implementation of the shared memory guar-
antees the fulfillment of some formally defined memory consistency model.

The most intuitive and strongest model is where all concurrent memory
accesses are viewed as each taking effect at a unique and the very same time
by all processors, i.e. a single total order. However, for shared memory
implementations without central hardware memory this model might be
very hard to achieve. Therefore more realistic models have been proposed
in the literature. In 1979, Lamport introduced the sequential consistency
[66] model, which is one of the widest accepted models. In this model the
results of any execution is the same as if the operations of all the processors
were executed in some sequential order, and the operations of each individual
processor appear in this sequence in the order specified by its program.

Several weaker consistency models have been proposed in the literature,
for example the casual consistency and the relaxed consistency models. Many
modern processor architectures implements weak memory consistency mod-
els where the view of the orders of read and writes may differ significantly
from the normal intuition. This approach is taken mainly because of effi-
ciency reasons as described by Adve and Gharachorloo [1]. For example,

4 CHAPTER 1. INTRODUCTION

CPU 1

CPU 2

t

CPU 3

W(y,0)

W(x,0) W(x,1)

R(x)=1 W(y,1)

R(x)=0

R(y)=0

R(y)=1

R(y)=1

R(x)=1

Figure 1.3: Example of possible scenario with concurrent read and write
operations to shared memory with a relaxed consistency model.

see Figure 1.3 that shows a possible scenario using the default model on the
Sparc v.9 processor architecture, called the relaxed memory order. Systems
with such weak consistency models, though usually provides special ma-
chine instructions that force specified write or read operations to be viewed
consistently in some decided order by other processors. However, these in-
structions must be used with care, as excessive use of them will significantly
reduce the system’s overall performance.

1.2.2 Atomic Primitives

In order to enable synchronization between processes accessing the shared
memory, the system has to provide some kind of atomic primitives for this
purpose. In this context, atomic means that no other operation can interfere
with or interrupt the operation from when the operation starts until it has
finished execution of all sub steps. Basic read and write operation of normal-
sized memory words are usually designed to be atomic with respect to each
other and other operations.

In order to make consistent updates of words in the shared memory,
stronger atomic primitives than read and writes are needed in practice, al-
though Lamport has showed how to achieve mutual exclusion [67] using only
reads and writes. Using mutual exclusion the process is guaranteed to be
alone accessing and modifying some part of the shared memory. However,
using hardware atomic primitives for updates have several benefits, like that
they give better and more predicted performance, as they either take full or
no effect. As they are not based on explicit mutual exclusion techniques they
also have better fault-tolerance, because of reasons that will be elaborated
more in Section 1.4.

There are different kinds of atomic primitives available on different plat-

1.2. SHARED MEMORY 5

forms, some less powerful than the others. All platforms do not directly
support all known atomic primitives; some only support a limited subset or
even none. The latter is especially common on older 8-bit platforms often
used for embedded systems. The functionality of all atomic primitives can
though usually be implemented using other means.

The most common atomic primitives for synchronization are Test-And-
Set (TAS), Fetch-And-Add (FAA) and Compare-And-Swap (CAS), which
are described in Figure 1.4.

function TAS(value:pointer to word):boolean
atomic do

if *value = 0 then
*value := 1;
return true;

else return false;

procedure FAA(address:pointer to word, number:integer)
atomic do

*address := *address + number;

function CAS(address:pointer to word, oldvalue:word
, newvalue:word):boolean

atomic do
if *address = oldvalue then

*address := newvalue;
return true;

else return false;

Figure 1.4: The Test-And-Set (TAS), Fetch-And-Add (FAA) and Compare-
And-Swap (CAS) atomic primitives.

There are also other atomic primitives defined that are not as commonly
available as these three. Some platforms provide an alternative to the CAS
operation with a pair of operations called Load-Link / Store-Conditional
(LL/SC). According to the ideal definition, the SC operation only updates
the variable if it is the first SC operation after the LL operation was per-
formed (by the same processor) on that variable. All problems that can be
solved efficiently with the LL/SC operations can also be solved with the CAS
operation. However, the CAS operation does not solve the so-called ABA
problem in a simple manner, a problem which does not occur with LL/SC.
The reason is that the CAS operation can not detect if a variable was read
to be A and then later changed to B and then back to A by some concurrent

6 CHAPTER 1. INTRODUCTION

procedure Lock(lock:pointer to word)
while true do

if *lock = 0 then
if TAS(lock) then break

procedure UnLock(lock:pointer to word)
*lock := 0;

Figure 1.5: The “Test and Test-And-Set” spinning lock.

processes - the CAS will perform the update even though this might not be
intended by the algorithm’s designer. The LL/SC operations can instead
detect any concurrent update on the variable between the time interval of a
LL/SC pair, independent of the value of the update. Unfortunately, the real
hardware implementations of LL/SC available are rather weak, where SC
operations might fail spuriously because of prior shared memory accesses or
even undefined reasons, and LL/SC pairs may not be nested by the same
processor.

All the previous primitives are used to make consistent updates of one
variable. There are also atomic primitives defined for two and more vari-
ables, like Double-Word Compare-And-Swap (CAS2) [49], not to be confused
with CAS for double word-size (i.e. 64-bit integers on 32-bit systems). CAS2
(often called DCAS in the literature) do not exist as an implementation in
real hardware on any modern platform, the only architecture that supported
it was the Motorola 68020 family of processors [62].

Although the hardware atomic primitives might be very practical, they
must be used with care as they can cause heavy contention on the shared
memory if massively used in parallel on the same parts of the memory. As
mentioned in Section 1.2, heavy contention can lead to significantly reduced
performance of the shared memory system. See Figure 1.5 for an example
of an implementation of a spinning lock, that avoids unnecessary calls of the
expensive TAS atomic primitive when the lock is occupied and instead spins
on a local read operation.

1.3 Real-Time Systems

In the field of computer science scientists have always worked towards mak-
ing computing more reliable and correct. However, the interpretation of
correctness is not always the same. A real-time system is basically a system

1.3. REAL-TIME SYSTEMS 7

where the timing of a result is as important as the result itself. A real-time
system has to fulfill some timing guarantees, i.e. the computation time of
some specific computation may never exceed some certain limit.

The importance of these timing guarantees can vary. In a hard real-time
system the fulfillment of all these guarantees is critical for the existence and
purpose of the whole system. In a soft real-time system it is acceptable if
some of the guarantees are not met all the time.

The computational work in a real-time system is usually divided into
parts called tasks. A task can be the equivalent to either a process or a
thread. The execution order of these tasks is controlled by a special part of
the operating system kernel, the scheduler. Each task has a set of timing
and urgency parameters. These parameters and requirements are examined
by the scheduler either before starting (off-line) or while running (on-line);
depending on the result the scheduler then pre-empts and allows the different
tasks to execute. Whether the scheduling is done off-line or on-line depends
on the actual scheduler used and also if dynamic adding of new tasks to the
system is allowed or not.

Tasks can be classified in different categories, periodic, sporadic or even
aperiodic. Periodic tasks are tasks that should be performed over and over
again with a certain time interval between each execution, for example we
should perhaps perform 50 computations per second of image frames to
produce smooth video output. Sporadic tasks arrive not more often than a
certain time interval and aperiodic tasks can arrive at any time and at any
rate.

Because of the need of some tasks to be ready earlier than others, tasks
are given priorities that will be used by the scheduler. These can be either
fixed for each task or be dynamically changed during run-time.

The terminology we use for specifying the properties of periodic real-time
tasks are as follows:

T - Period. The period describes how often the task arrives, ready to be
executed.

p - Priority. This is usually a unique value given to each task, with lower
value describing higher priority, starting with 0 for the highest priority.

C - Worst case execution time. The task has a bound on how long it can
possibly take to be fully executed in case of no interruptions.

R - Worst case response time. This is the longest time it can possibly
take for a task to be finally executed after it has arrived ready for execution.

8 CHAPTER 1. INTRODUCTION

Task i

C
i
 (Worst case execution time)

T
i
 (Period)

R
i
 (Worst case response time)

arrival timearrival time
t

Figure 1.6: Example of real-time terminology used for periodic tasks.

See Figure 1.6 for an example task with the corresponding scheduling
information marked in a timing diagram.

If using fixed priority scheduling with periodic tasks, the worst case
response times [17] for each task can be computed using fixed point iteration
as follows:

Ri = Ci +
∑

j∈hp(i)

⌈
Ri

Tj

⌉
Cj (1.1)

The intuitive description of this formula is basically that the response
time of a task is the execution time of the task plus the maximum time it
can possibly be delayed by other tasks that have higher priority (hp(i) is
the set of tasks having higher priority than task i).

1.4 Synchronization

In a concurrent programming system we usually have several tasks, executed
more or less in parallel. These tasks together form sub-tasks of a greater
task, the purpose of the whole system. As these tasks are related to each
other in some way with shared resources, they have to synchronize in some
manner. Without synchronization it is highly possible and probable that
the concurrent access of some shared resource will lead to inconsistency, as
most shared resources don’t allow more than one participant to access them
concurrently in a predictive manner.

1.4. SYNCHRONIZATION 9

1.4.1 Mutual Exclusion

The general way of synchronizing the accesses of resources is to use mu-
tual exclusion. Mutual exclusion can be implemented in several ways, one
method is using message passing, perhaps having a token system that dis-
tributes the accesses in a safe and predictive manner. Another way of many
available to implement mutual exclusion is to disable interrupts or similar.

Mutual exclusion is often provided by the operating system as a primi-
tive and mostly incorporates the support of shared memory. Using shared
memory the tasks can synchronize and share information in shared data
structures. Using mutual exclusion the tasks can make sure that only one
task can have access to a shared resource or data structure at one time.

However, mutual exclusion (also called locking) has some significant
drawbacks:

• They cause blocking. This means that tasks that are eligible to run
have to wait for some other task to finish the access of the shared
resource. Blocking also makes the computation of worst-case response
times more complicated, and the currently used computation methods
are quite pessimistic. Blocking also can cause unwanted delays of other
tasks as the effect propagates through the task schedule, also called
the convoy effect.

• If used improperly they can cause deadlocks, i.e. no task involved in
the deadlock can proceed, possibly because they are waiting for a lock
to be released that is owned by a task that has died or is otherwise
incapable of proceeding.

• They can cause priority inversion. The exclusion of other tasks while
one low priority task is holding the lock can cause a high priority task
to actually have to wait for middle priority tasks to finish.

These problems have been recognized since long, especially for real-time
systems, and are thoroughly researched. Several solutions exist, such as
software packages that fit as a layer between the mutual exclusion control
of the shared resource and the scheduler of the real-time system. The most
common solutions are called the priority ceiling protocol (PCP) and immedi-
ate priority ceiling protocol (IPCP) [18, 71, 93, 95]. They solve the priority
inversion problem and limits the amount of blocking a task can be exposed
to in a uni-processor system. There are also solutions, though significantly
less efficient, for multi-processor systems like the multi-processor priority
ceiling protocol (MPCP) [93].

10 CHAPTER 1. INTRODUCTION

1.4.2 Non-blocking Synchronization

Researchers have also looked for other solutions to the problems of synchro-
nizing the access of shared resources. The alternative to using locks is called
non-blocking, and circumvents the usage of locks using other means than
mutual exclusion.

As non-blocking algorithms do not involve mutual exclusion, all steps
of the defined operations can be executed concurrently. This means that
the criteria for consistency correctness are a bit more complex than for
mutual exclusion. The correctness condition used for concurrent operations
(in general) is called linearizability. Linearizability was formally defined by
Herlihy and Wing [50] and basically means that for each real concurrent
execution there exists an equivalent imaginary sequential execution that
preserves the partial order of the real execution.

The fulfillment of the linearizability property enables the shared re-
sources to still be accessed in a predictive manner, called atomic. In this
context, atomic means that the operation can be viewed by the processes as
it occurred at a unique instant in time, i.e. the effect of two operations can
not be viewed as taking place at the same time.

Traditionally, there are two basic levels of non-blocking algorithms, called
lock-free and wait-free. Common with most non-blocking algorithms are
that they take advantage of atomic primitives. However, there are solutions
available that do not rely on atomic primitives other than read or write as
will be shown further on in the thesis.

The definitions of lock-free and wait-free algorithms guarantee the progress
of always at least one (all for wait-free) operation, independent of the ac-
tions performed by the concurrent operations. As this allows other pro-
cesses to even completely halt, lock-free and wait-free operations are in
this sense strongly fault tolerant. Recently, some researchers also proposed
obstruction-free [48] algorithms to be non-blocking, although this kind of
algorithms do not give any progress guarantees.

Several studies exist that indicate a possibly superior performance for
non-blocking implementations compared to traditional ones using mutual ex-
clusion, as for example the study by Michael and Scott [85] of common data
structures and simple applications, and the study by Lumetta and Culler
[73] of a simple queue structure. Non-blocking techniques can significantly
improve the systems’ overall performance as showed by Tsigas and Zhang
[115][118], on both application as well as operating system level. Several
successful attempts to incorporate non-blocking techniques into operating
system kernels has been made, for example the Synthesis OS by Massalin

1.4. SYNCHRONIZATION 11

and Pu[75] and the Asterix real-time OS by Thane et al. [113].

Lock-Free

Roughly speaking, lock-free is the weakest form of non-blocking synchro-
nization. Lock-free algorithms are designed with having the idea in mind
that synchronization conflicts are quite rare and should be handled as ex-
ceptions rather than a rule. However, it must then always be possible to
detect when those exceptions appear. When a synchronization conflict is
noticed during a lock-free operation then that operation is simply restarted
from the beginning, see Figure 1.7.

Figure 1.7: In a lock-free solution each operation may have to retry an
arbitrary number of steps depending on the behavior of the concurrent op-
erations.

The basic ideas of most lock-free algorithms for updating shared data
objects are as follows:

1. Prepare a (partly) copy of the object you want to update.

2. Update the copy

3. Make the copy valid using some strong atomic primitive like Compare-
And-Swap (CAS) or similar. The CAS operation makes sure that the
update from the old to the new value is done in one atomic step, unless

12 CHAPTER 1. INTRODUCTION

a conflict with some other operation occurred. If a conflict is noticed,
then retry from step 1 again.

This of course assumes that the shared object is constructed using a
dynamic structure with linked pointers for each separate node. There exist
other lock-free algorithms that rely on other means than swinging pointers
with strong atomic primitives. One example is a lock-free algorithm for a
shared buffer [65] that only relies on the orders of read and write operations.

Although lock-free algorithms solve the priority inversion, deadlock and
blocking problem, other problems might appear instead. For instance, it
might be that a race condition arises between the competing tasks. In the
worst case, the possible retries might continue forever and the operation
will never terminate, causing the operation to suffer from what is called
starvation. It is important to note that starvation also can occur with many
implementations of locks as the definition of mutual exclusion does not guar-
antee the fairness of concurrent operations, i.e. it is not guaranteed that
each process will get the lock in a fair (with respect to the response times
for other processes) or even limited time.

One way to lower the risk of race conditions as well as the contention on
the shared memory is called back-off [46]. This means that before retrying
again after a failed attempt to update, the operation will sleep for a time
period selected according to some method. The length of this time period
could for example be set initially to some value dependent on the level
of concurrency, and then increase either linearly or exponentially with each
subsequent retry. Another method that could be combined with the previous
or just by it self is randomization.

Because of the possibility for starvation, lock-free techniques stand alone
are not directly suitable for hard real-time systems. However, if you have
enough information about your environment, you might be able to efficiently
bound the maximum number of retries.

Wait-Free

The idea of Wait-free constructions goes one step further than lock-free and
also avoids the unbounded number of retries. This means that any wait-free
operation will terminate in a finite number of execution steps regardless of
the actual level of concurrency, see Figure 1.8.

Many wait-free algorithms are quite complex. There are several main
ideas behind designing a wait-free algorithm for a shared data object. Many
of the methods are based on copying the object into different buffers and then

1.4. SYNCHRONIZATION 13

redirecting the concurrent operations into separate buffers to avoid conflicts.
The buffer with the most recent value is then usually activated using pointers
and some synchronization among the operations. This synchronization can
be e.g. some handshaking protocol or invocation of some strong atomic
primitive like CAS.

Figure 1.8: In a wait-free solution each operation is guaranteed to finish in
a limited number of its own steps. The worst case execution time of each
operation is therefore deterministic and not dependent of the behavior of
concurrent operations.

Another method for implementing wait-free solutions is called helping.
In the context of real-time task sets with priorities, helping is quite similar
to the PCP protocol in the actual execution pattern, and works like follows:

1. Each operation, name it e.g. operationi, first announces some infor-
mation about what it is going to do with the shared data object in
some global data structure.

2. Then this global data structure is checked for other operations that
are announced and have not completed e.g. due to pre-emption. The
announced operations are then performed by operationi. This proce-
dure is performed in several steps, of which each is verified using an
atomic primitive.

3. When all announced operations are helped, operationi is performed in
the same way as the helping of the other operations. As all the other
concurrent operations also follow the helping scheme, it can be that

14 CHAPTER 1. INTRODUCTION

Table 1.1: An example of consensus numbers for common atomic primitives.
Atomic Primitive Consensus Number
Read & Write 1
Test-And-Set (TAS) 2
Fetch-And-Add (FAA) 2
Compare-And-Swap (CAS) ∞
Load-Linked/Store-Conditionally (LL/SC) ∞

operationi has been helped itself, thus the helping scheme works in a
recursive manner.

This method requires that the operation first must be split into several
steps that fulfill some special properties that are needed to guarantee con-
sistency between the concurrent operations that try to help with this step.
It has been proved that using the helping scheme it is possible to implement
a wait-free algorithm for every possible shared data structure. This uni-
versal construction [45] is unfortunately not practically usable for all cases,
which emphasizes the need for specially designed wait-free algorithms for
each specific shared data object.

1.4.3 Consensus

The relative power of each atomic primitive has been researched by Herlihy
[45] and others. Atomic primitives with lower consensus number can al-
ways be implemented using atomic primitives of higher consensus number.
Roughly speaking, the consensus number describes how many concurrent
operations of the same kind that can wait-free agree on the same value of
the result using this operation. See Table 1.4.3 for an example of consensus
numbers for common atomic primitives.

Herlihy [45] has shown that atomic primitives with infinite consensus
numbers are universal, i.e. they can be used to construct wait-free imple-
mentations of any shared data structure.

1.4.4 Synchronization for Real-Time Systems

When considering the characteristics and limits of non-blocking algorithms,
one has to keep in mind that they are usually designed for the universal
case. If we take advantage of information about the behavior of the specific
systems that we are going to use, the possibilities for designing efficient
non-blocking algorithms can drastically improve.

1.4. SYNCHRONIZATION 15

There are two basic kinds of information to take advantage of, either
by looking at certain aspects of the scheduler, or by using timing informa-
tion about the involved tasks. Looking at two kinds of schedulers, we can
categorize the use of information to three methods:

• Priority scheduling. The priority scheduling policy means that tasks
can only be pre-empted by tasks with higher priority. The task with
highest priority will therefore not experience any pre-emptions, thus
ensuring atomicity of this task.

• Quantum scheduling. The quantum scheduling policy means that
there is a granularity in the possible times when tasks can be pre-
empted. This can be of advantage in the design of the algorithms as
the number of possible conflicts caused by concurrent operations can
be bounded.

• Timing information. If all involved tasks in the real-time system have
well-specified timing characteristics of the execution by the scheduler,
this can be used for bounding the amount of possible interactions
between the concurrent tasks, as will be shown further on in this thesis.
Usually the scheduler has this information when it decides if a task is
schedulable or not.

The Effect of Priority Scheduling

If we have a system where each task has a different priority assigned to it,
we can make use of this when designing non-blocking data structures. The
actual problem that we have when concurrently accessing shared data struc-
tures between tasks occurs when two or more tasks access the data structure
at the same time. In a uni-processor system this can only occur when a task
that is in a critical section is pre-empted by a higher priority task. Seen
from the perspective from the pre-empted task, the higher priority task is
atomic. As all tasks have different priorities, one task must have the highest
priority of all the tasks sharing the data structure. This highest priority
task will not be pre-empted by other tasks accessing the data structure, and
can therefore be seen as atomic.

In this way one can design a non-blocking agreement protocol, using the
idea that at least one task will always proceed and finish its critical section
without interference. This has been done by Anderson et al. [10] who have
been researching thoroughly in this area.

16 CHAPTER 1. INTRODUCTION

One can also apply the ideas of helping schemes that were introduced by
Herlihy [45] and others. If tasks that get pre-empted by higher priority tasks
get helped by the pre-empting task to finish the operation, we can make
a helping scheme for uni-processor systems without using strong atomic
primitives like CAS. As we always have a highest priority task in the system,
we can assure that all tasks will be fully helped. This idea is for example
used by Tsigas and Zhang [117] in their research.

The Effect of Quantum Scheduling

One problem when designing non-blocking shared data structures is that you
have to consider the possibility the algorithm being pre-empted anywhere
and also infinitely often. If we have some information about how often the
task can be pre-empted, we could make a simpler design.

If the scheduler is quantum-based that means that we have some limits
on how often the scheduler can pre-empt the running task. After the first
pre-emption and when the task starts executing again, the task is guaranteed
not to be pre-empted until a certain time has passed, the quantum.

This means that we could design our algorithm in a way so that we
need to anticipate at most one pre-emption. If we could recognize that our
algorithm got pre-empted we can safely run a certain number of program
statements without the risk of conflicts. This kind of constructions has been
proposed by Anderson et al. [10].

Anderson et al. [9] and others have also looked at how to extend the
results from using priority and quantum scheduling to also apply for multi-
processor systems. It seems that the consensus hierarchy defined by Herlihy
[45] now collapses. A lower consensus object can be used for making consen-
sus with more processes than this consensus object is defined for according
to Herlihy.

The available consensus objects available in real-time systems are in re-
ality either low consensus objects (like read or write which has a consensus
number of 1 or TAS which have consensus number of 2) or infinite consensus
objects (like CAS or LL/SC). The lack of middle-between consensus objects
makes the priority and quantum scheduling design methods quite unpracti-
cal on multi-processor systems, as strong atomic primitives like CAS have
to be used although a lower consensus object is actually needed.

1.4. SYNCHRONIZATION 17

The Effect of Using Timing Information

In most real-time systems, tasks are defined to be periodic and have de-
terministic behavior, running under a scheduler with static priority. This
applies to both uni- and multi-processor systems. This means that we have
information about worst-case execution times, worst-case response times,
periods and priorities, see Figure 1.9.

Task 1

Task 2

C2 (Worst case execution time)

T 2 (Period)

R2 (Worst case response time)

a2 (arrival time)a2 (arrival time)

t

Figure 1.9: Example of timing information available in real-time system

When designing a non-blocking algorithm, it could be useful to know
about the number of possible conflicts during a certain time interval. As
we have the timing information about each task available we could use this
information to simplify the non-blocking algorithms. Chen and Burns [25]
used timing information to bound the buffer sizes needed to implement a
wait-free shared buffer using no atomic primitives besides reads and writes.

Using the available timing information, the risk of possible starvation for
lock-free algorithms could be eliminated, thus allowing lock-free algorithms
for use in hard real-time systems. Anderson et al. [11] [12] has designed
methods for bounding the number of retries of lock-free algorithms for uni-
processor systems, and Tsigas and Zhang [119] have designed an adoption
scheme for multiprocessor systems.

18 CHAPTER 1. INTRODUCTION

1.5 Shared Data Structures

Tasks that cooperate in a concurrent system need some kind of commu-
nication to synchronize and share information necessary for the execution.
One method used is message passing and another is shared memory. Using
shared memory, tasks can share variables that can be grouped together into
bigger structures of information and thus achieve a higher abstraction level.

The data structures commonly used in sequential programs need to be
modified in order to be used in concurrent systems. Modifications of shared
data structures are done in several steps. If these steps are interleaved with
modifications from other tasks, this can result in inconsistency of the data
structure. Therefore the data structure needs to be protected from other
tasks modifying it while the operation is executing. This can either be done
using mutual exclusion or non-blocking methods.

We have studied how common data structures and abstract data types
can be adopted to multiprocessor systems. The focus has been on efficient
and practical non-blocking implementations and we have compared them to
corresponding solutions using mutual exclusion.

There exists several general schemes for how to implement any data
structure to be non-blocking, for example the universal schemes by Herlihy
[46] and by Anderson and Moir [14][13]. Prakash et al. [89] and Turek
et al. [120] developed schemes to substitute the locks in a concurrent al-
gorithm with non-blocking replacements that use helping techniques and
unbounded tags. Other researchers have developed methods for adopting
existing sequential implementations to be non-blocking. Barnes presented
a lock-free adoption method [20] and Shavit and Touitou introduced the
concept of software transactional memory [98]. However, as the universal
non-blocking design and adoption schemes add very significant or even huge
overhead, they are not suitable for practical applications, and perform sig-
nificantly worse than corresponding non-blocking implementations that are
designed and optimized for a specific purpose. This has been verified by
empirical studies, for example Fraser [32] has done experiments compar-
ing transactional memory based solutions with optimized and specifically
designed implementations.

1.5.1 Advanced Atomic Primitives

Many algorithms in the literature rely on more powerful atomic primitives
than what is actually available in hardware in common and modern com-
puter architectures. One probable major reason for this is that designing

1.5. SHARED DATA STRUCTURES 19

and reasoning about non-blocking algorithms can often be very complex,
and raising the abstraction level using powerful building blocks (seen as
black boxes) could significantly lower the observable complexity.

One set of atomic primitives that is often used in the literature of non-
blocking algorithms, is the Load-Linked/Validate-Linked/Store-Conditional
(LL/VL/SC) set of operations. As explained earlier in Section 1.2.2, these
operations only exist as weak implementations and only on some platforms.
Therefore attempts have been made to implement those operations in soft-
ware using available atomic primitives, like for example CAS. Wait-free im-
plementations of the LL/VL/SC operations have been proposed by Israeli
and Rappoport [56], Anderson and Moir [14], Moir [87] and by Jayanti [58]
[59]. Unfortunately all of the proposed implementations have significant
drawbacks that reduce their usefulness in practice, as they are either using
unbounded tags that besides from being unreliable also reduces the value
domain, or use excessive amount of memory. Michael [81] recently presented
non-blocking implementations of LL/VL/SC that require significantly less
amount of memory by using the hazard pointer (see Section 1.5.2) type of
garbage collection. In order to be wait-free, the presented algorithm though
requires unbounded tags and extended CAS operations of double-word size.

One other well researched topic is software implementations of the Multi-
Word Compare-And-Swap (CASN) operation. The CASN operation can
atomically update an arbitrary number of memory words of arbitrary ad-
dresses. Implementations of the CASN operation are often given in combina-
tion with replacement implementations for the read and write operations of
the affected memory words. A wait-free implementation has been proposed
by Anderson and Moir [14], and several lock-free implementations based on
the LL/VL/SC primitives have been proposed by Israeli and Rappoport [56],
Moir [88], and Ha and Tsigas [41][40]. All these implementations have the
drawback that they limit the value domain which size is inversely propor-
tional to the number of processes. A lock-free implementation based directly
on CAS exist by Harris et al. [43] and limits the value domain with 2 bits
of the memory word size.

1.5.2 Memory Management

In order for an implementation to be non-blocking, the underlying operations
have to be non-blocking as well. Implementations of dynamic sized shared
data structures have to rely on the ability to allocate and free memory
dynamically in a way that is consistent with concurrent accesses to the
memory (i.e. memory can not be freed if some process is accessing, or is

20 CHAPTER 1. INTRODUCTION

about to access, that part). Reliable memory management methods could
also be very effective in solving the ABA problem (see Section 1.2.2) that
sometimes occurs with the use of the CAS atomic primitive in the design of
non-blocking algorithms. Unfortunately, current systems’ default dynamic
memory allocation support is based on mutual exclusion, as well as the
majority of the available garbage collection schemes.

Hesselink and Groote [52, 53] presented a wait-free implementation for
memory management of a set of shared tokens. However, the solution is
very limited and can not be used for implementing shared data structures
in general.

Valois [122] have presented, with later correction by Michael and Scott
[83], practical methods for lock-free dynamic allocation and lock-free ref-
erence counting. The methods add significant overhead as they are based
on the FAA and CAS atomic primitives, and have the drawbacks that the
memory has to be pre-allocated (before the lock-free application starts) and
can not be used for arbitrary purposes as the shared counters used for ref-
erence counting have to be present indefinitely. The size of each memory
block that can be dynamically allocated is also fixed in the presented im-
plementation. Detlefs et al. [27] presented a lock-free reference counting
method that can allow the freed memory to be re-used for arbitrary usage,
but is unfortunately based on the non-available (in any modern platform)
CAS2 atomic primitive.

Michael [78] [80] introduced another approach using hazard pointers.
The method is lock-free, efficient as it is only based on atomic read and
writes, and can guarantee that memory that are currently referenced (i.e.
the process has a pointer to it) and possibly accessed by a process will not
be concurrently freed. The time complexity of freeing memory for possible
garbage collection is amortized to be low, as the relatively large job of scan-
ning all the shared hazard pointers are only done periodically. Thus, the
response times of a delete operation on a dynamic data structure that uses
garbage collection, might vary much more drastically when using hazard
pointers than when using reference counting. Consequently, this behavior
might be of significant concern to real-time systems. The method also has
the drawback that it can not guarantee that pointers from structures in the
memory itself are pointing to memory that will not be concurrently freed, as
guaranteed by for example reference counting techniques. Herlihy et al. [47]
have presented a similar method to hazard pointers that instead are based
on the CAS2 atomic primitive.

Michael [82] recently presented a lock-free dynamic memory allocation
scheme that can handle arbitrary sizes of allocated blocks. Gidenstam et

1.5. SHARED DATA STRUCTURES 21

al. [34] have presented a lock-free dynamic memory allocation scheme with
similar properties using a different approach. However, these schemes are
only truly lock-free up to a certain block size (as they then call the system’s
default memory allocation scheme) and can possibly incur a large overhead
in the total amount of memory reserved compared to what is actually allo-
cated. Additionally, in order to be used in practice for supporting dynamic
data structures, the allocation schemes have to be combined with a suitable
garbage collection scheme.

1.5.3 Register

One of the simplest things that is often necessary to share between different
nodes in a system is a single value, via a register or memory word. The shared
memory system often supports multiple readers and writers to access each
register in an atomic and consistent way. However, there may be cases where
shared memory is not provided or is limited in some way. The constraint
may be the number of direct communication paths between each node in a
multi-processor system, or it may even be that some communication paths
are significantly slower than the others and should therefore be avoided.

One efficient wait-free algorithm for a shared register was constructed
by Vitanyi et al. [124], where a n-reader n-writer shared register could be
constructed by a set of simple 1-reader 1-writer registers (in practice imple-
mented by using message passing and local memory). The initial algorithm
though had a practical drawback by the use of unbounded time-stamps,
which also severely limits the size of the register’s value domain. Israeli and
Shaham [57] presented an algorithm of a n-reader n-writer shared register
that is optimal in the respect of space and time complexity. However, the
implementation constructed of 1-reader 1-writer registers is only sketched
and is likely to impose a large overhead which limits its suitability for prac-
tical applications.

In many practical applications, the size of an individual register might
not suffice and the application therefore needs to atomically update a mul-
tiple of memory words, i.e. a shared buffer. Several implementations of
non-blocking buffers have been proposed in the literature. For example,
Lamport [65] presented a non-blocking buffer using only atomic read and
writes, and with constraints on the number of concurrent writers. Larsson
et al. [69] have designed an algorithm of a wait-free buffer for a single writer
and multiple readers using stronger atomic primitives. Tsigas and Zhang
[114] constructed a general n-reader and m-writer non-blocking shared buffer
with optimal space requirements, using the FAA and CAS atomic primitives

22 CHAPTER 1. INTRODUCTION

and with constraints of assumed available real-time scheduling information.
One simple and straightforward implementation of a general shared buffer
would be to use a single shared pointer that are updated atomically using
CAS to point to the currently active buffer version, where each version could
be allocated dynamically and freed consistently (together with the pointer
de-referencing operation) using some garbage collection mechanism.

1.5.4 Snapshot

Taking snapshots is a very important operation in real-time systems. Snap-
shots are used in many embedded and distributed real-time systems e.g. the
brake control system of a car, where the brake on each wheel has to know
the state of the other wheels at the same instant in time. A snapshot is a
consistent instant view of several (often distributed) shared variables that
are logically connected. Using snapshots, all involved processors receive
consistent views of the system.

A snapshot object supports two operations, the first is to write to a single
register (called update) and the other is to read multiple registers (scan).
Each of these operations must be performed in one atomic step, see Figure
1.10. Each shared value is represented as a part of the snapshot structure,
called the component.

W W WWW

R

Figure 1.10: A snapshot data structure with five components

There exist several implementations of non-blocking snapshot objects in
the literature. For example, a general wait-free n-reader m-writer snapshot
algorithm based on atomic read and writes was constructed by Anderson
[6] [7] [8] and a similar construction was also presented by Afek et al. [2].
However, these implementations have quite high space requirements and are

1.5. SHARED DATA STRUCTURES 23

computationally expensive. Kirousis et al. [63] presented more efficient so-
lutions with the constraints of allowing a single reader. They also presented
efficient solutions with the additional constraint of allowing a single writer
per component. Ermedahl et al. [29] have presented an even more efficient
solution for the same constraints using the TAS atomic primitive.

1.5.5 Linked List

A linked list is a general data structure that can be used to implement several
abstract data types. It is a dynamic data structure, where each individual
node is ordered uniquely relatively to each other (i.e. each node has two
neighbor nodes, one previous and one next). The linked list can be either
singly linked or doubly linked. In a singly linked list each node contains
information in the form of a reference to the next node, and in a doubly
linked list each node also has a reference to the previous node. New nodes
can be inserted anywhere, arbitrary nodes can be deleted and the whole list
can be traversed from one end to the other.

The adoption of the linked list concept to a concurrent environment,
adds quite some complexity compared to the sequential case. For example,
each process can traverse the list independently of each other and modify
arbitrary parts of the list concurrently, see Figure 1.11. In the sequential
case, the current position in the list while traversing could be represented
by an index that is based on counting the number of preceding nodes from
the start of the list. In the concurrent case, this kind of index can not be
used, and the only possible reference is the current node of traversal itself.
The situation gets even more complicated if the node that is referenced gets
deleted, and thus does not have a clearly defined predecessor or successor
node. The commonly accepted solution is to treat a reference to a deleted
node as being invalid, i.e. re-start the traversal from the start or end of the
list.

Valois [123][122] has constructed a lock-free implementation of a singly
linked list using the CAS atomic primitive, and also introduced the cur-
sor concept in order to keep track of each process’ relative position while
traversing the list. The presented linked list implementation is based on aux-
iliary nodes that exists between each real node and relies on strong garbage
collection. Harris [44] presented a more efficient solution, that eliminates
the need for auxiliary nodes as it can update the next pointers atomically
together with a deletion mark using the standard CAS operation. This is
accomplished by using the often otherwise unused least significant bits of
the pointer representation (e.g. in most 32-bit systems memory references

24 CHAPTER 1. INTRODUCTION

P1 P3P2

Figure 1.11: Three processes accessing different parts of the shared linked
list

are forced to be aligned by 4 bytes). The presented solution though has the
drawback that traversing operations has to restart from the start of the list
in case of concurrent deletions at the point of traversal.

Valois [122] also presented a lock-free implementation of a doubly linked
list using multiples of auxiliary nodes and the CAS atomic primitive. How-
ever, the presented implementation is not general and complete as it lacks
the possibility to delete nodes. Greenwald [38] presented a general lock-free
doubly linked list implementation based on the non-available CAS2 atomic
primitive.

1.5.6 Stack

The stack abstract data type is a last-in first-out (LIFO) type of buffer.
Even though it intuitively has most applications in the sequential case, it
has also applications in the concurrent case (e.g. keeping shared lists of free
items) and several non-blocking implementations have been proposed in the
literature. For example Valois [122] presented a lock-free implementation
of a stack that is based on linked lists and uses the CAS atomic primitive.
Michael [78] has presented a more efficient solution that is compatible with
the hazard pointers type of garbage collection.

1.5.7 Queue

The queue abstract data type is a first-in first-out (FIFO) type of buffer.
Shared queues are fundamental and have a vast number of applications, as
for example when streaming information in producer and consumers scenar-
ios or for implementing the ready-queue for multi-processor scheduling.

Herman and Damian-Iordache [51] outlined a wait-free implementation
of a shared queue. However, the proposed implementation is not practical

1.5. SHARED DATA STRUCTURES 25

because of its very high time complexity and limitations on the number of
nodes.

Valois [121][122] makes use of linked lists in his lock-free implementation
which is based on the CAS primitive. Prakash et al. [90] also presented an
implementation using linked lists and the CAS primitive, though with the
drawback of using unbounded tags that besides from being unreliable also
limits the maximum number of nodes. Michael and Scott [84] presented a
more efficient solution using similar techniques. Michael [78] later presented
a modified solution eliminating the need of tags by using the hazard pointer
type of garbage collection.

Gong and Wing [35] and later Shann et al. [97] presented a lock-free
shared queue based on a cyclic array and the CAS primitive, though with
the drawback of using unbounded tags that besides from being unreliable
also limits the size of the value domain. Tsigas and Zhang [116] presented a
more efficient solution without the previous drawbacks, and uses a different
approach for solving the ABA problem.

As JAVA has approached the real-time community and introduced real-
time tasks, the need for wait-free solutions with shared data structures like
queues has been identified. Tsigas and Zhang [117] have recently constructed
a wait-free (for either the consumer or producer side, not both) queue that
meets the demands from the real-time specification for JAVA (RTJ) [21],
which makes use of the fact of present priority based scheduling and therefore
can do without any strong atomic primitives.

1.5.8 Deque

The deque (i.e. double-ended queue) abstract data type is interesting as it
unifies the concepts of stacks and queues. It is a fundamental data struc-
ture and can be used for example to implement the ready queue used for
scheduling of tasks.

Several lock-free implementations have been proposed in the literature.
Arora et al. [15] presented a lock-free deque implementation especially suited
for scheduling purposes. It is based on the CAS atomic primitive, and has
the significant drawback that it does not support all operations and only
allows a limited level of concurrency. Greenwald [37] presented a general
implementation of a lock-free deque and there is also a publication series of
another deque implementation [3],[28] with the latest version by Martin et
al. [74]. However, both of the previous implementations are based on the
non-available CAS2 atomic primitive.

Michael [79] has developed a general lock-free deque implementation

26 CHAPTER 1. INTRODUCTION

based on the CAS primitive. However, it provides a limited level of par-
allelism as all operations have to synchronize, even when they operate on
different ends of the deque. Moreover, for some practical purposes it requires
a special extended version of the CAS operation that can atomically operate
on two adjacent words, which is not available on all modern platforms.

1.5.9 Priority Queue

The priority queue abstract data type extends the queue concept with prior-
ities on each individual node. Shared priority queues are fundamental data
structures and have many applications. For example, the ready-queue that
is used in the priority based scheduling of tasks in many real-time systems
can often be implemented using a concurrent priority queue.

Israeli and Rappoport [55] have presented a wait-free algorithm for a
shared priority queue. This algorithm makes use of the Multi-Word Store-
Conditionally atomic primitive which does not exist except for inefficient
software implementations. Greenwald [37] has presented an outline for a
lock-free priority queue based on the non-available CAS2 atomic primitive.
However, there exists an attempt for a wait-free algorithm by Barnes [19]
that uses existing atomic primitives, though this algorithm does not comply
with the generally accepted definition of the wait-free property. The algo-
rithm is not yet implemented and the theoretical analysis predicts worse
behavior than the corresponding sequential algorithm, which makes it of
little or no practical interest.

1.5.10 Dictionary

The dictionary abstract data type allows associations of values with keys
to be stored and searched for. The data structure is often designed in
combination with hash tables where each branch (from each entry in the hash
table) is also a dictionary data structure. The standard implementation of
the standard spreading component of a hash-table is usually wait-free as it
is based on an array structure by definition.

Valois [122] presented a general lock-free dictionary data structure that
are based on an ordered linked list and using the CAS primitive. The path
using concurrent ordered lists has been improved by Harris [44], and later
Michael [77] presented a significant improvement by using the hazard pointer
type of garbage collection. This combined solution of hash-tables and or-
dered linked lists was lately improved by Shalev and Shavit [96] that allows
the hash-table to dynamically increase in size (though not possible to shrink)

1.6. CONTRIBUTIONS 27

in a lock-free manner.
However, the use of ordered linked lists allow only linear time complexity

for searching, and in the sequential case the use of tree structures can achieve
a logarithmic search time complexity. Valois [122] presented an incomplete
idea of how to design a concurrent skip list data structure, which would allow
search operations to achieve a probabilistic logarithmic time complexity.

Gao et al. [33] recently presented a lock-free algorithm of a hash-table
data structure with fully dynamic size (if the algorithm is provided with a
suitable lock-free memory management), that store all items inside of the
hash-table and thus does not explicitly have branches. However, for keys
that will generate the same hash-index, those items are stored consecutively
at other (possibly unoccupied) hash-indices and thus force a linear searching
procedure. The algorithm is quite involved and promises an amortized time
complexity of constant, and has quite high memory requirements that are
proportional to the number of processes (i.e. every process may temporary
need two copies each of the whole hash-table). Moreover, the algorithm does
not support updates of already inserted associations.

In contrast to a sequential dictionary, where the update operation might
be redundant, a specially defined update operation is necessary for doing
updates on a concurrent dictionary abstract data type, as consecutive calls
of delete and insert operations for the purpose of updating will not be con-
sistent with concurrent operations.

1.6 Contributions

The contributions of this thesis can roughly be divided into the following
categories, that are inter-connected and dependent on each other:

• Methods for Real-Time Systems.

• Algorithms of Shared Data Structures.

• Implementation Work.

• Design of Framework.

• Experiments.

1.6.1 Methods for Real-Time Systems

We have studied how timing information available in real-time systems can
be used to improve and simplify non-blocking algorithms for shared data

28 CHAPTER 1. INTRODUCTION

structures. The focus has been on designing methods for bounding the
needed buffer sizes and also recycling and bounding of shared time-stamp
values, in hard real-time systems where the timing information is reliable.

Some non-blocking algorithms, which have been proposed in the liter-
ature, use buffers that grow arbitrarily large with time and thus require
infinitely large buffers. However, in order for the algorithms to be imple-
mented in practice, the buffers have to be of fixed or at least of bounded
sizes. Therefore, the number of possible simultaneously used memory cells
in the buffer has to be bounded and unused memory cells have to be recy-
cled. The work on the bounding of buffer sizes and the recycling of buffer
cells has resulted in one new method:

• A method for bounding the size of a shared buffer. The shared
buffer of interest is concurrently accessed by periodic or sporadic tasks.
The accesses to the individual buffer cells are controlled and limited by
a shared index, which is possibly incremented by the tasks, thus there
is always a deterministic span of indexes of cells that can be accessed
at any time. We have presented an analysis method that is specialized
for an algorithm of a wait-free snapshot data structure. The resulting
new algorithm, after applying the analysis and algorithmic changes for
cyclic buffer accesses, requires only atomic read and write operations
on the shared memory, and is described in Chapter 2.

Several non-blocking algorithms, which have been proposed in the lit-
erature, use time-stamps that can take arbitrary high values. However, in
order for the algorithms to be implemented in practice, those time-stamps
must be able to be represented in memory words of fixed size. Therefore, the
possible span of the time-stamp values has to be bounded and unused time-
stamp values have to be recycled. The work with recycling and bounding of
time-stamps has resulted in two new methods:

• A method for bounding of time-stamps used in a fixed num-
ber of shared variables. The time-stamps are used as values for
comparison in a fixed number of variables shared by periodic tasks.
Continuously newer time-stamps are introduced by the tasks and are
compared to other time-stamps present in the shared variables, and
as tasks finish their execution, older time-stamps will cease to exist
in the system. Thus, there is always a deterministic span of values of
the present time-stamps. We have designed an algorithm for recycling
and consistent comparison of possibly recycled time-stamps, such that

1.6. CONTRIBUTIONS 29

the needed domain size of the new representation of time-stamps is
twice the maximum span of possible time-stamp values in the system
at any instance in time. We have presented an analysis of a wait-free
algorithm by Vitanyi et al. [124] of a shared register, that can deter-
mine the maximum span of possible values of present time-stamps at
any time. The resulting new algorithm, after applying the algorith-
mic changes for the new comparison, is described together with the
analysis in Chapter 3.

• A method for bounding of time-stamps used in a dynamic
number of shared variables. The time-stamps are used as values
for comparison in a dynamic number as well as a fixed number of
variables shared by periodic tasks. The purpose of the comparisons
is to decide if the time-stamps of the dynamic variables are newer
or older than the time-stamps in the fixed variables. Continuously,
newer time-stamps are introduced by the tasks and are compared to
other time-stamps present in the shared variables, and as tasks fin-
ish their execution, older time-stamps will cease to exist in the fixed
variables - but are not guaranteed to cease to exist in the dynamic
variables. Thus, the span of values of the present time-stamps is
non-deterministic. We have designed an algorithm to deterministi-
cally modify the time-stamps in a set of dynamic variables (that are
traversable and limited), such that the comparison will give the same
results, but the span of values of present time-stamps will be deter-
ministic. We have designed an algorithm for recycling and consistent
comparison of possibly recycled time-stamps (including a special value
that represents an infinitely high time-stamp), such that the needed
domain size of the new representation of time-stamps is about twice the
maximum span of possible time-stamp values in the system at any in-
stance in time. We have presented an analysis of a lock-free algorithm
of a priority queue, that given the dynamic time-stamp variables are
periodically updated using the new algorithm, can determine the max-
imum span of possible values of present time-stamps at any time. The
resulting new algorithm, after applying the algorithmic changes for the
new comparison and periodic updating of dynamic time-stamps, are
described together with the analysis in Chapter 5.

The above two results of analyzing the maximum span of present time-
stamps at any time in the system, can be generalized in the following equa-
tion (assuming that each task invocation can increase the newest time-stamp
with a value of at most 1):

30 CHAPTER 1. INTRODUCTION

MaxSpan =
n∑

i=0

(⌈
maxv∈{0..∞} LTv

Ti

⌉
+ 1

)
(1.2)

Where LTv denotes the maximum life-time that the time-stamp with value
v exists in the system, and Ti denotes the period of task i.

1.6.2 Algorithms of Shared Data Structures

We have designed new algorithms and implementations for the following
shared data structures and abstract data types:

• Wait-Free Shared Register.

• Wait-Free Snapshot.

• Lock-Free Skip List.

• Lock-Free Priority Queue.

• Lock-Free Priority Queue with Real-Time Properties.

• Lock-Free Dictionary.

• Lock-Free Doubly Linked List.

• Lock-Free Deque.

Using the new methods for utilizing the timing information available in
real-time systems, see Section 1.6.1, we have designed the following new
algorithms of shared data structures:

• Wait-Free Shared Register. We have designed a new version of
the wait-free algorithm by Vitanyi et al. [124] of a shared register for
multiple readers and writers. The new version uses bounded time-
stamps and is suitable for real-time systems with periodic tasks. The
algorithm is given together with implementation details using message
passing methods, and is described in Chapter 3.

• Wait-Free Snapshot. We have designed a new version of the wait-
free algorithm by Kirousis et al. [63] of a snapshot data structure for
one reader and multiple writers per component. The new version uses
a buffer of bounded size for each of the components, and is suitable
for real-time systems with periodic as well as sporadic tasks. The
algorithm is described in Chapter 2.

1.6. CONTRIBUTIONS 31

• Lock-Free Priority Queue with Real-Time Properties. We
have designed a new version of the lock-free algorithm by Sundell and
Tsigas of a priority queue data structure. The new version uses time-
stamps to enable specific semantic properties of the operations with
respect to each others timing, and is suitable for real-time systems with
periodic tasks. The algorithm is given together with implementation
details, and is described in Section 5.6.

We have designed several new lock-free algorithms of advanced shared
data structures. The structures are dynamic and therefore rely on dynamic
memory allocation as well as reliable garbage collection facilities. The algo-
rithms are in addition to being efficient, also practical as the algorithms are
described including important and non-trivial implementation level details.
In order to obtain the highest possible parallelism, the overall strategy of
the algorithms is to only synchronize the concurrent operations when they
fundamentally affect overlapping parts of the data structure. The given
implementation details specially address the memory management scheme
by Valois [122] and corrected by Michael and Scott [83], but can be eas-
ily adapted to any sufficient scheme with similar properties and interface.
The algorithms have not only been tested on real hardware, but are also
given with rigorous and mathematical style proofs, that give evidence for
the linearizability and lock-free properties. The new lock-free algorithms for
general purpose are as follows:

• Lock-Free Skip List. We have designed the first1 lock-free algorithm
of a concurrent skip list data structure that is based on the CAS atomic
primitive. The main observation used, is that although the skip list can
have arbitrarily many links from each node in the data structure, only
one link on each node determines globally the nodes state as present or
not in the data structure. These links form a singly linked list, which
could be updated atomically but separately from the other links, whose
purpose is of increasing the performance. We have used the basic ideas
of Harris [44] singly linked construction that uses CAS, together with
additional links that point backwards in order to give hints for the
concurrent operations that possibly are helping deletions in progress.

1Our results were submitted for reviewing in October 2002 and published as a technical
report [105] in January 2003. It was officially published in April 2003 [106], receiving a
best paper award, and an extended version was also published in March 2004 [110]. Very
similar constructions have appeared in the literature afterwards, by Fraser in February
2004 [32], Fomitchev in November 2003 [30] and Fomitchev and Ruppert in July 2004 [31]

32 CHAPTER 1. INTRODUCTION

Moreover, the actual values of each node, represented with a pointer
to an arbitrary object, are updated using CAS and also effects the
global interpretation of each node’s state as being present or not in
the structure. The algorithm is given together with implementation as
well as performance improving details, and is described in the context
of its derived realizations of abstract data types in Chapters 5 and 6.

• Lock-Free Priority Queue. Using our lock-free skip list construc-
tion, we have designed a new algorithm of the priority queue abstract
data type. In order for our skip list construction to be used as a prior-
ity queue, the first node on the lowest level in the skip list is treated as
the node of minimum priority (as the nodes at the lowest level in the
skip list are always sorted according to their keys by definition, and
keys can be used for representing the priority). As in our basic skip
list construction, the state of presence in the structure is represented
by the value, which enables each node to be atomically updated or
deleted. The operations use CAS for the atomic updates, even though
our skip list construction can not verify that a node is the first at
the very same moment as it gets conceptually deleted. This intuitive
need to verify and change two separate parts of the global state in one
atomic step, would imply the need for stronger atomic primitives that
could operate on a multiple of arbitrary located memory words. The
proper use of our skip list construction for priority queue operations
is enabled by the observation that linearizability does not imply that
it must be possible to observe and verify all involved properties of the
global state in one atomic step. In fact, the linearizability property
depends on what actually is observed by the concurrent operations,
and not on what possibly could have been observed. The algorithm,
together with implementation details, is described in Chapter 5.

• Lock-Free Dictionary. Using our lock-free skip list construction, we
have designed a new algorithm of the dictionary abstract data type.
To use our skip list data structure as a dictionary is straight-forward
from its definition. In addition we have also designed value-oriented
search and delete operations, in order to achieve the full dictionary
capability. The algorithm takes advantage of certain properties of
the supporting memory management scheme in order to improve the
performance of traversing operations. The algorithm is given together
with implementation details, and is described in Chapter 6.

1.6. CONTRIBUTIONS 33

• Lock-Free Doubly Linked List. We have designed the first2 lock-
free algorithm of a concurrent doubly linked list data structure that
is based on the CAS atomic primitive. The algorithm is based on an
asymmetric approach, where the data structure is treated as a singly
linked list with auxiliary links backwards. Both the forward and back-
ward links are updated consistently using CAS, combined with helping
schemes that make sure that the data structure always converges to a
perfect doubly linked list. The algorithm supports reliable traversals
through both directions, including traversals through deleted nodes.
In order to avoid possible cyclic garbage when deleting, which can
not be handled properly by garbage collector schemes based on refer-
ence counting, we have designed a scheme that makes sure that cyclic
garbage can never occur. The algorithm is given together with im-
plementation details, and is described in Chapter 7 with the general
operations specially described in Section 7.6.

• Lock-Free Deque. Using our lock-free doubly linked list construc-
tion, we have designed a new algorithm of the deque abstract data
type. The deque operations are implemented by inserting and delet-
ing nodes at the ends of the doubly linked list. The operations use
CAS for the atomic updates, even though our doubly linked construc-
tion can not verify that a node is the first at the very same moment as
it gets conceptually deleted. This intuitive need to verify and change
two separate parts of the global state in one atomic step, would im-
ply the need for stronger atomic primitives that could operate on a
multiple of arbitrary located memory words. The proper use of our
doubly linked list construction for deque operations is enabled by the
observation that linearizability does not imply that it must be possi-
ble to observe and verify all involved properties of the global state in
one atomic step. In fact, the linearizability property depends on what
actually is observed by the concurrent operations, and not on what
possibly could have been observed. The algorithm is given together
with implementation details, and is described in Chapter 7.

1.6.3 Implementation Work

All algorithms in this thesis have been implemented on actual hardware. In
order to give fair comparisons and also to provide with a effective platform

2Our results were submitted to PODC for reviewing in February 2004 and published
as a technical report [109] in March 2004.

34 CHAPTER 1. INTRODUCTION

for further developments, we have also implemented a variety of other al-
gorithms in the literature as well as basic procedures. The implementation
work has also been a substantial resource for the correct development of our
algorithms, as it has given extensive feedback as well as worthful insights
into the complexity of the algorithm design. The implementation work can
roughly be divided into the following parts:

• Atomic primitives. As some modern architectures of shared mem-
ory only provide relaxed memory consistency, we have implemented
atomic read and write primitives for the Sun Sparc v8/v9 architec-
tures. These procedures are explicitly called from higher level imple-
mentations when atomic read/write operations are absolutely neces-
sary. We have also implemented a variety of atomic primitives of higher
consensus level in assembly language, using known and self-developed
designs on the Sparc v8/v9 for Sun Solaris, Mips III for SGI Irix
V6.5 and the Intel IA-32 for Linux and Win-32 architectures. The
atomic primitives include the Test-And-Set (TAS), Fetch-And-Add
(FAA) with or without return of previous value, Compare-And-Swap
(CAS) with a boolean result or the previous value returned, uncondi-
tional Swap and the Load-Linked/Validate-Linked/Store-Conditional
(LL/VL/SC) primitives. These primitives have been implemented us-
ing the hardware primitives provided by the specific architectures as
well as by using substitution schemes [87] when necessary.

• Multi-word atomic primitives. Some algorithms require more
powerful atomic primitives like the Double-Word-Compare-And-Swap
(CAS2), which are not supported in hardware by any modern architec-
ture. Therefore we have implemented the algorithm of a Multi-Word-
Compare-And-Swap (CASN) primitive by Harris et al. [43] that is
based on CAS, and also the CASN algorithm by Ha and Tsigas [40]
[41] that is based on LL/VL/SC.

• Memory management. All non-blocking algorithms of dynamic
data structures are dependent on underlying non-blocking schemes for
dynamic memory allocation and garbage collection. This is normally
not supported by the programming environment, as for example in
Java which employs blocking stop-the-world techniques for garbage
collection. We have implemented the lock-free CAS-based memory
management and garbage collection scheme by Valois [122] and cor-
rected by Michael and Scott [83]. The garbage collection scheme is

1.6. CONTRIBUTIONS 35

based on reference counting and is tightly connected to the mem-
ory allocation scheme, which is based on a fixed-size free-list of fixed
node size. We have also implemented the lock-free reference count-
ing scheme by Detlefs et al. [27] that is compatible with an arbitrary
memory allocation scheme. As this garbage collector scheme is based
on CAS2, it was implemented using our CASN implementation. Ad-
ditionally, we have implemented the garbage collection scheme that
uses CAS and a fixed number of hazard pointers by Michael [78] [80],
together with an implementation of a free-list of fixed node size.

• Shared data structures.

– Register. We have implemented the wait-free algorithm of a
shared register for real-time systems, that is presented in Chapter
3.

– Snapshot. We have implemented the following algorithms of a
snapshot data structure: 1) the wait-free algorithm for a single
reader and a single writer per component by Ermedahl et al. [29];
2) the wait-free algorithm of a single reader and multiple writers
per component by Kirousis et al. [63]; 3) the wait-free algorithm
for real-time systems and a single reader and multiple writers
per component, that is presented in Chapter 2; 4) a single-lock
based algorithm for multiple readers and multiple writers per
component.

– Linked List. We have implemented the following algorithms of a
singly linked list data structure: 1) the lock-free algorithm of a
singly linked list data structure, by Valois [123] [122]; 2) a lock-
free algorithm of a singly linked list data structure, derived from
the construction by Harris [44]; 3) a single-lock based algorithm.
We have implemented the following algorithms of a doubly linked
list data structure: 1) the lock-free algorithm without deletion
support, by Valois [122]; 2) the lock-free algorithm that is pre-
sented in Chapter 7; 3) a single-lock based algorithm.

– Stack. We have implemented the following algorithms of the stack
abstract data type: 1) the lock-free algorithm by Valois [122]; 2)
a single-lock based algorithm.

– Queue. We have implemented the following algorithms of the
queue abstract data type: 1) the lock-free algorithm by Valois
[121] [122]; 2) the lock-free algorithm by Tsigas and Zhang [116];
3) a single-lock based algorithm.

36 CHAPTER 1. INTRODUCTION

– Deque. We have implemented the following algorithms of the
deque abstract data type: 1) the lock-free algorithm by Martin
et al. [74] [28] [3]; 2) the lock-free algorithm by Michael [79];
3) the lock-free algorithm that is presented in Chapter 7; 4) a
single-lock based algorithm.

– Priority Queue. We have implemented the following algorithms of
the priority queue abstract data type: 1) the lock-free algorithm
that is presented in Chapter 5; 2) the lock-free algorithm for real-
time systems, that is presented in Section 5.6; 3) a single-lock
based algorithm; 4) the multiple-lock based algorithm by Hunt
et al. [54]; 5) the multiple-lock based algorithm by Lotan and
Shavit [72]; 6) the multiple-lock based algorithm by Jones [60]
that requires semaphores.

– Dictionary. We have implemented the following algorithms of
the dictionary abstract data type: 1) the lock-free algorithm by
Michael [77]; 2) the lock-free algorithm that is presented in Chap-
ter 6; 3) a single-lock based algorithm.

1.6.4 Design of Framework

Many of the non-blocking algorithms for shared data structure that we have
implemented in this thesis, have different interface and requirements on
the environment. We have designed a framework that tries to unify all
implementations such that it has all the following features: easy to use,
efficient and portable. The framework is provided in the form of a software
library.

For each data structure in the framework, we have designed a common
interface that covers the functionality of all involved implementations, and
as well tries to hide unnecessary complexity by abstraction. In order to fit
the common interface, some implementations have been extended with more
functionality than what was originally described in the literature.

The abstraction of the user interface is also designed in order to make it
easy to change the actual implementation used for a particular data struc-
ture, in a way that is transparent to the application. In order to be efficient,
the software library is implemented in standard C and assembly languages,
with the aim of achieving a minimum overhead. In order to be portable, it
is designed in a layered structure where system dependent and independent
features are separated. The software library has been successfully imple-
mented on the Sun Sparc Solaris, Mips SGI Irix and Intel IA-32 for Linux
and Win-32 platforms.

1.6. CONTRIBUTIONS 37

The software library called NOBLE, which also has been released to the
academic community via a public web-site, is described in Chapter 4.

1.6.5 Experiments

A majority of the implementations presented in this thesis have been evalu-
ated empirically using experiments on actual hardware, in separate studies
together with other related implementations. The experiments have been
performed for benchmarking as well as for testing purposes. The major
mean for measuring the relative performance that have been used in this
thesis, is micro-benchmarks specialized for each data structure.

Different algorithms have, because of their different designs, different
performance characteristics, that might also depend on the setting and tar-
get architecture. Some algorithms might benefit from a special distribution
of the operations, while others might do the opposite. In order to be as fair
as possible for a general review, we have used randomized scenarios with
certain distributions of the involved operations. After the creation of each
scenario, each of the implementations is executing concurrent operations ac-
cording to the sequence given by the very same scenario. In order to reduce
the possibility for influences due to cache contents between the implemen-
tations, the caches of the involved CPU’s are normalized before each test
run. The number of threads involved is varied between 1 and a maximum,
and thus covers the un-contented as well as contented cases, with or without
preemptions. The experiments are repeated a chosen number of times, and
an average of the execution time (i.e. real-world clock time) of the scenarios
with each setting are calculated.

In order to be as accurate as possible, and to avoid possible interference
from nondeterministic factors, the experiments have been performed with
very low or no other load on the systems. The multiprocessor systems that
we have had full or partly access to during the experimental work in this
thesis, are the following:

• Sun Enterprise 10000. This multiprocessor machine is based on the
uniform memory architecture (UMA) called Starfire, and was equipped
with 64 Ultrasparc processors. The machine was running the Sun
Solaris operating system.

• SGI Origin 2000. This multiprocessor machine is based on the non-
uniform memory archtecture (NUMA) with a cache-coherency proto-
col to provide consistency. We had access to two different machines,

38 CHAPTER 1. INTRODUCTION

one with 64 and the other with 40 (later reduced to 29) processors.
The machines were running the SGI Irix v6 operating system.

• Sun Ultra 80. This multiprocessor machine is UMA based, and was
equipped with 4 Ultrasparc processors. The machine was running the
Sun Solaris operating system.

• Compaq Server PC. This multiprocessor machine is UMA based,
and was equipped with 2 Pentium II processors. The machine was
running the Linux or Windows NT operating systems.

In our experiments with the lock based algorithms, we mainly used the
“Test and Test-And-Set” implementation for the locks. In some experi-
ment settings with a higher degree of preemptions, and thus involving set-
tings where semaphores could be relevant, we also used the default system
semaphore implementations.

The results from our experiments show significant performance improve-
ments relative to the lock based as well as other non-blocking implementa-
tions that have appeared in the literature for the specific data structures.
The results of the experiments performed on the data structures in this
thesis are presented in Chapters 2, 4, 5, 6 and 7.

Chapter 2

Simple Wait-Free Snapshots
for Real-Time Systems with
Sporadic Tasks1

H̊akan Sundell, Philippas Tsigas
Department of Computing Science

Chalmers Univ. of Technol. and Göteborg Univ.
412 96 Göteborg, Sweden

E-mail: {phs, tsigas}@cs.chalmers.se

Abstract

A wait-free algorithm for implementing a snapshot mechanism for real-
time systems is presented in this paper. Snapshot mechanisms give the
means to a real-time task to read a globally consistent set of variable values
while other concurrent tasks are updating them. Such a mechanism can be
used to solve a variety of communication and synchronization problems, in-
cluding system monitoring and control of real-time applications. Typically,
implementations of such mechanisms are based on interlocking. Interlock-
ing protects the consistency of the shared data by allowing only one process
at a time to access the data. In a real-time environment locking typically

1This is a revised version of the paper presented at RTCSA 2004 [111] and published
as a technical report [108], partly based on prior work presented at OPODIS 2000 [112].

40 CHAPTER 2. WAIT-FREE SNAPSHOT

leads to difficulties in guaranteeing deadlines of high priority tasks because of
the blocking. Researchers have introduced non-blocking algorithms and data
structures that address the above problems. In this paper we present a sim-
ple and efficient wait-free (non-blocking) snapshot algorithm by making use
of timing information that is available and necessary to the scheduler that
schedules the tasks of real-time systems. Experiments on a SUN Enterprise
10000 multiprocessor system show that the algorithm that we propose here,
because of its simplicity, outperforms considerably the respective wait-free
snapshot algorithm that is not using the timing information.

2.1 Introduction

In any multiprocessing system co-operating processes share data via shared
data structures. To ensure consistency of the shared data structures pro-
grams typically rely on some form of software synchronization. In this paper
we are interested in designing a shared data structure for co-operative tasks
in real-time multi-processor systems allowing processes to read a globally
consistent set of variable values while other concurrent tasks are updating
them.

The challenges that have to be faced in the design of inter-task communi-
cation protocols for multi-process systems become more delicate when these
systems have to support real-time computing. In real-time multi-process
systems inter-task communication protocols i) have to support sharing of
data between different tasks; ii) must meet strict time constraints, the HRT
deadlines; and iii) have to be efficient in time and in space since they must
perform under tight time and space constraints.

The classical, well-known and most simple solution when designing shared
data structures enforces mutual exclusion. Mutual exclusion protects the
consistency of the shared data by allowing only one process at a time to
access the data. Mutual exclusion i) causes large performance degradation
especially in multiprocessor systems [100]; ii) leads to complex scheduling
analysis since tasks can be delayed because they were either preempted by
other more urgent tasks, or because they are blocked before a critical sec-
tion by another process that can in turn be preempted by another more
urgent task and so on, (this is also called as the convoy effect) [64]; and iii)
leads to priority inversion in which a high priority task can be blocked for
an unbounded time by a lower priority task [95]. Several synchronization
protocols have been introduced to solve the priority inversion problem for
uniprocessor [95] and multiprocessor [92] systems. The solution presented

2.1. INTRODUCTION 41

in [95] solves the problem for the uniprocessor case with the cost of limiting
the schedulability of task sets and also making the scheduling analysis of
real-time systems hard. The situation is much worse in a multiprocessor
real-time system, where a task may be blocked by another task running on
a different processor [92].

To address the problems that arise from blocking, researchers have pro-
posed non-blocking implementations of shared data structures. Two basic
non-blocking methods have been proposed in the literature, lock-free and
wait-free. Lock-free implementations of shared data structures guarantee
that at any point in time in any possible execution some operation will
complete in a finite number of steps. In cases with overlapping accesses,
some of them might have to repeat the operation in order to correctly com-
plete it. This implies that there might be cases in which the timing may
cause some process(es) to have to retry a potentially unbounded number
of times, leading to an unacceptable worst-case behavior for hard real-time
systems. However, they usually perform well in practice. In wait-free im-
plementations each task is guaranteed to correctly complete any operation
in a bounded number of its own steps, regardless of overlaps and the ex-
ecution speed of other processes; i.e. while the lock-free approach might
allow (under very bad timing) individual processes to starve, wait-freedom
strengthens the lock-free condition to ensure individual progress for every
task in the system.

Non-blocking implementation of shared data objects is a new alterna-
tive approach for the problem of inter-task communication. Non-blocking
mechanisms allow multiple tasks to access a shared object at the same time,
but without enforcing mutual exclusion to accomplish this. Non-blocking
inter-task communication does not allow one task to block another task, and
gives significant advantages over lock-based schemes because:

1. it can not cause priority inversion, avoids lock convoys that make
scheduling analysis hard and delays longer.

2. it provides high fault tolerance (processor failures will never corrupt
shared data objects) and eliminates deadlock scenarios from two or
more tasks both waiting for locks held by the other.

3. and more significantly it completely eliminates the interference be-
tween process scheduling and synchronization.

Non-blocking protocols on the other hand have to use more delicate
strategies to guarantee data consistency than the simple enforcement of

42 CHAPTER 2. WAIT-FREE SNAPSHOT

mutual exclusion between the different operations on the data object. These
new strategies on the other hand, in order to be useful for real-time systems,
should be efficient in time and space in order to perform under the tight space
and time constraints that real-time systems demand.

In this paper we show how to exploit information that is part of the
special nature of the real-time systems in order to design a simple snapshot
algorithm with one scanner that is efficient in time and space as needed.
The algorithm that we propose here outperforms significantly — due to its
simplicity — the respective one not using this information [4, 29]. Experi-
ments on a SUN Enterprise 10000 has shown that the new construction gives
4 times better response time for the update operations for all scenarios and
with 20 % better response time for all practical settings. Please notice that
we have one scan task at a time and multiple concurrent update tasks per
component in multiple components.

Previously Chen and Burns in [25], exploited the use of the same infor-
mation for the construction of a non-blocking shared buffer. Research at the
University of North Carolina [9, 10] and [94] by Anderson et al. has shown
that wait-free algorithms can be simplified considerably in real-time systems
by exploiting the way that processes are scheduled for execution in such sys-
tems. In [4, 29] it has also been shown that wait-free methods actually can
be very efficient and relatively low demanding in memory consumption. In
our experimental evaluation of the protocol we compare with this solution.

The rest of this paper is organized as follows. In Section 2 we describe the
computer systems that we consider and give a description of the problem.
Section 3 presents our protocol and later we show how to bound the size of
the buffers used in the algorithm. Section 4 shows some experiments. The
paper concludes with Section 5.

2.2 System and Problem Description

2.2.1 Real-time Multiprocessor System Configuration

A typical abstraction of a shared memory multi-processor real-time system
configuration is depicted in Figure 2.1. Each node of the system contains
a processor together with its local memory. All nodes are connected to the
shared memory via an interconnection network. A set of co-operating tasks2

(processes) with timing constraints are running on the system performing
their respective operations. Each task is sequentially executed on one of the

2throughout the paper the terms process and tasks are used interchangeably

2.2. SYSTEM AND PROBLEM DESCRIPTION 43

Local Memory

Processor 1

Local Memory

Processor 2

Local Memory

Processor n

Shared Memory

Interconnection Network

. . .

Figure 2.1: Shared Memory Multiprocessor System Structure

processors, while each processor can serve (run) many tasks at a time. The
co-operating tasks now, possibly running on different processes, use shared
data objects built in the shared memory to co-ordinate and communicate.
Every task has a maximum computing time and has to be completed by
a time specified by a deadline. Tasks synchronize their operations through
read/write operations to shared memory.

2.2.2 The Model

In this paper we are interested in the snapshot problem or snapshot object,
which involves taking an “instantaneous” picture of a set of variables, all
in one atomic operation. The snapshot is taken by one task, the scanner,
while each of the snapshot variables may concurrently and independently
be updated by other processes (called updaters). A snapshot object is also
called a composite register, consisting of a number of components (indexed
1 through c), which constitute the entities which can be updated and snap-
shot. We will use the two terms (snapshot object and composite register)
interchangeably.

The accessing of the shared object is modeled by a history h. A history
h is a finite (or not) sequence of operation invocation and response events.
Any response event is preceded by the corresponding invocation event. For
our case there are two different operations that can be invoked, a snapshot
operation or an update operation. An operation is called complete if there
is a response event in the same history h; otherwise, it is said to be pending.
A history is called complete if all its operations are complete. In a global
time model each operation q “occupies” a time interval [sq, fq] on one linear
time axis (sq < fq); we can think of sq and fq as the starting and finishing
time instants of q. During this time interval the operation is said to be
pending. There exists a precedence relation on operations in history denoted

44 CHAPTER 2. WAIT-FREE SNAPSHOT

// Global variables
snapshotindex: integer
value[NR COMPONENTS][∞]: valtype
// Local variables
tempindex,k,index: integer

procedure Update(cid:integer, data:valtype)
U1 value[cid][snapshotindex]:=data;

procedure Scan(snapshotdata[NR COMPONENTS]: valtype)
S1 tempindex:=snapshotindex;
S2 snapshotindex:=tempindex+1;
S3 for k:=0 to NR COMPONENTS-1 do
S4 for index:=tempindex to 0 step -1 do
S5 if value[k][index] �= NIL then
S6 snapshotdata[k]:=value[k][index];
S7 break;

Figure 2.2: Pseudocode for the Unbounded Snapshot Algorithm

by <h, which is a strict partial order: q1 <h q2 means that q1 ends before q2

starts; operations incomparable under <h are called overlapping. A complete
history h is linearizable if the partial order <h on its operations can be
extended to a total order →hthat respects the specification of the object
[45].

2.3 The Protocol

2.3.1 The unbounded version

We first start with a simple unbounded snapshot protocol that first appeared
in Kirousis et.al. [63]. The protocol uses buffers of infinite length, the
architecture of this protocol is shown in figure 2.3. The pseudo-code for
the algorithm is presented in figure 2.2. The architecture of our unbounded
construction is as follows: For each component k = 0, . . . , c−1, we introduce
an unbounded number of subregisters value[k][l], l = 0, . . . ,∞ which are
written to by the updater of the corresponding component and are read
by the scan function. We call these subregisters memory locations. The
second index of each memory location value[k][l] is its address (the first
indicates the corresponding component). A memory location holds a value

2.3. THE PROTOCOL 45

t

?

nil

nil nil

nil nil

nil nil

nil

nil

w

w

w

?

?

?

?

?

?

?

?

w = writer position

? = previous values / nil

snapshotindex

c1

ci

cc

v11

vk1

vc1

value[k][0]

Figure 2.3: Unbounded Snapshot Protocol

that belongs either to the set of values of the corresponding component
or is a special new value denoted by NIL. The type of all these values
is denoted by valtype. We call them component values. Initially, the
subregisters value[k][l] for k = 0, . . . , c − 1 and l = 1, . . . ,∞ hold the value
NIL, while the subregisters value[k][0], k = 0, . . . , c − 1 hold a value from
the set of values of the corresponding component. Moreover, we introduce
a subregister snapshotindex which holds as value an integer (a pointer to
a memory location). This subregister can be written to by the scanner and
can be read by all updaters. It is initialized with the value 0.

In the protocol the scanner is the controller: it is the one who deter-
mines where the updaters must write. All that an updater has to do is to
write its value to the memory location forwarded by the scanner through a
pointer. More specifically, the protocol works as follows: An updater first
reads snapshotindex and then writes its value to the memory location of the
corresponding component that is pointed to by snapshotindex. The scanner,
on the other hand, first increments snapshotindex by one; stores its old value
into a local variable tempindex and then for each component k = 0, . . . , c−1
gets the value to be returned by reading value[k][tempindex], . . . , value[k][0]
in this order until it gets a value which is not NIL. The scanner, by for-
warding to the updater, with its very first sub-operation, a new subregister,

46 CHAPTER 2. WAIT-FREE SNAPSHOT

which it does not use again during the current snapshot, it succeeds to avoid
reading values written by update operations that started after its own start-
ing point. Moreover, the scanner, by scanning the subregisters in the reverse
order from the one that they were forwarded in previous operations and by
returning the first “non-empty” value, it achieves to return non overwritten
values.

The snapshot protocol presented here is based on the following idea: if
each scan returns for each component a value which is not overwritten (cf.
figure 2.4(a)) and which is written by an update which started before the
start of the scan (cf. figure 2.4(b,c)), then the solution satisfies an atomicity
criterion [7, 8, 63] that enables us to argue for each component separately
and hence leads to a more modular proof. For the following paragraphs and
the intuitive understanding of the solution, the reader should keep in mind
that the intuitive presentation of the criterion is summarized in figure 2.4.

2.3.2 Bounding the Construction

The systems that we are a looking at are real-time uniprocessor or multi-
processor systems. In these systems tasks come to the respective scheduler
with a number of parameters that allow these schedulers to decide whether
these tasks are schedulable.

We assume that we have n tasks in the system, indexed t1...tn. The
tasks can be either periodic or sporadic. For each task ti we will use the
standard notations Ti, Ci, Ri and Di to denote the period (i.e. min period
for sporadic tasks), worst case execution time, worst case response time and
deadline, respectively. The deadline of a task is less or equal to its period.

For a system to be safe, no task should miss its deadlines, i.e. ∀i | Ri ≤
Di.

For a system scheduled with fixed priority, the response time for a task
in the initial system can be calculated using the standard response time
analysis techniques [17]. If we with Bi denote the blocking time (the time
the task can be delayed by lower priority tasks) and with hp(i) denote the
set of tasks with higher priority than task ti, the response time Ri for task
ti can be formulated as:

Ri = Ci + Bi +
∑

j∈hp(i)

⌈
Ri

Tj

⌉
Cj (2.1)

The summand in the above formula gives the time that task ti may
be delayed by higher priority tasks. For systems scheduled with dynamic
priorities, there are other ways to calculate the response times [17].

2.3. THE PROTOCOL 47

t

writewrite

write

write write
t

write write
t

t

write
t

write

write

read

read

read

write

= returned by scan operation

read

a)

b)

d)

e)

c)

ci

ci

ci

ci

ci

cj

Figure 2.4: Intuitive presentation of the atomicity/linearizability criterion
satisfied by our wait-free solution

48 CHAPTER 2. WAIT-FREE SNAPSHOT

S

Wx

Wy

Figure 2.5: A cyclic buffer with several updater tasks and one snapshot task

We will use TS to denote the snapshot task period and TWi to denote the
updater tasks period. To simplify the formulas we assume that tasks can be
preempted at arbitrary points during their execution and that there are no
overheads for context switching or interrupt handling. We also assume that
one of the tasks in the system acts as a scanner task, say tscan, but in the
original system it doesn’t have any mechanism to get a consistent snapshot.

In this subsection, we will show how to transform the unbounded space
protocol of the previous subsection into one that uses bounded space only.

In the bounded space protocol as well, we are going to keep the role of
the scanner as the controller of the game. It still is the one who determines
the subregister where the updater is going to write. However, because the
number of the subregisters must be bounded, instead of forwarding a new
subregister each time, the scanner has to find an obsolete subregister which
will be forwarded to the updater after erasing its contents. We call this
procedure of erasing the contents of a subregister and its forwarding to the
updater, as recycling of the subregister.

We keep the techniques used in the previous algorithm, that is: (i) The
updaters write to the memory location forwarded by the snapshot operation.
(ii) The snapshot operation, by forwarding with its very first sub-operation
a recycled subregister, which it is not going to use again during the current
snapshot, it succeeds to avoid reading component values written by update
operations which start after its own starting point. (iii) The scanner in each
snapshot operation reads the remaining memory locations in the reverse
order from the one that they had been previously forwarded.

Thus, the problem of designing a correct algorithm that uses a bounded
number of subregisters is reduced to the problem of having the scanner

2.3. THE PROTOCOL 49

snapshotindex % cycle[cid]

t

? w

w

w

nil?

?

?

?
?

?
nil

nil

nil
nil

? = previous values / nil

w = writer position

c1

ci

cc

Figure 2.6: The bounded Snapshot protocol

tw

tscan

min TS min TS min TS

RS

RW

= increment snapshotindex by +1

Figure 2.7: Estimating the buffer length - worst case scenario

50 CHAPTER 2. WAIT-FREE SNAPSHOT

// Global variables
snapshotindex:integer
value[NR COMPONENTS]:pointer to valtype
cycle[NR COMPONENTS]:integer
// Local variables
index,k,tempindex:integer

procedure Initialize
I1 for index:=0 to NR COMPONENTS-1 do
I2 value[index]:= new valtype[cycle[index]];

procedure Update(cid:integer, data:valtype)
U1 tempindex:=snapshotindex modulo cycle[cid];
U2 value[cid][tempindex]:=data;

procedure Scan(snapshotdata[NR COMPONENTS]:valtype)
S1 tempindex:=snapshotindex+1;

/* clean phase */
S2 for k:=0 to NR COMPONENTS-1 do
S3 value[k][tempindex modulo cycle[k]] := NIL;
S4 snapshotindex:=tempindex;
S5 tempindex:=tempindex-1;

/* read phase */
S6 for k:=0 to NR COMPONENTS-1 do
S7 index:=tempindex modulo cycle[k];
S8 while index �= (tempindex+1) modulo cycle[k] do
S9 if value[k][index] �= NIL then
S10 snapshotdata[k] := value[k][index];
S11 break;
S12 index:=(index-1) modulo cycle[k];

Figure 2.8: Pseudo-code for the Bounded Snapshot Algorithm

2.3. THE PROTOCOL 51

choose each time a provably obsolete subregister for recycling. By doing
this we can use the timing information that comes together with the task
set in real-time systems. For the beginning please note that the unbounded
construction that was presented in the previous section has the nice property
that the scanner task is always at least one position ahead of the updaters
when accessing the buffers, see figure 2.5. This leads us to consider replacing
the unbounded buffer with a cyclical buffer mechanism where the buffer slots
are now going to be ”forwarded” cyclically by the scanner. Each circular
data buffer now is implemented by an array of l entries. Each entry is capable
of holding one copy of the data that an updater wants to write. The next step
then is to analyze the conditions that the cyclical buffers have to satisfy in
order to maintain the safety properties that were described above. Note that
the buffer length can be of different length for each individual component,
and that the buffer length is dependent on the timing characteristics of the
updaters that write to this component, and also dependent on the timing
characteristics of the scanner task which advances the buffer index. See
figure 2.8 for the algorithm pseudo-code and figure 2.6 for an explanation
how the algorithm interacts with the cyclic buffers.

As the updater always has to have a valid buffer slot to write to, we know
that we need a buffer of at least length one. So to calculate how many more
indexes we need for each buffer we compare the maximum time it takes for
an updater to finish, to the minimum time it takes between two subsequent
increments of the index done by the scanner function. First we assume that
the tasks always execute within their response times R with arbitrary many
interruptions, and that the execution time C is comparably small. This
means that the increment respective the write to the buffer slot can occur
anytime within the interval for the response time. The maximum time for
an updater function to finish is the same as the response time RW for its
task tW . The minimum time between two index increments is when the first
increment is executed at the end of the first interval and the next increment
is executed at the very beginning of the second interval, i.e. TS − RS . The
minimum time between the subsequent increments will then be the period
(min for sporadic tasks) TS . The worst case scenario between an updater
and the scanner is when the snapshotindex is incremented directly after the
updater has read it, as it is shown in Figure 2.7. Regardless of the timing
characteristics of the involved tasks, it will always be possible to have at
least one increment, and adding the one always needed by the updater this
adds up to an absolute minimum of two buffer slots.

If RW ≤ (min TS − RS) then:

52 CHAPTER 2. WAIT-FREE SNAPSHOT

Scenario Scan Period (us) Update Period (us) Buffer Length

1 500 50 3
2 200 50 3
3 100 50 3
4 50 50 4
5 50 100 6
6 50 200 10
7 50 500 22

Figure 2.9: Descriptions of Scenarios for experiment

l = 2 (2.2)

If RW > (min TS − RS) then:

l =
⌊

RW − (min TS − RS)
minTS

⌋
+ 3 (2.3)

We are now combining those two expressions into one single expression.
The floor function can safely turned into a ceiling function by subtracting
one from the constant in equation 2.3. We also have to consider the longest
buffer length we need considering all the updater tasks that are updating the
same component. If we denote the length of the buffer for component k with
lk, and the group of updaters to component k with wr(k), our calculations
lead us to the following formula:

lk =
⌈

maxi∈wr(k) RWi − min TS + RS

minTS

⌉
+ 2 (2.4)

The last formula that we have calculated describes the buffer length
that our construction needs in order to guarantee the safety property of
our circular-buffer. It can be clearly seen that the buffer lengths keep very
low when the snapshot task period is bigger than the updater task pe-
riod, actually very similar buffer lengths as what can be achieved with more
sophisticated snapshot algorithms, like the wait-free [4, 29] that does not
use the timing information but instead uses more advanced synchronization
primitives that the tasks can use in order to synchronize.

2.4 Experiments

A number of experiments have been performed in order to measure exper-
imentally the performance of the new construction. To give an interesting

2.4. EXPERIMENTS 53

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 1 2 3 4 5 6 7

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

(u
s)

Scenario

Wait-Free Snapshot - Scan Operation

NOT USING TIMING INFORMATION
USING TIMING INFORMATION

Figure 2.10: Experiment with 1 Scan and 10 Update processes - Scan task
comparison

and appropriate comparison we have done experiments with the wait-free
snapshot algorithm [4, 29], and then done the similar experiments with the
bounded-time algorithm presented in this paper. The experiments have
been executed on a Sun Enterprise 10000 parallel machine with 64 proces-
sors. The machine is based on the Sun Starfire [24] uniform memory access
(UMA) architecture. The system considered is consisting of 1 scan process
and 10 updater processes. The tasks have been generated as periodic tasks,
with one task per CPU. The periods of the scan and update tasks have been
changed according to some selected scenarios, see figure 2.9. Several long ex-
ecutions of the scenarios have been executed and the average response times
for the scan and update operations have been measured. The wait-free re-
spective the bounded-time algorithms have been executed with exactly the
same environment and parameters. The buffer lengths have been computed
according to equation 2.4 presented in the analysis. To give an interest-
ing and appropriate comparison we have compared the algorithm presented
here with the wait-free snapshot algorithm presented in [4, 29]. Both these
algorithms use the same unbounded memory construction, [4, 29] bounds it
efficiently without using the timing information.

The result of the experiments can be viewed in figures 2.10 and 2.11.
According to the experiments, the new construction gives 400 % better re-

54 CHAPTER 2. WAIT-FREE SNAPSHOT

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 1 2 3 4 5 6 7

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

(u
s)

Scenario

Wait-Free Snapshot - Update Operation

NOT USING TIMING INFORMATION
USING TIMING INFORMATION

Figure 2.11: Experiment with 1 Scan and 10 Update processes - Update
task comparison

sponse time for the update operations for all scenarios and with 20 % better
response time for all scenarios that are common in practical settings com-
pared to [4, 29]. The protocol presented in [4, 29] can perform better than
the algorithm presented here, but only with respect to the scan operations,
and only when the scan period is lower than the update period. The rea-
son for this is that for the construction presented here, the buffer lengths
increase as the period of a scan operation increases. But as we mentioned
above the new construction gives 400 % better response times for the update
operations for all scenarios. These are very significant results as we usually
do a lot more update operations than scan operations. Although the scan
operation can be slower for the bounded-time for some scenarios, we can
assume that we will get a trade-off because of the benefits with the faster
update operations.

2.5 Conclusions and Future Work

We have looked at the problem of taking a snapshot of several shared data
components in a concurrent system by using timing information about the
system that is available on real-time systems. By exploiting this information
we design a simple snapshot algorithm with one scanner that is efficient in

2.5. CONCLUSIONS AND FUTURE WORK 55

time and space. The efficiency of the algorithm was experimentally evaluated
on a SUN Enterprise 10000 multiprocessor.

56 CHAPTER 2. WAIT-FREE SNAPSHOT

Chapter 3

Space Efficient Wait-Free
Buffer Sharing in
Multiprocessor Real-Time
Systems Based on Timing
Information1

H̊akan Sundell, Philippas Tsigas
Department of Computing Science

Chalmers Univ. of Technol. and Göteborg Univ.
412 96 Göteborg, Sweden

E-mail: {phs, tsigas}@cs.chalmers.se

Abstract

A space efficient wait-free algorithm for implementing a shared buffer for
real-time multi-processor systems is presented in this paper. The commonly
used method to implement shared buffers in real-time systems is based on mu-
tual exclusion. Mutual exclusion is penalized by blocking that typically leads
to difficulties in guaranteeing deadlines in real-time systems. Researchers
have introduced non-blocking algorithms and data structures that address

1This is an revised and extended version of the paper presented at RTCSA 2000 [103].

58 CHAPTER 3. WAIT-FREE SHARED BUFFER

the above problems. Many of the non-blocking algorithms that appeared in
the literature have very high space demands though, some even unbounded,
which makes them not suitable for real-time systems. In this paper we look
at a simple, elegant and easy to implement algorithm that implements a
shared buffer but uses unbounded time-stamps and we show how to bound
the time-stamps by using the timing information that is available in many
real-time systems. Our analysis and calculations show that the algorithm
resulting from our approach is space efficient. The protocol presented here
can support an arbitrary number of concurrent read and write operations.

3.1 Introduction

In real-time systems and in distributed systems in general we have several
concurrent tasks that need to communicate and synchronize in order to be
able to fulfill the responsibilities of the system. There are several different
means to accomplish this in a multi-processor system. In general the tasks
communicate using shared data objects. The shared data objects can be
centralized or distributed, and can be accessed uniform or non-uniform.
The major requirement from manufacturers when designing these shared
data objects is to keep space constraints on random access memory as low
as possible; in 1998, 1.5 billion 8-bit micro-controllers were sold, compared
to only 63.7 million 32-bit micro-controllers [26].

In order to ensure consistency on shared data objects one commonly
used method is mutual exclusion. Mutual exclusion protects the consis-
tency of the shared data by allowing only one process at time to access the
data. Mutual exclusion i) causes large performance degradation especially in
multi-processor systems [100]; ii) leads to complex scheduling analysis since
tasks can be delayed because they were either preempted by other more ur-
gent tasks, or because they are blocked before a critical section by another
process that can in turn be preempted by another more urgent task and so
on (this is also called as the convoy effect) [64]; and iii) leads to priority in-
version in which a high priority task can be blocked for an unbounded time
by a lower priority task [95]. Several synchronization protocols have been
introduced to solve the priority inversion problem for uni-processor [95] and
multi-processor [93] systems. The solution presented in [95] solves the prob-
lem for the uni-processor case with the cost of limiting the schedulability of
task sets and also making the scheduling analysis system, where a task may
be blocked by another task running on a different processor [93].

To address the problems that arise from blocking, researchers have pro-

3.1. INTRODUCTION 59

posed non-blocking implementations of shared data structures. Two basic
non-blocking methods have been proposed in the literature, lock-free and
wait-free. Lock-free implementations of shared data structures guarantee
that at any point in time in any possible execution some operation will
complete in a finite number of steps. In cases with overlapping accesses,
some of them might have to repeat the operation in order to correctly com-
plete it. This implies that there might be cases in which the timing may
cause some process(es) to have to retry a potentially unbounded number
of times, leading to a for hard real-time systems unacceptable worst-case
behavior, although usually they perform well in practice. In wait-free im-
plementations each task is guaranteed to correctly complete any operation
in a bounded number of its own steps, regardless of overlaps and the ex-
ecution speed of other processes; i.e. while the lock-free approach might
allow (under very bad timing) individual processes to starve, wait-freedom
strengthens the lock-free condition to ensure individual progress for every
task in the system.

Non-blocking implementation of shared data objects is a new alterna-
tive approach for the problem of inter-task communication. Non-blocking
mechanisms allow multiple tasks to access a shared object at the same time,
but without enforcing mutual exclusion to accomplish this. Non-blocking
inter-task communication does not allow one task to block another task, and
gives significant advantages over lock-based schemes because:

1. it cannot cause priority inversion and avoids lock convoys that make
scheduling analysis hard and delays longer.

2. it provides high fault tolerance (processor failures will never corrupt
shared data objects) and eliminates deadlock scenarios from two or
more tasks both waiting for locks held by the other.

3. and more significantly it completely eliminates the interference be-
tween process scheduling and synchronization.

Non-blocking protocols on the other hand have to use more delicate strate-
gies to guarantee data consistency than the simple enforcement of mutual
exclusion between the different operations on the data object. These new
strategies on the other hand, in order to be useful for real-time systems,
should be efficient in time and space in order to perform under the tight
space and time constraints that real-time systems demand.

Some of the wait-free protocols presented in the literature have very high
space demands, some even require unbounded space, which makes them of

60 CHAPTER 3. WAIT-FREE SHARED BUFFER

no practical interest for real-time systems. In real-time systems usually
tasks come together with their timing characteristics, such as their worst-
case execution time, their period and etceteras. In this paper we look at a
simple, elegant and easy to implement algorithm that implements a shared
buffer but uses unbounded time-stamps and we show how to bound the
time-stamps by using the timing information that is available in a real-time
system. The solution allows any arbitrary number of readers and writers to
concurrently access the buffer. The resulting algorithm as we show has low
memory demands.

Previously Chen and Burns in [25], exploited the use of the timing in-
formation for the construction of a non-blocking shared buffer; they were
the first to show how to use timing-based information to implement a fully
asynchronous reader/writer mechanism; in their work they considered the
case where there is only one writer. The algorithm presented in this paper
allows arbitrary number of readers and writers to perform their respective
operations. Research at the University of North Carolina [9, 10] and [94]
by Anderson et al. has shown that wait-free algorithms can be simplified
considerably in real-time systems by exploiting the way that processes are
scheduled for execution in such systems. Research work investigating the
relation between non-blocking synchronization and real-time systems dates
back to 1974 [101, 102]. Massalin and Pu [75] and Greenwald and Cheriton
[39] were the first to develop lock-free real-time kernels. Last but not least
the real-time specifications of JAVA [21] include wait-free synchronization.

The rest of this paper is organized as follows. In Section 2 we describe ba-
sic characteristics of the computer systems that we are considering together
with the formal requirements that any solution to the synchronization prob-
lem that we are considering must guarantee. In Section 3 we show how to
use the timing information in order to bound the time-stamps of the un-
bounded protocol that is also presented in this section. Section 4 presents
some examples showing the effectiveness of our results. The paper concludes
with Section 5.

3.2 System and Problem Description

3.2.1 Real-Time Multiprocessor System Configuration

A typical abstraction of a shared memory multi-processor real-time system
configuration is depicted in figure 3.1. Each node of the system contains a
processor together with its local memory. All nodes are connected to the

3.2. SYSTEM AND PROBLEM DESCRIPTION 61

Local Memory

Processor 1

Local Memory

Processor 2

Local Memory

Processor n

Shared Memory

Interconnection Network

. . .

Figure 3.1: Shared Memory Multiprocessor System Structure

shared memory via an interconnection network. A set of co-operating tasks2

(processes) with timing constraints are running on the system performing
their respective operations. Each task is sequentially executed on one of
the processors, while each processor can serve (run) many tasks at a time.
The co-operating tasks, possibly running on different processes, use shared
data objects built in the shared memory to co-ordinate and communicate.
Every task has a maximum computing time and has to be completed by
a time specified by a deadline. Tasks synchronize their operations through
read/write operations to shared memory. The shared memory may not
though be uniformly accessible for all nodes in the system. Some processors
can have slower access or other restrictions like no access at all to some part
of the shared memory.

3.2.2 The Model

In this paper we are interested in the problem of constructing an atomic
shared buffer.

The accessing of the shared object is modeled by a history h. A history
h is a finite (or not) sequence of operation invocation and response events.
Any response event is preceded by the corresponding invocation event. For
our case there are two different operations that can be invoked, a read
operation or a write operation. An operation is called complete if there
is a response event in the same history h; otherwise, it is said to be pending.
A history is called complete if all its operations are complete. In a global
time model each operation q “occupies” a time interval [sq, fq] on one linear
time axis (sq < fq); we can think of sq and fq as the starting and finishing
time instants of q. During this time interval the operation is said to be
pending. There exists a precedence relation on operations in history denoted

2throughout the paper the terms process and tasks are used interchangeably

62 CHAPTER 3. WAIT-FREE SHARED BUFFER

by <h, which is a strict partial order: q1 <h q2 means that q1 ends before
q2 starts; Operations incomparable under <h are called overlapping. A
complete history h is linearizable if the partial order <h on its operations
can be extended to a total order →hthat respects the specification of the
object [45]. For our object this means that each read operation should
return the value written by the write operation that directly precedes the
read operation by this total order (→h).

To sum it up, as we are looking for a non-blocking solution to the general
reader/writer problem for real-time systems we are looking for a solution
that satisfies:

• Every read operation guarantees the integrity and coherence of the
data it returns.

• The behavior of each read and write operation is predictable and can
be calculated for use in the scheduling analysis.

• Every possible history of our protocol should be linearizable [45].

3.3 The Protocol

3.3.1 The Unbounded Algorithm

Readers

Writers

...

...

Rd1 Rd2 Rdn

Wr1

Wr2

Wrn

Rg11 Rg12 Rg1n

Rg21

Rgn1 Rgnn

Figure 3.2: Architecture of the Algorithm

3.3. THE PROTOCOL 63

The Unbounded Algorithm for N-reader

N-writer Shared Register

Reader (on processor i):
tagmax := 0
for j := 1 to n

if tag(Rgji) > tagmax then
tagmax := tag(Rgji)
value := value(Rgji)

for j := 1 to n
Rgij := (value,tagmax)

return value

Writer (on processor i):
tagmax := 0
for j := 1 to n

if tag(Rgji) > tagmax then
tagmax := tag(Rgji)

for j := 1 to n
Rgij := (value,tagmax + 1)

Figure 3.3: The unbounded algorithm

We first start with a simple, elegant and easy to implement unbounded
protocol that appeared in [124]. The algorithm uses a matrix of 1-reader
1-writer registers, see figure 3.2. We denote the reader task and the writer
task running on processor i with Rdi and Wri respectively. The matrix is
formed in a way such that each register Rgij can be read by processor j and
written by processor i.

0 1 nk

Value Tag

Figure 3.4: The Register Structure

The algorithm originally uses unbounded time-stamps and consequently

64 CHAPTER 3. WAIT-FREE SHARED BUFFER

the data read from or written into each of the registers contains a data pair
of a value and a tag, see figure 3.4. Each of the registers are read from
or written to in one atomic operation. In the algorithm the tag value is
unbounded. The pseudo-code for the algorithm can be viewed in figure 3.3.
The tag value indicates the freshness of the value; a higher tag means a
newer value. In this algorithm the reader reads in columns and the writers
writes in rows as seen in figure 3.2. When the reader wants to get the latest
value from the shared register it reads all the registers in its column and
takes the value with the highest tag. Then it writes this value together with
the tag to all registers in its row. When the writer wants to write a new
value it first looks for the highest possible tag in the matrix by reading a
column. Then it writes the new value in its row together with that tag value
incremented by one.

The value for the tags during the execution increases rapidly and thus
many bits have to be allocated for the tag value on the register to ensure
there is no overflow. As the register contains a limited number of bits, this
means that we have fairly few bits to allocate for the actual value. In real-
time systems random access memory is also a limited resource and registers
usually contain few bits. Further the system is usually required be able
to run continuously for a very long period, which means that we have to
allocate a lot of bits for the tag field, to ensure there is no overflow.

Let us now consider a system with eight processors and eight writer
tasks, one task on each CPU. Assume that the period of each task is 10
ms, and that the tasks are interleaved in time as it is shown in figure 3.5.
Each task starts its execution after the previous task has started to write the
incremented tag to one of the registers, but not necessarily all. In this way
this register will be scanned by the next writer tasks when they are scanning
for the highest tag value in the system. The last writer finishes its execution
before the first writer restarts its execution and the procedure repeats itself
over and over. In this scenario, each invocation of a writer task will increase
the tag by one, and in each period we will have increased the tag by eight.
This means that in just a second of the systems execution we will have a tag
value of 800, that requires 10 bits. For an hour of execution, we will have
a tag value of 2 880 000, occupying 22 bits. This clearly indicates that we
cannot use the algorithm as is in a real-time system with limited memory
capabilities, and therefore it is of great importance to be able to bound the
size of the tag field. In the next subsection we show how to use the timing
information that is available in real-time systems to efficiently bound the
size of the time-stamps.

3.3. THE PROTOCOL 65

+1

+1

+1

+1

+1

+1

+1

+1

+1

+1

+1

+1

+1

Wr1

Wr2

Wr3

Wr8

TWr1

Figure 3.5: Rapidly Increasing Tags

3.3.2 Bounding the Time-Stamps

In this part of the paper we will see how to recycle the tags. The way
that the algorithm is going to work is similar to the way the algorithm
that uses unbounded time-stamps works. Namely, the writer produces a
new time-stamp every time it writes, and the reader returns the value of
the most recent time-stamp. The idea is to maintain a bounded number of
time-stamps, and keep track of the ordering in which they were issued.

We are assuming that all tasks are periodic and that all tasks will meet
their deadlines which are shorter than their respective periods. In real-time
systems it is very often the case that we have very good information about
the tasks.

We assume that we have n tasks in the system, indexed t1 . . . tn. For each
task ti we will use the standard notations Ti, Ci, Ri, Di and Bi to denote
the period, worst case execution time, worst case response time, deadline
and blocking time (the time the task can be delayed by lower priority tasks),
respectively. Also hp(i) denotes the set of tasks with higher priority than
task ti. The deadline of a task is less or equal to its period.

For a system to be safe, no task should miss its deadlines, i.e. ∀i | Ri ≤
Di. The response time Ri for a task in the initial system can be calculated
using the standard response time analysis techniques [17] as:

Ri = Ci + Bi +
∑

j∈hp(i)

⌈
Ri

Tj

⌉
Cj (3.1)

66 CHAPTER 3. WAIT-FREE SHARED BUFFER

Writer 1 +1 +1 +1 +1 ...+1 +1 +1 ...

Writer 2 +1 +1 +1 +1 +1 +1 ... +1 +1 +1 +1 ...

Writer ... +1 ... +1 ...

Min Tag 0 0 0...

Max Tag 0

Tmax Rmax

TWr1

TWr2

S1S1

S1

S1 + S2

S1 =
∑n

i=1

⌈
Tmax
TWri

⌉

S2 =
∑n

i=1

⌈
Rmax
TWri

⌉

Figure 3.6: Tag Range

In the next part of this section we are going to use the following notation,
where Rdi and Wri denotes the reader respective the writer tasks:

TWrmax = maxi∈{1..n} TWri

TRdmax = maxi∈{1..n} TRdi

Tmax = max{TWrmax , TRdmax}

RWrmax = maxi∈{1..n} RWri

RRdmax = maxi∈{1..n} RRdi

Rmax = max{RWrmax , RRdmax}

In order to bound the time-stamps we will first try to find an upper
bound for t2 − t1, where t1 is and t2 are respectively the time stamps that
a task can observe in two consecutive invocations in any possible execution
of the unbounded algorithm.

Let us now take an arbitrary execution ε, for simplicity we assume that
the tags have been initialized to 0. We are considering the worst possible

3.3. THE PROTOCOL 67

scenario. Like in the previous section we assume that each writer task will
increase the highest tag value by one. We are assuming for the worst case
that the task with the longest period Tmax is scanning the matrix for the
highest tag in the beginning of its execution, before any other task has
written any other value. This task is then suspended for almost all of its
period and writes the highest tag value in its row at the very end of the task
period. Thus the lowest tag will still be zero and the upper boundary for
the highest tag will be:

S1 =
n∑

i=1

⌈
Tmax

TWri

⌉

At the start of the execution of the task with the longest response time
Rmax, this task starts to scan for the highest value and will therefore get
S1 as the result. We are now assuming that this task is writing this tag in
its row at the very end of its response time. And thus the lowest tag in the
system will now be S1. During the execution of this task, the highest tag
may have been increased at most by:

S2 =
n∑

i=1

⌈
Rmax

TWri

⌉

Therefore the highest possible tag in the system at the end of this exe-
cution of this task is:

MaxTag =
n∑

i=1

⌈
Tmax

TWri

⌉
+

n∑
i=1

⌈
Rmax

TWri

⌉

This means that during the execution that spanned from time 0 to time
Tmax +Rmax the tag values will span between zero and S1 +S2, which leads
to the following lemma:

Lemma 1 In any possible execution the time-stamps that two consecutive
tasks can observe are going to be MaxTag =

∑n
i=1

⌈
Tmax
TWri

⌉
+

∑n
i=1

⌈
Rmax
TWri

⌉
far apart.

The above lemma gives us a bound on the length of the ”window” of
active time-stamps for any task in any possible execution. In the unbounded
construction the writers, by producing larger time-stamps every time they
slide this window on the [0, . . . ,∞] axis, always to the right. The approach
now is instead of sliding this window on the set [0, . . . ,∞] from left to right,

68 CHAPTER 3. WAIT-FREE SHARED BUFFER

0
1

2

X
...

...

Figure 3.7: Tag Value Recycling

to cyclically slide it on a [0, . . . , X] set of consecutive natural numbers, see
figure 3.7. Now at the same time we have to give a way to the tasks to
identify the order of the different time stamps because the order of the
physical numbers is not enough since we are re-using time-stamps. The
idea is to use the bound that we have calculated for the span of different
active time-stamps. Let us then take a task that has observed t1 as the
lowest time-stamp at some invocation τ . When this task runs again as τ ′,
it can conclude that the active time-stamps are going to be between t1 and
(t1 + MaxTag) mod X. On the other hand we should make sure that in
this interval [t1, . . . , (t1 + MaxTag) mod X] there are no old time-stamps.
By looking closer to the previous lemma we can conclude that all the other
tasks have written values to their registers with time stamps that are at most
MaxTag less than t1 at the time that τ wrote the value t1. Consequently if
we use an interval that has double the size of MaxTag, τ ′ can conclude that
old time-stamps are all on the interval [(t1 − MaxTag) mod X, . . . , t1].

Therefore we can use a tag field with double the size of the maximum
possible value of the tag.

TagFieldSize = MaxTag ∗ 2
TagFieldBits = �log2 TagFieldSize	

In this way τ ′ will be able to identify that v1, v2, v3, v4 (see figure 3.8)
are all new values if d2 + d3 < MaxTag and can also conclude that:

v3 < v4 < v1 < v2

The new mechanism that will generate new tags in a cyclical order and
also compare tags in order to guarantee the linearizability is presented in
figure 3.9.

The proof for the linearizability of this construction is the same as the

3.4. IMPLEMENTATION 69

0 X

d1d2 d3

v1 v2 v3 v4

t1t2

Figure 3.8: Tag Reuse

Task Period Task Period
Wr1 1000 Rd1 500
Wr2 900 Rd2 450
Wr3 800 Rd3 400
Wr4 700 Rd4 350
Wr5 600 Rd5 300
Wr6 500 Rd6 250
Wr7 400 Rd7 200
Wr8 300 Rd8 150

Table 3.1: Example task scenario on eight processors

linearizability proof of the unbounded one.

Theorem 1 The algorithm presented in this section implements a bounded
multi-reader, multi-writer buffer that uses bounded memory space.

3.4 Implementation

The whole idea of this algorithm is to provide some kind of shared memory
when there is none directly available by the hardware. In this chapter we
are describing how to actually implement a shared register on a distributed
real-time system using the protocol described in this paper.

We assume that we have a set of nodes, each containing a microcontroller
consisting of a CPU, local memory and I/O capabilities. Each node has some
way of communicating with the other, i.e. message passing. A message can
be sent from any of the nodes to any other of the nodes.

We run the original algorithm on each of the nodes, independently. What

70 CHAPTER 3. WAIT-FREE SHARED BUFFER

Comparison algorithm for bounded tag size

tagmax := tag(Rgj1)
for j := 1 to n

tag := tag(Rgji)
if (tag > tagmax and (tag - tagmax) ≤ MaxTag)

or (tag < tagmax

and (tag + TagFieldSize - tagmax) ≤ MaxTag)
then

tagmax := tag

New tag generation for bounded tag size

for j := 1 to n
Rgij := (value,

(tagmax + 1) modulo TagFieldSize)

Figure 3.9: Algorithm changes for bounded tag size

remains for the complete implementation is how to actually read from or
write to the individual single registers.

The original algorithm makes use of a matrix of 1-reader 1-writer regis-
ters, see figure 3.2. These single registers have to be distributed among the
different nodes and reside on real local memory. As each register Rij can be
written to by processor i and read from by processor j, we can put all the
registers Rij , 1≤i≤n on the local memory of processor j. These registers
actually form a column of the original matrix, see figure 3.10.

The implementation of a read from the matrix Rij is then straightforward
as seen in figure 3.11 ; the local read function just returns the local memory
contents of Rij . When the contents of one of the registers are to be changed,
a message is prepared from the processor that can write to the specific
register. The message is then sent to the processor that can read from
it. The receiving node j that got a message from node i then updates the
corresponding register Rij .

3.5. EXAMPLES 71

...

...

Rd1 Rd2 Rdn

Wr1

Wr2

Wrn

Rg11 Rg12 Rg1n

Rg21

Rgn1 Rgnn

Figure 3.10: The registers located on each processor as a column of the
matrix

3.5 Examples

In order to show the effectiveness of our analysis, consider the scenario
described in table 3.1. The tasks are running on 8 processors, where writer
Wri and reader Rdi are executing on the same processor. We are also
assuming that the reader and writer on the same processor are executing
atomically with respect to each other. All deadlines are considered to be
met.

If we assume that the maximum response time is equal to the maximal
task period, and then apply the formulas from the analysis we get:

Tmax = Rmax = 1000

MaxTag =
n∑

i=1

⌈
Tmax

TWri

⌉
+

n∑
i=1

⌈
Rmax

TWri

⌉
=

8∑
i=1

(
⌈

1000
TWri

⌉
+

⌈
1000
TWri

⌉
) = 1+

1 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 3 + 3 + 3 + 3 + 4 + 4 = 38

TagFieldSize = 38 ∗ 2 = 76

TagFieldBits = �log2 76	 = 7

A tag field size of 7 bits is relatively low considering that we are looking
at a scenario with different task periods. Using 16-bit registers for imple-

72 CHAPTER 3. WAIT-FREE SHARED BUFFER

Code to be implemented on each processor i:

// Local variables
localR[NUMBER OF PROCESSORS]: integer

structure RWMessage
from: integer
value: integer

function ReadR(i:integer, j:integer): integer
return localR[i];

procedure WriteR(i:integer, j:integer, vt: integer)
m.from:=i;
m.value:=vt;
Send Message m to Processor j

procedure On Received Message(m)
localR[m.from]:=m.value;

Figure 3.11: Code to be implemented on each involved processor.

menting the shared register we can safely use 9 bits for the actual value
contents. Without bounding the tag size, we would have reached a maxi-
mum tag value of 68400 in only one hour of execution, thus needing more
than 16 bits.

If we consider the scenario discussed in subsection 3.1 of this paper,
where we had 8 writer tasks, the bounded version that we propose needs
only 4 bits.

3.6 Conclusions

We have studied an algorithm for wait-free implementation of an atomic n-
reader n-writer shared register. The algorithm uses unbounded time-stamps.

We have shown how to use timing information available on real-time
systems to bound the time-stamps. According to our examples the modified
algorithm has small space requirements.

Chapter 4

NOBLE: A Non-Blocking
Inter-Process
Communication Library1

H̊akan Sundell, Philippas Tsigas
Department of Computing Science

Chalmers Univ. of Technol. and Göteborg Univ.
412 96 Göteborg, Sweden

E-mail: {phs, tsigas}@cs.chalmers.se

Abstract

Many applications on shared memory multi-processor machines can ben-
efit from the exploitation of parallelism offered by non-blocking synchro-
nization. In this paper, we introduce a library called NOBLE, which sup-
ports multi-process non-blocking synchronization. NOBLE provides an inter-
process communication interface that allows the user to transparently select
the synchronization method that is best suited to the current application.
The library provides a collection of the most commonly used data types and
protocols in a form that allows them to be used by non-experts. We describe
the functionality and the implementation of the library functions, and illus-
trate the library programming style with example programs. We also provide

1This is a revised and extended version of the paper presented at LCR 02 [104].

74 CHAPTER 4. NOBLE

experiments showing that using the library can considerably reduce the run-
time of parallel code on shared memory machines.

4.1 Introduction

Software implementations of synchronization constructs are usually included
in system libraries. The design of a good synchronization library can be
challenging. Many efficient implementations for the basic synchronization
constructs (locks, barriers and semaphores) have been proposed in the litera-
ture. Many such implementations have been designed with the aim to lower
the contention when the system is in a high congestion situation. These
implementations give different execution times under different contention
instances. But still the time spent by the processes on synchronization can
form a substantial part of the program execution time [61, 76, 86, 125]. The
reason for this is that typical synchronization is based on blocking that un-
fortunately results in poor performance. More precisely, blocking produces
high levels of contention on the memory and the interconnection network,
and more significantly, because it causes convoy effects: if one process hold-
ing a lock is preempted, other processes on different processors waiting for
the lock will not be able to proceed. Researchers have introduced non-
blocking synchronization to address the above problems.

Two basic non-blocking methods have been proposed in the literature,
lock-free and wait-free [45]. Lock-free implementations of shared data struc-
tures guarantee that at any point in time in any possible execution some
operation will complete in a finite number of steps. In cases with overlap-
ping accesses, some of them might have to repeat the operation in order
to correctly complete it. This implies that these implementations, though
usually performing well in practice, might lead to a worst-case behavior
unacceptable for hard real-time systems, where some processes might be
forced to retry a potentially unbounded number of times. In wait-free im-
plementations each task is guaranteed to correctly complete any operation
in a bounded number of its own steps, regardless of overlaps of the individ-
ual steps and the execution speed of other processes; i.e. while the lock-
free approach might allow (under very bad timing) individual processes to
starve, wait-freedom strengthens the lock-free condition to ensure individual
progress for every task in the system.

In the design of inter-process communication mechanisms for parallel and
high performance computing, there has been much advocacy arising from
the theory community for the use of non-blocking synchronization primitives

4.2. DESIGN AND FEATURES OF NOBLE 75

rather than the use of blocking ones. This advocacy is intuitive and many
researchers have for more than two decades developed efficient non-blocking
implementations for several shared data objects. In [115, 118] Tsigas and
Zhang show by manually replacing lock-based synchronization code with
non-blocking ditto in parallel benchmark applications, that non-blocking
performs as well as, and often even better than lock-based synchronization.
Despite this advocacy, the scientific discoveries on non-blocking synchroniza-
tion have not migrated much into practice, even though synchronization is
still the major bottleneck in many applications. The lack of a standard
library for non-blocking synchronization of shared data objects commonly
used in parallel applications has played a significant role for this slow migra-
tion. The experience from implementing our previous work on non-blocking
algorithms [29, 103, 112, 114, 116] has been a natural start for developing a
software library, named NOBLE.

NOBLE offers a library support for non-blocking multi-process synchro-
nization in shared memory systems. NOBLE has been designed in order to:
i) provide a collection of shared data objects in a form which allows them
to be used by non-experts, ii) offer an orthogonal support for synchroniza-
tion where the developer can change synchronization implementations with
minimal changes, iii) be easy to port to different multi-processor systems,
iv) be adaptable for different programming languages and v) contain effi-
cient known implementations of its shared data objects. We will throughout
the paper illustrate the features of NOBLE using the C language, although
other languages are supported.

The rest of the paper is organized as follows. Section 2 outlines the
basic features of NOBLE and the implementation and design steps that
have been taken to support these features. Section 3 illustrates by a way of
an example the use of the features of NOBLE in a practical setting. Section
4 presents run-time experiments that show the performance benefits that
can be achieved by using NOBLE. Finally, Section 5 concludes this paper.

4.2 Design and Features of NOBLE

When designing NOBLE we identified a number of characteristics that had
to be covered by our design in order to make NOBLE easy to use for a wide
range of practitioners. We designed NOBLE to have the following features:

• Usability-Scope - NOBLE provides a collection of fundamental shared
data objects that are widely used in parallel and real-time applications.

76 CHAPTER 4. NOBLE

• Easy to use - NOBLE provides a simple interface that allows the user
to use the non-blocking implementations of the shared data objects in
the same way the user would have used lock-based ones.

• Easy to Adapt - No need for changes at the application level are re-
quired by NOBLE and different implementations of the same shared
data objects are supported via a uniform interface.

• Efficient - Users will have to experience major improvements in order
to decide to replace the existing trusted synchronization code with new
methods. NOBLE has been designed to be as efficient as possible.

• Portable - NOBLE has been designed to support general shared mem-
ory multi-processor architectures and offers the same user interface on
different platforms. The library has been designed in layers, so that
only changes in a limited part of the code are needed in order to port
the library to a different platform.

• Adaptable for different programming languages.

4.2.1 Usability-Scope

NOBLE provides a collection of non-blocking implementations of fundamen-
tal shared data objects in a form that allows them to be used by non-experts.
This collection includes most of the shared data objects that can be found in
a wide range of parallel applications, i.e. stacks, queues, linked lists, snap-
shots and buffers. NOBLE contains the most efficient realizations known
for its shared data objects. See Tables 4.1 and 4.2 for a brief description.

4.2.2 Easy to use

NOBLE provides a precise and readable specification for each shared data
object implemented. The user interface of the NOBLE library is the defined
library functions that are described in the specification. At the very begin-
ning the user has only to include the NOBLE header at the top of the code
(#include <Noble.h>).

In order to make sure that none of the functions or structures that we
define causes any name-conflict during the compilation or the linking stage,
only the functions and the structures that have to be visible to the user of
NOBLE are exported. All other names are invisible outside of the library.
The names that are exported start with the three-letter combination NBL.

4.2. DESIGN AND FEATURES OF NOBLE 77

Object Operations Implementations Description

Queue Enqueue, De-
queue

NBLQueueCreateLF().
Algorithms by Valois
[122], Michael and Scott
[83]. Back-off strategies
added.

Lock-Free. Uses the Compare-
And-Swap (CAS) atomic
primitive and has its own
memory management scheme
that uses the CAS and
Fetch-And-Add (FAA) atomic
primitives.

NBLQueueCreateLF2().
Algorithms by Tsigas
and Zhang [116]

Lock-Free. Based on cycli-
cal arrays and uses the CAS
atomic primitive in a sparse
manner.

NBLQueueCreateLB(). Lock-Based. Uses the in NO-
BLE configured mutual exclu-
sion method (spin-locks) and
memory management scheme
(malloc).

Stack Push, Pop NBLStackCreateLF().
Algorithms by Valois
[122], Michael and Scott
[83]. Back-off strategies
added.

Lock-Free. Uses the CAS
atomic primitive and has its
own memory management
scheme that uses the CAS and
FAA atomic primitives.

NBLStackCreateLB(). Lock-Based. Uses the in NO-
BLE configured mutual exclu-
sion method (spin-locks) and
memory management scheme
(malloc).

Singly
Linked
List

First, Next,
Insert, Delete,
Read

NBLSLListCreateLF().
Algorithms by Valois
[122], Michael and Scott
[83]. Back-off strategies
added.

Lock-Free. Uses auxiliary
nodes and the CAS atomic
primitive. Has its own mem-
ory management scheme that
uses the CAS and FAA atomic
primitives.

NBLSLListCreateLF2().
Algorithms by Harris
[44], Valois [122], Michael
and Scott [83]. Back-off
strategies added.

Lock-Free. Based on using un-
used bits of pointer variables
and the CAS atomic primitive.
Uses the same memory man-
agement as NBLSLListCre-
ateLF.

NBLSLListCreateLB(). Lock-Based. Uses the in NO-
BLE configured mutual exclu-
sion method (spin-locks) and
memory management scheme
(malloc).

Table 4.1: The shared data objects supported by NOBLE

78 CHAPTER 4. NOBLE

Object Operations Implementations Description

Register Read, Write NBLRegisterCreateWF(). Algo-
rithms by Sundell and Tsigas
[103].

Wait-Free. Uses
time-stamps with a
size that are calcu-
lated using timing
information available
in real-time systems.

Snapshot Scan, Update NBLSUSnapshotCreateWF().
Algorithms by Ermedahl et al
[29].

Wait-Free. Single
updater allowed per
component. Uses the
Test-And-Set (TAS)
atomic primitive.

NBLMUSnapshotCreateWF().
Algorithms by Kirousis et al [63]

Wait-Free. Multi-
ple updaters allowed
per component. Uses
matrixes of shared
registers.

NBLMUSnapshotCreateWF2().
Algorithms by Sundell et al
[112]

Wait-Free. Multiple
updaters allowed per
component. Uses
cyclical arrays with
lengths calculated
using timing infor-
mation available in
real-time systems.

NBLSUSnapshotCreateLB().
NBLMUSnapshotCreateLB().

Lock-Based. Uses
the in NOBLE con-
figured mutual exclu-
sion method (spin-
locks) and memory
management scheme
(malloc).

Table 4.2: The shared data objects supported by NOBLE (continued)

4.2. DESIGN AND FEATURES OF NOBLE 79

For example the implementation of the shared data object Queue is struct
NBLQueue in NOBLE.

4.2.3 Easy to Adapt

For many of the shared data objects that are realized in NOBLE, a set of
different implementations is offered. The user can select the implementation
that better suits the application needs. The selection is done at the creation
of the shared data object. For example, there are several different creation
functions for the different implementations of the Queue shared data object
in NOBLE, their usage is described below.

NBLQueue *NBLQueueCreateLF(int nrOfBlocks, int backOff);
/* Create a Queue using the implementation LF */

NBLQueue *NBLQueueCreateLF2(int nrOfBlocks); /* Create a Queue

using the implementation LF2 */

NOBLE also offers a simple interface to standard lock-based implemen-
tations of all shared data objects provided. The mechanisms for handling
mutual exclusion and dynamic memory allocation can be configured in NO-
BLE, the default built-in mechanisms are simple spin-locks respective the
systems standard memory manager - malloc.

In all other steps of use of the shared data object, the programmer does
not have to remember or supply any information about the implementation
(synchronization method) used. This means that all other functions regard-
ing operations on the shared data objects have only to be informed about
the actual instance of the shared data object. The latter gives a unified
interface to the user: all operations take the same number of arguments and
have the same return value(s) independently of the implementation:

NBLQueueFree(handle);

NBLQueueEnqueue(handle,item);

NBLQueueDequeue(handle);

All names for the operations are the same regardless of the actual im-
plementation type of the shared data object, and more significantly the
semantics of the operations are also the same.

80 CHAPTER 4. NOBLE

4.2.4 Efficiency

The only information that is passed to the library during the invocation
of an operation is a handle to a private data structure. Henceforth, any
information concerning the implementation method, which is used for this
particular shared data object instance, has to be inside this private data
structure. For fast redirection of the program flow to the correct imple-
mentation, function pointers are used. Each instance of the data structure
itself contains a set of function pointers, one for each operation that can be
applied on it:

typedef struct NBLQueue {
void *data;
void (*free)(void *data);
void (*enqueue)(void *data,void *item);
void *(*dequeue)(void *data);

} NBLQueue;

The use of function pointers inside each instance, allows us to produce in-
line redirection of the program flow to the correct implementation. Instead
of having one central function that redirects, we define several macros that
redirect directly from the user-level. From the user’s perspective this usually
makes no difference, these macros can be used in the same way as pure
functions:

#define NBLQueueFree(handle) (handle->free(handle->data))
#define NBLQueueEnqueue(handle,item) (handle->enqueue(handle->

data,item))
#define NBLQueueDequeue(handle) (handle->dequeue(handle->data))

4.2.5 Portability

The interface to NOBLE has been designed to be the same independently
of the chosen platform. Internal library dependencies are not visible out-
side of the library. Application calls to the library look exactly the same
with respect to the NOBLE library when moving to another platform. The
implementations that are contained in NOBLE, use hardware synchroniza-
tion primitives (Compare-And-Swap, Test-And-Set, Fetch-And-Add, Load-
Link/Store-Conditional) [45, 118], that are widely available in many com-

4.2. DESIGN AND FEATURES OF NOBLE 81

monly used architectures. Still, in order to achieve the same platform in-
dependent interface, NOBLE has been designed to provide an internal level
abstraction of the hardware synchronization primitives. All hardware de-
pendent operations that are used in the implementation of NOBLE, are
reached using the same interface:

#include "Platform/Primitives.h"

This file depends on the actual platform and is only visible to the de-
velopers of the library. However, a set of implementations (with the same
syntax and semantics) of the different synchronization primitives needed by
the implementations have to be provided for the different platforms. These
implementations are only visible inside NOBLE and there are no restrictions
on the way they are implemented.

NOBLE at this point has been successfully implemented on the SUN
Sparc - Solaris platform, the Silicon Graphics Mips - Irix platform, the Intel
x86 - Win32 platform as well as the Intel x86 - Linux platform.

4.2.6 Adaptable for different programming languages

NOBLE is realized in C and therefore easily adaptable to other popular
programming languages that support importing functions from C libraries.

C++ is directly usable with NOBLE. The basic structures and operation
calls of the NOBLE shared data objects have been defined in such a way
that real C++ class functionality can also be easily achieved by using wrap-
around classes, with no loss of performance.

class NOBLEQueue {
private:

NBLQueue* queue;
public:

NOBLEQueue(int type) {if(type==NBL LOCKFREE) queue=
NBLQueueCreateLF(); else ... }

~ NOBLEQueue() {NBLQueueFree(queue);}
inline void Enqueue(void *item) {NBLQueueEnqueue(queue,item);}
inline void *Dequeue() {return NBLQueueDequeue(queue);}

};

Because of the inline statements and the fact that the function calls in
NOBLE are defined as macros, the function calls of the class members will

82 CHAPTER 4. NOBLE

be resolved in nearly the same way as in C, with virtually no performance
loss.

4.3 Examples

In this section we give an overview of NOBLE by way of an example: a
shared stack in a multi-threaded program. First we have to create the stack
using the appropriate create functions for the implementation that we want
to use for this data object. We decide to use the implementation LF that
requires to supply the maximum size of the stack and the type of back-off
strategy as an input to the create function. We select 10000 stack-elements
for the maximum size of the stack and the exponential back-off strategy:

stack=NBLStackCreateLF(10000, BOT EXPONENTIAL);

where stack is a globally defined pointer variable:
NBLStack *stack;

Whenever we have a thread that wants to invoke a stack operation the
appropriate function has to be called:

NBLStackPush(stack, item);

or
item=NBLStackPop(stack);

When our program does not need the stack any more we can do some
cleaning and give back the memory allocated for the stack:

NBLStackFree(stack);

If we decide later on to change the implementation of the stack that
our program uses, we only have to change one single line in our program.
For example if we want to change from the LF implementation to the LB
implementation we only have to change the line:

stack=NBLStackCreateLF(10000, BOT EXPONENTIAL);

to
stack=NBLStackCreateLB();

4.4. EXPERIMENTS 83

Experiment Operation 1 Operation 2 Operation 3

Queue Enqueue 50% Dequeue 50%
Stack Push 50% Pop 50%
Snapshot Update or Scan 100%
Singly Linked List First 10% Next 20% Insert 60%
Queue - Low Enqueue 25% Dequeue 25% Sleep 50%
Stack - Low Push 25% Pop 25% Sleep 50%
Snapshot - Low Update or Scan 50% Sleep 50%
Singly Linked List - Low First 5% Next 10% Insert 30%

Experiment Operation 4 Operation 5

Queue
Stack
Snapshot
Singly Linked List Delete 10%
Queue - Low
Stack - Low
Snapshot - Low
Singly Linked List - Low Delete 5% Sleep 50%

Table 4.3: The distribution characteristics of the random operations

4.4 Experiments

We have performed a significant number of experiments in order to measure
the performance benefits that can be achieved from the use of NOBLE. Since
lock-based synchronization is known to usually perform better than non-
blocking synchronization when contention is very low, we used the following
micro-benchmarks in order to be as fair as possible:

• High contention - The concurrent threads are continuously invoking
operations, one after the other to the shared data object, thus maxi-
mizing the contention.

• Low contention - Each concurrent thread performs other tasks between
two consecutive operations to the shared data object. The contention
in this case is lower, and quite often only one thread is using the shared
data object at one time.

In our experiments each concurrent thread performs 50 000 randomly
chosen sequential operations. Each experiment is repeated 50 times, and an

84 CHAPTER 4. NOBLE

average execution time for each experiment is estimated. Exactly the same
sequential operations are performed for all different implementations com-
pared. Where possible, the lock-free implementations have been configured
to use the exponential back-off strategy. All lock-based implementations
are based on simple spin-locks using the TAS atomic primitive. For the
low contention experiments each thread randomly selects to perform a set
of 1000 to 2000 sequential writes to a shared memory register with a new
computed value. A clean-cache operation is performed just before each sub-
experiment. The distributions characteristics of the random operations for
each experiment are shown in table 4.3.

The experiments were performed using different number of threads, vary-
ing from 1 to 30. We performed our experiments on a Sun Enterprise 10000
StarFire [23] system. At that point we could have access to 30 processors
and each thread could run on its own processor, utilizing full concurrency.
We have also run a similar set of experiments on a Silicon Graphics Ori-
gin 2000 [70] system, where we had access to 63 processors. Besides from
those two highly parallel super-computers, a set of experiments was also per-
formed on a Compaq dual-processor Pentium II PC running Win32 as well
as Linux. The concurrent tasks in the experiments where executed using
the pthread package on the Solaris and the Linux platforms. On the Win32
platform the default system threads were used instead. The pthread package
is implemented a bit differently on the Irix platform, so in order to run our
experiments accurately, we had to execute the tasks using standard Unix
processes and also implement our own shared memory allocation package.

The results from these experiments are shown in Figures 4.1,4.2,4.3 and
4.4, the average execution time is drawn as a function of the number of
processes. From all the results that we collected we could definitely con-
clude that NOBLE, largely because of its non-blocking characteristics and
partly because of its efficient implementation, outperforms the respective
lock-based implementations significantly. For the singly linked list, NOBLE
was up to 64 times faster than the lock-based implementation. In general,
the performance benefits from using NOBLE and lock-free synchronization
methods increase with the number of processors. For the experiments with
low contention, NOBLE still performs better than the respective lock-based
implementations, for a high number of processors NOBLE performs up to 3
times faster than the respective lock-based implementations.

4.4. EXPERIMENTS 85

0

10000

20000

30000

40000

50000

60000

0 5 10 15 20 25 30

E
xe

cu
tio

n
T

im
e

(m
s)

Processors

Single Linked List with High Contention - Solaris, 32 Processors

LOCK-FREE VALOIS
LOCK-FREE HARRIS

LOCK-BASED

0

2000

4000

6000

8000

10000

12000

14000

16000

0 5 10 15 20 25 30

E
xe

cu
tio

n
T

im
e

(m
s)

Processors

Single Linked List with Low Contention - Solaris, 32 Processors

LOCK-FREE VALOIS
LOCK-FREE HARRIS

LOCK-BASED

0

2000

4000

6000

8000

10000

12000

14000

0 5 10 15 20 25 30

E
xe

cu
tio

n
T

im
e

(m
s)

Processors

Queue with High Contention - Solaris, 32 Processors

LOCK-FREE VALOIS
LOCK-FREE TSIGAS-ZHANG

LOCK-BASED

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

0 5 10 15 20 25 30

E
xe

cu
tio

n
T

im
e

(m
s)

Processors

Queue with Low Contention - Solaris, 32 Processors

LOCK-FREE VALOIS
LOCK-FREE TSIGAS-ZHANG

LOCK-BASED

0

2000

4000

6000

8000

10000

12000

0 5 10 15 20 25 30

E
xe

cu
tio

n
T

im
e

(m
s)

Processors

Stack with High Contention - Solaris, 32 Processors

LOCK-FREE VALOIS
LOCK-BASED

1000

1500

2000

2500

3000

3500

4000

4500

0 5 10 15 20 25 30

E
xe

cu
tio

n
T

im
e

(m
s)

Processors

Stack with Low Contention - Solaris, 32 Processors

LOCK-FREE VALOIS
LOCK-BASED

0

1000

2000

3000

4000

5000

6000

0 5 10 15 20 25 30

E
xe

cu
tio

n
T

im
e

(m
s)

Processors

Snapshot with High Contention - Solaris, 32 Processors

WAIT-FREE ERMEDAHL ET AL
WAIT-FREE KIROUSIS ET AL

LOCK-BASED

1000

1500

2000

2500

3000

3500

4000

4500

0 5 10 15 20 25 30

E
xe

cu
tio

n
T

im
e

(m
s)

Processors

Snapshot with Low Contention - Solaris, 32 Processors

WAIT-FREE ERMEDAHL ET AL
WAIT-FREE KIROUSIS ET AL

LOCK-BASED

Figure 4.1: Experiments on SUN Enterprise 10000 - Solaris

86 CHAPTER 4. NOBLE

0

200

400

600

800

1000

1200

1400

0 5 10 15 20 25 30

E
xe

cu
tio

n
T

im
e

(m
s)

Processors

Single Linked List with High Contention - SGI Irix, 63 Processors

LOCK-FREE VALOIS
LOCK-FREE HARRIS

LOCK-BASED

0

200

400

600

800

1000

1200

0 5 10 15 20 25 30

E
xe

cu
tio

n
T

im
e

(m
s)

Processors

Single Linked List with Low Contention - SGI Irix, 63 Processors

LOCK-FREE VALOIS
LOCK-FREE HARRIS

LOCK-BASED

0

500

1000

1500

2000

2500

0 5 10 15 20 25 30

E
xe

cu
tio

n
T

im
e

(m
s)

Processors

Queue with High Contention - SGI Irix, 63 Processors

LOCK-FREE VALOIS
LOCK-FREE TSIGAS-ZHANG

LOCK-BASED

0

100

200

300

400

500

600

700

800

900

1000

0 5 10 15 20 25 30

E
xe

cu
tio

n
T

im
e

(m
s)

Processors

Queue with Low Contention - SGI Irix, 63 Processors

LOCK-FREE VALOIS
LOCK-FREE TSIGAS-ZHANG

LOCK-BASED

0

200

400

600

800

1000

1200

1400

1600

1800

0 5 10 15 20 25 30

E
xe

cu
tio

n
T

im
e

(m
s)

Processors

Stack with High Contention - SGI Irix, 63 Processors

LOCK-FREE VALOIS
LOCK-BASED

0

100

200

300

400

500

600

700

800

900

0 5 10 15 20 25 30

E
xe

cu
tio

n
T

im
e

(m
s)

Processors

Stack with Low Contention - SGI Irix, 63 Processors

LOCK-FREE VALOIS
LOCK-BASED

0

100

200

300

400

500

600

700

800

0 5 10 15 20 25 30

E
xe

cu
tio

n
T

im
e

(m
s)

Processors

Snapshot with High Contention - SGI Irix, 63 Processors

WAIT-FREE ERMEDAHL ET AL
WAIT-FREE KIROUSIS ET AL
WAIT-FREE SUNDELL ET AL

LOCK-BASED

50

100

150

200

250

300

350

400

450

500

0 5 10 15 20 25 30

E
xe

cu
tio

n
T

im
e

(m
s)

Processors

Snapshot with Low Contention - SGI Irix, 63 Processors

WAIT-FREE ERMEDAHL ET AL
WAIT-FREE KIROUSIS ET AL
WAIT-FREE SUNDELL ET AL

LOCK-BASED

Figure 4.2: Experiments on SGI Origin 2000 - Irix

4.4. EXPERIMENTS 87

0

200

400

600

800

1000

1200

1400

1600

0 5 10 15 20 25 30

E
xe

cu
tio

n
T

im
e

(m
s)

Threads

Stack with High Contention - Win32, 2 Processors

LOCK-FREE VALOIS
LOCK-BASED

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 5 10 15 20 25 30

E
xe

cu
tio

n
T

im
e

(m
s)

Threads

Stack with Low Contention - Win32, 2 Processors

LOCK-FREE VALOIS
LOCK-BASED

0

200

400

600

800

1000

1200

1400

1600

1800

0 5 10 15 20 25 30

E
xe

cu
tio

n
T

im
e

(m
s)

Threads

Queue with High Contention - Win32, 2 Processors

LOCK-FREE VALOIS
LOCK-FREE TSIGAS-ZHANG

LOCK-BASED

0

1000

2000

3000

4000

5000

6000

0 5 10 15 20 25 30

E
xe

cu
tio

n
T

im
e

(m
s)

Threads

Queue with Low Contention - Win32, 2 Processors

LOCK-FREE VALOIS
LOCK-FREE TSIGAS-ZHANG

LOCK-BASED

0

1000

2000

3000

4000

5000

6000

0 5 10 15 20 25 30

E
xe

cu
tio

n
T

im
e

(m
s)

Threads

Single Linked List with High Contention - Win32, 2 Processors

LOCK-FREE VALOIS
LOCK-FREE HARRIS

LOCK-BASED

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 5 10 15 20 25 30

E
xe

cu
tio

n
T

im
e

(m
s)

Threads

Single Linked List with Low Contention - Win32, 2 Processors

LOCK-FREE VALOIS
LOCK-FREE HARRIS

LOCK-BASED

0

200

400

600

800

1000

1200

1400

0 5 10 15 20 25 30

E
xe

cu
tio

n
T

im
e

(m
s)

Threads

Snapshot with High Contention - Win32, 2 Processors

WAIT-FREE ERMEDAHL ET AL
WAIT-FREE KIROUSIS ET AL

LOCK-BASED

0

200

400

600

800

1000

1200

1400

1600

1800

0 5 10 15 20 25 30

E
xe

cu
tio

n
T

im
e

(m
s)

Threads

Snapshot with Low Contention - Win32, 2 Processors

WAIT-FREE ERMEDAHL ET AL
WAIT-FREE KIROUSIS ET AL

LOCK-BASED

Figure 4.3: Experiments on Dual Pentium II - Win32

88 CHAPTER 4. NOBLE

0

500

1000

1500

2000

2500

0 5 10 15 20 25 30

E
xe

cu
tio

n
T

im
e

(m
s)

Threads

Stack with High Contention - Linux, 2 Processors

LOCK-FREE VALOIS
LOCK-BASED

0

500

1000

1500

2000

2500

3000

3500

0 5 10 15 20 25 30

E
xe

cu
tio

n
T

im
e

(m
s)

Threads

Stack with Low Contention - Linux, 2 Processors

LOCK-FREE VALOIS
LOCK-BASED

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 5 10 15 20 25 30

E
xe

cu
tio

n
T

im
e

(m
s)

Threads

Queue with High Contention - Linux, 2 Processors

LOCK-FREE VALOIS
LOCK-FREE TSIGAS-ZHANG

LOCK-BASED

0

500

1000

1500

2000

2500

3000

3500

0 5 10 15 20 25 30

E
xe

cu
tio

n
T

im
e

(m
s)

Threads

Queue with Low Contention - Linux, 2 Processors

LOCK-FREE VALOIS
LOCK-FREE TSIGAS-ZHANG

LOCK-BASED

0

2000

4000

6000

8000

10000

12000

14000

0 5 10 15 20 25 30

E
xe

cu
tio

n
T

im
e

(m
s)

Threads

Single Linked List with High Contention - Linux, 2 Processors

LOCK-FREE VALOIS
LOCK-FREE HARRIS

LOCK-BASED

0

1000

2000

3000

4000

5000

6000

7000

0 5 10 15 20 25 30

E
xe

cu
tio

n
T

im
e

(m
s)

Threads

Single Linked List with Low Contention - Linux, 2 Processors

LOCK-FREE VALOIS
LOCK-FREE HARRIS

LOCK-BASED

0

500

1000

1500

2000

2500

3000

0 5 10 15 20 25 30

E
xe

cu
tio

n
T

im
e

(m
s)

Processors

Snapshot with High Contention - Linux, 2 Processors

WAIT-FREE ERMEDAHL ET AL
WAIT-FREE KIROUSIS ET AL

LOCK-BASED

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 5 10 15 20 25 30

E
xe

cu
tio

n
T

im
e

(m
s)

Processors

Snapshot with Low Contention - Linux, 2 Processors

WAIT-FREE ERMEDAHL ET AL
WAIT-FREE KIROUSIS ET AL

LOCK-BASED

Figure 4.4: Experiments on Dual Pentium II - Linux

4.5. CONCLUSIONS 89

4.5 Conclusions

NOBLE is a library for non-blocking synchronization that includes imple-
mentations of several fundamental and commonly used shared data objects.
The library is easy to use and existing programs can be easily adapted to use
it. The programs using the library, and the library itself, can be easily tuned
to include different synchronization mechanisms for each of the supported
shared data objects. Experiments show that the non-blocking implementa-
tions in NOBLE offer significant improvements in performance, especially
on multi-processor platforms. NOBLE currently supports four platforms,
the architectures of SUN Sparc with Solaris, Intel x86 with Win32, Intel
x86 with Linux and SGI Mips with Irix.

The first versions of NOBLE have just been made available for outside
use and can be used freely for the purpose of research and teaching. It can
be downloaded from http://www.noble-library.org. We hope that NOBLE
will narrow the gap between theoretical research and practical application.

Future work in the NOBLE project includes the extension of the library
with more implementations and new shared data objects, as well as porting
it to platforms more specific for real-time systems.

.

90 CHAPTER 4. NOBLE

Chapter 5

Fast and Lock-Free
Concurrent Priority Queues
for Multi-Thread Systems1

H̊akan Sundell, Philippas Tsigas
Department of Computing Science

Chalmers Univ. of Technol. and Göteborg Univ.
412 96 Göteborg, Sweden

E-mail: {phs, tsigas}@cs.chalmers.se

Abstract

We present an efficient and practical lock-free implementation of a con-
current priority queue that is suitable for both fully concurrent (large multi-
processor) systems as well as pre-emptive (multi-process) systems. Many
algorithms for concurrent priority queues are based on mutual exclusion.
However, mutual exclusion causes blocking which has several drawbacks and
degrades the system’s overall performance. Non-blocking algorithms avoid
blocking, and several implementations have been proposed. Previously known
non-blocking algorithms of priority queues did not perform well in practice

1This is an extended and revised version of the paper with the same title that was pre-
sented at IPDPS 2003 [106] that was awarded with the best paper award in the algorithms
category, and published as a technical report [105].

92 CHAPTER 5. LOCK-FREE PRIORITY QUEUE

because of their complexity, and they are often based on non-available atomic
synchronization primitives. Our algorithm is based on the randomized se-
quential list structure called skip list, and a real-time extension of our al-
gorithm is also described. In our performance evaluation we compare our
algorithm with a well representable set of earlier implementations of priority
queues known. The experimental results clearly show that our lock-free im-
plementation outperforms the other lock-based implementations in practical
scenarios for 3 threads and more, both on fully concurrent as well as on
pre-emptive systems.

5.1 Introduction

Priority queues are fundamental data structures. From the operating sys-
tem level to the user application level, they are frequently used as basic
components. For example, the ready-queue that is used in the scheduling of
tasks in many real-time systems, can usually be implemented using a concur-
rent priority queue. Consequently, the design of efficient implementations
of priority queues is a research area that has been extensively researched. A
priority queue supports two operations, the Insert and the DeleteMin oper-
ation. The abstract definition of a priority queue is a set of key-value pairs,
where the key represents a priority. The Insert operation inserts a new key-
value pair into the set, and the DeleteMin operation removes and returns
the value of the key-value pair with the lowest key (i.e. highest priority)
that was in the set.

To ensure consistency of a shared data object in a concurrent environ-
ment, the most common method is to use mutual exclusion, i.e. some form of
locking. Mutual exclusion degrades the system’s overall performance [100]
as it causes blocking, i.e. other concurrent operations can not make any
progress while the access to the shared resource is blocked by the lock. Us-
ing mutual exclusion can also cause deadlocks, priority inversion (which can
be solved efficiently on uni-processors [95] with the cost of more difficult
analysis, although not as efficient on multiprocessor systems [92]) and even
starvation.

To address these problems, researchers have proposed non-blocking al-
gorithms for shared data objects. Non-blocking methods do not involve mu-
tual exclusion, and therefore do not suffer from the problems that blocking
can cause. Lock-free implementations are non-blocking and guarantee that
regardless of the contention caused by concurrent operations and the inter-
leaving of their sub-operations, always at least one operation will progress.

5.1. INTRODUCTION 93

However, there is a risk for starvation as the progress of other operations
could cause one specific operation to never finish. This is although different
from the type of starvation that could be caused by blocking, where a single
operation could block every other operation forever, and cause starvation of
the whole system. Wait-free [45] algorithms are lock-free and moreover they
avoid starvation as well, in a wait-free algorithm every operation is guaran-
teed to finish in a limited number of steps, regardless of the actions of the
concurrent operations. Recently, researchers also include obstruction-free
[48] implementations to be non-blocking, although this kind of implemen-
tation is weaker than lock-free and thus does not guarantee progress of any
concurrent operation. Non-blocking algorithms have been shown to be of
big practical importance in practical applications [115, 118], and recently
NOBLE, which is a non-blocking inter-process communication library, has
been introduced [104].

There exist several algorithms and implementations of concurrent pri-
ority queues. The majority of the algorithms are lock-based, either with a
single lock on top of a sequential algorithm, or specially constructed algo-
rithms using multiple locks, where each lock protects a small part of the
shared data structure. Several different representations of the shared data
structure are used, for example: Hunt et al. [54] presents an implementa-
tion which is based on heap structures, Grammatikakis et al. [36] compares
different structures including cyclic arrays and heaps, and most recently
Lotan and Shavit [72] presented an implementation based on the skip list
structure [91]. The algorithm by Hunt et al. locks each node separately
and uses a technique to scatter the accesses to the heap, thus reducing the
contention. Its implementation is publicly available and its performance has
been documented on multi-processor systems. Jones [60] also makes use of
multiple locks, but implements a fully dynamic tree structure, and tries to
only lock the part of the tree neccessary at each moment in time. Lotan and
Shavit extend the functionality of the concurrent priority queue and assume
the availability of a global high-accuracy clock. They apply a lock on each
pointer, and as the multi-pointer based skip list structure is used, the num-
ber of locks is significantly more than the number of nodes. Its performance
has previously only been documented by simulation, with very promising
results. The algorithm by Shavit and Zemach [99] is not adressed in this
paper, as they implement a bounded2 priority queue, whereas we adress the
general priority queues.

Israeli and Rappoport have presented a wait-free algorithm for a con-

2The set of possible priorities is restricted.

94 CHAPTER 5. LOCK-FREE PRIORITY QUEUE

current priority queue [55]. This algorithm makes use of strong atomic syn-
chronization primitives that have not been implemented in any currently
existing platform. Greenwald has also presented an outline for a lock-free
priority queue [37] based on atomic primitives that are not available in mod-
ern multiprocessor systems. However, there exists an attempt for a wait-free
algorithm by Barnes [19] that uses existing atomic primitives, though this
algorithm does not comply with the generally accepted definition of the
wait-free property. The algorithm is not yet implemented and the theo-
retical analysis predicts worse behavior than the corresponding sequential
algorithm, which makes it not of practical interest.

One common problem with many algorithms for concurrent priority
queues is the lack of precise defined semantics of the operations. It is also
seldom that the correctness with respect to concurrency is proved, using a
strong property like linearizability [50].

In this paper we present a lock-free algorithm of a concurrent priority
queue that is designed for efficient use in both pre-emptive as well as in fully
concurrent environments. Inspired by Lotan and Shavit [72], the algorithm
is based on the randomized skip list [91] data structure, but in contrast to
[72] it is lock-free. It is also implemented using common synchronization
primitives that are available in modern systems. The algorithm is described
in detail later in this paper, and the aspects concerning the underlying lock-
free memory management are also presented. The precise semantics of the
operations are defined and a proof is given that our implementation is lock-
free and linearizable.

We have performed experiments that compare the performance of our
algorithm with a well representable set of earlier implementations of concur-
rent priority queues known, i.e. the implementation by Lotan and Shavit
[72], the implementation by Hunt et al. [54], and the implementation by
Jones [60]. Experiments were performed on three different platforms, con-
sisting of a multiprocessor system using different operating systems and
equipped with either 2, 6 or 29 processors. Our results show that our al-
gorithm outperforms the other lock-based implementations in practical sce-
narios for 3 threads and more, in both highly pre-emptive as well as in fully
concurrent environments. We also present an extended version of our algo-
rithm that also addresses certain real-time aspects of the priority queue as
introduced by Lotan and Shavit [72].

The rest of the paper is organized as follows. In Section 5.2 we define
the properties of the systems that our implementation is aimed for. The
actual algorithm is described in Section 5.3. In Section 5.4 we define the
precise semantics for the operations on our implementations, as well show-

5.2. SYSTEM DESCRIPTION 95

Local Memory

Processor 1

Local Memory

Processor 2

Local Memory

Processor n

Shared Memory

Interconnection Network

. . .

Figure 5.1: Shared Memory Multiprocessor System Structure

H 1 2 3 4 5 T

Figure 5.2: The skip list data structure with 5 nodes inserted.

ing correctness by proving the lock-free and linearizability property. The
experimental evaluation that shows the performance of our implementation
is presented in Section 5.5. In Section 5.6 we extend our algorithm with
functionality that can be needed for specific real-time applications. In Sec-
tion 5.7 we discuss related work with skip lists that have appeared in the
literature after our first publications. We conclude the paper with Section
5.8.

5.2 System Description

A typical abstraction of a shared memory multi-processor system configura-
tion is depicted in Figure 5.1. Each node of the system contains a processor
together with its local memory. All nodes are connected to the shared mem-
ory via an interconnection network. A set of co-operating tasks is running on
the system performing their respective operations. Each task is sequentially
executed on one of the processors, while each processor can serve (run) many
tasks at a time. The co-operating tasks, possibly running on different pro-
cessors, use shared data objects built in the shared memory to co-ordinate
and communicate. Tasks synchronize their operations on the shared data
objects through sub-operations on top of a cache-coherent shared memory.
The shared memory may not though be uniformly accessible for all nodes
in the system; processors can have different access times on different parts

96 CHAPTER 5. LOCK-FREE PRIORITY QUEUE

structure Node
key,level,validLevel 〈,timeInsert〉 : integer
value : pointer to word
next[level],prev : pointer to Node

Figure 5.3: The Node structure.

1 2 4

3

Inserted node

Deleted node

Figure 5.4: Concurrent insert and delete operation can delete both nodes.

of the memory.

5.3 Algorithm

The algorithm is based on the sequential skip list data structure invented by
Pugh [91]. This structure uses randomization and has a probabilistic time
complexity of O(logN) where N is the maximum number of elements in the
list. The data structure is basically an ordered list with randomly distributed
short-cuts in order to improve search times, see Figure 5.2. The maximum
height (i.e. the maximum number of next pointers) of the data structure is
logN . The height of each inserted node is randomized geometrically in the
way that 50% of the nodes should have height 1, 25% of the nodes should
have height 2 and so on. To use the data structure as a priority queue, the
nodes are ordered in respect of priority (which has to be unique for each
node3), the nodes with highest priority are located first in the list. The
fields of each node item are described in Figure 5.3 as it is used in this
implementation. For all code examples in this paper, code that is between
the “〈” and “〉” symbols are only used for the special real-time4 version of
our implementation that involves timestamps (see Section 5.6), and are thus

3In order to assign several objects the same priority, this limitation can be overcome by
building the priority (key) so that only some bits represent the real priority and remaing
bits are choosen in order to achive uniqueness.

4In the sense that DeleteMin operations can only return items that were fully inserted
before the start of the DeleteMin operation.

5.3. ALGORITHM 97

procedure FAA(address:pointer to word, number:integer)
atomic do

*address := *address + number;

function CAS(address:pointer to word, oldvalue:word,
newvalue:word):boolean

atomic do
if *address = oldvalue then

*address := newvalue;
return true;

else return false;

Figure 5.5: The Fetch-And-Add (FAA) and Compare-And-Swap (CAS)
atomic primitives.

not included in the standard version of the implementation.
In order to make the skip list construction concurrent and non-blocking,

we are using two of the standard atomic synchronization primitives, Fetch-
And-Add (FAA) and Compare-And-Swap (CAS). Figure 5.5 describes the
specification of these primitives which are available in most modern plat-
forms.

As we are concurrently (with possible preemptions) traversing nodes that
will be continuously allocated and reclaimed, we have to consider several as-
pects of memory management. No node should be reclaimed and then later
re-allocated while some other process is traversing this node. This can be
solved for example by careful reference counting. We have selected to use
the lock-free memory management scheme invented by Valois [122] and cor-
rected by Michael and Scott [83]. This was selected because of its simplicity,
completeness with lock-free memory allocation, full reference counting that
guarantees full stability (with no needs for retries from the head node) while
traversing even when exposed to concurrent changes, and that it only makes
use of commonly available atomic synchronization primitives like FAA and
CAS.

To insert or delete a node from the list we have to change the respec-
tive set of next pointers. These have to be changed consistently, but not
necessary all at once. Our solution is to have additional information on
each node about its deletion (or insertion) status. This additional informa-
tion will guide the concurrent processes that might traverse into one partial
deleted or inserted node. When we have changed all necessary next pointers,
the node is fully deleted or inserted.

98 CHAPTER 5. LOCK-FREE PRIORITY QUEUE

One problem, that is general for non-blocking implementations that are
based on the linked-list structure, arises when inserting a new node into
the list. Because of the linked-list structure one has to make sure that
the previous node is not about to be deleted. If we are changing the next
pointer of this previous node atomically with CAS, to point to the new
node, and then immediately afterwards the previous node is deleted - then
the new node will be deleted as well, as illustrated in Figure 5.4. There
are several solutions to this problem. One solution is to use the CAS2
operation as it can change two pointers atomically, but this operation is not
available in any modern multi-processor system. A second solution is to
insert auxiliary nodes [122] between each two normal nodes, and the latest
method introduced by Harris [44] is to use one bit of the pointer values as
a deletion mark. On most modern 32-bit systems, 32-bit values can only be
located at addresses that are evenly dividable by 4, therefore bits 0 and 1 of
the address are always set to zero. The method is then to use the previously
unused bit 0 of the next pointer to mark that this node is about to be
deleted, using CAS. Any concurrent Insert operation will then be notified
about the deletion, when its CAS operation will fail.

One memory management issue is how to de-reference pointers safely. If
we simply de-reference the pointer, it might be that the corresponding node
has been reclaimed before we could access it. It can also be that bit 0 of the
pointer was set, thus marking that the node is deleted, and therefore the
pointer is not valid. The following functions are defined for safe handling of
the memory management:

function READ NODE(address:pointer to pointer to Node):pointer
to Node /* De-reference the pointer and increase the reference counter for
the corresponding node. In case the pointer is marked, NULL is returned
*/

function COPY NODE(node:pointer to Node):pointer to Node /*
Increase the reference counter for the corresponding given node */

procedure RELEASE NODE(node:pointer to Node) /* Decrement
the reference counter on the corresponding given node. If the reference
count reaches zero, then call RELEASE NODE on the nodes that this node
has owned pointers to, then reclaim the node */

While traversing the nodes, processes will eventually reach nodes that
are marked to be deleted. As the process that invoked the corresponding
DeleteMin operation might be pre-empted, this DeleteMin operation has to
be helped to finish before the traversing process can continue. However, it

5.3. ALGORITHM 99

// Global variables
head,tail : pointer to Node
// Local variables
node2 : pointer to Node

function ReadNext(node1:pointer to pointer to Node,
level:integer):pointer to Node

R1 if IS MARKED((*node1).value) then
R2 *node1:=HelpDelete(*node1,level);
R3 node2:=READ NODE((*node1).next[level]);
R4 while node2=NULL do
R5 *node1:=HelpDelete(*node1,level);
R6 node2:=READ NODE((*node1).next[level]);
R7 return node2;

function ScanKey(node1:pointer to pointer to Node,
level:integer, key:integer):pointer to Node

S1 node2:=ReadNext(node1,level);
S2 while node2.key < key do
S3 RELEASE NODE(*node1);
S4 *node1:=node2;
S5 node2:=ReadNext(node1,level);
S6 return node2;

Figure 5.6: Functions for traversing the nodes in the skip list data structure.

is only necessary to help the part of the DeleteMin operation on the current
level in order to be able to traverse to the next node. The function ReadNext,
see Figure 5.6, traverses to the next node of node1 on the given level while
helping (and then sets node1 to the previous node of the helped one) any
marked nodes in between to finish the deletion. The function ScanKey, see
Figure 5.6, traverses in several steps through the next pointers (starting
from node1) at the current level until it finds a node that has the same or
higher key (priority) value than the given key. It also sets node1 to be the
previous node of the returned node.

The implementation of the Insert operation, see Figure 5.7, starts in
lines I2-I4 with creating the new node (newNode) and choosing its height
(level) by calling the randomLevel function. This function roughly simulates
a repeated coin tossing, counting the number of times (up to the maximum
level) the upper (or lower if that was choosen) side of the coin turns up
from the start of the function, thus giving the distribution associated with

100 CHAPTER 5. LOCK-FREE PRIORITY QUEUE

// Local variables
node1,node2,newNode,savedNodes[maxlevel]: pointer to Node

function Insert(key:integer, value:pointer to word):boolean
I1 〈TraverseTimeStamps();〉
I2 level:=randomLevel();
I3 newNode:=CreateNode(level,key,value);
I4 COPY NODE(newNode);
I5 node1:=COPY NODE(head);
I6 for i:=maxLevel-1 to 1 step -1 do
I7 node2:=ScanKey(&node1,i,key);
I8 RELEASE NODE(node2);
I9 if i<level then savedNodes[i]:=COPY NODE(node1);
I10 while true do
I11 node2:=ScanKey(&node1,0,key);
I12 value2:=node2.value;
I13 if not IS MARKED(value2) and node2.key=key then
I14 if CAS(&node2.value,value2,value) then
I15 RELEASE NODE(node1);
I16 RELEASE NODE(node2);
I17 for i:=1 to level-1 do
I18 RELEASE NODE(savedNodes[i]);
I19 RELEASE NODE(newNode);
I20 RELEASE NODE(newNode);
I21 return true2;
I22 else
I23 RELEASE NODE(node2);
I24 continue;
I25 newNode.next[0]:=node2;
I26 RELEASE NODE(node2);
I27 if CAS(&node1.next[0],node2,newNode) then
I28 RELEASE NODE(node1);
I29 break;
I30 Back-Off
I31 for i:=1 to level-1 do
I32 newNode.validLevel:=i;
I33 node1:=savedNodes[i];
I34 while true do
I35 node2:=ScanKey(&node1,i,key);
I36 newNode.next[i]:=node2;
I37 RELEASE NODE(node2);
I38 if IS MARKED(newNode.value) or CAS(&node1.next[i],node2,newNode) then
I39 RELEASE NODE(node1);
I40 break;
I41 Back-Off
I42 newNode.validLevel:=level;
I43 〈newNode.timeInsert:=getNextTimeStamp();〉
I44 if IS MARKED(newNode.value) then newNode:=HelpDelete(newNode,0);
I45 RELEASE NODE(newNode);
I46 return true;

Figure 5.7: The algorithm for the Insert operation.

5.3. ALGORITHM 101

// Local variables
prev,last,node1,node2 : pointer to Node

function DeleteMin():pointer to Node
D1 〈TraverseTimeStamps();〉
D2 〈time:=getNextTimeStamp();〉
D3 prev:=COPY NODE(head);
D4 while true do
D5 node1:=ReadNext(&prev,0);
D6 if node1=tail then
D7 RELEASE NODE(prev);
D8 RELEASE NODE(node1);
D9 return NULL;

retry:
D10 value:=node1.value;
D11 if node1 �= prev.next[0] then
D12 RELEASE NODE(node1);
D13 continue;
D14 if not IS MARKED(value) 〈and compareTimeStamp(time,

node1.timeInsert)>0 〉 then
D15 if CAS(&node1.value,value,GET MARKED(value)) then
D16 node1.prev:=prev;
D17 break;
D18 else goto retry;
D19 else if IS MARKED(value) then
D20 node1:=HelpDelete(node1,0);
D21 RELEASE NODE(prev);
D22 prev:=node1;
D23 for i:=0 to node1.level-1 do
D24 repeat
D25 node2:=node1.next[i];
D26 until IS MARKED(node2) or CAS(&node1.next[i],node2,

GET MARKED(node2));
D27 prev:=COPY NODE(head);
D28 for i:=node1.level-1 to 0 step -1 do
D29 RemoveNode(node1,&prev,i);
D30 RELEASE NODE(prev);
D31 RELEASE NODE(node1);
D32 RELEASE NODE(node1); /* Delete the node */
D33 return value;

Figure 5.8: The algorithm for the DeleteMin operation.

102 CHAPTER 5. LOCK-FREE PRIORITY QUEUE

// Local variables
last: pointer to Node

procedure RemoveNode(node: pointer to Node,
prev: pointer to pointer to Node, level:integer)

RN1 while true do
RN2 if node.next[level]=1 then break;
RN3 last:=ScanKey(prev,level,node.key);
RN4 RELEASE NODE(last);
RN5 if last�=node or node.next[level]=1 then break;
RN6 if CAS(&(*prev).next[level],node,

GET UNMARKED(node.next[level])) then
RN7 node.next[level]:=1;
RN8 break;
RN9 if node.next[level]=1 then break;
RN10 Back-Off

Figure 5.9: The algorithm for the RemoveNode function.

the skip list [91]. In lines I5-I11 the implementation continues with a search
phase to find the node after which newNode should be inserted. This search
phase starts from the head node at the highest level and traverses down to
the lowest level until the correct node is found (node1). When going down
one level, the last node traversed on that level is remembered (savedNodes)
for later use (this is where we should insert the new node at that level).
Now it is possible that there already exists a node with the same priority
as of the new node, this is checked in lines I12-I24, the value of the old
node (node2) is changed atomically with a CAS. Otherwise, in lines I25-I42
it starts trying to insert the new node starting with the lowest level and
increasing up to the level of the new node. The next pointers of the nodes
(to become previous) are changed atomically with a CAS. After the new
node has been inserted at the lowest level, it is possible that it is deleted by
a concurrent DeleteMin operation before it has been inserted at all levels,
and this is checked in lines I38 and I44.

The RemoveNode procedure, see Figure 5.9, removes the given node from
the linked list structure at the given level, using a given hint prev for the
previous node. It first searches for the right position of the previous node
according to the key of node in line RN3. It verifies in line RN5 that node
is still part of the linked list structure at the present level. In line RN6 it
tries to remove node by changing the next pointer of the previous node using

5.3. ALGORITHM 103

// Local variables
prev,last,node2 : pointer to Node

function HelpDelete(node:pointer to Node, level:integer):pointer to Node
H1 for i:=level to node.level-1 do
H2 repeat
H3 node2:=node.next[i];
H4 until IS MARKED(node2) or CAS(&node.next[i],node2,

GET MARKED(node2));
H5 prev:=node.prev;
H6 if not prev or level≥prev.validLevel then
H7 prev:=COPY NODE(head);
H8 for i:=maxLevel-1 to level step -1 do
H9 node2:=ScanKey(&prev,i,node.key);
H10 RELEASE NODE(node2);
H11 else COPY NODE(prev);
H12 RemoveNode(node,&prev,level);
H13 RELEASE NODE(node);
H14 return prev;

Figure 5.10: The algorithm for the HelpDelete function.

the CAS sub-operation. If the CAS failed, possibly because of concurrent
changes to the prev node, the whole procedure retries. As this procedure
can be invoced concurrently on the same node argument, it synchronizes
with the possibly other invocations in lines RN2, RN5, RN7 and RN9 in
order to avoid executing sub-operations that have already been performed.

The DeleteMin operation, see Figure 5.8, starts from the head node and
finds the first node (node1) in the list that does not have its deletion mark on
the value set, see lines D3-D15. It tries to set this deletion mark in line D15
using the CAS primitive, and if it succeeds it also writes a valid pointer to
the prev field of the node. This prev field is necessary in order to increase the
performance of concurrent HelpDelete functions, these operations otherwise
would have to search for the previous node in order to complete the deletion.
The next step is to mark the deletion bits of the next pointers in the node,
starting with the lowest level and going upwards, using the CAS primitive in
each step, see lines D23-D26. Afterwards in lines D27-D29 it starts the actual
deletion by calling the RemoveNode procedure, starting at the highest level
and continuing downwards. The reason for doing the deletion in decreasing
order of levels, is that concurrent search operations also start at the highest
level and proceed downwards, in this way the concurrent search operations

104 CHAPTER 5. LOCK-FREE PRIORITY QUEUE

will sooner avoid traversing this node.
The algorithm has been designed for pre-emptive as well as fully con-

current systems. In order to achieve the lock-free property (that at least
one thread is doing progress) on pre-emptive systems, whenever a search
operation finds a node that is about to be deleted, it calls the HelpDelete
function and then proceeds searching from the previous node of the deleted.
The HelpDelete function, see Figure 5.10, tries to fulfill the deletion on the
current level and returns a reference to the previous node when the deletion
is completed. It starts in lines H1-H4 with setting the deletion mark on all
next pointers in case they have not been set. In lines H5-H6 it checks if
the node given in the prev field is valid for deletion on the current level,
otherwise it searches for the correct previous node (prev) in lines H7-H10.
The actual deletion of this node on the current level takes place in line H12
by calling the RemoveNode procedure.

In fully concurrent systems though, the helping strategy can downgrade
the performance significantly. Therefore the algorithm, after a number of
consecutive failed attempts to help concurrent DeleteMin operations that
hinders the progress of the current operation, puts the operation into back-
off mode. When in back-off mode, the thread does nothing for a while, and
in this way avoids disturbing the concurrent operations that might otherwise
progress slower. The duration of the back-off is proportional to the number
of threads, and for each consecutive entering of back-off mode during one
operation invocation, the duration is increased exponentially.

5.4 Correctness

In this section we present the proofs of correctness for our algorithm. We
first prove that our algorithm is a linearizable one [50] and then we prove
that it is lock-free. A set of definitions that will help us to structure and
shorten the proof is first explained in this section. We start by defining the
sequential semantics of our operations and then introduce two definitions
concerning concurrency aspects in general.

Definition 1 We denote with Lt the abstract internal state of a priority
queue at the time t. Lt is viewed as a set of pairs 〈p, v〉 consisting of a unique
priority p and a corresponding value v. The operations that can be performed
on the priority queue are Insert (I) and DeleteMin (DM). The time t1 is
defined as the time just before the atomic execution of the operation that we
are looking at, and the time t2 is defined as the time just after the atomic
execution of the same operation. The return value of true2 is returned by

5.4. CORRECTNESS 105

an Insert operation that has succeeded to update an existing node, the return
value of true is returned by an Insert operation that succeeds to insert a new
node. In the following expressions that defines the sequential semantics of
our operations, the syntax is S1 : O1, S2, where S1 is the conditional state
before the operation O1, and S2 is the resulting state after performing the
corresponding operation:

〈p1, 〉 �∈ Lt1 : I1(〈p1,v1〉) = true,

Lt2 = Lt1 ∪ {〈p1,v1〉} (5.1)

〈p1, v11〉 ∈ Lt1 : I1(〈p1,v12〉) = true2,

Lt2 = Lt1 \ {〈p1,v11〉} ∪ {〈p1,v12〉} (5.2)

〈p1, v1〉 = {〈min p, v〉|〈p, v〉 ∈ Lt1}
: DM1() = 〈p1,v1〉, Lt2 = Lt1 \ {〈p1,v1〉} (5.3)

Lt1 = ∅ : DM1() = ⊥ (5.4)

Definition 2 In a global time model each concurrent operation Op “occu-
pies” a time interval [bOp, fOp] on the linear time axis (bOp < fOp). The
precedence relation (denoted by ‘→’) is a relation that relates operations of
a possible execution, Op1 → Op2 means that Op1 ends before Op2 starts.
The precedence relation is a strict partial order. Operations incomparable
under → are called overlapping. The overlapping relation is denoted by ‖
and is commutative, i.e. Op1 ‖ Op2 and Op2 ‖ Op1. The precedence re-
lation is extended to relate sub-operations of operations. Consequently, if
Op1 → Op2, then for any sub-operations op1 and op2 of Op1 and Op2, re-
spectively, it holds that op1 → op2. We also define the direct precedence
relation →d, such that if Op1→dOp2, then Op1 → Op2 and moreover there
exists no operation Op3 such that Op1 → Op3 → Op2.

Definition 3 In order for an implementation of a shared concurrent data
object to be linearizable [50], for every concurrent execution there should exist
an equivalent (in the sense of the effect) and valid (i.e. it should respect the
semantics of the shared data object) sequential execution that respects the
partial order of the operations in the concurrent execution.

Next we are going to study the possible concurrent executions of our
implementation. First we need to define the interpretation of the abstract
internal state of our implementation.

106 CHAPTER 5. LOCK-FREE PRIORITY QUEUE

Definition 4 The pair 〈p, v〉 is present (〈p, v〉 ∈ L) in the abstract internal
state L of our implementation, when there is a next pointer from a present
node on the lowest level of the skip list that points to a node that contains
the pair 〈p, v〉, and this node is not marked as deleted with the mark on the
value.

Lemma 2 The definition of the abstract internal state for our implementa-
tion is consistent with all concurrent operations examining the state of the
priority queue.

Proof: As the next and value pointers are changed using the CAS operation,
we are sure that all threads see the same state of the skip list, and therefore
all changes of the abstract internal state seems to be atomic. �

Definition 5 The decision point of an operation is defined as the atomic
statement where the result of the operation is finitely decided, i.e. indepen-
dent of the result of any sub-operations after the decision point, the operation
will have the same result. We define the verification point of an operation to
be the atomic statement where a sub-state of the priority queue is read, and
this sub-state is verified to have certain properties before the passing of the
decision point. We also define the state-change point as the atomic state-
ment where the operation changes the abstract internal state of the priority
queue after it has passed the corresponding decision point.

We will now use these points in order to show the existence and location
in execution history of a point where the concurrent operation can be viewed
as it occured atomically, i.e. the linearizability point.

Lemma 3 An Insert operation which succeeds (I(〈p, v〉) = true), takes ef-
fect atomically at one statement.

Proof: The decision point for an Insert operation which succeeds (I(〈p, v〉) =
true), is when the CAS sub-operation in line I27 (see Figure 5.7) succeeds,
all following CAS sub-operations will eventually succeed, and the Insert op-
eration will finally return true. The state of the list (Lt1) directly before the
passing of the decision point must have been 〈p, 〉 �∈ Lt1 , otherwise the CAS
would have failed. The state of the list directly after passing the decision
point will be 〈p, v〉 ∈ Lt2 . Consequently, the linearizability point will be the
CAS sub-operation in line I27. �

5.4. CORRECTNESS 107

Lemma 4 An Insert operation which updates (I(〈p, v〉) = true2), takes ef-
fect atomically at one statement.

Proof: The decision point for an Insert operation which updates (I(〈p, v〉) =
true2), is when the CAS will succeed in line I14. The state of the list (Lt1)
directly before passing the decision point must have been 〈p, 〉 ∈ Lt1 , other-
wise the CAS would have failed. The state of the list directly after passing
the decision point will be 〈p, v〉 ∈ Lt2 . Consequently, the linearizability point
will be the CAS sub-operation in line I14. �

Lemma 5 A DeleteMin operations which fails (DM() = ⊥), takes effect
atomically at one statement.

Proof: The decision point for an DeleteMin operations which fails (DM() =
⊥), is when the hidden read sub-operation of the ReadNext sub-operation
in line D5 successfully reads the next pointer on lowest level that equals the
tail node. The state of the list (Lt) directly before the passing of the decision
point must have been Lt = ∅. Consequently, the linearizability point will be
the hidden read sub-operation of the next pointer in line D5. �

Lemma 6 A DeleteMin operation which succeeds (DM() = 〈p1, v1〉 where
〈p1, v1〉 = {〈min p, v〉|〈p, v〉 ∈ Lt1}), takes effect atomically at one statement.

Proof: The decision point for an DeleteMin operation which succeeds is
when the CAS sub-operation in line D15 (see Figure 5.8) succeeds. The
state of the list (Lt) directly before passing of the decision point must have
been 〈p1, v1〉 ∈ Lt3 , otherwise the CAS would have failed. The state of the
list directly after passing the CAS sub-opertion in line D15 (i.e. the state-
change point) will be 〈p, 〉 �∈ Lt4 . The state of the list at the time of the
read sub-operation of the next pointer in D11 (i.e. the verification point)
must have been 〈p1, v1〉 = {〈min p, v〉|〈p, v〉 ∈ Lt1}. Unfortunately this does
not completely match the semantic definition of the operation.

However, none of the other concurrent operations linearizability points
is dependent on the to-be-deleted node’s state as marked or not marked dur-
ing the time interval from the verification point to the state-change point.
Clearly, the linearizability points of Lemma 3 is independent during this time
interval, as the to-be-deleted node must be different from the correspond-
ing 〈p, v〉 term, as Lemma 3 views the to-be-deleted node as present during

108 CHAPTER 5. LOCK-FREE PRIORITY QUEUE

the time interval. The linearizability point of Lemma 4 is independent dur-
ing the time interval, as the to-be-deleted node must be different from the
corresponding 〈p, v〉 term, otherwise the CAS sub-operation in line D15 of
this operation would have failed. The linearizability point of Lemma 5 is
independent, as that linearizability point depends on the head node’s next
pointer pointing to the tail node or not. Finally, the linearizability point
of this lemma is independent, as the to-be-deleted node would be different
from the corresponding 〈p1, v1〉 term, otherwise the CAS sub-operation in
line D15 of this operation invocation would have failed.

Therefore all together, we could safely interpret the to-be-deleted node
to be not present already directly after passing the verification point (〈p, 〉 �∈
Lt2). Consequently, the linearizability point will be the read sub-operation
of the next pointer in line D11. �

Definition 6 We define the relation ⇒ as the total order and the relation
⇒d as the direct total order between all operations in the concurrent execu-
tion. In the following formulas, E1 =⇒ E2 means that if E1 holds then E2

holds as well, and ⊕ stands for exclusive or (i.e. a⊕b means (a∨b)∧¬(a∧b)):

Op1 →d Op2, � ∃Op3.Op1 ⇒d Op3,

� ∃Op4.Op4 ⇒d Op2 =⇒ Op1 ⇒d Op2 (5.5)

Op1 ‖ Op2 =⇒ Op1 ⇒d Op2 ⊕ Op2 ⇒d Op1 (5.6)

Op1 ⇒d Op2 =⇒ Op1 ⇒ Op2 (5.7)

Op1 ⇒ Op2,Op2 ⇒ Op3 =⇒ Op1 ⇒ Op3 (5.8)

Lemma 7 The operations that are directly totally ordered using formula
5.5, form an equivalent valid sequential execution.

Proof: If the operations are assigned their direct total order (Op1 ⇒d Op2)
by formula 5.5 then also the linearizability points of Op1 are executed before
the respective points of Op2. In this case the operations semantics behave
the same as in the sequential case, and therefore all possible executions will
then be equivalent to one of the possible sequential executions. �

Lemma 8 The operations that are directly totally ordered using formula 5.6
can be ordered unique and consistent, and form an equivalent valid sequential
execution.

5.4. CORRECTNESS 109

Proof: Assume we order the overlapping operations according to their lin-
earizability points. As the state before as well as after the linearizability
points is identical to the corresponding state defined in the semantics of the
respective sequential operations in formulas 5.1 to 5.4, we can view the oper-
ations as occurring at the linearizability point. As the linearizability points
consist of atomic operations and are therefore ordered in time, no lineariz-
ability point can occur at the very same time as any other linearizability
point, therefore giving a unique and consistent ordering of the overlapping
operations. �

Lemma 9 With respect to the retries caused by synchronization, one opera-
tion will always do progress regardless of the actions by the other concurrent
operations.

Proof: We now examine the possible execution paths of our implemen-
tation. There are several potentially unbounded loops that can delay the
termination of the operations. We call these loops retry-loops. If we omit
the conditions that are because of the operations semantics (i.e. searching
for the correct position etc.), the retry-loops take place when sub-operations
detect that a shared variable has changed value. This is detected either by
a subsequent read sub-operation or a failed CAS. These shared variables are
only changed concurrently by other CAS sub-operations. According to the
definition of CAS, for any number of concurrent CAS sub-operations, ex-
actly one will succeed. This means that for any subsequent retry, there must
be one CAS that succeeded. As this succeeding CAS will cause its retry loop
to exit, and our implementation does not contain any cyclic dependencies
between retry-loops that exit with CAS, this means that the corresponding
Insert or DeleteMin operation will progress. Consequently, independent of
any number of concurrent operations, one operation will always progress. �

Theorem 2 The algorithm implements a lock-free and linearizable priority
queue.

Proof: Following from Lemmas 7 and 8 and using the direct total order
we can create an identical (with the same semantics) sequential execution
that preserves the partial order of the operations in a concurrent execution.
Following from Definition 3, the implementation is therefore linearizable.
As the semantics of the operations are basically the same as in the skip list
[91], we could use the corresponding proof of termination. This together

110 CHAPTER 5. LOCK-FREE PRIORITY QUEUE

with Lemma 9 and that the state is only changed at one atomic statement
(Lemmas 2,3,4,6,5), gives that our implementation is lock-free. �

5.5 Experiments

We have performed experiments using 1 up to 28 threads on three different
platforms, each with different levels of real concurrency, architecture and
operating system. Besides our implementation, we also performed the same
experiments with four lock-based implementations. These are; 1) a single-
lock protected skip list, 2) the implementation using multiple locks and
skip lists by Lotan and Shavit [72], 3) the heap-based implementation using
multiple locks by Hunt et al. [54], and 4) the tree-based implementation
by Jones [60]. As Lotan and Shavit implements the real-time properties as
presented in Section 5.6 but Hunt et al. does not, we used both the ordinary
as well the real-time version of our implementation.

The key values of the inserted nodes are randomly chosen between 0 and
1000000 ∗n, where n is the number of threads. Each experiment is repeated
50 times, and an average execution time for each experiment is estimated.
Exactly the same sequential operations are performed for all different imple-
mentations compared. A clean-cache operation is performed just before each
sub-experiment. All implementations are written in C and compiled with
the highest optimization level, except from the atomic primitives, which are
written in assembler.

5.5.1 Low or Medium Concurrency

To get a highly pre-emptive environment, we performed our experiments on
a Compaq dual-processor Pentium II 450 MHz PC running Linux. A set
of experiments was also performed on a Sun Ultra 880 with 6 processors
running Solaris 9. In our experiments each concurrent thread performs
10000 sequential operations, randomly chosen with a distribution of 50%
Insert operations versus 50% DeleteMin operations. The dictionaries are
initialized with 100 or 1000 nodes before the start of the experiments. The
implementation by Jones uses system semaphores for the mutual exclusion.
All other lock-based implementations were evaluated using simple spin-locks
(based on the TAS atomic primitive), and as well using system semaphores.
The results from these experiments are shown in Figures 5.11 and 5.12 for the
spinlock-based implementations and in Figures 5.13 5.14 for the semaphore-
based, both together with the new lock-free implementation. The average

5.5. EXPERIMENTS 111

 0

 200

 400

 600

 800

 1000

 0 5 10 15 20 25 30

E
xe

cu
tio

n
T

im
e

(m
s)

Threads

Priority Queue with average 100 nodes - Linux, 2 Processors

LOTAN-SHAVIT
HUNT ET AL

SINGLE-LOCK SKIPLIST
NEW ALGORITHM (REAL-TIME)

NEW ALGORITHM

 0

 500

 1000

 1500

 2000

 0 5 10 15 20 25 30

E
xe

cu
tio

n
T

im
e

(m
s)

Threads

Priority Queue with average 100 nodes - Sun, 6 Processors

LOTAN-SHAVIT
HUNT ET AL

SINGLE-LOCK SKIPLIST
NEW ALGORITHM (REAL-TIME)

NEW ALGORITHM

Figure 5.11: Experiment with priority queues and high contention, with
initial 100 nodes, using spinlocks for mutual exclusion.

112 CHAPTER 5. LOCK-FREE PRIORITY QUEUE

 0

 200

 400

 600

 800

 1000

 0 5 10 15 20 25 30

E
xe

cu
tio

n
T

im
e

(m
s)

Threads

Priority Queue with average 1000 nodes - Linux, 2 Processors

LOTAN-SHAVIT
HUNT ET AL

SINGLE-LOCK SKIPLIST
NEW ALGORITHM (REAL-TIME)

NEW ALGORITHM

 0

 500

 1000

 1500

 2000

 0 5 10 15 20 25 30

E
xe

cu
tio

n
T

im
e

(m
s)

Threads

Priority Queue with average 1000 nodes - Sun, 6 Processors

LOTAN-SHAVIT
HUNT ET AL

SINGLE-LOCK SKIPLIST
NEW ALGORITHM (REAL-TIME)

NEW ALGORITHM

Figure 5.12: Experiment with priority queues and high contention, with
initial 1000 nodes, using spinlocks for mutual exclusion.

5.5. EXPERIMENTS 113

 0

 200

 400

 600

 800

 1000

 0 5 10 15 20 25 30

E
xe

cu
tio

n
T

im
e

(m
s)

Threads

Priority Queue with average 100 nodes - Linux, 2 Processors

HUNT ET AL - SEM
LOTAN-SHAVIT - SEM

SINGLE-LOCK SKIPLIST - SEM
JONES - SEM

NEW ALGORITHM (REAL-TIME)
NEW ALGORITHM

 0

 500

 1000

 1500

 2000

 0 5 10 15 20 25 30

E
xe

cu
tio

n
T

im
e

(m
s)

Threads

Priority Queue with average 100 nodes - Sun, 6 Processors

HUNT ET AL - SEM
LOTAN-SHAVIT - SEM

JONES - SEM
SINGLE-LOCK SKIPLIST - SEM

NEW ALGORITHM (REAL-TIME)
NEW ALGORITHM

Figure 5.13: Experiment with priority queues and high contention, with
initial 100 nodes, using semaphores for mutual exclusion.

114 CHAPTER 5. LOCK-FREE PRIORITY QUEUE

 0

 200

 400

 600

 800

 1000

 0 5 10 15 20 25 30

E
xe

cu
tio

n
T

im
e

(m
s)

Threads

Priority Queue with average 1000 nodes - Linux, 2 Processors

HUNT ET AL - SEM
LOTAN-SHAVIT - SEM

SINGLE-LOCK SKIPLIST - SEM
JONES - SEM

NEW ALGORITHM (REAL-TIME)
NEW ALGORITHM

 0

 500

 1000

 1500

 2000

 0 5 10 15 20 25 30

E
xe

cu
tio

n
T

im
e

(m
s)

Threads

Priority Queue with average 1000 nodes - Sun, 6 Processors

HUNT ET AL - SEM
LOTAN-SHAVIT - SEM

JONES - SEM
SINGLE-LOCK SKIPLIST - SEM

NEW ALGORITHM (REAL-TIME)
NEW ALGORITHM

Figure 5.14: Experiment with priority queues and high contention, with
initial 1000 nodes, using semaphores for mutual exclusion.

5.5. EXPERIMENTS 115

 0

 200

 400

 600

 800

 1000

 0 5 10 15 20 25 30

E
xe

cu
tio

n
T

im
e

(m
s)

Threads

Priority Queue with average 100 nodes - SGI Mips, 29 Processors

LOTAN-SHAVIT
JONES - SEM

HUNT ET AL
SINGLE-LOCK SKIPLIST

NEW ALGORITHM (REAL-TIME)
NEW ALGORITHM

 0

 200

 400

 600

 800

 1000

 0 5 10 15 20 25 30

E
xe

cu
tio

n
T

im
e

(m
s)

Threads

Priority Queue with average 1000 nodes - SGI Mips, 29 Processors

LOTAN-SHAVIT
JONES - SEM

HUNT ET AL
SINGLE-LOCK SKIPLIST

NEW ALGORITHM (REAL-TIME)
NEW ALGORITHM

Figure 5.15: Experiment with priority queues and high contention, with
initial 100 or 1000 nodes

116 CHAPTER 5. LOCK-FREE PRIORITY QUEUE

 0

 100

 200

 300

 400

 500

 600

 0 5 10 15 20 25 30

E
xe

cu
tio

n
T

im
e

(m
s)

Threads

New algorithm (Real-Time) with average 100-10000 nodes
 - SGI Mips, 29 Processors

10000
5000
2000
1000

500
200
100

 0

 100

 200

 300

 400

 500

 600

 0 5 10 15 20 25 30

E
xe

cu
tio

n
T

im
e

(m
s)

Threads

New algorithm with average 100-10000 nodes
 - SGI Mips, 29 Processors

10000
5000
2000
1000

500
200
100

Figure 5.16: Experiment with priority queues and high contention, running
with average 100-10000 nodes

5.5. EXPERIMENTS 117

 0

 200

 400

 600

 800

 1000

 0 5 10 15 20 25 30

E
xe

cu
tio

n
T

im
e

(m
s)

Threads

Priority Queue with 10% inserts - SGI Mips, 29 Processors

LOTAN-SHAVIT
HUNT ET AL

SINGLE-LOCK SKIPLIST
NEW ALGORITHM (REAL-TIME)

NEW ALGORITHM

 0

 200

 400

 600

 800

 1000

 0 5 10 15 20 25 30

E
xe

cu
tio

n
T

im
e

(m
s)

Threads

Priority Queue with 20% inserts - SGI Mips, 29 Processors

LOTAN-SHAVIT
HUNT ET AL

SINGLE-LOCK SKIPLIST
NEW ALGORITHM (REAL-TIME)

NEW ALGORITHM

 0

 200

 400

 600

 800

 1000

 0 5 10 15 20 25 30

E
xe

cu
tio

n
T

im
e

(m
s)

Threads

Priority Queue with 30% inserts - SGI Mips, 29 Processors

LOTAN-SHAVIT
HUNT ET AL

SINGLE-LOCK SKIPLIST
NEW ALGORITHM (REAL-TIME)

NEW ALGORITHM

Figure 5.17: Experiment with priority queues and high contention, varying
percentage of insert operations, with initial 1000 (for 10-40 %) or 0 (for
60-90 %) nodes. Part 1(3).

118 CHAPTER 5. LOCK-FREE PRIORITY QUEUE

 0

 200

 400

 600

 800

 1000

 0 5 10 15 20 25 30

E
xe

cu
tio

n
T

im
e

(m
s)

Threads

Priority Queue with 40% inserts - SGI Mips, 29 Processors

LOTAN-SHAVIT
HUNT ET AL

SINGLE-LOCK SKIPLIST
NEW ALGORITHM (REAL-TIME)

NEW ALGORITHM

 0

 200

 400

 600

 800

 1000

 0 5 10 15 20 25 30

E
xe

cu
tio

n
T

im
e

(m
s)

Threads

Priority Queue with 60% inserts - SGI Mips, 29 Processors

LOTAN-SHAVIT
HUNT ET AL

SINGLE-LOCK SKIPLIST
NEW ALGORITHM (REAL-TIME)

NEW ALGORITHM

 0

 200

 400

 600

 800

 1000

 0 5 10 15 20 25 30

E
xe

cu
tio

n
T

im
e

(m
s)

Threads

Priority Queue with 70% inserts - SGI Mips, 29 Processors

LOTAN-SHAVIT
HUNT ET AL

SINGLE-LOCK SKIPLIST
NEW ALGORITHM (REAL-TIME)

NEW ALGORITHM

Figure 5.18: Experiment with priority queues and high contention, varying
percentage of insert operations, with initial 1000 (for 10-40 %) or 0 (for
60-90 %) nodes. Part 2(3).

5.5. EXPERIMENTS 119

 0

 200

 400

 600

 800

 1000

 0 5 10 15 20 25 30

E
xe

cu
tio

n
T

im
e

(m
s)

Threads

Priority Queue with 80% inserts - SGI Mips, 29 Processors

LOTAN-SHAVIT
HUNT ET AL

SINGLE-LOCK SKIPLIST
NEW ALGORITHM (REAL-TIME)

NEW ALGORITHM

 0

 200

 400

 600

 800

 1000

 0 5 10 15 20 25 30

E
xe

cu
tio

n
T

im
e

(m
s)

Threads

Priority Queue with 90% inserts - SGI Mips, 29 Processors

LOTAN-SHAVIT
HUNT ET AL

SINGLE-LOCK SKIPLIST
NEW ALGORITHM (REAL-TIME)

NEW ALGORITHM

Figure 5.19: Experiment with priority queues and high contention, varying
percentage of insert operations, with initial 1000 (for 10-40 %) or 0 (for
60-90 %) nodes. Part 3(3).

120 CHAPTER 5. LOCK-FREE PRIORITY QUEUE

execution time is drawn as a function of the number of threads.

5.5.2 Full concurrency

In order to evaluate our algorithm with full concurrency we also used a SGI
Origin 2000 250 MHz system running Irix 6.5 with 29 processors. With the
exception for the implementation by Jones which can only use semaphores,
all lock-based implementations were only evaluated using simple spin-locks,
as those are always more efficient than semaphores on fully concurrent sys-
tems. In the first experiments each concurrent thread performs 10000 se-
quential operations, randomly chosen with a distribution of 50% Insert op-
erations versus 50% DeleteMin operations, operating on dictionaries that
are initialized with 100 or 1000 nodes. For the two implementations of our
algorithm we also ran experiments, where the dictionaries were initialized
with 100, 200, 500, 1000, 2000, 5000 or 10000 nodes. The results from these
experiments are shown in Figure 5.15. The average execution time is drawn
as a function of the number of threads.

We have also performed experiments with altered distribution of Insert
operations, varied between 10% upto 90%. For the distribution of 10-40%
inserts the dictionary was initialized with 1000 nodes, and for 60-90% inserts
the dictionary was initialized as empty. The results from these experiments
are shown in Figure 5.17. The average execution time is drawn as a function
of the number of threads.

5.5.3 Results

From the results we can conclude that all of the implementations scale sim-
ilarly with respect to the average size of the priority queue. The implemen-
tation by Lotan and Shavit [72] scales linearly with respect to increasing
number of threads when having full concurrency, although when exposed to
pre-emption its performance is highly dependent on the usage of semaphores,
with simple spin-locks the performance decreases very rapidly. The imple-
mentation by Hunt et al. [54] shows better but similar behavior for full
concurrency. However, it is instead severly punished by using semaphores
on systems with pre-emption, because of its built-in contention management
mechanism that was designed for simpler locks. The single-lock protected
skip list performs better than both Lotan and Shavit and Hunt et al in all
scenarios, using either semaphores or simple spin-locks. The implementation
by Jones [60] shows a performance slightly worse or better than the single-
lock skip list when exposed to pre-emption, though for full concurrency the

5.5. EXPERIMENTS 121

performance decreases almost to the implementation by Lotan and Shavit,
because of the high overhead connected with semaphores.

Our lock-free implementation scales best compared to all other involved
implementations except the single-lock skip list, having best performance
already with 3 threads, independently if the system is fully concurrent or in-
volves pre-emptions. Compared to the single-lock skip list, our lock-free im-
plementation performs closely or slightly better for full concurrency, though
having rapidly better performance with increasing level of pre-emption.
Clearly, our lock-free implementation retains the logarithmic time complex-
ity with respect to the size. However, the normal and real-time versions of
our implementation shows slightly different behavior, due to several com-
peting time factors. The factors are among many i) the real-time version
can mark nodes as deleted in parallel, ii) with larger sizes the accesses get
more distributed with resulting lower contention, iii) the logarithmic time
complexity from the nature of the skip list, and iv) the overhead connected
with the usage of time-stamps in the real-time version.

Even though the implementation by Lotan and Shavit is also based on a
skip list with a similar approach as our algorithm, it performs significantly
slower, especially on systems with pre-emption. This performance penalty
is because of several reasons i) there are very many locks involved, each
which must be implemented using an atomic primitive having almost the
same contention as a CAS operation, ii) the competition for the locks is
comparingly high and increases rapidly with the level in the skip list, with
resulting conflicts and waiting on the execution of the blocking operations
critical sections (which if possibly pre-empted gets very long), iii) the high
overhead caused by the garbage collection scheme. The algorithms by Hunt
et al and Jones are also penalized by the drawbacks of many locks, with
increasing number of conflicts and blockings with higher level in the tree or
heap structure.

For the experiments with altered distribution of Insert operations and
full concurrency, the hierarchy among the involved implementations are
quite different. For 10-40% Insert operations the implementation by Hunt
et al shows similar performance as the single-lock skip list and our lock-free
implementations, and for 60-90% it shows slightly or significantly better per-
formance. However, neither of the altered scenarios is practically reasonable
as long-term scenarios as the priority queues then will have either ever-
increasing or almost average zero sizes. An ever-increasing priority queue
will be highly impractical in the concern of memory, and for an average zero
sized priority queue it would suffice with much simpler data structures than
skip lists or trees.

122 CHAPTER 5. LOCK-FREE PRIORITY QUEUE

5.6 Extended Algorithm

When we have concurrent Insert and DeleteMin operations we might want
to have certain real-time properties of the semantics of the DeleteMin op-
eration, as expressed in [72]. The DeleteMin operation should only return
items that have been inserted by an Insert operation that finished before
the DeleteMin operation started. To ensure this we are adding timestamps
to each node. When the node is fully inserted its timestamp is set to the
current time. Whenever the DeleteMin operation is invoked it first checks
the current time, and then discards all nodes that have a timestamp that is
after this time. In the code of the implementation (see Figures 5.6,5.7,5.8
and 5.10), the additional statements that involve timestamps are marked
within the “〈” and “〉” symbols. The function getNextT imeStamp, see
Figure 5.23, creates a new timestamp. The function compareT imeStamp,
see Figure 5.23, compares if the first timestamp is less, equal or higher than
the second one and returns the values -1,0 or 1, respectively.

As we are only using the timestamps for relative comparisons, we do
not need real absolute time, only that the timestamps are monotonically
increasing. Therefore we can implement the time functionality with a shared
counter, the synchronization of the counter is handled using CAS. However,
the shared counter usually has a limited size (i.e. 32 bits) and will eventually
overflow. Therefore the values of the timestamps have to be recycled. We
will do this by exploiting information that are available in real-time systems,
with a similar approach as in [103].

We assume that we have n periodic tasks in the system, indexed τ1...τn.
For each task τi we will use the standard notations Ti, Ci, Ri and Di to
denote the period (i.e. min period for sporadic tasks), worst case execution
time, worst case response time and deadline, respectively. The deadline of
a task is less or equal to its period.

For a system to be safe, no task should miss its deadlines, i.e. ∀i | Ri ≤
Di.

For a system scheduled with fixed priority, the response time for a task
in the initial system can be calculated using the standard response time
analysis techniques [17]. If we with Bi denote the blocking time (the time
the task can be delayed by lower priority tasks) and with hp(i) denote the
set of tasks with higher priority than task τi, the response time Ri for task
τi can be formulated as:

Ri = Ci + Bi +
∑

j∈hp(i)

⌈
Ri

Tj

⌉
Cj (5.9)

5.6. EXTENDED ALGORITHM 123

ti

Ti Ti Ti

Ri

LTv

= increment highest known timestamp value by 1

Figure 5.20: Maximum timestamp increasement estimation - worst case
scenario

The summand in the above formula gives the time that task τi may be
delayed by higher priority tasks. For systems scheduled with dynamic pri-
orities, there are other ways to calculate the response times [17].

Now we examine some properties of the timestamps that can exist in the
system. Assume that all tasks call either the Insert or DeleteMin operation
only once per iteration. As each call to getNextT imeStamp will introduce a
new timestamp in the system, we can assume that every task invocation will
introduce one new timestamp. This new timestamp has a value that is the
previously highest known value plus one. We assume that the tasks always
execute within their response times R with arbitrary many interruptions,
and that the execution time C is comparably small. This means that the
increment of highest timestamp respective the write to a node with the
current timestamp can occur anytime within the interval for the response
time. The maximum time for an Insert operation to finish is the same as
the response time Ri for its task τi. The minimum time between two index
increments is when the first increment is executed at the end of the first
interval and the next increment is executed at the very beginning of the
second interval, i.e. Ti − Ri. The minimum time between the subsequent
increments will then be the period Ti. If we denote with LTv the maximum
life-time that the timestamp with value v exists in the system, the worst
case scenario in respect of growth of timestamps is shown in Figure 5.20.

The formula for estimating the maximum difference in value between
two existing timestamps in any execution becomes as follows:

MaxTag =
n∑

i=0

(⌈
maxv∈{0..∞} LTv

Ti

⌉
+ 1

)
(5.10)

124 CHAPTER 5. LOCK-FREE PRIORITY QUEUE

Now we have to bound the value of maxv∈{0..∞} LTv. When comparing
timestamps, the absolute value of these are not important, only the relative
values. Our method is that we continuously traverse the nodes and replace
outdated timestamps with a newer timestamp that has the same comparison
result. We traverse and check the nodes at the rate of one step to the right
for every invocation of an Insert or DeleteMin operation. With outdated
timestamps we define timestamps that are older (i.e. lower) than any times-
tamp value that is in use by any running DeleteMin operation. We denote
with AncientV al the maximum difference that we allow between the highest
known timestamp value and the timestamp value of a node, before we call
this timestamp outdated.

AncientV al =
n∑

i=0

⌈
maxj Rj

Ti

⌉
(5.11)

If we denote with tancient the maximum time it takes for a timestamp
value to be outdated counted from its first occurrence in the system, we get
the following relation:

AncientV al =
n∑

i=0

⌊
tancient

Ti

⌋
>

n∑
i=0

(
tancient

Ti

)
− n (5.12)

tancient <
AncientV al + n

n∑
i=0

1
Ti

(5.13)

Now we denote with ttraverse the maximum time it takes to traverse
through the whole list from one position and getting back, assuming the list
has the maximum size N .

N =
n∑

i=0

⌊
ttraverse

Ti

⌋
>

n∑
i=0

(
ttraverse

Ti

)
− n (5.14)

ttraverse <
N + n

n∑
i=0

1
Ti

(5.15)

The worst-case scenario is that directly after the timestamp of one node
gets traversed, it gets outdated. Therefore we get:

max
v∈{0..∞}

LTv = tancient + ttraverse (5.16)

5.6. EXTENDED ALGORITHM 125

0
1

2

X
...

...

Figure 5.21: Timestamp value recycling

0 X

d1d2 d3

v1 v2 v3 v4

t1t2

Figure 5.22: Deciding the relative order between reused timestamps

Putting all together we get:

MaxTag <
n∑

i=0

⎛
⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎢

N + 2n +
n∑

k=0

⌈
maxj Rj

Tk

⌉

Ti

n∑
l=0

1
Tl

⎤
⎥⎥⎥⎥⎥⎥⎥

+ 1

⎞
⎟⎟⎟⎟⎠ (5.17)

The above equation gives us a bound on the length of the ”window” of
active timestamps for any task in any possible execution. In the unbounded
construction the tasks, by producing larger timestamps every time they slide
this window on the [0, . . . ,∞] axis, always to the right. The approach now
is instead of sliding this window on the set [0, . . . ,∞] from left to right,
to cyclically slide it on a [0, . . . , X] set of consecutive natural numbers, see
figure 5.21. Now at the same time we have to give a way to the tasks
to identify the order of the different timestamps because the order of the
physical numbers is not enough since we are re-using timestamps. The
idea is to use the bound that we have calculated for the span of different
active timestamps. Let us then take a task that has observed vi as the
lowest timestamp at some invocation τ . When this task runs again as τ ′,
it can conclude that the active timestamps are going to be between vi and
(vi+MaxTag) mod X. On the other hand we should make sure that in this

126 CHAPTER 5. LOCK-FREE PRIORITY QUEUE

// Global variables
timeCurrent: integer
checked: pointer to Node
// Local variables
time,newtime,safeTime: integer
current,node,next: pointer to Node

function compareTimeStamp(time1:integer,
time2:integer):integer

C1 if time1=time2 then return 0;
C2 if time2=MAX TIME then return -1;
C3 if time1>time2 and (time1-time2)≤MAX TAG or

time1<time2 and (time1-time2+MAX TIME)
≤MAX TAG then return 1;

C4 else return -1;

function getNextTimeStamp():integer
G1 repeat
G2 time:=timeCurrent;
G3 if (time+1)�=MAX TIME then newtime:=time+1;
G4 else newtime:=0;
G5 until CAS(&timeCurrent,time,newtime);
G6 return newtime;

procedure TraverseTimeStamps()
T1 safeTime:=timeCurrent;
T2 if safeTime≥ANCIENT VAL then
T3 safeTime:=safeTime-ANCIENT VAL;
T4 else safeTime:=safeTime+MAX TIME-ANCIENT VAL;
T5 while true do
T6 node:=READ NODE(checked);
T7 current:=node;
T8 next:=ReadNext(&node,0);
T9 RELEASE NODE(node);
T10 if compareTimeStamp(safeTime,next.timeInsert)>0 then
T11 next.timeInsert:=safeTime;
T12 if CAS(&checked,current,next) then
T13 RELEASE NODE(current);
T14 break;
T15 RELEASE NODE(next);

Figure 5.23: Creation, comparison, traversing and updating of bounded
timestamps.

5.7. RELATED WORK WITH SKIP LISTS 127

interval [vi, . . . , (vi + MaxTag) mod X] there are no old timestamps. By
looking closer to equation 5.10 we can conclude that all the other tasks have
written values to their registers with timestamps that are at most MaxTag
less than vi at the time that τ wrote the value vi. Consequently if we use
an interval that has double the size of MaxTag, τ ′ can conclude that old
timestamps are all on the interval [(vi − MaxTag) mod X, . . . , vi].

Therefore we can use a timestamp field with double the size of the max-
imum possible value of the timestamp.

TagFieldSize = MaxTag ∗ 2
TagFieldBits = �log2 TagFieldSize	
In this way τ ′ will be able to identify that v1, v2, v3, v4 (see figure 5.22)

are all new values if d2 + d3 < MaxTag and can also conclude that:
v3 < v4 < v1 < v2

The mechanism that will generate new timestamps in a cyclical order and
also compare timestamps is presented in Figure 5.23 together with the code
for traversing the nodes. Note that the extra properties of the priority queue
that are achieved by using timestamps are not complete with respect to the
Insert operations that finishes with an update. These update operations
will behave the same as for the standard version of the implementation.

Besides from real-time systems, the presented technique can also be use-
ful in non real-time systems as well. For example, consider a system of
n = 10 threads, where the minimum time between two invocations would be
T = 10 ns, and the maximum response time R = 1000000000 ns (i.e. after
1 s we would expect the thread to have crashed). Assuming a maximum
size of the list N = 10000, we will have a maximum timestamp difference
MaxTag < 1000010030, thus needing 31 bits. Given that most systems
have 32-bit integers and that many modern systems handle 64 bits as well,
it implies that this technique is practical for also non real-time systems.

5.7 Related Work with Skip Lists

This paper describes the first5 lock-free algorithm of a skip list data struc-
ture. Very similar constructions have appeared in the literature afterwards,
by Fraser [32], Fomitchev [30] and Fomitchev and Ruppert [31]. As both
Fraser’s and Fomitchev’s constructions appeared quite some time later in

5Our results were submitted for reviewing in October 2002 and published as a technical
report [105] in January 2003. It was officially published in April 2003 [106], receiving a
best paper award, and an extended version was also published in March 2004 [110]. Very
similar constructions have appeared in the literature afterwards, by Fraser in February
2004 [32], Fomitchev in November 2003 [30] and Fomitchev and Ruppert in July 2004 [31]

128 CHAPTER 5. LOCK-FREE PRIORITY QUEUE

the literature than ours, it was not possible to compare them in our original
publications. However, we have recently studied the other’s approaches and
have found some significant differences, although the main ideas are essen-
tially the same. The differences are mainly related to performance issues:

• Compared to Fraser’s approach, our skip list construction does not
suffer from possible restarts of the full search phase from the head level
when reaching a deleted node, as our nodes also contains a backlink
pointer that is set at the time of deletion. This enables us to step one
step backwards when reaching a deleted node, and to directly remove
the deleted node. Both Fraser’s and our construction uses arrays for
remembering positions, though Fraser unnecessarily remembers also
the successor on each level which could incur performance penalties
through the garbage collector used.

• Compared to Fomitchev’s and Fomitchev and Ruppert’s approach,
their construction does not use an array for remembering positions,
which forces their construction to perform two full search phases when
inserting or deleting nodes. In addition to have backlink pointers in
order to be able to step back when reaching a deleted node, their
construction also uses an extra pointer mark that is set (using an
extra and expensive CAS operation) on the predecessor node in order
to earlier notify concurrent operations of the helping duty. In our
construction we only have one backlink pointer for all levels of a node,
because of a performance trade-off between the usefulness for helping
operations and the cost that keeping extra pointers could incur for the
garbage collection.

5.8 Conclusions

We have presented a lock-free algorithmic implementation of a concurrent
priority queue. The implementation is based on the sequential skip list data
structure and builds on top of it to support concurrency and lock-freedom
in an efficient and practical way. Compared to the previous attempts to
use skip lists for building concurrent priority queues our algorithm is lock-
free and avoids the performance penalties that come with the use of locks.
Compared to the previous lock-free/wait-free concurrent priority queue al-
gorithms, our algorithm inherits and carefully retains the basic design char-
acteristic that makes skip lists practical: simplicity. Previous lock-free/wait-
free algorithms did not perform well because of their complexity, furthermore

5.8. CONCLUSIONS 129

they were often based on atomic primitives that are not available in today’s
systems.

We compared our algorithm with some of the most efficient implementa-
tions of priority queues known. Experiments show that our implementation
scales well, and with 3 threads or more our implementation outperforms
the corresponding lock-based implementations, for all cases on both fully
concurrent systems as well as with pre-emption.

We believe that our implementation is of highly practical interest for
multi-threaded applications. We are currently incorporating it into the NO-
BLE [104] library.

130 CHAPTER 5. LOCK-FREE PRIORITY QUEUE

Chapter 6

Scalable and Lock-Free
Concurrent Dictionaries1

H̊akan Sundell, Philippas Tsigas
Department of Computing Science

Chalmers Univ. of Technol. and Göteborg Univ.
412 96 Göteborg, Sweden

E-mail: {phs, tsigas}@cs.chalmers.se

Abstract

We present an efficient and practical lock-free implementation of a con-
current dictionary that is suitable for both fully concurrent (large multi-
processor) systems as well as pre-emptive (multi-process) systems. Many
algorithms for concurrent dictionaries are based on mutual exclusion. How-
ever, mutual exclusion causes blocking which has several drawbacks and
degrades the system’s overall performance. Non-blocking algorithms avoid
blocking, and are either lock-free or wait-free. Our algorithm is based on the
randomized sequential list structure called skip list, and implements the full
set of operations on a dictionary that is suitable for practical settings. In
our performance evaluation we compare our algorithm with the most effi-
cient non-blocking implementation of dictionaries known. The experimental

1This is an extended and revised version of the paper with the same title that was
presented at SAC 2004 [110] and published as a technical report [107].

132 CHAPTER 6. LOCK-FREE DICTIONARIES

results clearly show that our algorithm outperforms the other lock-free algo-
rithm for dictionaries with realistic sizes, both on fully concurrent as well as
pre-emptive systems.

6.1 Introduction

Dictionaries (also called sets) are fundamental data structures. From the
operating system level to the user application level, they are frequently used
as basic components.

Consequently, the design of efficient implementations of dictionaries is a
research area that has been extensively researched. A dictionary supports
five operations, the Insert, the FindKey, the DeleteKey, the FindV alue
and the DeleteV alue operation. The abstract definition of a dictionary is a
set of key-value pairs, where the key is an unique integer associated with a
value. The Insert operation inserts a new key-value pair into the dictionary
and the FindKey/DeleteKey operation finds/removes and returns the value
of the key-value pair with the specified key that was in the dictionary. The
FindV alue/DeleteV alue operation finds/removes and returns the key of
the key-value pair with the specified value that was in the dictionary.

To ensure consistency of a shared data object in a concurrent environ-
ment, the most common method is to use mutual exclusion, i.e. some form of
locking. Mutual exclusion degrades the system’s overall performance [100]
as it causes blocking, i.e. other concurrent operations can not make any
progress while the access to the shared resource is blocked by the lock. Us-
ing mutual exclusion can also cause deadlocks, priority inversion (which can
be solved efficiently on uni-processors [95] with the cost of more difficult
analysis, although not as efficient on multiprocessor systems [92]) and even
starvation.

To address these problems, researchers have proposed non-blocking algo-
rithms for shared data objects. Non-blocking methods do not involve mutual
exclusion, and therefore do not suffer from the problems that blocking can
cause. Non-blocking algorithms are either lock-free or wait-free. Lock-free
implementations guarantee that regardless of the contention caused by con-
current operations and the interleaving of their sub-operations, always at
least one operation will progress. However, there is a risk for starvation
as the progress of other operations could cause one specific operation to
never finish. This is although different from the type of starvation that
could be caused by blocking, where a single operation could block every
other operation forever, and cause starvation of the whole system. Wait-

6.1. INTRODUCTION 133

free [45] algorithms are lock-free and moreover they avoid starvation as well,
in a wait-free algorithm every operation is guaranteed to finish in a lim-
ited number of steps, regardless of the actions of the concurrent operations.
Non-blocking algorithms have been shown to be of big practical importance
[115, 118], and recently NOBLE, which is a non-blocking inter-process com-
munication library, has been introduced [104].

There exist several algorithms and implementations of concurrent dic-
tionaries. The majority of the algorithms are lock-based, constructed with
either a single lock on top of a sequential algorithm, or specially constructed
algorithms using multiple locks, where each lock protects a small part of
the shared data structure. However, most lock-based algorithms [22] are
based on the theoretical PRAM model which is shown to be unrealistic [16].
As the search complexity of a dictionary is significant, most algorithms are
based on tree or heap structures as well as tree-like structures as the skip
list [91]. Previous non-blocking dictionaries are though based on arrays or
ordered lists as done by Valois [122]. The path using concurrent ordered
lists has been improved by Harris [44], and lately [77] presented a significant
improvement by using a new memory management method [78]. However,
Valois [122] presented an incomplete idea of how to design a concurrent skip
list.

One common problem with many algorithms for concurrent dictionaries
is the lack of precise defined semantics of the operations. Previously known
non-blocking dictionaries only implements a limited set of operations, dis-
regarding the FindV alue and DeleteV alue operations. It is also seldom
that the correctness with respect to concurrency is proved, using a strong
property like linearizability [50].

In this paper we present a lock-free algorithm of a concurrent dictionary
that is designed for efficient use in both pre-emptive as well as in fully
concurrent environments. Inspired by the incomplete attempt by Valois
[122], the algorithm is based on the randomized skip list [91] data structure.
It is also implemented using common synchronization primitives that are
available in modern systems. The algorithm is described in detail later
in this paper, and the aspects concerning the underlying lock-free memory
management are also presented. The precise semantics of the operations
are defined and we give a proof that our implementation is lock-free and
linearizable.

Concurrent dictionaries are often used as building blocks for concurrent
hash tables, where each branch (or bucket) of the hash table is represented
by a dictionary. In an optimal setting, the average size of each branch is
comparably low, i.e. less than 10 nodes, as in [77]. However, in practical

134 CHAPTER 6. LOCK-FREE DICTIONARIES

0

1

2

...

27

0045

1076

2023

27042

”Atom”

”Bit”

”Computer”

”Zeus”

0034 ”Apple”

1014 ”Byte”

2000 ”Car”

27021 ”Zebra”

0076 ”Adam”

1002 ”Bug”

2053 ”Cause”

27011 ”Zilog”

...

...

...

...

Figure 6.1: Example of a Hash Table with Dictionaries as branches.

settings the average size of each branch can vary significantly. For example,
a hash table can be used to represent the words of a book, where each
branch contains the words that begin with a certain letter, as in Figure 6.1.
Therefore it is not unreasonable to expect dictionaries with sizes of several
thousands nodes.

We have performed experiments that compare the performance of our
algorithm with one of the most efficient implementations of non-blocking
dictionaries known [77]. As the previous algorithm did not implement the
full set of operations of our dictionary, we also performed experiments with
the full set of operations, compared with a simple lock-based skip list im-
plementation. Experiments were performed on three different platforms,
consisting of a multiprocessor system using different operating systems and
equipped with either 2 or 64 processors. Our results show that our algo-
rithm outperforms the other lock-free implementation with realistic sizes and
number of threads, in both highly pre-emptive as well as in fully concurrent
environments.

The rest of the paper is organized as follows. In Section 6.2 we define
the properties of the system that our implementation is aimed for. The
actual algorithm is described in Section 6.3. In Section 6.4 we define the
precise semantics for the operations on our implementations, as well showing
correctness by proving the lock-free and linearizability property. The exper-
imental evaluation that shows superior performance for our implementation
is presented in Section 6.5. In Section 6.6 we discuss related work with skip
lists that have appeared in the literature after our first publications. We
conclude the paper with Section 6.7.

6.2. SYSTEM DESCRIPTION 135

Local Memory

Processor 1

Local Memory

Processor 2

Local Memory

Processor n

Shared Memory

Interconnection Network

. . .

Figure 6.2: Shared memory multiprocessor system structure

6.2 System Description

A typical abstraction of a shared memory multi-processor system configura-
tion is depicted in Figure 6.2. Each node of the system contains a processor
together with its local memory. All nodes are connected to the shared mem-
ory via an interconnection network. A set of co-operating tasks is running on
the system performing their respective operations. Each task is sequentially
executed on one of the processors, while each processor can serve (run) many
tasks at a time. The co-operating tasks, possibly running on different pro-
cessors, use shared data objects built in the shared memory to co-ordinate
and communicate. Tasks synchronize their operations on the shared data
objects through sub-operations on top of a cache-coherent shared memory.
The shared memory may not though be uniformly accessible for all nodes
in the system; some processors can have slower access than the others.

6.3 Algorithm

The algorithm is an extension and modification of the parallel skip list data
structure presented in [106]. The sequential skip list data structure which
was invented by Pugh [91], uses randomization and has a probabilistic time
complexity of O(log N) where N is the maximum number of elements in the
list. The data structure is basically an ordered list with randomly distributed
short-cuts in order to improve search times, see Figure 6.3. The maximum
height (i.e. the maximum number of next pointers) of the data structure is
log N . The height of each inserted node is randomized geometrically in the
way that 50% of the nodes should have height 1, 25% of the nodes should
have height 2 and so on. To use the data structure as a dictionary, every
node contains a key and its corresponding value. The nodes are ordered in
respect of key (which has to be unique for each node), the nodes with lowest
keys are located first in the list. The fields of each node item are described

136 CHAPTER 6. LOCK-FREE DICTIONARIES

H 1 2 3 4 5 T

Figure 6.3: The skip list data structure with 5 nodes inserted.

1 2 4

3

Inserted node

Deleted node

Figure 6.4: Concurrent insert and delete operation can delete both nodes.

in Figure 6.6 as it is used in this implementation. In all code figures in this
section, arrays are indexed starting from 0.

In order to make the skip list construction concurrent and non-blocking,
we are using two of the standard atomic synchronization primitives; Fetch-
And-Add (FAA) and Compare-And-Swap (CAS). Figure 6.5 describes the
specification of these primitives which are available in most modern plat-
forms.

6.3.1 Memory Management

As we are concurrently (with possible preemptions) traversing nodes that
will be continuously allocated and reclaimed, we have to consider several
aspects of memory management. No node should be reclaimed and then
later re-allocated while some other process is traversing this node. This can
be solved for example by careful reference counting. We have selected the
lock-free memory management scheme invented by Valois [122] and corrected
by Michael and Scott [83], which makes use of the FAA and CAS atomic
synchronization primitives.

To insert or delete a node from the list we have to change the respective
set of next pointers. These have to be changed consistently, but not nec-
essary all at once. Our solution is to have additional information on each
node about its deletion (or insertion) status. This additional information
will guide the concurrent processes that might traverse into one partially

6.3. ALGORITHM 137

procedure FAA(address:pointer to word, number:integer)
atomic do

*address := *address + number;

function CAS(address:pointer to word, oldvalue:word
, newvalue:word):boolean

atomic do
if *address = oldvalue then

*address := newvalue;
return true;

else return false;

Figure 6.5: The Fetch-And-Add (FAA) and Compare-And-Swap (CAS)
atomic primitives.

deleted or inserted node. When we have changed all necessary next point-
ers, the node is fully deleted or inserted.

One problem, that is general for non-blocking implementations that are
based on the linked-list structure, arises when inserting a new node into
the list. Because of the linked-list structure one has to make sure that the
previous node is not about to be deleted. If we are changing the next pointer
of this previous node atomically with CAS, to point to the new node, and
then immediately afterwards the previous node is deleted - then the new
node will be deleted as well, as illustrated in Figure 6.4. There are several
solutions to this problem. One solution is to use the CAS2 operation as it
can change two pointers atomically, but this operation is not available in any
existing multiprocessor system. A second solution is to insert auxiliary nodes
[122] between each two normal nodes, and the latest method introduced by
Harris [44] is to use one bit of the pointer values as a deletion mark. On
most modern 32-bit systems, 32-bit values can only be located at addresses
that are evenly dividable by 4, therefore bits 0 and 1 of the address are
always set to zero. The method is then to use the previously unused bit 0 of
the next pointer to mark that this node is about to be deleted, using CAS.
Any concurrent Insert operation will then be notified about the deletion,
when its CAS operation will fail.

Another memory management issue is how to de-reference pointers safely.
If we simply de-reference the pointer, it might be that the corresponding
node has been reclaimed before we could access it. It can also be that bit 0
of the pointer was set, thus marking that the node is deleted, and therefore
the pointer is not valid. The following functions are defined for safe handling
of the memory management:

138 CHAPTER 6. LOCK-FREE DICTIONARIES

union Link
: word
〈p, d〉: 〈pointer to Node, boolean〉

union VLink
: word
〈p, d〉: 〈pointer to Value, boolean〉

structure Node
key, level, validLevel, version: integer
value : union VLink
next[level]: union Link
prev : pointer to Node

// Global variables
head, tail : pointer to Node
// Local variables (for all functions/procedures)
node1, node2, newNode, savedNodes[maxlevel+1] : pointer to Node
prev, last, stop : pointer to Node
key1, key2, step, jump, version, version2: integer

function CreateNode(level:integer, key:integer,
value:pointer to Value):pointer to Node

C1 node:=MALLOC NODE();
C2 node.prev:=NULL;
C3 node.validLevel:=0;
C4 node.level:=level;
C5 node.key:=key;
C6 node.value:=〈value,false〉;
C7 return node;

procedure ReleaseReferences(node:pointer to Node)
R1 node.validLevel:=0;
R2 if node.prev then
R3 prev:=node.prev;
R4 node.prev:=NULL;
R5 RELEASE NODE(prev);

Figure 6.6: The basic algorithm details.

6.3. ALGORITHM 139

function ReadNext(node1:pointer to pointer to Node, level:integer)
:pointer to Node

N1 if (*node1).value.d=true then *node1:=HelpDelete(*node1,level);
N2 node2:=READ NODE((*node1).next[level]);
N3 while node2=NULL do
N4 *node1:=HelpDelete(*node1,level);
N5 node2:=READ NODE((*node1).next[level]);
N6 return node2;

function ScanKey(node1:pointer to pointer to Node, level:integer
, key:integer):pointer to Node

K1 node2:=ReadNext(node1,level);
K2 while node2.key<key do
K3 RELEASE NODE(*node1);
K4 *node1:=node2;
K5 node2:=ReadNext(node1,level);
K6 return node2;

Figure 6.7: The algorithm for the traversing functions.

function MALLOC NODE():pointer to Node
function READ NODE(address:pointer to union Link)

:pointer to Node
function COPY NODE(node:pointer to Node):pointer to Node
procedure RELEASE NODE(node:pointer to Node)

The function MALLOC NODE allocates a new node from the memory
pool of pre-allocated nodes and RELEASE NODE decrements the reference
counter on the corresponding given node. If the reference count reaches zero,
then it calls the ReleaseReferences function that will call RELEASE NODE
on the nodes that this node has owned pointers to, and then it reclaims the
node. The function COPY NODE increases the reference counter for the
corresponding given node and READ NODE de-reference the given pointer
and increase the reference counter for the corresponding node. In case the
de-referenced pointer is marked, the function returns NULL.

6.3.2 Traversing

The functions for traversing the nodes are defined as follows:

140 CHAPTER 6. LOCK-FREE DICTIONARIES

function ReadNext(node1:pointer to pointer to Node
,level:integer):pointer to Node

function ScanKey(node1:pointer to pointer to Node
,level:integer,key:integer):pointer to Node

While traversing the nodes, processes will eventually reach nodes that
are marked to be deleted. As the process that invoked the correspond-
ing Delete operation might be pre-empted, this Delete operation has to be
helped to finish before the traversing process can continue. However, it is
only necessary to help the part of the Delete operation on the current level
in order to be able to traverse to the next node. The function ReadNext,
see Figure 6.7, traverses to the next node on the given level while helping
any deleted nodes in between to finish the deletion. The function ScanKey,
see Figure 6.7, traverses in several steps through the next pointers at the
current level until it finds a node that has the same or higher key than the
given key. The argument node1 in the ReadNext and ScanKey functions are
continuously updated to point to the previous node of the returned node.

However, the use of the safe ReadNext and ScanKey operations for
traversing the skip list, will cause the performance to be significantly lower
compared to the sequential case where the next pointers are used directly.
As the nodes, which are used in the lock-free memory management scheme,
will be reused for the same purpose when re-allocated again after being re-
claimed, the individual fields of the nodes that are not part of the memory
management scheme will be intact. The validLevel field can therefore be
used for indicating if the current node can be used for possibly traversing
further on a certain level. A value of 0 indicates that this node can not
be used for traversing at all, as it is possibly reclaimed or not yet inserted.
As the validLevel field is only set to 0 directly before reclamation in line
R1, a positive value indicates that the node is allocated. A value of n + 1
indicated that this node has been inserted up to level n. However, the next
pointer of level n on the node may have been marked and thus indicating
possible deletion at that level of the node. As the node is not reclaimed the
key field is intact, and therefore it is possible to traverse from the previous
node to the current position. By increasing the reference count of the node
before checking the validLevel field, it can be assured that the node stays
allocated if it was allocated directly after the increment. Because the next
pointers are always updated to point (regardless of the mark) either to noth-
ing (NULL) or to a node that is part of the memory management, allocated
or reclaimed, it is possible in some scenarios to traverse directly through
the next pointers. This approach is taken by the SearchLevel function, see

6.3. ALGORITHM 141

function SearchLevel(last:pointer to pointer to Node, lastLevel:integer,
level:integer, key:integer): pointer to Node

S1 node1:=*last;
S2 stop:=NULL;
S3 while true do
S4 node2:=node1.next[level].p;
S5 if node2=NULL then
S6 if node1=*last then
S7 *last:=HelpDelete(*last,lastLevel);
S8 node1:=*last;
S9 else if node2.key≥key then
S10 COPY NODE(node1);
S11 if (node1.validLevel>level or node1=*last or node1=stop)

and node1.key<key and node1.key≥(*last).key then
S12 if node1.validLevel≤level then
S13 RELEASE NODE(node1);
S14 node1:=COPY NODE(*last);
S15 node2:=ScanKey(&node1,level,key);
S16 RELEASE NODE(node2);
S17 return node1;
S18 RELEASE NODE(node1);
S19 stop:=node1;
S20 if (*last).value.d = true then
S21 *last:=HelpDelete(*last,lastLevel);
S22 node1:=*last;
S23 else if node2.key≥(*last).key then
S24 node1:=node2;
S25 else
S26 if (*last).value.d = true then
S27 *last:=HelpDelete(*last,lastLevel);
S28 node1:=*last;

Figure 6.8: The algorithm for the SearchLevel function.

142 CHAPTER 6. LOCK-FREE DICTIONARIES

Figure 6.8, which traverses rapidly from an allocated node last and returns
the node which key field is the highest key that is lower than the searched
key at the current level. During the rapid traversal it is checked that the
current key is within the search boundaries in line S23 and S11, otherwise
the traversal restarts from the last node as this indicates that a node has
been reclaimed and re-allocated while traversed. When the node suitable
for returning has been reached, it is checked that it is allocated in line S11
and also assured that it then stays allocated in line S10. If this succeeds the
node is returned, otherwise the traversal restarts at node last. If this fails
twice, the traversal are done using the safe ScanKey operations in lines S12
to S16, as this indicates that the node possibly is inserted at the current
level, but the validLevel field has not yet been updated. In case the node
last is marked for deletion, it might have been deleted at the current level
and thus it can not be used for traversal. Therefore the node last is checked
if it is marked in lines S6, S20 and S26. If marked, the node last will be
helped to fully delete on the current level and last is set to the previous
node.

6.3.3 Inserting and Deleting Nodes

The implementation of the Insert operation, see Figure 6.9, starts in lines I4-
I10 with a search phase to find the node after which the new node (newNode)
should be inserted. This search phase starts from the head node at the
highest level and traverses down to the lowest level until the correct node
is found (node1). When going down one level, the last node traversed on
that level is remembered (savedNodes) for later use (this is where we should
insert the new node at that level). Now it is possible that there already
exists a node with the same key as of the new node, this is checked in lines
I12-I23, the value of the old node (node2) is changed atomically with a CAS.
Otherwise, in lines I24-I45 it starts trying to insert the new node starting
with the lowest level increasing up to the level of the new node. The next
pointers of the (to be previous) nodes are changed atomically with a CAS.
After the new node has been inserted at the lowest level, it is possible that
it is deleted by a concurrent Delete operation before it has been inserted at
all levels, and this is checked in lines I38 and I46. The FindKey operation,
see Figure 6.10, basically follows the Insert operation.

The Delete operation, see Figure 6.11, starts in lines D1-D4 with a search
phase to find the first node which key is equal or higher than the searched
key. This search phase starts from the head node at the highest level and
traverses down to the lowest level until the correct node is found (node1).

6.3. ALGORITHM 143

function Insert(key:integer, value:pointer to Value):boolean
I1 Choose level randomly according to the skip list distribution
I2 newNode:=CreateNode(level,key,value);
I3 COPY NODE(newNode);
I4 savedNodes[maxLevel]:=head;
I5 for i:=maxLevel-1 to 0 step -1 do
I6 savedNodes[i]:=SearchLevel(&savedNodes[i+1],i+1,i,key);
I7 if maxLevel-1>i≥level-1 then RELEASE NODE(savedNodes[i+1]);
I8 node1:=savedNodes[0];
I9 while true do
I10 node2:=ScanKey(&node1,0,key);
I11 〈value2,d〉:=node2.value;
I12 if d=false and node2.key=key then
I13 if CAS(&node2.value,〈value2,false〉,〈value,false〉) then
I14 RELEASE NODE(node1);
I15 RELEASE NODE(node2);
I16 for i:=1 to level-1 do
I17 RELEASE NODE(savedNodes[i]);
I18 RELEASE NODE(newNode);
I19 RELEASE NODE(newNode);
I20 return true2;
I21 else
I22 RELEASE NODE(node2);
I23 continue;
I24 newNode.next[0]:=〈node2,false〉 ;
I25 RELEASE NODE(node2);
I26 if CAS(&node1.next[0],〈node2,false〉,〈newNode,false〉) then
I27 RELEASE NODE(node1);
I28 break;
I29 Back-Off
I30 newNode.version:=newNode.version+1;
I31 newNode.validLevel:=1;
I32 for i:=1 to level-1 do
I33 node1:=savedNodes[i];
I34 while true do
I35 node2:=ScanKey(&node1,i,key);
I36 newNode.next[i]:=〈node2,false〉;
I37 RELEASE NODE(node2);
I38 if newNode.value.d=true then
I39 RELEASE NODE(node1);
I40 break;
I41 if CAS(&node1.next[i],〈node2,false〉,〈newNode,false〉) then
I42 newNode.validLevel:=i+1;
I43 RELEASE NODE(node1);
I44 break;
I45 Back-Off
I46 if newNode.value.d = true then newNode:=HelpDelete(newNode,0);
I47 RELEASE NODE(newNode);
I48 return true;

Figure 6.9: The algorithm for the Insert function.

144 CHAPTER 6. LOCK-FREE DICTIONARIES

function FindKey(key: integer):pointer to Value
F1 last:=COPY NODE(head);
F2 for i:=maxLevel-1 to 0 step -1 do
F3 node1:=SearchLevel(&last,i,i,key);
F4 RELEASE NODE(last);
F5 last:=node1;
F6 node2:=ScanKey(&last,0,key);
F7 RELEASE NODE(last);
F8 〈value,d〉:=node2.value;
F9 if node2.key �=key or d=true then
F10 RELEASE NODE(node2);
F11 return NULL;
F12 RELEASE NODE(node2);
F13 return value;

Figure 6.10: The algorithm for the FindKey function.

When going down one level, the last node traversed on that level is re-
membered (savedNodes) for later use (this is the previous node at which
the next pointer should be changed in order to delete the targeted node at
that level). If the found node is the correct node, it tries to set the dele-
tion mark of the value field in line D8 using the CAS primitive, and if it
succeeds it also writes a valid pointer (which corresponding node will stay
allocated until this node gets reclaimed) to the prev field of the node in
line D9. This prev field is necessary in order to increase the performance
of concurrent HelpDelete operations, these otherwise would have to search
for the previous node in order to complete the deletion. The next step is to
mark the deletion bits of the next pointers in the node, starting with the
lowest level and going upwards, using the CAS primitive in each step, see
lines D16-D19. Afterwards in lines D20-D32 it starts the actual deletion
by changing the next pointers of the previous node (prev), starting at the
highest level and continuing downwards. The reason for doing the deletion
in decreasing order of levels, is that concurrent operations that are in the
search phase also start at the highest level and proceed downwards, in this
way the concurrent search operations will sooner avoid traversing this node.
The procedure performed by the Delete operation in order to change each
next pointer of the previous node, is to first search for the previous node
and then perform the CAS primitive until it succeeds.

6.3. ALGORITHM 145

function DeleteKey(key: integer):pointer to Value
return Delete(key,false,NULL);

function Delete(key: integer, delval:boolean,
value:pointer to Value):pointer to Value

D1 savedNodes[maxLevel]:=head;
D2 for i:=maxLevel-1 to 0 step -1 do
D3 savedNodes[i]:=SearchLevel(&savedNodes[i+1],i+1,i,key);
D4 node1:=ScanKey(&savedNodes[0],0,key);
D5 while true do
D6 if not delval then 〈value,d〉:=node1.value;
D7 if node1.key=key and (not delval or node1.value.p=value) and d=false then
D8 if CAS(&node1.value,〉value,false〈,〉value,true〈) then
D9 node1.prev:=COPY NODE(savedNodes[(node1.level-1)/2]);
D10 break;
D11 else continue;
D12 RELEASE NODE(node1);
D13 for i:=0 to maxLevel-1 do
D14 RELEASE NODE(savedNodes[i]);
D15 return NULL;
D16 for i:=0 to node1.level-1 do
D17 repeat
D18 〈node2,d〉:=node1.next[i];
D19 until d=true or CAS(&node1.next[i],〈node2,false〉,〈node2,true〉);
D20 for i:=node1.level-1 to 0 step -1 do
D21 prev:=savedNodes[i];
D22 while true do
D23 if node1.next[i]=〈NULL,true〉 then break;
D24 last:=ScanKey(&prev,i,node1.key);
D25 RELEASE NODE(last);
D26 if last �=node1 or node1.next[i]=〈NULL,true〉 then break;
D27 if CAS(&prev.next[i],〈node1,false〉,〈node1.next[i].p,false〉) then
D28 node1.next[i]:=〈NULL,true〉;
D29 break;
D30 if node1.next[i]=〈NULL,true〉 then break;
D31 Back-Off
D32 RELEASE NODE(prev);
D33 for i:=node1.level to maxLevel-1 do
D34 RELEASE NODE(savedNodes[i]);
D35 RELEASE NODE(node1);
D36 RELEASE NODE(node1);
D37 return value;

Figure 6.11: The algorithm for the DeleteKey function.

146 CHAPTER 6. LOCK-FREE DICTIONARIES

function HelpDelete(node:pointer to Node, level:integer):pointer to Node
H1 for i:=level to node.level-1 do
H2 repeat
H3 〈node2,d〉:=node.next[i];
H4 until d=true or CAS(&node.next[i],〈node2,false〉,〈node2,true〉);
H5 prev:=node.prev;
H6 if not prev or level ≥ prev.validLevel then
H7 prev:=COPY NODE(head);
H8 else COPY NODE(prev);
H9 while true do
H10 if node.next[level]=〈NULL,true〉 then break;
H11 for i:=prev.validLevel-1 to level step -1 do
H12 node1:=SearchLevel(&prev,i,i,node.key);
H13 RELEASE NODE(prev);
H14 prev:=node1;
H15 last:=ScanKey(&prev,level,node.key);
H16 RELEASE NODE(last);
H17 if last �=node or node.next[level]=〈NULL,true〉 then break;
H18 if CAS(&prev.next[level],〈node,false〉,〈node.next[level].p,false〉) then
H19 node.next[level]:=〈NULL,true〉;
H20 break;
H21 if node.next[level]=〈NULL,true〉 then break;
H22 Back-Off
H23 RELEASE NODE(node);
H24 return prev;

Figure 6.12: The algorithm for the HelpDelete function.

6.3.4 Helping Scheme

The algorithm has been designed for pre-emptive as well as fully concurrent
systems. In order to achieve the lock-free property (that at least one thread
is doing progress) on pre-emptive systems, whenever a search operation finds
a node that is about to be deleted, it calls the HelpDelete operation and then
proceeds searching from the previous node of the deleted. The HelpDelete
operation, see Figure 6.12, tries to fulfill the deletion on the current level
and returns when it is completed. It starts in lines H1-H4 with setting the
deletion mark on all next pointers in case they have not been set. In lines
H5-H6 it checks if the node given in the prev field is valid for deletion on
the current level, otherwise it starts the search at the head node. In lines
H11-H16 it searches for the correct node (prev). The actual deletion of this
node on the current level takes place in line H18. Lines H10-H22 will be
repeated until the node is deleted at the current level. This operation might
execute concurrently with the corresponding Delete operation as well with

6.3. ALGORITHM 147

other HelpDelete operations, and therefore all operations synchronize with
each other in lines D23, D26, D28, D30, H10, H17, H19 and H21 in order to
avoid executing sub-operations that have already been performed.

In fully concurrent systems though, the helping strategy can downgrade
the performance significantly. Therefore the algorithm, after a number of
consecutive failed attempts to help concurrent Delete operations that stops
the progress of the current operation, puts the current operation into back-
off mode. When in back-off mode, the thread does nothing for a while, and
in this way avoids disturbing the concurrent operations that might otherwise
progress slower. The duration of the back-off is proportional to the number
of threads, and for each consecutive entering of back-off mode during one
operation invocation, the duration is increased exponentially.

6.3.5 Value Oriented Operations

The FindValue and DeleteValue operations, see Figure 6.13, traverse from
the head node along the lowest level in the skip list until a node with the
searched value is found. In every traversal step, it has to be assured that the
step is taken from a valid node to a valid node, both valid at the same time.
The validLevel field of the node can be used to safely verify the validity,
unless the node has been reclaimed. The version field is incremented by
the Insert operation in line I30, after the node has been inserted at the
lowest level, and directly before the validLevel is set to indicate validity.
By performing two consecutive reads of the version field with the same
contents, and successfully verifying the validity in between the reads, it can
be concluded that the node has stayed valid from the first read of the version
until the successful validity check. This is done is lines V8-V13. If this fails,
it restarts and traverses the safe node last one step using the ReadNext
function in lines V14-V21. After a certain number (jump) of successful
fast steps, an attempt to advance the last node to the current position is
performed in lines V29-V38. If this attempt succeeds, the threshold jump is
increased by 1 1/2 times, otherwise it is halved. The traversal is continued
until a node with the searched value is reached in line V24 or that the tail
node is reached in line V21. In case the found node should be deleted, the
Delete operation is called for this purpose in line V26.

148 CHAPTER 6. LOCK-FREE DICTIONARIES

function FindValue(value: pointer to Value):integer
return FDValue(value,false);

function DeleteValue(value: pointer to Value):integer
return FDValue(value,true);

function FDValue(value: pointer to Value, delete: boolean):integer
V1 jump:=16;
V2 last:=COPY NODE(head);

next jump:
V3 node1:=last;
V4 key1:=node1.key;
V5 step:=0;
V6 while true do
V7 ok=false;
V8 version:=node1.version;
V9 〈node2,d〉:=node1.next[0];
V10 if d=false and node2 �=NULL then
V11 version2:=node2.version;
V12 key2:=node2.key;
V13 if node1.key=key1 and node1.validLevel>0 and node1.next[0]=node2

and node1.version=version and node2.key=key2 and
node2.validLevel>0 and node2.version=version2 then ok:=true;

V14 if not ok then
V15 node1:=node2:=ReadNext(&last,0);
V16 key1:=key2:=node2.key;
V17 version2:=node2.version;
V18 RELEASE NODE(last);
V19 last:=node2;
V20 step:=0;
V21 if node2=tail then
V22 RELEASE NODE(last);
V23 return ⊥;
V24 if node2.value.p=value then
V25 if node2.version=version2 then
V26 if not delete or Delete(key2,true,value)=value then
V27 RELEASE NODE(last);
V28 return key2;
V29 else if ++step≥jump then
V30 COPY NODE(node2);
V31 if node2.validLevel=0 or node2.key �=key2 then
V32 RELEASE NODE(node2);
V33 node2:=ReadNext(&last,0);
V34 if jump≥4 then jump:=jump/2;
V35 else jump:=jump+jump/2;
V36 RELEASE NODE(last);
V37 last:=node2;
V38 goto next jump;
V39 else
V40 key1:=key2;
V41 node1:=node2;

Figure 6.13: The algorithm for the FindValue function.

6.4. CORRECTNESS 149

6.4 Correctness

In this section we present the proofs of correctness for our algorithm. We
first prove that our algorithm is a linearizable one [50] and then we prove
that it is lock-free. A set of definitions that will help us to structure and
shorten the proof is first explained in this section. We start by defining the
sequential semantics of our operations and then introduce two definitions
concerning concurrency aspects in general.

Definition 7 We denote with Lt the abstract internal state of a dictionary
at the time t. Lt is viewed as a set of unique pairs 〈k, v〉 consisting of a
unique key k and a corresponding unique value v. The operations that can
be performed on the dictionary are Insert (I), FindKey (FK), DeleteKey
(DK), FindV alue (FV) and DeleteV alue (DV). The time t1 is defined as
the time just before the atomic execution of the operation that we are looking
at, and the time t2 is defined as the time just after the atomic execution of
the same operation. The return value of true2 is returned by an Insert
operation that has succeeded to update an existing node, the return value
of true is returned by an Insert operation that succeeds to insert a new
node. In the following expressions that defines the sequential semantics of
our operations, the syntax is S1 : O1, S2, where S1 is the conditional state
before the operation O1, and S2 is the resulting state after performing the
corresponding operation:

〈k1, 〉 �∈ Lt1 : I1(〈k1,v1〉) = true,Lt2 = Lt1 ∪ {〈k1,v1〉} (6.1)

〈k1, v11〉 ∈ Lt1 : I1(〈k1,v12〉) = true2,

Lt2 = Lt1 \ {〈k1,v11〉} ∪ {〈k1,v12〉} (6.2)

〈k1, v1〉 ∈ Lt1 : FK1(k1) = v1 (6.3)

〈k1, v1〉 �∈ Lt1 : FK1(k1) = ⊥ (6.4)

〈k1, v1〉 ∈ Lt1 : DK1(k1) = v1,Lt2 = Lt1 \ {〈k1,v1〉} (6.5)

150 CHAPTER 6. LOCK-FREE DICTIONARIES

〈k1, v1〉 �∈ Lt1 : DK1(k1) = ⊥ (6.6)

〈k1, v1〉 ∈ Lt1 : FV1(v1) = k1 (6.7)

〈k1, v1〉 �∈ Lt1 : FV1(v1) = ⊥ (6.8)

〈k1, v1〉 ∈ Lt1 : DV1(v1) = k1,Lt2 = Lt1 \ {〈k1,v1〉} (6.9)

〈k1, v1〉 �∈ Lt1 : DV1(v1) = ⊥ (6.10)

Note that the operations will work correctly also if relaxing the condi-
tion that values are unique. However, the results of the FindV alue and
DeleteV alue operations will be undeterministic in the sense that it is not
decidable which key value that will be returned in the presence of several
key-value pairs with the same value. In the case of the DeleteV alue opera-
tion, still only one pair will be removed.

Definition 8 In a global time model each concurrent operation Op “occu-
pies” a time interval [bOp, fOp] on the linear time axis (bOp < fOp). The
precedence relation (denoted by ‘→’) is a relation that relates operations of
a possible execution, Op1 → Op2 means that Op1 ends before Op2 starts.
The precedence relation is a strict partial order. Operations incomparable
under → are called overlapping. The overlapping relation is denoted by ‖
and is commutative, i.e. Op1 ‖ Op2 and Op2 ‖ Op1. The precedence re-
lation is extended to relate sub-operations of operations. Consequently, if
Op1 → Op2, then for any sub-operations op1 and op2 of Op1 and Op2, re-
spectively, it holds that op1 → op2. We also define the direct precedence
relation →d, such that if Op1→dOp2, then Op1 → Op2 and moreover there
exists no operation Op3 such that Op1 → Op3 → Op2.

Definition 9 In order for an implementation of a shared concurrent data
object to be linearizable [50], for every concurrent execution there should
exist an equal (in the sense of the effect) and valid (i.e. it should respect the
semantics of the shared data object) sequential execution that respects the
partial order of the operations in the concurrent execution.

Next we are going to study the possible concurrent executions of our
implementation. First we need to define the interpretation of the abstract
internal state of our implementation.

6.4. CORRECTNESS 151

Definition 10 The pair 〈k, v〉 is present (〈k, v〉 ∈ L) in the abstract internal
state L of our implementation, when there is a next pointer from a present
node on the lowest level of the skip list that points to a node that contains
the pair 〈k, v〉, and this node is not marked as deleted with the mark on the
value.

Lemma 10 The definition of the abstract internal state for our implemen-
tation is consistent with all concurrent operations examining the state of the
dictionary.

Proof: As the next and value pointers are changed using the CAS operation,
we are sure that all threads see the same state of the skip list, and therefore
all changes of the abstract internal state seems to be atomic. �

As we are using a lock-free memory management scheme with a fixed
memory size and where reclaimed nodes can only be allocated again for the
same purpose, we know that there is a fixed number of nodes that will be
used with the skip list, and that the individual fields (like key, value, next
etc.) of the nodes are only changed by the operations of this algorithm.

Definition 11 A node that is used in the skip list is defined as valid if the
node is inserted at the lowest level, i.e. there is a next pointer on any other
valid node that points (disregarding the eventual mark) to this node, or the
node the validLevel field set to higher than zero and has been fully deleted
but not yet been reclaimed. All other nodes are defined as invalid, i.e. the
node is reclaimed, or has been allocated but not yet inserted at the lowest
level. A node that is used in the skip list is defined as valid at level i if the
node is inserted at level i, i.e. there is a next pointer at level i on any other
valid node that points (disregarding the eventual mark) to this node, or the
node has the validLevel field set higher than i and has been fully deleted but
not yet been reclaimed.

An interesting observation of the previous definition is that if a node is
present in the abstract internal state L then it is also valid, and that if a
node is valid then also the individual fields of the node are valid.

Lemma 11 A valid node with a increased reference count, can always be
used to continue traversing from, even if the node is deleted.

Proof: For every instruction in the algorithm that increments the
reference count (i.e. the READ NODE and COPY NODE functions),

152 CHAPTER 6. LOCK-FREE DICTIONARIES

there exists a corresponding instruction that decrements the reference count
equally much (i.e. the RELEASE NODE function). This means that if
the reference count has been incremented, that the reference count can not
reach zero (and thus be reclaimed) until the corresponding decrement in-
struction is executed. A node with a increased reference count can thus not
be reclaimed, unless it already was reclaimed before the reference count was
incremented. As the node is valid, the key field is also valid, which means
that we know the absolute position in the skip list. If the node is not deleted
the next pointers can be used for traversing. Otherwise it is always possible
to get to the previous node by searching from the head of the skip list using
the key, and traverse from there. �

Lemma 12 The node node1 that is found in line S17 of the SearchLevel
function, is a valid node with a increased reference count and will therefore
not be reclaimed by concurrent tasks, and is (or was) the node with the
nearest key that is lower than the searched key.

Proof: The reference count is incremented in line S10 before the check for
validity in line S11, which means that if the validity test succeeds then the
node will stay valid. The validLevel field of a node is set in lines I31 and
I42 to the current level plus one after each successful step of the Insert
operation, and is set to zero in line R1 just before the node is fully deleted
and will be reclaimed. This means that if the validLevel field is more than
the current level, that the node is valid. Alternatively if the node is the
same as a known valid node last, then it is also valid. If the node is valid,
it is also checked that the key value is lower than was searched for. Before
the validity check, the next node of node1 was read as node2 in line S4 and
its key was checked to be more than or equal to the searched key in line S9.
This means that the node node1 in line S17 is valid and was (or still is) the
node with the nearest key that is lower than the searched key. �

Lemma 13 The node node2 that is found in line V26 of the FindV alue
and DeleteV alue functions, was present during the read of its value and
this value was the same as searched for.

Proof: The Delete operation marks the value before it starts with marking
the next pointers and removing the node from the skip list. A node that is
valid and the value is nonmarked, is therefore present in the dictionary as
the node must be inserted at the lowest level and not yet deleted. The node
was valid in line V13 as the validLevel field was positive. The version field

6.4. CORRECTNESS 153

is only incremented in line I30, directly before the validLevel field becomes
positive. As the version was the same before the check for validity in line
V13 as well as after the check for equalness and validity in V24, this means
that the node has been valid all the time. �

Lemma 14 The node node2 that is found in line V37 of the FindV alue
and DeleteV alue functions, is a valid node at the current, or between the
previously known safe node last and the current position along the search-
path. The node also has a increased reference count and will therefore not
be reclaimed by concurrent tasks.

Proof: The reference count is incremented in line V30 before the check for
validity in line V31, which means that if the validity test succeeds then the
node will stay valid. The validity check follows Lemma 12. If the node was
not valid or the key of the node did not match the current position in the
searchpath (i.e. the key field has changed due to reclamation of the node
before the increment of the reference count) then node2 will be set to the
next node of last using the ReadNext function. �

Lemma 15 The functions FindV alue and DeleteV alue will not skip any
nodes while traversing the skip list from left to right, and will therefore tra-
verse through all nodes that was present in the skip list at the start of the
traversing and which was still present while traversed.

Proof: In order to safely move from node1 to node2, it has to be assured
that both nodes are valid and that node1 has been pointing to node2 at the
lowest level while both were valid, and that node1 is at the current position
(i.e. the key field). If this holds we can conclude that node2 is, or was
at the time of starting the traversal, the very next node of node1. These
properties are checked in line V13, where the validity is confirmed to have
hold during the check of the other properties by that the version fields of
both nodes were the same as in lines V8 and V11 before checking the validity
using the validLevel field. If the check in line V13 failed, then node2 will
be set to the next node of last using the ReadNext function, which position
is between the previously known safe node last and the current position
along the searchpath. Given by Lemma 14, when the node last is updated,
it is always set to a valid node with a position between the next node of
the previously known safe node last and the current position along the
searchpath. Consequently, the functions FindV alue and DeleteV alue will
not skip any nodes while traversing the skip list from left to right. �

154 CHAPTER 6. LOCK-FREE DICTIONARIES

Definition 12 The decision point of an operation is defined as the atomic
statement where the result of the operation is finitely decided, i.e. indepen-
dent of the result of any sub-operations after the decision point, the operation
will have the same result. We define the state-read point of an operation to
be the atomic statement where the state of the dictionary, which result the
decision point depends on is read. We also define the state-change point as
the atomic statement where the operation changes the abstract internal state
of the dictionary after it has passed the corresponding decision point.

We will now use these points in order to show the existance and location
in execution history of a point where the concurrent operation can be viewed
as it occured atomically, i.e. the linearizability point.

Lemma 16 An Insert operation which succeeds (I(〈k, v〉) = true), takes
effect atomically at one statement.

Proof: The decision point for an Insert operation which succeeds (I(〈k, v〉) =
true), is when the CAS sub-operation in line I26 (see Figure 6.9) succeeds,
all following CAS sub-operations will eventually succeed, and the Insert op-
eration will finally return true. The state of the list (Lt1) directly before the
passing of the decision point must have been 〈k, 〉 �∈ Lt1 , otherwise the CAS
would have failed. The state of the list directly after passing the decision
point will be 〈k, v〉 ∈ Lt2 . Consequently, the linearizability point will be the
CAS sub-operation in line I26. �

Lemma 17 An Insert operation which updates (I(〈k, v〉) = true2), takes
effect atomically at one statement.

Proof: The decision point for an Insert operation which updates (I(〈k, v〉) =
true2), is when the CAS will succeed in line I13. The state of the list (Lt1)
directly before passing the decision point must have been 〈k, 〉 ∈ Lt1 , other-
wise the CAS would have failed. The state of the list directly after passing
the decision point will be 〈k, v〉 ∈ Lt3 . Consequently, the linearizability
point will be the CAS sub-operation in line I13. �

Lemma 18 A FindKey operation which succeeds (FK(k) = v), takes ef-
fect atomically at one statement.

Proof: The decision point for a FindKey operation which succeeds (FK(k) =
v), is when the check for marked value in line F9 fails. The state-read point

6.4. CORRECTNESS 155

is when the value of the node is read in line F8. As the key field of the
node can not change concurrently, the state of the list (Lt1) directly before
passing the state-read point must have been 〈k, v〉 ∈ Lt1 . Consequently, the
linearizability point will be the read sub-operation of the value field in line
F8. �

Lemma 19 A FindKey operation which fails (FK(k) = ⊥), takes effect
atomically at one statement.

Proof: The decision point for a FindKey operation which fails (FK(k) =
⊥), is when the check for key equality fails or when the check for marked
value in line F9 succeeds. If the key equality in line F9 fails, the state-read
point is the read sub-operation of READ NODE in line N2 or N5 (from K1
or K5, from F6) when the next pointer at lowest level of the previous node
is read. If the check for marked value in line F9 succeeds, the state-read
point is the read sub-operation of the value field in line F8. In both cases,
the state of the list (Lt1) directly before passing the state-read point must
have been 〈k, v〉 �∈ Lt1 . Consequently, the linearizability point will be either
of the state-read points. �

Lemma 20 A DeleteKey operation which succeeds (DK(k) = v), takes
effect atomically at one statement.

Proof: The decision point for a DeleteKey operation which succeeds (DK(k) =
v) is when the CAS sub-operation in line D8 (see Figure 6.11) succeeds. The
state of the list (Lt) directly before passing of the decision point must have
been 〈k, v〉 ∈ Lt, otherwise the CAS would have failed. The state of the list
directly after passing the decision point will be 〈k, v〉 �∈ Lt. Consequently,
the linearizability point will be the CAS sub-operation in line D8. �

Lemma 21 A DeleteKey operations which fails (DK(k) = ⊥), takes effect
atomically at one statement.

Proof: The decision point for a DeleteKey operation which fails (DK(k) =
⊥), is when the check for key equality fails or when the check for non-marked
value in line D7 fails. If the key equality in line D7 fails, the state-read point
is the read sub-operation of READ NODE in line N2 or N5 (from K1 or
K5, from D4) when the next pointer at lowest level of the previous node is
read. If the check for non-marked value in line D7 fails, the state-read point
is the read sub-operation of the value field in line D6. In both cases, the

156 CHAPTER 6. LOCK-FREE DICTIONARIES

state of the list (Lt1) directly before passing the state-read point must have
been 〈k, v〉 �∈ Lt1 . Consequently, the linearizability point will be either of
the state-read points. �

Lemma 22 A FindV alue operation which succeeds (FV (v) = k), takes
effect atomically at one statement.

Proof: The decision point for a FindV alue operation which succeeds (FV (v) =
k), is when the check for valid node (and also a valid value field in line V24)
in line V25 succeeds. The state-read point is when the value field is read
in line V24. As the key field of the node can not change concurrently and
as given by Lemma 13, the state of the list (Lt1) directly before passing the
state-read point must have been 〈k, v〉 ∈ Lt1 . Consequently, the lineariz-
ability point will be the read sub-operation of the value field in line V24.

�

Lemma 23 A FindV alue operation which fails (FV (v) = ⊥), takes effect
atomically at one statement.

Proof: For a FindV alue operation which fails (FV (v) = ⊥), all checks for
value equality in line V24 fails. Because of the uniqueness of values, there
can be at most one pair 〈k1, v1〉 present in the dictionary at one certain
moment of time where v = v1. Given by Lemma 15 we know that the
algorithm will pass by the node with key k1 if 〈k1, 〉 ∈ Lt1 at the time of
traversal, and that all keys in the possible range of keys will be passed by
as we start traversing from the lowest key and that the skip list is ordered.

If during the execution, key1 < k1 < key2, then if the check in line V13
succeeds, the state-read point is the read sub-operation in line V9, otherwise
if the check in line V13 fails, the state-read point is the hidden read sub-
operation of the next pointer of node node1 in the READ NODE function
in line N2 or N5 (from V15). The state of the list (Lt1) directly before
passing the state-read point must have been 〈k1, v1〉 �∈ Lt1 . Consequently,
the linearizability point will be the state-read point.

If during the execution, key2 = k1 and the value field of node node2
was not equal to v in line V24, then the state-read point will be the read
sub-operation of the value field in line V24. The state of the list (Lt1)
directly before passing the state-read point must have been 〈k1, v1〉 �∈ Lt1 .
Consequently, the linearizability point will be the state-read point.

As all operations on shared memory as read, write and atomic primitives,
are atomic, they can be totally ordered. If during the execution, key2 = k1

6.4. CORRECTNESS 157

and the value field of node node2 was marked in line V24, the linearizability
point will be the concurrent successful CAS sub-operation on the same value
field in line D8 that can be ordered before the read sub-operation in line V24,
and after the read sub-operation of the head node in line V2. If no such
concurrent CAS sub-operation exists, the linearizability point will be the
read sub-operation of the head node in line V24. The state of the list (Lt1)
directly after passing the linearizability point must have been 〈k1, v1〉 �∈ Lt1 .

�

Lemma 24 A DeleteV alue operation which succeeds (DV (v) = k), takes
effect atomically at one statement.

Proof: The decision point for a DeleteV alue operation which succeeds
(DV (v) = k) is when the CAS sub-operation in line D8 (from V26) succeeds.
The state of the list (Lt) directly before passing of the decision point must
have been 〈k, v〉 ∈ Lt, otherwise the CAS would have failed. The state of the
list directly after passing the decision point will be 〈k, v〉 �∈ Lt. Consequently,
the linearizability point will be the CAS sub-operation in line D8. �

Lemma 25 A DeleteV alue operation which fails (DV (v) = ⊥), takes effect
atomically at one statement.

Proof: The proof is the same as for FindV alue, see Lemma 23. �

Definition 13 We define the relation ⇒ as the total order and the relation
⇒d as the direct total order between all operations in the concurrent execu-
tion. In the following formulas, E1 =⇒ E2 means that if E1 holds then E2

holds as well, and ⊕ stands for exclusive or (i.e. a⊕b means (a∨b)∧¬(a∧b)):

Op1 →d Op2, � ∃Op3.Op1 ⇒d Op3,

� ∃Op4.Op4 ⇒d Op2 =⇒ Op1 ⇒d Op2 (6.11)

Op1 ‖ Op2 =⇒ Op1 ⇒d Op2 ⊕ Op2 ⇒d Op1 (6.12)

Op1 ⇒d Op2 =⇒ Op1 ⇒ Op2 (6.13)

Op1 ⇒ Op2,Op2 ⇒ Op3 =⇒ Op1 ⇒ Op3 (6.14)

158 CHAPTER 6. LOCK-FREE DICTIONARIES

Lemma 26 The operations that are directly totally ordered using formula
6.11, form an equivalent valid sequential execution.

Proof: If the operations are assigned their direct total order (Op1 ⇒d Op2)
by formula 6.11 then also the linearizability point of Op1 is executed before
the respective point of Op2. In this case the operations semantics behave
the same as in the sequential case, and therefore all possible executions will
then be equivalent to one of the possible sequential executions. �

Lemma 27 The operations that are directly totally ordered using formula
6.12 can be ordered unique and consistent, and form an equivalent valid
sequential execution.

Proof: Assume we order the overlapping operations according to their lin-
earizability points. As the state before as well as after the linearizability
points is identical to the corresponding state defined in the semantics of
the respective sequential operations in formulas 6.1 to 6.10, we can view
the operations as occurring at the linearizability point. As the linearizabil-
ity points consist of atomic operations and are therefore ordered in time,
no linearizability point can occur at the very same time as any other lin-
earizability point, therefore giving a unique and consistent ordering of the
overlapping operations. �

Lemma 28 With respect to the retries caused by synchronization, one oper-
ation will always do progress regardless of the actions by the other concurrent
operations.

Proof: We now examine the possible execution paths of our implemen-
tation. There are several potentially unbounded loops that can delay the
termination of the operations. We call these loops retry-loops. If we omit
the conditions that are because of the operations semantics (i.e. searching
for the correct position etc.), the loop retries when sub-operations detect
that a shared variable has changed value. This is detected either by a sub-
sequent read sub-operation or a failed CAS. These shared variables are only
changed concurrently by other CAS sub-operations. According to the def-
inition of CAS, for any number of concurrent CAS sub-operations, exactly
one will succeed. This means that for any subsequent retry, there must be
one CAS that succeeded. As this succeeding CAS will cause its retry loop
to exit, and our implementation does not contain any cyclic dependencies
between retry-loops that exit with CAS, this means that the corresponding

6.5. EXPERIMENTS 159

Insert, FindKey, DeleteKey, FindV alue or DeleteV alue operation will
progress. Consequently, independent of any number of concurrent opera-
tions, one operation will always progress. �

Theorem 3 The algorithm implements a lock-free and linearizable dictio-
nary.

Proof: Following from Lemmas 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26
and 27 and using the direct total order we can create an identical (with
the same semantics) sequential execution that preserves the partial order of
the operations in a concurrent execution. Following from Definition 9, the
implementation is therefore linearizable. As the semantics of the operations
are basically the same as in the skip list [91], we could use the corresponding
proof of termination. This together with Lemma 28 and that the state is
only changed at one atomic statement (Lemmas 10,16,17,20,24), gives that
our implementation is lock-free. �

6.5 Experiments

We have performed experiments on both the limited set of operations on a
dictionary (i.e. the Insert, FindKey and DeleteKey operations), as well
as on the full set of operations on a dictionary (i.e. also including the
FindV alue and DeleteV alue operations).

In our experiments with the limited set of operations on a dictionary,
each concurrent thread performed 20000 sequential operations, whereof the
first 50 up to 10000 of the totally performed operations are Insert opera-
tions, and the remaining operations was randomly chosen with a distribution
of 1/3 Insert operations versus 1/3 FindKey and 1/3 DeleteKey opera-
tions. For the systems which also involves preemption, a synchronization
barrier was performed between the initial insertion phaes and the remaining
operations. The key values of the inserted nodes was randomly chosen be-
tween 0 and 1000000∗n, where n is the number of threads. Each experiment
was repeated 50 times, and an average execution time for each experiment
was estimated. Exactly the same sequential operations were performed for
all different implementations compared. Besides our implementation, we
also performed the same experiment with the lock-free implementation by
Michael [77] which is the most recently claimed to be one of the most efficient
concurrent dictionaries existing.

Our experiments with the full set of operations on a dictionary, was
performed similarly to the experiments with the limited set of operations,

160 CHAPTER 6. LOCK-FREE DICTIONARIES

0

5000

10000

15000

20000

25000

0 5 10 15 20 25 30

E
xe

cu
tio

n
T

im
e

(m
s)

Threads

Dictionary with High Contention - SGI MIPS, 64 Processors

NEW ALGORITHM 50
NEW ALGORITHM 100
NEW ALGORITHM 200
NEW ALGORITHM 500
NEW ALGORITHM 1000
NEW ALGORITHM 2000
NEW ALGORITHM 5000
NEW ALGORITHM 10000

0

20000

40000

60000

80000

100000

120000

140000

0 5 10 15 20 25 30

E
xe

cu
tio

n
T

im
e

(m
s)

Threads

Dictionary with High Contention - SGI MIPS, 64 Processors

LOCK-FREE MICHAEL 50
LOCK-FREE MICHAEL 100
LOCK-FREE MICHAEL 200
LOCK-FREE MICHAEL 500
LOCK-FREE MICHAEL 1000
LOCK-FREE MICHAEL 2000
LOCK-FREE MICHAEL 5000
LOCK-FREE MICHAEL 10000

Dictionary with High Contention - SGI MIPS, 64 Processors

NEW ALGORITHM
LOCK-FREE MICHAEL

0 5 10 15 20 25 30
Threads 100

1000

10000

Size
0

5000
10000
15000
20000
25000
30000
35000
40000

Execution Time (ms)

Figure 6.14: Experiment with dictionaries and high contention on SGI Ori-
gin 2000, initialized with 50,100,...,10000 nodes

6.5. EXPERIMENTS 161

0

5000

10000

15000

20000

0 5 10 15 20 25 30

E
xe

cu
tio

n
T

im
e

(m
s)

Threads

Full Dictionary - SGI MIPS, 64 Processors

NEW ALGORITHM 50
NEW ALGORITHM 100
NEW ALGORITHM 200
NEW ALGORITHM 500
NEW ALGORITHM 1000
NEW ALGORITHM 2000
NEW ALGORITHM 5000
NEW ALGORITHM 10000

0

10000

20000

30000

40000

50000

0 5 10 15 20 25 30

E
xe

cu
tio

n
T

im
e

(m
s)

Threads

Full Dictionary - SGI MIPS, 64 Processors

LOCK-BASED SKIPLIST 50
LOCK-BASED SKIPLIST 100
LOCK-BASED SKIPLIST 200
LOCK-BASED SKIPLIST 500
LOCK-BASED SKIPLIST 1000
LOCK-BASED SKIPLIST 2000
LOCK-BASED SKIPLIST 5000
LOCK-BASED SKIPLIST 10000

Full Dictionary - SGI MIPS, 64 Processors

NEW ALGORITHM
LOCK-BASED SKIPLIST

0 5 10 15 20 25 30
Threads 100

1000

10000

Size
0

5000
10000
15000
20000
25000
30000
35000
40000

Execution Time (ms)

Figure 6.15: Experiment with full dictionaries and high contention on SGI
Origin 2000, initialized with 50,100,...,10000 nodes

162 CHAPTER 6. LOCK-FREE DICTIONARIES

0

500

1000

1500

2000

2500

3000

3500

0 5 10 15 20 25 30

E
xe

cu
tio

n
T

im
e

(m
s)

Threads

Dictionary with High Contention - Linux Pentium II, 2 Processors

NEW ALGORITHM 50
NEW ALGORITHM 100
NEW ALGORITHM 200
NEW ALGORITHM 500
NEW ALGORITHM 1000
NEW ALGORITHM 2000
NEW ALGORITHM 5000
NEW ALGORITHM 10000

0

10000

20000

30000

40000

50000

60000

0 5 10 15 20 25 30

E
xe

cu
tio

n
T

im
e

(m
s)

Threads

Dictionary with High Contention - Linux Pentium II, 2 Processors

LOCK-FREE MICHAEL 50
LOCK-FREE MICHAEL 100
LOCK-FREE MICHAEL 200
LOCK-FREE MICHAEL 500
LOCK-FREE MICHAEL 1000
LOCK-FREE MICHAEL 2000
LOCK-FREE MICHAEL 5000
LOCK-FREE MICHAEL 10000

Dictionary with High Contention - Linux Pentium II, 2 Processors

NEW ALGORITHM
LOCK-FREE MICHAEL

0 5 10 15 20 25 30
Threads 100

1000

10000

Size
0

2000

4000

6000

8000

10000

Execution Time (ms)

Figure 6.16: Experiment with dictionaries and high contention on Linux
Pentium II, initialized with 50,100,...,10000 nodes

6.5. EXPERIMENTS 163

0

5000

10000

15000

20000

0 5 10 15 20 25 30

E
xe

cu
tio

n
T

im
e

(m
s)

Threads

Full Dictionary - Linux Pentium II, 2 Processors

NEW ALGORITHM 50
NEW ALGORITHM 100
NEW ALGORITHM 200
NEW ALGORITHM 500
NEW ALGORITHM 1000
NEW ALGORITHM 2000
NEW ALGORITHM 5000
NEW ALGORITHM 10000

0

50000

100000

150000

200000

250000

300000

0 5 10 15 20 25 30

E
xe

cu
tio

n
T

im
e

(m
s)

Threads

Full Dictionary - Linux Pentium II, 2 Processors

LOCK-BASED SKIPLIST 50
LOCK-BASED SKIPLIST 100
LOCK-BASED SKIPLIST 200
LOCK-BASED SKIPLIST 500
LOCK-BASED SKIPLIST 1000
LOCK-BASED SKIPLIST 2000
LOCK-BASED SKIPLIST 5000
LOCK-BASED SKIPLIST 10000

Full Dictionary - Linux Pentium II, 2 Processors

NEW ALGORITHM
LOCK-BASED SKIPLIST

0 5 10 15 20 25 30
Threads 100

1000

10000

Size
0

20000

40000

60000

80000

100000

Execution Time (ms)

Figure 6.17: Experiment with full dictionaries and high contention on Linux
Pentium II, initialized with 50,100,...,10000 nodes

164 CHAPTER 6. LOCK-FREE DICTIONARIES

except that the remaining operations after the insertion phase was randomly
chosen with a distribution of 1/3 Insert operations versus 15/48 FindKey,
15/48 DeleteKey, 1/48 FindV alue and 1/48 DeleteV alue operations. Each
experiment was repeated 10 times. Besides our implementation, we also
performed the same experiment with a lock-based implementation of skip
lists using a single global lock.

The skip list based implementations have a fixed level of 10, which corre-
sponds to an expected optimal performance with an average of 1024 nodes.
All lock-based implementations are based on simple spin-locks using the
TAS atomic primitive. A clean-cache operation was performed just before
each sub-experiment using a different implementation. All implementations
are written in C and compiled with the highest optimization level, except
from the atomic primitives, which are written in assembler.

The experiments were performed using different number of threads, vary-
ing from 1 to 30. To get a highly pre-emptive environment, we performed
our experiments on a Compaq dual-processor 450 MHz Pentium II PC run-
ning Linux. In order to evaluate our algorithm with full concurrency we
also used a SGI Origin 2000 system running Irix 6.5 with 64 195 MHz MIPS
R10000 processors. The results from these experiments are shown in Figures
6.14 and 6.16 . The average execution time is drawn as a function of the
number of threads. Observe that the scale is different on each figure in order
to clearify the experiments on the individual implementations as much as
possible. For the SGI system and the limited set of operations, our lock-free
algorithm shows a inversily proportional time complexity with respect to
the size, though for the full set of operations the performance conforms to
be averagely the same independently of the size. Our conjecture for this
behavior is that the performance of the ccNUMA memory model of the SGI
system increases significantly when the algorithm works on disjoint parts of
the memory (as will occur with large sizes of the dictionary), while the time
spent by the search phase of the operation will vary insignificantly because of
the expected logarithmic time complexity. On the other hand, for the full set
of operations, there will be corresponding performance degradation because
of the linear time complexity for the value oriented operations. However, for
the algorithm by Michael [77] the benefit for having disjoint access to the
memory is insignificant compared to the performance degradation caused by
the linear time complexity.

Our lock-free implementation scales best compared to the other imple-
mentation, having best performance for realistic sizes and any number of
threads, i.e. for sizes larger or equal than 500 nodes, independently if the
system is fully concurrent or involves a high degree of pre-emptions. On

6.6. RELATED WORK WITH SKIP LISTS 165

scenarios with the full set of operations our algorithm performs better than
the simple lock-based skip list for more than 3 threads on any system.

6.6 Related Work with Skip Lists

This paper describes an extension of the first2 lock-free algorithm of a skip
list data structure. Very similar constructions have appeared in the litera-
ture afterwards, by Fraser [32], Fomitchev [30] and Fomitchev and Ruppert
[31]. As both Fraser’s and Fomitchev’s constructions appeared quite some
time later in the literature than ours, it was not possible to compare them
in our original publications. However, we have recently studied the other’s
approaches and have found some significant differences, although the main
ideas are essentially the same. The differences are mainly related to perfor-
mance issues:

• Compared to Fraser’s approach, our skip list construction does not
suffer from possible restarts of the full search phase from the head level
when reaching a deleted node, as our nodes also contains a backlink
pointer that is set at the time of deletion. This enables us to step one
step backwards when reaching a deleted node, and to directly remove
the deleted node. Both Fraser’s and our construction uses arrays for
remembering positions, though Fraser unnecessarily remembers also
the successor on each level which could incur performance penalties
through the garbage collector used.

• Compared to Fomitchev’s and Fomitchev and Ruppert’s approach,
their construction does not use an array for remembering positions,
which forces their construction to perform two full search phases when
inserting or deleting nodes. In addition to have backlink pointers in
order to be able to step back when reaching a deleted node, their
construction also uses an extra pointer mark that is set (using an
extra and expensive CAS operation) on the predecessor node in order
to earlier notify concurrent operations of the helping duty. In our
construction we only have one backlink pointer for all levels of a node,
because of a performance trade-off between the usefulness for helping

2Our results were submitted for reviewing in October 2002 and published as a technical
report [105] in January 2003. It was officially published in April 2003 [106], receiving a
best paper award, and an extended version was also published in March 2004 [110]. Very
similar constructions have appeared in the literature afterwards, by Fraser in February
2004 [32], Fomitchev in November 2003 [30] and Fomitchev and Ruppert in July 2004 [31]

166 CHAPTER 6. LOCK-FREE DICTIONARIES

operations and the cost that keeping extra pointers could incur for the
garbage collection.

6.7 Conclusions

We have presented a lock-free algorithmic implementation of a concurrent
dictionary. The implementation is based on the sequential skip list data
structure and builds on top of it to support concurrency and lock-freedom
in an efficient and practical way. Compared to the previous attempts to use
skip lists for building concurrent dictionaries our algorithm is lock-free and
avoids the performance penalties that come with the use of locks. Com-
pared to the previous non-blocking concurrent dictionary algorithms, our
algorithm inherits and carefully retains the basic design characteristic that
makes skip lists practical: logarithmic search time complexity. Previous
non-blocking algorithms did not perform well on dictionaries with realistic
sizes because of their linear or worse search time complexity. Our algo-
rithm also implements the full set of operations that is needed in a practical
setting.

An interesting future work would be to investigate if it is suitable and
how to change the skip list level reactively to the current average number
of nodes. Another issue is how to choose and change the lengths of the
fast jumps in order to get maximum performance of the FindValue and
DeleteValue operations.

We compared our algorithm with the most efficient non-blocking imple-
mentation of dictionaries known. Experiments show that our implementa-
tion scales well, and for realistic number of nodes our implementation out-
performs the other implementation, for all cases on both fully concurrent
systems as well as with pre-emption.

We believe that our implementation is of highly practical interest for
multi-threaded applications.

Chapter 7

Lock-Free and Practical
Deques and Doubly Linked
Lists using Single-Word
Compare-And-Swap1

H̊akan Sundell, Philippas Tsigas
Department of Computing Science

Chalmers Univ. of Technol. and Göteborg Univ.
412 96 Göteborg, Sweden

E-mail: {phs, tsigas}@cs.chalmers.se

Abstract

We present an efficient and practical lock-free implementation of a con-
current deque that supports parallelism for disjoint accesses and uses atomic
primitives which are available in modern computer systems. Previously
known lock-free algorithms of deques are either based on non-available atomic
synchronization primitives, only implement a subset of the functionality, or
are not designed for disjoint accesses. Our algorithm is based on a general
lock-free doubly linked list, and only requires single-word compare-and-swap

1This is a revided and extended version of the paper that appeared as a technical report
[109].

168 CHAPTER 7. LOCK-FREE DEQUE AND DOUBLY LINKED LIST

atomic primitives. It also allows pointers with full precision, and thus sup-
ports dynamic deque sizes. We have performed an empirical study using
full implementations of the most efficient known algorithms of lock-free de-
ques. For systems with low concurrency, the algorithm by Michael shows
the best performance. However, as our algorithm is designed for disjoint ac-
cesses, it performs significantly better on systems with high concurrency and
non-uniform memory architecture. In addition, the proposed solution also
implements a general doubly linked list, the first lock-free implementation
that only needs the single-word compare-and-swap atomic primitive.

7.1 Introduction

A deque (i.e. double-ended queue) is a fundamental data structure. For
example, deques are often used for implementing the ready queue used for
scheduling of tasks in operating systems. A deque supports four opera-
tions, the PushRight, the PopRight, the PushLeft, and the PopLeft oper-
ation. The abstract definition of a deque is a list of values, where the
PushRight/PushLeft operation adds a new value to the right/left edge of the
list. The PopRight/PopLeft operation correspondingly removes and returns
the value on the right/left edge of the list.

To ensure consistency of a shared data object in a concurrent environ-
ment, the most common method is mutual exclusion, i.e. some form of lock-
ing. Mutual exclusion degrades the system’s overall performance [100] as it
causes blocking, i.e. other concurrent operations can not make any progress
while the access to the shared resource is blocked by the lock. Mutual ex-
clusion can also cause deadlocks, priority inversion and even starvation.

In order to address these problems, researchers have proposed non-
blocking algorithms for shared data objects. Non-blocking algorithms do
not involve mutual exclusion, and therefore do not suffer from the problems
that blocking could generate. Lock-free implementations are non-blocking
and guarantee that regardless of the contention caused by concurrent oper-
ations and the interleaving of their sub-operations, always at least one op-
eration will progress. However, there is a risk for starvation as the progress
of some operations could cause some other operations to never finish. Wait-
free [45] algorithms are lock-free and moreover they avoid starvation as well,
as all operations are then guaranteed to finish in a limited number of their
own steps. Recently, some researchers also include obstruction-free [48] im-
plementations to the non-blocking set of implementations. These kinds of
implementations are weaker than the lock-free ones and do not guarantee

7.1. INTRODUCTION 169

progress of any concurrent operation.
The implementation of a lock-based concurrent deque is a trivial task,

and can preferably be constructed using either a doubly linked list or a
cyclic array, protected by either a single lock or by multiple locks where
each lock protects a part of the shared data structure. To the best of our
knowledge, there exists no implementations of wait-free deques, but several
lock-free implementations have been proposed. However, all previously lock-
free deques lack in several important aspects, as they either only implement
a subset of the operations that are normally associated with a deque and
have concurrency restrictions2 like Arora et al. [15], or are based on atomic
hardware primitives like Double-Word Compare-And-Swap (CAS2)3 which
is not available in modern computer systems. Greenwald [37] presented a
CAS2-based deque implementation as well as a general doubly linked list
implementation [38], and there is also a publication series of a CAS2-based
deque implementation [3],[28] with the latest version by Martin et al. [74].
Valois [122] sketched out an implementation of a lock-free doubly linked list
structure using Compare-And-Swap (CAS)4, though without any support
for deletions and is therefore not suitable for implementing a deque. Michael
[79] has developed a deque implementation based on CAS. However, it is not
designed for allowing parallelism for disjoint accesses as all operations have
to synchronize, even though they operate on different ends of the deque.
Secondly, in order to support dynamic maximum deque sizes it requires an
extended CAS operation that can atomically operate on two adjacent words,
which is not available5 on all modern platforms.

In this paper we present a lock-free algorithm for implementing a con-
current deque that supports parallelism for disjoint accesses (in the sense
that operations on different ends of the deque do not necessarily interfere
with each other). The algorithm is implemented using common synchro-
nization primitives that are available in modern systems. It allows pointers
with full precision, and thus supports dynamic maximum deque sizes (in
the presence of a lock-free dynamic memory handler with sufficient garbage
collection support), still using normal CAS-operations. The algorithm is

2The algorithm by Arora et al. does not support push operations on both ends, and
does not allow concurrent invocations of the push operation and a pop operation on the
opposite end.

3A CAS2 operations can atomically read-and-possibly-update the contents of two non-
adjacent memory words. This operation is also sometimes called DCAS in the literature.

4The standard CAS operation can atomically read-and-possibly-update the contents
of a single memory word

5It is available on the Intel IA-32, but not on the Sparc or MIPS microprocessor archi-
tectures. It is neither available on any currently known and common 64-bit architecture.

170 CHAPTER 7. LOCK-FREE DEQUE AND DOUBLY LINKED LIST

Local Memory

Processor 1

Local Memory

Processor 2

Local Memory

Processor n

Shared Memory

Interconnection Network

. . .

Figure 7.1: Shared Memory Multiprocessor System Structure

described in detail later in this paper, together with the aspects concerning
the underlying lock-free memory management. In the algorithm description
the precise semantics of the operations are defined and a proof that our
implementation is lock-free and linearizable [50] is also given. We also give
a detailed description of all the fundamental operations of a general doubly
linked list data structure.

We have performed experiments that compare the performance of our al-
gorithm with two of the most efficient algorithms of lock-free deques known;
[79] and [74], the latter implemented using results from [27] and [43]. Exper-
iments were performed on three different multiprocessor systems equipped
with 2,4 or 29 processors respectively. All three systems used were run-
ning different operating systems and were based on different architectures.
Our results show that the CAS-based algorithms outperforms the CAS2-
based implementations6 for any number of threads and any system. In
non-uniform memory architectures with high contention our algorithm, be-
cause of its disjoint access property, performs significantly better than the
algorithm in [79].

The rest of the paper is organized as follows. In Section 7.2 we describe
the type of systems that our implementation is aiming for. The actual
algorithm is described in Section 7.3. In Section 7.4 we define the precise se-
mantics for the operations on our implementation, and show the correctness
of our algorithm by proving the lock-free and linearizability properties. The
experimental evaluation is presented in Section 7.5. In Section 7.6 we give
the detailed description of the fundamental operations of a general doubly
linked list. We conclude the paper with Section 7.7.

6The CAS2 operation was implemented in software, using either mutual exclusion or
the results from [43], which presented an software CASn (CAS for n non-adjacent words)
implementation.

7.2. SYSTEM DESCRIPTION 171

v1 vi vj vn. . .

. . .

. . .

Head Tail

prev

next

Figure 7.2: The doubly linked list data structure.

7.2 System Description

A typical abstraction of a shared memory multi-processor system configura-
tion is depicted in Figure 7.1. Each node of the system contains a processor
together with its local memory. All nodes are connected to the shared mem-
ory via an interconnection network. A set of co-operating tasks is running on
the system performing their respective operations. Each task is sequentially
executed on one of the processors, while each processor can serve (run) many
tasks at a time. The co-operating tasks, possibly running on different pro-
cessors, use shared data objects built in the shared memory to co-ordinate
and communicate. Tasks synchronize their operations on the shared data
objects through sub-operations on top of a cache-coherent shared memory.
The shared memory may not though be uniformly accessible for all nodes
in the system; processors can have different access times on different parts
of the memory.

7.3 The Algorithm

The algorithm is based on a doubly linked list data structure, see Figure
7.2. To use the data structure as a deque, every node contains a value.
The fields of each node item are described in Figure 7.6 as it is used in
this implementation. Note that the doubly linked list data structure always
contains the static head and tail dummy nodes.

In order to make the doubly linked list construction concurrent and non-
blocking, we are using two of the standard atomic synchronization primi-
tives, Fetch-And-Add (FAA) and Compare-And-Swap (CAS). Figure 7.3
describes the specification of these primitives which are available in most
modern platforms.

To insert or delete a node from the list we have to change the respective
set of prev and next pointers. These have to be changed consistently, but

172 CHAPTER 7. LOCK-FREE DEQUE AND DOUBLY LINKED LIST

procedure FAA(address:pointer to word, number:integer)
atomic do

*address := *address + number;

function CAS(address:pointer to word, oldvalue:word,
newvalue:word):boolean

atomic do
if *address = oldvalue then

*address := newvalue;
return true;

else return false;

Figure 7.3: The Fetch-And-Add (FAA) and Compare-And-Swap (CAS)
atomic primitives.

not necessarily all at once. Our solution is to treat the doubly linked list as
being a singly linked list with auxiliary information in the prev pointers, with
the next pointers being updated before the prev pointers. Thus, the next
pointers always form a consistent singly linked list, but the prev pointers only
give hints for where to find the previous node. This is possible because of
the observation that a “late” non-updated prev pointer will always point to
a node that is directly or some steps before the current node, and from that
“hint” position it is always possible to traverse7 through the next pointers
to reach the directly previous node.

One problem, that is general for non-blocking implementations that are
based on the singly linked list data structure, arises when inserting a new
node into the list. Because of the linked list structure one has to make
sure that the previous node is not about to be deleted. If we are changing
the next pointer of this previous node atomically with the CAS operation,
to point to the new node, and then immediately afterwards the previous
node is deleted - then the new node will be deleted as well, as illustrated in
Figure 7.4. There are several solutions to this problem. One solution is to
use the CAS2 operation as it can change two pointers atomically, but this
operation is not available in any modern multiprocessor system. A second
solution is to insert auxiliary nodes [122] between every two normal nodes,
and the latest method introduced by Harris [44] is to use a deletion mark.
This deletion mark is updated atomically together with the next pointer.

7As will be shown later, we have defined the deque data structure in a way that makes
it possible to traverse even through deleted nodes, as long as they are referenced in some
way.

7.3. THE ALGORITHM 173

1 2 4

3

Inserted node

Deleted node

I

II

I

II

Figure 7.4: Concurrent insert and delete operation can delete both nodes.

Any concurrent insert operation will then be notified about the possibly
set deletion mark, when its CAS operation will fail on updating the next
pointer of the to-be-previous node. For our doubly linked list we need to be
informed also when inserting using the prev pointer.

In order to allow usage of a system-wide dynamic memory handler (which
should be lock-free and have garbage collection capabilities), all significant
bits of an arbitrary pointer value must be possible to be represented in both
the next and prev pointers. In order to atomically update both the next
and prev pointer together with the deletion mark as done by Michael [79],
the CAS-operation would need the capability of atomically updating at least
30+30+1 = 61 bits on a 32-bit system (and 62+62+1 = 125 bits on a 64-bit
system as the pointers are then 64 bit). In practice though, most current 32
and 64-bit systems only support CAS operations of single word-size.

However, in our doubly linked list implementation, we never need to
change both the prev and next pointers in one atomic update, and the
pre-condition associated with each atomic pointer update only involves the
pointer that is changed. Therefore it is possible to keep the prev and next
pointers in separate words, duplicating the deletion mark in each of the
words. In order to preserve the correctness of the algorithm, the deletion
mark of the next pointer should always be set first, and the deletion mark
of the prev pointer should be assured to be set by any operation that have
observed the deletion mark on the next pointer, before any other updating
steps are performed. Thus, full pointer values can be used, still by only
using standard CAS operations.

174 CHAPTER 7. LOCK-FREE DEQUE AND DOUBLY LINKED LIST

vi vj

vx

. . .

. . .

. . .

. . .

. . .

. . .

vi vj

vx

. . .

. . .

. . .

. . .

. . .

. . .

vi vjvx
. . .
. . .
. . .

. . .

. . .

. . .

I

II

vi vjvx

vi vj

vx IV

vi vj

vx

III I

II

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

Insert(vx)

Delete(vx)

Figure 7.5: Illustration of the basic steps of the algorithms for insertion and
deletion of nodes at arbitrary positions in the doubly linked list.

7.3.1 The Basic Steps of the Algorithm

The main algorithm steps, see Figure 7.5, for inserting a new node at an arbi-
trary position in our doubly linked list will thus be like follows: I) Atomically
update the next pointer of the to-be-previous node, II) Atomically update
the prev pointer of the to-be-next node. The main steps of the algorithm for
deleting a node at an arbitrary position are the following: I) Set the dele-
tion mark on the next pointer of the to-be-deleted node, II) Set the deletion
mark on the prev pointer of the to-be-deleted node, III) Atomically update
the next pointer of the previous node of the to-be-deleted node, IV) Atom-
ically update the prev pointer of the next node of the to-be-deleted node.
As will be shown later in the detailed description of the algorithm, helping
techniques need to be applied in order to achieve the lock-free property,
following the same steps as the main algorithm for inserting and deleting.

7.3. THE ALGORITHM 175

7.3.2 Memory Management

As we are concurrently (with possible preemptions) traversing nodes that
will be continuously allocated and reclaimed, we have to consider several
aspects of memory management. No node should be reclaimed and then later
re-allocated while some other process is (or will be) traversing that node.
For efficiency reasons we also need to be able to trust the prev and next
pointers of deleted nodes, as we would otherwise be forced to re-start the
traversing from the head or tail dummy nodes whenever reaching a deleted
node while traversing and possibly incur severe performance penalties. This
need is especially important for operations that try to help other delete
operations in progress. Our demands on the memory management therefore
rules out the SMR or ROP methods by Michael [78] and Herlihy et al.
[47] respectively, as they can only guarantee a limited number of nodes to
be safe via the hazard pointers, and these guarantees are also related to
individual threads and never to an individual node structure. However,
stronger memory management schemes as for example reference counting
would be sufficient for our needs. There exists a general lock-free reference
counting scheme by Detlefs et al. [27], though based on the non-available
CAS2 atomic primitive.

For our implementation, we selected the lock-free memory management
scheme invented by Valois [122] and corrected by Michael and Scott [83],
which makes use of the FAA and CAS atomic synchronization primitives.
Using this scheme we can assure that a node can only be reclaimed when
there is no prev or next pointer in the list that points to it. One problem
though with this scheme, a general problem with reference counting, is that
it can not handle cyclic garbage (i.e. 2 or more nodes that should be recycled
but reference each other, and therefore each node keeps a positive reference
count, although they are not referenced by the main structure). Our solution
is to make sure to break potential cyclic references directly before a node is
possibly recycled. This is done by changing the next and prev pointers of a
deleted node to point to active nodes, in a way that is consistent with the
semantics of other operations.

The memory management scheme should also support means to de-
reference pointers safely. If we simply de-reference a next or prev pointer
using the means of the programming language, it might be that the corre-
sponding node has been reclaimed before we could access it. It can also be
that the deletion mark that is connected to the prev or next pointer was set,
thus marking that the node is deleted. The scheme by Valois et al. supports
lock-free pointer de-referencing and can easily be adopted to handle deletion

176 CHAPTER 7. LOCK-FREE DEQUE AND DOUBLY LINKED LIST

marks.
The following functions are defined for safe handling of the memory

management:

function MALLOC NODE() :pointer to Node
function READ NODE(address:pointer to Link) :pointer to Node
function READ DEL NODE(address:pointer to Link) :pointer to Node
function COPY NODE(node:pointer to Node) :pointer to Node
procedure RELEASE NODE(node:pointer to Node)

The functions READ NODE and READ DEL NODE atomically de-references
the given link and increases the reference counter for the corresponding node.
In case the deletion mark of the link is set, the READ NODE function then
returns NULL. The function MALLOC NODE allocates a new node from the
memory pool of pre-allocated nodes. The function RELEASE NODE decre-
ments the reference counter on the corresponding given node. If the reference
counter reaches zero, the function then calls the ReleaseReferences function
that will recursively call RELEASE NODE on the nodes that this node has
owned pointers to, and then it reclaims the node. The COPY NODE func-
tion increases the reference counter for the corresponding given node.

As the details of how to efficiently apply the memory management scheme
to our basic algorithm are not always trivial, we will provide a detailed de-
scription of them together with the detailed algorithm description in this
section.

7.3.3 Pushing and Popping Nodes

The PushLeft operation, see Figure 7.7, inserts a new node at the leftmost
position in the deque. The algorithm first repeatedly tries in lines L4-L14 to
insert the new node (node) between the head node (prev) and the leftmost
node (next), by atomically changing the next pointer of the head node.
Before trying to update the next pointer, it assures in line L5 that the next
node is still the very next node of head, otherwise next is updated in L6-L7.
After the new node has been successfully inserted, it tries in lines P1-P13 to
update the prev pointer of the next node. It retries until either i) it succeeds
with the update, ii) it detects that either the next or new node is deleted,
or iii) the next node is no longer directly next of the new node. In any of
the two latter, the changes are due to concurrent Pop or Push operations,
and the responsibility to update the prev pointer is then left to those. If
the update succeeds, there is though the possibility that the new node was

7.3. THE ALGORITHM 177

union Link
: word
〈p, d〉: 〈pointer to Node, boolean〉

structure Node
value: pointer to word
prev: union Link
next: union Link

// Global variables
head, tail: pointer to Node
// Local variables
node,prev,prev2,next,next2: pointer to Node
link1,lastlink: union Link

function CreateNode(value: pointer to word):pointer to Node
C1 node:=MALLOC NODE();
C2 node.value:=value;
C3 return node;

procedure ReleaseReferences(node: pointer to Node)
RR1 RELEASE NODE(node.prev.p);
RR2 RELEASE NODE(node.next.p);

Figure 7.6: The basic algorithm details.

deleted (and thus the prev pointer of the next node was possibly already
updated by the concurrent Pop operation) directly before the CAS in line
P5, and then the prev pointer is updated by calling the HelpInsert function
in line P10.

The PushRight operation, see Figure 7.8, inserts a new node at the right-
most position in the deque. The algorithm first repeatedly tries in lines
R4-R13 to insert the new node (node) between the rightmost node (prev)
and the tail node (next), by atomically changing the next pointer of the prev
node. Before trying to update the next pointer, it assures in line R5 that
the next node is still the very next node of prev, otherwise prev is updated
by calling the HelpInsert function in R6, which updates the the prev pointer
of the next node. After the new node has been successfully inserted, it tries
in lines P1-P13 to update the prev pointer of the next node, following the
same scheme as for the PushLeft operation.

The PopLeft operation, see Figure 7.9, tries to delete and return the

178 CHAPTER 7. LOCK-FREE DEQUE AND DOUBLY LINKED LIST

procedure PushLeft(value: pointer to word)
L1 node:=CreateNode(value);
L2 prev:=COPY NODE(head);
L3 next:=READ NODE(&prev.next);
L4 while true do
L5 if prev.next �= 〈next,false〉 then
L6 RELEASE NODE(next);
L7 next:=READ NODE(&prev.next);
L8 continue;
L9 node.prev:=〈prev,false〉;
L10 node.next:=〈next,false〉;
L11 if CAS(&prev.next,〈next,false〉,〈node,false〉) then
L12 COPY NODE(node);
L13 break;
L14 Back-Off
L15 PushCommon(node,next);

Figure 7.7: The algorithm for the PushLeft operation.

value of the leftmost node in the deque. The algorithm first repeatedly
tries in lines PL2-PL22 to mark the leftmost node (node) as deleted. Before
trying to update the next pointer, it first assures in line PL4 that the deque
is not empty, and secondly in line PL9 that the node is not already marked
for deletion. If the deque was detected to be empty, the function returns. If
node was marked for deletion, it tries to update the next pointer of the prev
node by calling the HelpDelete function, and then node is updated to be the
leftmost node. If the prev pointer of node was incorrect, it tries to update
it by calling the HelpInsert function. After the node has been successfully
marked by the successful CAS operation in line PL13, it tries in line PL14 to
update the next pointer of the prev node by calling the HelpDelete function,
and in line PL16 to update the prev pointer of the next node by calling the
HelpInsert function. After this, it tries in line PL23 to break possible cyclic
references that includes node by calling the RemoveCrossReference function.

The PopRight operation, see Figure 7.10, tries to delete and return the
value of the rightmost node in the deque. The algorithm first repeatedly tries
in lines PR2-PR19 to mark the rightmost node (node) as deleted. Before
trying to update the next pointer, it assures i) in line PR4 that the node is
not already marked for deletion, ii) in the same line that the prev pointer
of the tail (next) node is correct, and iii) in line PR7 that the deque is
not empty. If the deque was detected to be empty, the function returns.
If node was marked for deletion or the prev pointer of the next node was

7.3. THE ALGORITHM 179

procedure PushRight(value: pointer to word)
R1 node:=CreateNode(value);
R2 next:=COPY NODE(tail);
R3 prev:=READ NODE(&next.prev);
R4 while true do
R5 if prev.next �= 〈next,false〉 then
R6 prev:=HelpInsert(prev,next);
R7 continue;
R8 node.prev:=〈prev,false〉;
R9 node.next:=〈next,false〉;
R10 if CAS(&prev.next,〈next,false〉,〈node,false〉) then
R11 COPY NODE(node);
R12 break;
R13 Back-Off
R14 PushCommon(node,next);

procedure PushCommon(node, next: pointer to Node)
P1 while true do
P2 link1:=next.prev;
P3 if link1.d = true or node.next �= 〈next,false〉 then
P4 break;
P5 if CAS(&next.prev,link1,〈node,false〉) then
P6 COPY NODE(node);
P7 RELEASE NODE(link1.p);
P8 if node.prev.d = true then
P9 prev2:=COPY NODE(node);
P10 prev2:=HelpInsert(prev2,next);
P11 RELEASE NODE(prev2);
P12 break;
P13 Back-Off
P14 RELEASE NODE(next);
P15 RELEASE NODE(node);

Figure 7.8: The algorithm for the PushRight operation.

180 CHAPTER 7. LOCK-FREE DEQUE AND DOUBLY LINKED LIST

function PopLeft(): pointer to word
PL1 prev:=COPY NODE(head);
PL2 while true do
PL3 node:=READ NODE(&prev.next);
PL4 if node = tail then
PL5 RELEASE NODE(node);
PL6 RELEASE NODE(prev);
PL7 return ⊥;
PL8 link1:=node.next;
PL9 if link1.d = true then
PL10 HelpDelete(node);
PL11 RELEASE NODE(node);
PL12 continue;
PL13 if CAS(&node.next,link1,〈link1.p,true〉) then
PL14 HelpDelete(node);
PL15 next:=READ DEL NODE(&node.next);
PL16 prev:=HelpInsert(prev,next);
PL17 RELEASE NODE(prev);
PL18 RELEASE NODE(next);
PL19 value:=node.value;
PL20 break;
PL21 RELEASE NODE(node);
PL22 Back-Off
PL23 RemoveCrossReference(node);
PL24 RELEASE NODE(node);
PL25 return value;

Figure 7.9: The algorithm for the PopLeft function.

7.3. THE ALGORITHM 181

function PopRight(): pointer to word
PR1 next:=COPY NODE(tail);
PR2 node:=READ NODE(&next.prev);
PR3 while true do
PR4 if node.next �= 〈next,false〉 then
PR5 node:=HelpInsert(node,next);
PR6 continue;
PR7 if node = head then
PR8 RELEASE NODE(node);
PR9 RELEASE NODE(next);
PR10 return ⊥;
PR11 if CAS(&node.next,〈next,false〉,〈next,true〉) then
PR12 HelpDelete(node);
PR13 prev:=READ DEL NODE(&node.prev);
PR14 prev:=HelpInsert(prev,next);
PR15 RELEASE NODE(prev);
PR16 RELEASE NODE(next);
PR17 value:=node.value;
PR18 break;
PR19 Back-Off
PR20 RemoveCrossReference(node);
PR21 RELEASE NODE(node);
PR22 return value;

Figure 7.10: The algorithm for the PopRight function.

182 CHAPTER 7. LOCK-FREE DEQUE AND DOUBLY LINKED LIST

incorrect, it tries to update the prev pointer of the next node by calling
the HelpInsert function, and then node is updated to be the rightmost node.
After the node has been successfully marked it follows the same scheme as
the PopLeft operation.

7.3.4 Helping and Back-Off

The HelpDelete sub-procedure, see Figure 7.11, tries to set the deletion
mark of the prev pointer and then atomically update the next pointer of
the previous node of the to-be-deleted node, thus fulfilling step 2 and 3 of
the overall node deletion scheme. The algorithm first ensures in line HD1-
HD4 that the deletion mark on the prev pointer of the given node is set. It
then repeatedly tries in lines HD8-HD34 to delete (in the sense of a chain of
next pointers starting from the head node) the given marked node (node) by
changing the next pointer from the previous non-marked node. First, we can
safely assume that the next pointer of the marked node is always referring to
a node (next) to the right and the prev pointer is always referring to a node
(prev) to the left (not necessarily the first). Before trying to update the next
pointer with the CAS operation in line HD30, it assures in line HD9 that
node is not already deleted, in line HD10 that the next node is not marked,
in line HD16 that the prev node is not marked, and in HD24 that prev is the
previous node of node. If next is marked, it is updated to be the next node.
If prev is marked we might need to delete it before we can update prev to
one of its previous nodes and proceed with the current deletion, but in order
to avoid unnecessary and even possibly infinite recursion, HelpDelete is only
called if a next pointer from a non-marked node to prev has been observed
(i.e. lastlink.d is false). Otherwise if prev is not the previous node of node
it is updated to be the next node.

The HelpInsert sub-function, see Figure 7.12, tries to update the prev
pointer of a node and then return a reference to a possibly direct previous
node, thus fulfilling step 2 of the overall insertion scheme or step 4 of the
overall deletion scheme. The algorithm repeatedly tries in lines HI2-HI27 to
correct the prev pointer of the given node (node), given a suggestion of a
previous (not necessarily the directly previous) node (prev). Before trying
to update the prev pointer with the CAS operation in line HI22, it assures
in line HI4 that the prev node is not marked, in line HI13 that node is
not marked, and in line HI16 that prev is the previous node of node. If
prev is marked we might need to delete it before we can update prev to one
of its previous nodes and proceed with the current insertion, but in order
to avoid unnecessary recursion, HelpDelete is only called if a next pointer

7.3. THE ALGORITHM 183

procedure HelpDelete(node: pointer to Node)
HD1 while true do
HD2 link1:=node.prev;
HD3 if link1.d = true or
HD4 CAS(&node.prev,link1,〈link1.p,true〉) then break;
HD5 lastlink.d:=true;
HD6 prev:=READ DEL NODE(&node.prev);
HD7 next:=READ DEL NODE(&node.next);
HD8 while true do
HD9 if prev = next then break;
HD10 if next.next.d = true then
HD11 next2:=READ DEL NODE(&next.next);
HD12 RELEASE NODE(next);
HD13 next:=next2;
HD14 continue;
HD15 prev2:=READ NODE(&prev.next);
HD16 if prev2 = NULL then
HD17 if lastlink.d = false then
HD18 HelpDelete(prev);
HD19 lastlink.d:=true;
HD20 prev2:=READ DEL NODE(&prev.prev);
HD21 RELEASE NODE(prev);
HD22 prev:=prev2;
HD23 continue;
HD24 if prev2 �= node then
HD25 lastlink.d:=false;
HD26 RELEASE NODE(prev);
HD27 prev:=prev2;
HD28 continue;
HD29 RELEASE NODE(prev2);
HD30 if CAS(&prev.next,〈node,false〉,〈next,false〉) then
HD31 COPY NODE(next);
HD32 RELEASE NODE(node);
HD33 break;
HD34 Back-Off
HD35 RELEASE NODE(prev);
HD36 RELEASE NODE(next);

Figure 7.11: The algorithm for the HelpDelete sub-operation.

184 CHAPTER 7. LOCK-FREE DEQUE AND DOUBLY LINKED LIST

function HelpInsert(prev, node: pointer to Node)
:pointer to Node

HI1 lastlink.d:=true;
HI2 while true do
HI3 prev2:=READ NODE(&prev.next);
HI4 if prev2 = NULL then
HI5 if lastlink.d = false then
HI6 HelpDelete(prev);
HI7 lastlink.d:=true;
HI8 prev2:=READ DEL NODE(&prev.prev);
HI9 RELEASE NODE(prev);
HI10 prev:=prev2;
HI11 continue;
HI12 link1:=node.prev;
HI13 if link1.d = true then
HI14 RELEASE NODE(prev2);
HI15 break;
HI16 if prev2 �= node then
HI17 lastlink.d:=false;
HI18 RELEASE NODE(prev);
HI19 prev:=prev2;
HI20 continue;
HI21 RELEASE NODE(prev2);
HI22 if CAS(&node.prev,link1,〈prev,false〉) then
HI23 COPY NODE(prev);
HI24 RELEASE NODE(link1.p);
HI25 if prev.prev.d = true then continue;
HI26 break;
HI27 Back-Off
HI28 return prev;

Figure 7.12: The algorithm for the HelpInsert sub-function.

7.3. THE ALGORITHM 185

from a non-marked node to prev has been observed (i.e. lastlink.d is false).
If node is marked, the procedure is aborted. Otherwise if prev is not the
previous node of node it is updated to be the next node. If the update in
line HI22 succeeds, there is though the possibility that the prev node was
deleted (and thus the prev pointer of node was possibly already updated by
the concurrent Pop operation) directly before the CAS operation. This is
detected in line HI25 and then the update is possibly retried with a new
prev node.

Because the HelpDelete and HelpInsert are often used in the algorithm
for “helping” late operations that might otherwise stop progress of other
concurrent operations, the algorithm is suitable for pre-emptive as well as
fully concurrent systems. In fully concurrent systems though, the helping
strategy as well as heavy contention on atomic primitives, can downgrade
the performance significantly. Therefore the algorithm, after a number of
consecutive failed CAS operations (i.e. failed attempts to help concurrent
operations) puts the current operation into back-off mode. When in back-off
mode, the thread does nothing for a while, and in this way avoids disturb-
ing the concurrent operations that might otherwise progress slower. The
duration of the back-off is initialized to some value (e.g. proportional to the
number of threads) at the start of an operation, and for each consecutive
entering of the back-off mode during one operation invocation, the duration
of the back-off is changed using some scheme, e.g. increased exponentially.

7.3.5 Avoiding Cyclic Garbage

The RemoveCrossReference sub-procedure, see Figure 7.13, tries to break
cross-references between the given node (node) and any of the nodes that
it references, by repeatedly updating the prev and next pointer as long as
they reference a marked node. First, we can safely assume that the prev or
next field of node is not concurrently updated by any other operation, as
this procedure is only called by the main operation that deleted the node
and both the next and prev pointers are marked and thus any concurrent
update using CAS will fail. Before the procedure is finished, it assures in
line RC3 that the previous node (prev) is not marked, and in line RC9 that
the next node (next) is not marked. As long as prev is marked it is traversed
to the left, and as long as next is marked it is traversed to the right, while
continuously updating the prev or next field of node in lines RC5 or RC11.

186 CHAPTER 7. LOCK-FREE DEQUE AND DOUBLY LINKED LIST

procedure RemoveCrossReference(node: pointer to Node)
RC1 while true do
RC2 prev:=node.prev.p;
RC3 if prev.next.d = true then
RC4 prev2:=READ DEL NODE(&prev.prev);
RC5 node.prev:=〈prev2,true〉;
RC6 RELEASE NODE(prev);
RC7 continue;
RC8 next:=node.next.p;
RC9 if next.next.d = true then
RC10 next2:=READ DEL NODE(&next.next);
RC11 node.next:=〈next2,true〉;
RC12 RELEASE NODE(next);
RC13 continue;
RC14 break;

Figure 7.13: The algorithm for the RemoveCrossReference sub-operation.

7.4 Correctness Proof

In this section we present the correctness proof of our algorithm. We first
prove that our algorithm is a linearizable one [50] and then we prove that it
is lock-free. A set of definitions that will help us to structure and shorten the
proof is first described in this section. We start by defining the sequential
semantics of our operations and then introduce two definitions concerning
concurrency aspects in general.

Definition 14 We denote with Qt the abstract internal state of a deque at
the time t. Qt = [v1, . . . , vn] is viewed as an list of values v, where |Qt| ≥
0. The operations that can be performed on the deque are PushLeft(L),
PushRight(R), PopLeft(PL) and PopRight(PR). The time t1 is defined as
the time just before the atomic execution of the operation that we are look-
ing at, and the time t2 is defined as the time just after the atomic execution
of the same operation. In the following expressions that define the sequen-
tial semantics of our operations, the syntax is S1 : O1, S2, where S1 is the
conditional state before the operation O1, and S2 is the resulting state after
performing the corresponding operation:

Qt1 : L(v1), Qt2 = [v1] + Qt1 (7.1)

7.4. CORRECTNESS PROOF 187

Qt1 : R(v1), Qt2 = Qt1 + [v1] (7.2)

Qt1 = ∅ : PL() = ⊥, Qt2 = ∅ (7.3)

Qt1 = [v1] + Q1 : PL() = v1, Qt2 = Q1 (7.4)

Qt1 = ∅ : PR() = ⊥, Qt2 = ∅ (7.5)

Qt1 = Q1 + [v1] : PR() = v1, Qt2 = Q1 (7.6)

Definition 15 In a global time model each concurrent operation Op “oc-
cupies” a time interval [bOp, fOp] on the linear time axis (bOp < fOp). The
precedence relation (denoted by ‘→’) is a relation that relates operations of
a possible execution, Op1 → Op2 means that Op1 ends before Op2 starts.
The precedence relation is a strict partial order. Operations incomparable
under → are called overlapping. The overlapping relation is denoted by ‖
and is commutative, i.e. Op1 ‖ Op2 and Op2 ‖ Op1. The precedence re-
lation is extended to relate sub-operations of operations. Consequently, if
Op1 → Op2, then for any sub-operations op1 and op2 of Op1 and Op2, re-
spectively, it holds that op1 → op2. We also define the direct precedence
relation →d, such that if Op1→dOp2, then Op1 → Op2 and moreover there
exists no operation Op3 such that Op1 → Op3 → Op2.

Definition 16 In order for an implementation of a shared concurrent data
object to be linearizable [50], for every concurrent execution there should
exist an equal (in the sense of the effect) and valid (i.e. it should respect the
semantics of the shared data object) sequential execution that respects the
partial order of the operations in the concurrent execution.

Next we are going to study the possible concurrent executions of our
implementation. First we need to define the interpretation of the abstract
internal state of our implementation.

Definition 17 The value v is present (∃i.Q[i] = v) in the abstract internal
state Q of our implementation, when there is a connected chain of next
pointers (i.e. prev.next) from a present node (or the head node) in the
doubly linked list that connects to a node that contains the value v, and this
node is not marked as deleted (i.e. node.next.d=false).

188 CHAPTER 7. LOCK-FREE DEQUE AND DOUBLY LINKED LIST

Definition 18 The decision point of an operation is defined as the atomic
statement where the result of the operation is finitely decided, i.e. indepen-
dent of the result of any sub-operations after the decision point, the operation
will have the same result. We define the state-read point of an operation
to be the atomic statement where a sub-state of the priority queue is read,
and this sub-state is the state on which the decision point depends. We also
define the state-change point as the atomic statement where the operation
changes the abstract internal state of the priority queue after it has passed
the corresponding decision point.

We will now use these points in order to show the existence and location
in execution history of a point where the concurrent operation can be viewed
as it occurred atomically, i.e. the linearizability point.

Lemma 29 A PushRight operation (R(v)), takes effect atomically at one
statement.

Proof: The decision, state-read and state-change point for a PushRight
operation which succeeds (R(v)), is when the CAS sub-operation in line
R10 (see Figure 7.8) succeeds. The state of the deque was (Qt1 = Q1)
directly before the passing of the decision point. The prev node was the
very last present node as it pointed (verified by R5 and the CAS in R10)
to the tail node directly before the passing of the decision point. The state
of the deque directly after passing the decision point will be Qt2 = Q1 + [v]
as the next pointer of the prev node was changed to point to the new node
which contains the value v. Consequently, the linearizability point will be
the CAS sub-operation in line R10. �

Lemma 30 A PushLeft operation (L(v)), takes effect atomically at one
statement.

Proof: The decision, state-read and state-change point for a PushLeft op-
eration which succeeds (L(v)), is when the CAS sub-operation in line L11
(see Figure 7.7) succeeds. The state of the deque was (Qt1 = Q1) directly
before the passing of the decision point. The state of the deque directly after
passing the decision point will be Qt2 = [v] + Q1 as the next pointer of the
head node was changed to point to the new node which contains the value
v. Consequently, the linearizability point will be the CAS sub-operation in
line L11. �

7.4. CORRECTNESS PROOF 189

Lemma 31 A PopRight operation which fails (PR() = ⊥), takes effect
atomically at one statement.

Proof: The decision point for a PopRight operation which fails (PR() = ⊥)
is the check in line PR7. Passing of the decision point together with the
verification in line PR4 gives that the next pointer of the head node must
have been pointing to the tail node (Qt1 = ∅) directly before the read sub-
operation of the prev field in line PR2 or the next field in line HI3, i.e. the
state-read point. Consequently, the linearizability point will be the read
sub-operation in line PR2 or line HI3. �

Lemma 32 A PopRight operation which succeeds (PR() = v), takes effect
atomically at one statement.

Proof: The decision point for a PopRight operation which succeeds (PR() =
v) is when the CAS sub-operation in line PR11 succeeds. Passing of the
decision point together with the verification in line PR4 gives that the next
pointer of the to-be-deleted node must have been pointing to the tail node
(Qt1 = Q1 + [v]) directly before the CAS sub-operation in line PR11, i.e.
the state-read point. Directly after passing the CAS sub-operation (i.e.
the state-change point) the to-be-deleted node will be marked as deleted
and therefore not present in the deque (Qt2 = Q1). Consequently, the
linearizability point will be the CAS sub-operation in line PR11. �

Lemma 33 A PopLeft operation which fails (PL() = ⊥), takes effect atom-
ically at one statement.

Proof: The decision point for a PopLeft operation which fails (PL() = ⊥)
is the check in line PL4. Passing of the decision point gives that the next
pointer of the head node must have been pointing to the tail node (Qt1 = ∅)
directly before the read sub-operation of the next pointer in line PL3, i.e.
the state-read point. Consequently, the linearizability point will be the read
sub-operation of the next pointer in line PL3. �

Lemma 34 A PopLeft operation which succeeds (PL() = v), takes effect
atomically at one statement.

Proof: The decision point for a PopLeft operation which succeeds (PL() =
v) is when the CAS sub-operation in line PL13 succeeds. Passing of the
decision point together with the verification in line PL9 gives that the next

190 CHAPTER 7. LOCK-FREE DEQUE AND DOUBLY LINKED LIST

pointer of the head node must have been pointing to the present to-be-
deleted node (Qt1 = [v] + Q1) directly before the read sub-operation of the
next pointer in line PL3, i.e. the state-read point. Directly after passing
the CAS sub-operation in line PL13 (i.e. the state-change point) the to-
be-deleted node will be marked as deleted and therefore not present in the
deque (¬∃i.Qt2 [i] = v). Unfortunately this does not match the semantic
definition of the operation.

However, none of the other concurrent operations linearizability points is
dependent on the to-be-deleted node’s state as marked or not marked during
the time interval from the state-read to the state-change point. Clearly, the
linearizability points of Lemmas 29 and 30 are independent as the to-be-
deleted node would be part (or not part if not present) of the corresponding
Q1 terms. The linearizability points of Lemmas 31 and 33 are independent,
as those linearizability points depend on the head node’s next pointer point-
ing to the tail node or not. Finally, the linearizability points of Lemma 32
as well as this lemma are independent, as the to-be-deleted node would be
part (or not part if not present) of the corresponding Q1 terms, otherwise
the CAS sub-operation in line PL13 of this operation would have failed.

Therefore all together, we could safely interpret the to-be-deleted node
to be not present already directly after passing the state-read point ((Qt2 =
Q1). Consequently, the linearizability point will be the read sub-operation
of the next pointer in line PL3. �

Lemma 35 When the deque is idle (i.e. no operations are being performed),
all next pointers of present nodes are matched with a correct prev pointer
from the corresponding present node (i.e. all linked nodes from the head or
tail node are present in the deque).

Proof: We have to show that each operation takes responsibility for that the
affected prev pointer will finally be correct after changing the corresponding
next pointer. After successfully changing the next pointer in the PushLeft
(PushRight) in line L11 (R10) operation, the corresponding prev pointer is
tried to be changed in line P5 repeatedly until i) it either succeeds, ii) either
the next or this node is deleted as detected in line P3, iii) or a new node is
inserted as detected in line P3. If a new node is inserted the corresponding
PushLeft (PushRight) operation will make sure that the prev pointer is cor-
rected. If either the next or this node is deleted, the corresponding PopLeft
(PopRight) operation will make sure that the prev pointer is corrected. If
the prev pointer was successfully changed it is possible that this node was

7.4. CORRECTNESS PROOF 191

deleted before we changed the prev pointer of the next node. If this is de-
tected in line P8, then the prev pointer of the next node is corrected by the
HelpInsert function.

After successfully marking the to-be-deleted nodes in line PL13 (PR11),
the PopLeft (PopRight) functions will make sure that the connecting next
pointer of the prev node will be changed to point to the closest present node
to the right, by calling the HelpDelete procedure in line PL14 (PR12). It
will also make sure that the corresponding prev pointer of the next code will
be corrected by calling the HelpInsert function in line PL16 (PR14).

The HelpDelete procedure will repeatedly try to change the next pointer
of the prev node that points to the deleted node, until it either succeeds
changing the next pointer in line HD30 or some concurrent HelpDelete al-
ready succeeded as detected in line HD9.

The HelpInsert procedure will repeatedly try to change the prev pointer
of the node to match with the next pointer of the prev node, until it either
succeeds changing the prev pointer in line HI22 or the node is deleted as de-
tected in line HI13. If it succeeded with changing the prev pointer, the prev
node has possibly been deleted directly before changing the prev pointer,
and therefore it is detected if the prev node is marked in line HI25 and then
the procedure will continue trying to correctly change the prev pointer. �

Lemma 36 When the deque is idle, all previously deleted nodes are garbage
collected.

Proof: We have to show that each PopRight or PopLeft operation takes
responsibility for that the deleted node will finally have no references to it.
The possible references are caused by other nodes pointing to it. Following
Lemma 35 we know that no present nodes will reference the deleted node.
It remains to show that all paths of references from a deleted node will fi-
nally reference a present node, i.e. there are no cyclic referencing. After
the node is deleted in lines PL14 and PL16 (PR12 and PR14), it is assured
by the PopLeft (PopRight) operation by calling the RemoveCrossReference
procedure in line PL23 (PR20) that both the next and prev pointers are
pointing to a present node. If any of those present nodes are deleted before
the referencing deleted node is garbage collected in line PL24 (PR21), the
RemoveCrossReference procedures called by the corresponding PopLeft or
PopRight operation will assure that the next and prev pointers of the pre-
viously present node will point to present nodes, and so on recursively. The
RemoveCrossReference procedure repeatedly tries to change prev pointers to
point to the previous node of the referenced node until the referenced node

192 CHAPTER 7. LOCK-FREE DEQUE AND DOUBLY LINKED LIST

is present, detected in line RC3 and possibly changed in line RC5. The next
pointer is correspondingly detected in line RC9 and possibly changed in line
RC11. �

Lemma 37 The path of prev pointers from a node is always pointing a
present node that is left of the current node.

Proof: We will look at all possibilities where the prev pointer is set or
changed. The setting in line L9 (R8) is clearly to the left as it is verified by
L5 and L11 (R5 and R10). The change of the prev pointer in line P5 is to
the left as verified by P3 and that nodes are never moved relatively to each
other. The change of the prev pointer in line HI22 is to the left as verified
by line HI3 and HI16. Finally, the change of the prev pointer in line RC5 is
to the left as it is changed to the prev pointer of the previous node. �

Lemma 38 All operations will terminate if exposed to a limited number of
concurrent changes to the deque.

Proof: The amount of changes an operation could experience is limited.
Because of the reference counting, none of the nodes which are referenced
to by local variables can be garbage collected. When traversing through
prev or next pointers, the memory management guarantees atomicity of the
operations, thus no newly inserted or deleted nodes will be missed. We also
know that the relative positions of nodes that are referenced to by local
variables will not change as nodes are never moved in the deque. Most loops
in the operations retry because a change in the state of some node(s) was
detected in the ending CAS sub-operation, and then retry by re-reading
the local variables (and possibly correcting the state of the nodes) until no
concurrent changes was detected by the CAS sub-operation and therefore the
CAS succeeded and the loop terminated. Those loops will clearly terminate
after a limited number of concurrent changes. Included in that type of loops
are L4-L14, R4-R13, P1-P13, PL2-PL22 and PR3-PR19.

The loop HD8-HD34 will terminate if either the prev node is equal to
the next node in line HD9 or the CAS sub-operation in line HD30 succeeds.
From the start of the execution of the loop, we know that the prev node is
left of the to-be-deleted node which in turn is left of the next node. Follow-
ing from Lemma 37 this order will hold by traversing the prev node through
its prev pointer and traversing the next node through its next pointer. Con-
sequently, traversing the prev node through the next pointer will finally
cause the prev node to be directly left of the to-be-deleted node if this is

7.4. CORRECTNESS PROOF 193

not already deleted (and the CAS sub-operation in line HD30 will finally
succeed), otherwise the prev node will finally be directly left of the next
node (and in the next step the equality in line HD9 will hold). As long as
the prev node is marked it will be traversed to the left in line HD20, and if
it is the left-most marked node the prev node will be deleted by recursively
calling HelpDelete in line HD18. If the prev node is not marked it will be
traversed to the right. As there is a limited number of changes and thus
a limited number of marked nodes left of the to-be-deleted node, the prev
node will finally traverse to the right and either of the termination criteria
will be fulfilled.

The loop HI2-HI27 will terminate if either the to-be-corrected node is
marked in line HI13 or if the CAS sub-operation in line HI22 succeeds and
prev node is not marked. From the start of the execution of the loop, we
know that the prev node is left of the to-be-corrected node. Following from
Lemma 37 this order will hold by traversing the prev node through its prev
pointer. Consequently, traversing the prev node through the next pointer
will finally cause the prev node to be directly left of the to-be-corrected
node if this is not deleted (and the CAS sub-operation in line HI22 will
finally succeed), otherwise line HI13 will succeed. As long as the prev node
is marked it will be traversed to the left in line HI8, and if it is the left-most
marked node the prev node will be deleted by calling HelpDelete in line HI6.
If the prev node is not marked it will be traversed to the right. As there is a
limited number of changes and thus a limited number of marked nodes left
of the to-be-corrected node, the prev node will finally traverse to the right
and either of the termination criteria will be fulfilled.

The loop RC1-RC14 will terminate if both the prev node and the next
node of the to-be-deleted node is not marked in line RC3 respectively line
RC9. We know that from the start of the execution of the loop, the prev
node is left of the to-be-deleted node and the next node is right of the to-be-
deleted node. Following from Lemma 37, traversing the prev node through
the next pointer will finally reach a not marked node or the head node (which
is not marked), and traversing the next node through the next pointer will
finally reach a not marked node or the tail node (which is not marked), and
both of the termination criteria will be fulfilled. �

Lemma 39 With respect to the retries caused by synchronization, one oper-
ation will always do progress regardless of the actions by the other concurrent
operations.

194 CHAPTER 7. LOCK-FREE DEQUE AND DOUBLY LINKED LIST

Proof: We now examine the possible execution paths of our implemen-
tation. There are several potentially unbounded loops that can delay the
termination of the operations. We call these loops retry-loops. If we omit
the conditions that are because of the operations semantics (i.e. searching
for the correct criteria etc.), the loop retries when sub-operations detect
that a shared variable has changed value. This is detected either by a sub-
sequent read sub-operation or a failed CAS. These shared variables are only
changed concurrently by other CAS sub-operations. According to the def-
inition of CAS, for any number of concurrent CAS sub-operations, exactly
one will succeed. This means that for any subsequent retry, there must be
one CAS that succeeded. As this succeeding CAS will cause its retry loop
to exit, and our implementation does not contain any cyclic dependencies
between retry-loops that exit with CAS, this means that the corresponding
PushRight, PushLeft, PopRight or PopLeft operation will progress. Conse-
quently, independent of any number of concurrent operations, one operation
will always progress. �

Theorem 4 The algorithm implements a correct, memory stable, lock-free
and linearizable deque.

Proof: Following from Lemmas 29, 30, 31, 32, 33 and 34 and by using
the respective linearizability points, we can create an identical (with the
same semantics) sequential execution that preserves the partial order of the
operations in a concurrent execution. Following from Definition 16, the
implementation is therefore linearizable.

Lemmas 38 and 39 give that our implementation is lock-free.
Following from Lemmas 38, 29, 30, 31, 32, 33 and 34 we can conclude

that all operations will terminate with the correct result.
Following from Lemma 36 we know that the maximum memory usage

will be proportional to the number of present values in the deque.
�

7.5 Experimental Evaluation

In our experiments, each concurrent thread performed 1000 randomly cho-
sen sequential operations on a shared deque, with a distribution of 1/4
PushRight, 1/4 PushLeft, 1/4 PopRight and 1/4 PopLeft operations. Each
experiment was repeated 50 times, and an average execution time for each
experiment was estimated. Exactly the same sequence of operations was

7.5. EXPERIMENTAL EVALUATION 195

 0

 5000

 10000

 15000

 20000

 25000

 0 5 10 15 20 25 30

E
xe

cu
tio

n
T

im
e

(m
s)

Threads

Deque with High Contention - SGI Mips, 29 Processors

NEW ALGORITHM
MICHAEL

HAT-TRICK MUTEX
HAT-TRICK CASN

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 5 10 15 20 25 30

E
xe

cu
tio

n
T

im
e

(m
s)

Threads

Deque with High Contention - SUN Solaris, 4 Processors

NEW ALGORITHM
MICHAEL

HAT-TRICK MUTEX
HAT-TRICK CASN

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 5 10 15 20 25 30

E
xe

cu
tio

n
T

im
e

(m
s)

Threads

Deque with High Contention - Linux, 2 Processors

NEW ALGORITHM
MICHAEL

HAT-TRICK MUTEX
HAT-TRICK CASN

Figure 7.14: Experiment with deques and high contention.

196 CHAPTER 7. LOCK-FREE DEQUE AND DOUBLY LINKED LIST

 1

 10

 100

 1000

 10000

 100000

 0 5 10 15 20 25 30

E
xe

cu
tio

n
T

im
e

(m
s)

Threads

Deque with High Contention - SGI Mips, 29 Processors

NEW ALGORITHM
MICHAEL

HAT-TRICK MUTEX
HAT-TRICK CASN

 1

 10

 100

 1000

 0 5 10 15 20 25 30

E
xe

cu
tio

n
T

im
e

(m
s)

Threads

Deque with High Contention - SUN Solaris, 4 Processors

NEW ALGORITHM
MICHAEL

HAT-TRICK MUTEX
HAT-TRICK CASN

 1

 10

 100

 1000

 0 5 10 15 20 25 30

E
xe

cu
tio

n
T

im
e

(m
s)

Threads

Deque with High Contention - Linux, 2 Processors

NEW ALGORITHM
MICHAEL

HAT-TRICK MUTEX
HAT-TRICK CASN

Figure 7.15: Experiment with deques and high contention, logarithmic
scales.

7.5. EXPERIMENTAL EVALUATION 197

performed for all different implementations compared. Besides our imple-
mentation, we also performed the same experiment with the lock-free im-
plementation by Michael [79] and the implementation by Martin et al. [74],
two of the most efficient lock-free deques that have been proposed. The
algorithm by Martin et al. [74] was implemented together with the corre-
sponding memory management scheme by Detlefs et al. [27]. However, as
both [74] and [27] use the atomic operation CAS2 which is not available in
any modern system, the CAS2 operation was implemented in software using
two different approaches. The first approach was to implement CAS2 using
mutual exclusion (as proposed in [74]), which should match the optimistic
performance of an imaginary CAS2 implementation in hardware. The other
approach was to implement CAS2 using one of the most efficient software
implementations of CASN known that could meet the needs of [74] and [27],
i.e. the implementation by Harris et al. [43].

A clean-cache operation was performed just before each sub-experiment
using a different implementation. All implementations are written in C and
compiled with the highest optimization level. The atomic primitives are
written in assembly language.

The experiments were performed using different number of threads, vary-
ing from 1 to 28 with increasing steps. Three different platforms were used,
with varying number of processors and level of shared memory distribution.
To get a highly pre-emptive environment, we performed our experiments on
a Compaq dual-processor Pentium II PC running Linux, and a Sun Ultra 80
system running Solaris 2.7 with 4 processors. In order to evaluate our algo-
rithm with full concurrency we also used a SGI Origin 2000 system running
Irix 6.5 with 29 250 MHz MIPS R10000 processors. The results from the
experiments are shown in Figure 7.14. The average execution time is drawn
as a function of the number of threads.

Our results show that both the CAS-based algorithms outperform the
CAS2-based implementations for any number of threads. For the systems
with low or medium concurrency and uniform memory architecture, [79]
has the best performance. However, for the system with full concurrency
and non-uniform memory architecture our algorithm performs significantly
better than [79] from 2 threads and more, as a direct consequence of the
nature of our algorithm to support parallelism for disjoint accesses.

198 CHAPTER 7. LOCK-FREE DEQUE AND DOUBLY LINKED LIST

7.6 General Operations for a Lock-Free Doubly
Linked List

In this section we provide the details for the general operations of a lock-
free doubly linked list, i.e. traversing the data structure in any direction
and inserting and deleting nodes at arbitrary positions. Note that the lin-
earizability points for these operations are defined without respect to the
deque operations8. For maintaining the current position we adopt the cur-
sor concept by Valois [122], that is basically just a reference to a node in
the list.

In order to be able to traverse through deleted nodes, we also have
to define the position of deleted nodes that is consistent with the normal
definition of position of active nodes for sequential linked lists.

Definition 19 The position of a cursor that references a node that is present
in the list is the referenced node. The position of a cursor that references
a deleted node, is represented by the node that was directly to the next of
the deleted node at the very moment of the deletion (i.e. the setting of the
deletion mark). If that node is deleted as well, the position is equal to the
position of a cursor referencing that node, and so on recursively. The actual
position is then interpreted to be at an imaginary node directly previous of
the representing node.

The Next function, see Figure 7.16, tries to change the cursor to the
next position relative to the current position, and returns the status of
success. The algorithm repeatedly in line NT2-NT11 checks the next node
for possible traversal until the found node is present and is not the tail
dummy node. If the current node is the tail dummy node, false is returned
in line NT2. In line NT3 the next pointer of the current node is de-referenced
and in line NT4 the deletion state of the found node is read. If the found
node is deleted and the current node was deleted when directly next of the
found node, this is detected in line NT5 and then the position is updated
according to Definition 19 in line NT10. If the found node was detected
as present in line NT5, the cursor is set to the found node in line NT10
and true is returned (unless the found node is the tail dummy node when
instead false is returned) in line NT11. Otherwise it is checked if the found

8The general doubly linked list operation and the deque operations are compatible in
the respect that the underlying data structure will be consistent. However, the lineariz-
ability point of the PopLeft operation is only defined with respect to the other deque
operations and not with respect to the genaral doubly linked list operations.

7.6. OPERATIONS FOR A LOCK-FREE DOUBLY LINKED LIST 199

function Next(cursor: pointer to pointer to Node): boolean
NT1 while true do
NT2 if *cursor = tail then return false;
NT3 next:=READ DEL NODE(&(*cursor).next);
NT4 d := next.next.d;
NT5 if d = true and (*cursor).next �= 〈next,true〉 then
NT6 if (*cursor).next.p = next then HelpDelete(next);
NT7 RELEASE NODE(next);
NT8 continue;
NT9 RELEASE NODE(*cursor);
NT10 *cursor:=next;
NT11 if d = false and next �= tail then return true;

Figure 7.16: The algorithm for the Next operation.

node is not already fully deleted in line NT6 and then fulfils the deletion
by calling the HelpDelete procedure after which the algorithm retries at line
NT2. The linearizability point of a Next function that succeeds is the read
sub-operation of the next pointer in line NT3. The linearizability point of
a Next function that fails is line NT2 if the node positioned by the original
cursor was the tail dummy node, and the read sub-operation of the next
pointer in line NT3 otherwise.

The Prev function, see Figure 7.17, tries to change the cursor to the
previous position relative to the current position, and returns the status
of success. The algorithm repeatedly in line PV2-PV11 checks the next
node for possible traversal until the found node is present and is not the
head dummy node. If the current node is the head dummy node, false is
returned in line PV2. In line PV3 the prev pointer of the current node is
de-referenced. If the found node is directly previous of the current node and
the current node is present, this is detected in line PV4 and then the cursor
is set to the found node in line PV6 and true is returned (unless the found
node is the head dummy node when instead false is returned) in line PV7.
If the current node is deleted then the cursor position is updated according
to Definition 19 by calling the Next function in line PV8. Otherwise the prev
pointer of the current node is updated by calling the HelpInsert function in
line PV10 after which the algorithm retries at line PV2. The linearizability
point of a Prev function that succeeds is the read sub-operation of the prev
pointer in line PV3. The linearizability point of a Prev function that fails is
line PV2 if the node positioned by the original cursor was the head dummy

200 CHAPTER 7. LOCK-FREE DEQUE AND DOUBLY LINKED LIST

function Prev(cursor: pointer to pointer to Node): boolean
PV1 while true do
PV2 if *cursor = head then return false;
PV3 prev:=READ DEL NODE(&(*cursor).prev);
PV4 if prev.next = 〈*cursor,false〉 and (*cursor).next.d = false then
PV5 RELEASE NODE(*cursor);
PV6 *cursor:=prev;
PV7 if prev �= head then return true;
PV8 else if (*cursor).next.d = true then Next(cursor);
PV9 else
PV10 prev:=HelpInsert(prev,*cursor);
PV11 RELEASE NODE(prev);

Figure 7.17: The algorithm for the Prev operation.

function Read(cursor: pointer to pointer to Node): pointer to word
RD1 if *cursor = head or *cursor = tail then return ⊥;
RD2 value:=(*cursor).value;
RD3 if (*cursor).next.d = true then return ⊥;
RD4 return value;

Figure 7.18: The algorithm for the Read function.

node, and the read sub-operation of the prev pointer in line PV3 otherwise.
The Read function, see Figure 7.18, returns the current value of the node

referenced by the cursor, unless this node is deleted or the node is equal to
any of the dummy nodes when the function instead returns a non-value. In
line RD1 the algorithm checks if the node referenced by the cursor is either
the head or tail dummy node, and then returns a non-value. The value of
the node is read in line RD2, and in line RD3 it is checked if the node is
deleted and then returns a non-value, otherwise the value is returned in line
RD4. The linearizability point of a Read function that returns a value is
the read sub-operation of the next pointer in line RD3. The linearizability
point of a Read function that returns a non-value is the read sub-operation
of the next pointer in line RD3, unless the node positioned by the cursor
was the head or tail dummy node when the linearizability point is line RD1.

The InsertBefore operation, see Figure 7.19, inserts a new node directly
before the node positioned by the given cursor and later changes the cursor
to position the inserted node. If the node positioned by the cursor is the head
dummy node, the new node will be inserted directly after the head dummy

7.6. OPERATIONS FOR A LOCK-FREE DOUBLY LINKED LIST 201

procedure InsertBefore(cursor: pointer to pointer to Node,
value: pointer to word)

IB1 if *cursor = head then return InsertAfter(cursor,value);
IB2 node:=CreateNode(value);
IB3 while true do
IB4 if (*cursor).next.d = true then Next(cursor);
IB5 prev:=READ DEL NODE(&(*cursor).prev);
IB6 node.prev:=〈prev,false〉;
IB7 node.next:=〈(*cursor),false〉;
IB8 if CAS(&prev.next,〈(*cursor),false〉,〈node,false〉) then
IB9 COPY NODE(node);
IB10 break;
IB11 if prev.next �= 〈(*cursor),false〉 then prev:=HelpInsert(prev,*cursor);
IB12 RELEASE NODE(prev);
IB13 Back-Off
IB14 next:=(*cursor);
IB15 *cursor:=COPY NODE(node);
IB16 node:=HelpInsert(node,next);
IB17 RELEASE NODE(node);
IB18 RELEASE NODE(next);

Figure 7.19: The algorithm for the InsertBefore operation.

node. The algorithm checks in line IB1 if the cursor position is equal to the
head dummy node, and consequently then calls the InsertAfter operation to
insert the new node directly after the head dummy node. The algorithm
repeatedly tries in lines IB4-IB13 to insert the new node (node) between
the previous node (prev) of the cursor and the cursor positioned node, by
atomically changing the next pointer of the prev node to instead point to
the new node. If the node positioned by the cursor is deleted this is detected
in line IB4 and the cursor is updated by calling the Next function. If the
update of the next pointer of the prev node by using the CAS operation in
line IB8 fails, this is because either the prev node is no longer the directly
previous node of the cursor positioned node, or that the cursor positioned
node is deleted. If the prev node is no longer the directly previous node this
is detected in line IB11 and then the HelpInsert function is called in order
to update the prev pointer of the cursor positioned node. If the update
using CAS in line IB8 succeeds, the cursor position is set to the new node
in line IB15 and the prev pointer of the previous cursor positioned node is
updated by calling the HelpInsert function in line IB16. The linearizability

202 CHAPTER 7. LOCK-FREE DEQUE AND DOUBLY LINKED LIST

procedure InsertAfter(cursor: pointer to pointer to Node,
value: pointer to word)

IA1 if *cursor = tail then return InsertBefore(cursor,value);
IA2 node:=CreateNode(value);
IA3 while true do
IA4 next:=READ DEL NODE(&(*cursor).next);
IA5 node.prev:=〈(*cursor),false〉;
IA6 node.next:=〈next,false〉;
IA7 if CAS(&(*cursor).next,〈next,false〉,〈node,false〉) then
IA8 COPY NODE(node);
IA9 break;
IA10 RELEASE NODE(next);
IA11 if (*cursor).next.d = true then
IA12 RELEASE NODE(node);
IA13 return InsertBefore(cursor,value);
IA14 Back-Off
IA15 *cursor:=COPY NODE(node);
IA16 node:=HelpInsert(node,next);
IA17 RELEASE NODE(node);
IA18 RELEASE NODE(next);

Figure 7.20: The algorithm for the InsertAfter operation.

point of the InsertBefore operation is the successful CAS operation in line
IB8, or equal to the linearizability point of the InsertBefore operation if that
operation was called in line IB1.

The InsertAfter operation, see Figure 7.20, inserts a new node directly
after the node positioned by the given cursor and later changes the cursor
to position the inserted node. If the node positioned by the cursor is the tail
dummy node, the new node will be inserted directly before the tail dummy
node. The algorithm checks in line IA1 if the cursor position is equal to the
tail dummy node, and consequently then calls the InsertBefore operation to
insert the new node directly after the head dummy node. The algorithm
repeatedly tries in lines IA4-IA14 to insert the new node (node) between the
cursor positioned node and the next node (next) of the cursor, by atomically
changing the next pointer of the cursor positioned node to instead point to
the new node. If the update of the next pointer of the cursor positioned
node by using the CAS operation in line IA7 fails, this is because either
the next node is no longer the directly next node of the cursor positioned
node, or that the cursor positioned node is deleted. If the cursor positioned

7.6. OPERATIONS FOR A LOCK-FREE DOUBLY LINKED LIST 203

function Delete(cursor: pointer to pointer to Node): pointer to word
D1 if *cursor = head or *cursor = tail then return ⊥;
D2 while true do
D3 link1:=(*cursor).next;
D4 if link1.d = true then return ⊥;
D5 if CAS(&(*cursor).next,link1,〈link1.p,true〉) then
D6 HelpDelete(*cursor);
D7 prev:=COPY NODE((*cursor).prev.p);
D8 prev:=HelpInsert(prev,link1.p);
D9 RELEASE NODE(prev);
D10 value:=(*cursor).value;
D11 RemoveCrossReference(*cursor);
D12 return value;

Figure 7.21: The algorithm for the Delete function.

node is deleted, the operation to insert directly after the cursor position now
becomes the problem of inserting directly before the node that represents
the cursor position according to Definition 19. It is detected in line IA11
if the cursor positioned node is deleted and then it calls the InsertBefore
operation in line IA13. If the update using CAS in line IA7 succeeds, the
cursor position is set to the new node in line IA15 and the prev pointer
of the previous cursor positioned node is updated by calling the HelpInsert
function in line IA16. The linearizability point of the InsertAfter operation
is the successful CAS operation in line IA7, or equal to the linearizability
point of the InsertAfter operation if that operation was called in line IA1 or
IA13.

The Delete operation, see Figure 7.21, tries to delete the non-dummy
node referenced by the given cursor and returns the value if successful, oth-
erwise a non-value is returned. If the cursor positioned node is equal to any
of the dummy nodes this is detected in line D1 and a non-value is returned.
The algorithm repeatedly tries in line D3-D5 to set the deletion mark of the
next pointer of the cursor positioned node. If the deletion mark is already
set, this is detected in line D4 and a non-value is returned. If the CAS op-
eration in line D5 succeeds, the deletion process is completed by calling the
HelpDelete procedure in line D6 and the HelpInsert function in line D8. In
order to avoid possible problems with cyclic garbage the RemoveCrossRefer-
ence procedure is called in line D11. The value of the deleted node is read
in line D10 and the value returned in line D12. The linearizability point
of a Delete function that returns a value is the successful CAS operation in

204 CHAPTER 7. LOCK-FREE DEQUE AND DOUBLY LINKED LIST

line D5. The linearizability point of a Delete function that returns a non-
value is the the read sub-operation of the next pointer in line D3, unless the
node positioned by the cursor was the head or tail dummy node when the
linearizability point instead is line D1.

The remaining necessary functionality for initializing the cursor positions
like First() and Last() can be trivially derived by using the dummy nodes.
If an Update() functionality is necessary, this could easily be achieved by
extending the value field of the node data structure with a deletion mark,
and throughout the whole algorithm interpret the deletion state of the whole
node using this mark when semantically necessary, in combination with the
deletion marks on the next and prev pointers.

7.7 Conclusions

We have presented the first lock-free algorithmic implementation of a con-
current deque that has all the following features: i) it supports parallelism
for disjoint accesses, ii) uses a fully described lock-free memory management
scheme, iii) uses atomic primitives which are available in modern computer
systems, and iv) allows pointers with full precision to be used, and thus
supports dynamic deque sizes. In addition, the proposed solution also im-
plements all the fundamental operations of a general doubly linked list data
structure in a lock-free manner. The doubly linked list operations also sup-
port deterministic and well defined traversals through even deleted nodes,
and are therefore suitable for concurrent applications of linked lists in prac-
tice.

We have performed experiments that compare the performance of our al-
gorithm with two of the most efficient algorithms of lock-free deques known,
using full implementations of those algorithms. The experiments show that
our implementation performs significantly better on systems with high con-
currency and non-uniform memory architecture.

We believe that our implementation is of highly practical interest for
multi-processor applications. We are currently incorporating it into the
NOBLE [104] library.

Chapter 8

Conclusions

The overall focus of our work has been on designing efficient and practical
shared data structures with related non-blocking synchronization methods
for use within concurrent programs. One sub-goal was to find applications
of wait- and lock-free data structures to real-time systems.

We have studied how timing information available in real-time systems
can be used to improve and simplify wait-free algorithms for shared data
structures. Our first attempt was to simplify a wait-free algorithm for snap-
shots that do not use any strong atomic primitives. This is especially suit-
able for embedded real-time systems, as many of those platforms are built on
simple processors which lack support for more advanced features like strong
synchronization primitives. In addition to be more suitable for embedded
systems, the evaluation of the resulting simplified algorithm also show sig-
nificant improvements in performance compared to the previously known
algorithms for snapshots that instead use strong atomic primitives.

Our next attempt on using timing information was to study a wait-free
algorithm for a shared register. Many distributed real-time systems have
limited support for shared memory or have inter-process communication
based on message passing. The simplified version of the algorithm show
significant improvements in the aspect of usability; the size of the register
can be increased as a larger part can be utilized of the involved components
needed for the algorithm.

We have been doing studies and implementation work with known lock-
and wait-free data structures. Several of these data structures have been put
together into a software library called NOBLE, together with the algorithms
presented in this thesis. The functionality of the library is designed in a way
to be easily accessible for non-experts in non-blocking protocols, and at the

206 CHAPTER 8. CONCLUSIONS

same time efficient and portable. Experiments on multi-processor platforms
show significant improvements for the non-blocking implementations. As
most algorithms have different performance characteristics and benefits for
different environments, the diversity of choices in the library for each data
structure, enables the user to always select the implementations that best
fits the current environment. The NOBLE library has been released to the
public, and has gained interest from both academia and industry.

We have presented a lock-free algorithmic implementation of a concur-
rent priority queue. The implementation is based on the sequential skip
list data structure and builds on top of it to support concurrency and lock-
freedom in an efficient and practical way. Compared to the previous at-
tempts to use skip lists for building concurrent priority queues our algo-
rithm is lock-free and avoids the performance penalties that come with the
use of locks. Compared to the previous lock-free/wait-free concurrent prior-
ity queue algorithms, our algorithm inherits and carefully retains the basic
design characteristic that makes skip lists practical: simplicity. Previous
lock-free/wait-free algorithms did not perform well because of their com-
plexity; furthermore they were often based on atomic primitives that are
not available in today’s systems. We compared our algorithm with some of
the most efficient implementations of priority queues known. Experiments
show that our implementation scales well, and with 3 threads or more our
implementation outperforms the corresponding lock-based implementations,
for all cases on both fully concurrent systems as well as with pre-emption.

We have presented a lock-free algorithmic implementation of a concur-
rent dictionary. The implementation is based on the sequential skip list data
structure and builds on top of it to support concurrency and lock-freedom
in an efficient and practical way. Compared to the previous attempts to use
skip lists for building concurrent dictionaries our algorithm is lock-free and
avoids the performance penalties that come with the use of locks. Com-
pared to the previous non-blocking concurrent dictionary algorithms, our
algorithm inherits and carefully retains the basic design characteristic that
makes skip lists practical; logarithmic search time complexity. Previous
non-blocking algorithms did not perform well on dictionaries with realistic
sizes because of their linear or worse search time complexity. Our algo-
rithm also implements the full set of operations that is needed in a practical
setting. We compared our algorithm with the most efficient non-blocking
implementation of dictionaries known. Experiments show that our imple-
mentation scales well, and for realistic number of nodes our implementation
outperforms the other implementation, for all cases on both fully concurrent
systems as well as with pre-emption.

207

We have presented the first lock-free algorithmic implementation of a
concurrent deque that has all the following features: i) it supports paral-
lelism for disjoint accesses, ii) uses a fully described lock-free memory man-
agement scheme, iii) uses atomic primitives which are available in modern
computer systems, and iv) allows pointers with full precision to be used, and
thus supports dynamic maximum sizes. In addition, the proposed solution
also implements all the fundamental operations of a general doubly linked
list data structure in a lock-free manner. The doubly linked list operations
also support deterministic and well defined traversals through even deleted
nodes, and are therefore suitable for concurrent applications of linked lists in
practice. We have performed experiments that compare the performance of
our algorithm with two of the most efficient algorithms of lock-free deques
known, using full implementations of those algorithms. The experiments
show that our implementation performs significantly better on systems with
high concurrency and non-uniform memory architecture.

In overall, we have showed that the use of non-blocking synchronization
methods can significantly improve the performance of shared data struc-
tures. Moreover, although it is known to be very complex, we have showed
that it is possible to design specific non-blocking algorithms for most com-
mon data structures and abstract data types, and that these algorithms can
be implemented practically and efficiently on modern computer systems. We
have also showed that non-blocking synchronization can be efficiently ap-
plied to real-time systems, with the focus on practical wait-free algorithms
especially suitable for hard real-time systems.

The experiments performed on the selected multi-processor platforms in
the form of micro-benchmarks, do not guarantee the performance outside the
scope of those experiments. However, the showed significant performance
benefits in the randomized and general experimental scenarios, together with
the fact that non-blocking algorithms can significantly improve the scalabil-
ity of parallel applications as showed by Tsigas and Zhang [115] [118], give
strong hints for a good performance on real applications as well. For our
lock-free skip list construction, we already know of two American compa-
nies that are incorporating our algorithms into their environment with so
far very promising results.

208 CHAPTER 8. CONCLUSIONS

Chapter 9

Future Work

Our success with using asymmetric pointer updates on our design of the
doubly linked list as well as the skip list shared data structures, opens the
question whether this approach can be used also on other advanced data
structures. Asymmetric updates can possibly make it possible in general
to avoid atomic updates of 2 or more non-adjacent memory words. The
key idea is to only rely on the standard and commonly available compare-
and-swap (CAS) atomic primitive for updating the part of the shared data
structure that is absolutely necessary for achieving correctness and consen-
sus in the form of linearizability. The data structures of focus are tree and
graph structures in general. It would also of interest to research if it is
possible to relax the consensus requirement of the subsequent updates of
an asymmetric update, to replace the CAS updates that are not absolutely
necessary for linearizability with write operations followed by verifications
using read operations.

A significant part of the properties that influence the actual performance
of real implementations of the shared data structures that are presented in
this thesis, is connected with the use of the lock-free reference counting
technique by Valois et al. [122]. Although the alternative garbage col-
lection method of using hazard pointers by Michael [78][80] could achieve
significantly better performance in the respect of garbage collection, it is
not directly applicable to our presented shared data structure algorithms as
it can not support reliable global pointers from within the data structure.
A possible adaptation of our algorithm to make it compatible with haz-
ard pointers would therefore force all operations to retry from static nodes
whenever the operation approaches a part of the data structure that is put
for possible garbage collection, and thus incur severe performance penalties

210 CHAPTER 9. FUTURE WORK

that are proportional to the level of concurrency. Moreover, it would also
make the concept of reliable traversal through linked list structures impos-
sible. An interesting aspect to research would be to possibly combine the
methods of hazard pointers with reference counting, thus achieving a more
efficient and practical garbage collection scheme that is generally applicable.

In the literature about non-blocking synchronization, besides from the
impractical and inefficient general schemes, there are very few wait-free al-
gorithms of advanced common data structures available that are dynamic
in size. One very significant reason is the lack of available algorithms for
wait-free garbage collection and dynamic memory management. Thus, an
interesting research topic would be to design methods for wait-free refer-
ence counting, and also possibly wait-free free-lists for dynamic allocation.
These kinds of building blocks would significantly improve and facilitate the
process of designing wait-free data structures as such based on dynamically
changing linked lists. Wait-free garbage collection schemes would possibly
also be of great interest to hard real-time systems, as it would enable dy-
namic memory management to be used in those systems.

Even though it may be possible to design shared data structures that
require multiple pointer updates, using only the standard common CAS
primitive and rely on asymmetric updates, there are likely design cases when
more powerful atomic primitives could be very helpful. Therefore, it would
be of great importance to research new wait-free and more efficient multi-
word compare-and-swap (CASN) primitives. Besides from being very useful
in the design of advanced data structures like trees, the possibility of being
able to do wait-free transactions of arbitrary lengths would possibly be of
great interest to real-time systems and especially real-time database systems.

Bibliography

[1] S. V. Adve and K. Gharachorloo, “Shared memory consistency models: A
tutorial,” Computer, vol. 29, no. 12, pp. 66–76, 1996.

[2] Y. Afek, D. Dolev, H. Attiya, E. Gafni, M. Merritt, and N. Shavit, “Atomic
snapshots of shared memory,” in Proceedings of the ninth annual ACM sym-
posium on Principles of distributed computing, 1990, pp. 1–13.

[3] O. Agesen, D. Detlefs, C. H. Flood, A. Garthwaite, P. Martin, N. Shavit, and
G. L. Steele Jr., “DCAS-based concurrent deques,” in ACM Symposium on
Parallel Algorithms and Architectures, 2000, pp. 137–146.

[4] B. Allvin, A. Ermedahl, H. Hansson, M. Papatriantafilou, H. Sundell, and
P. Tsigas, “Evaluating the performance of wait-free snapshots in real-time
systems,” in SNART’99 Real Time Systems Conference, Aug. 1999, pp. 196–
207.

[5] B. Alpern, L. Carter, E. Feig, and T. Selker, “The uniform memory hierarchy
model of computation,” Algorithmica, no. 12, pp. 72–109, 1994.

[6] J. Anderson, “Composite registers,” in Proceedings of the ninth annual ACM
symposium on Principles of distributed computing, 1990, pp. 15–29.

[7] ——, “Composite registers,” Distributed Computing, no. 6, pp. 141–154, 1993.

[8] ——, “Multi-writer composite registers,” Distributed Computing, no. 7, pp.
175–195, 1994.

[9] J. Anderson, R. Jain, and K. Jeffay, “Efficient object sharing in quantum-
based real-time systems,” in Proceedings of the 19th IEEE Real-Time Systems
Symposium, Dec. 1998, pp. 346–355.

[10] J. Anderson, R. Jain, and S. Ramamurthy, “Wait-free object-sharing schemes
for real-time uniprocessors and multiprocessors,” in Proceedings of the 18th
IEEE Real-Time Systems Symposium, Dec. 1997, pp. 111–122.

[11] J. Anderson and S. Ramamurthy, “Using lock-free objects in hard real-time
applications,” in Proceedings of the 14th Annual ACM Symposium on Prin-
ciples of Distributed Computing, Aug. 1995, p. 272.

211

212 BIBLIOGRAPHY

[12] J. Anderson, S. Ramamurthy, and K. Jeffay, “Real-time computing with lock-
free shared objects,” ACM Transactions on Computer Systems, vol. 15, no. 2,
pp. 134–165, May 1997.

[13] J. H. Anderson and M. Moir, “Universal constructions for large objects,”
in Proceedings of the 9th International Workshop on Distributed Algorithms.
Springer-Verlag, 1995, pp. 168–182.

[14] ——, “Universal constructions for multi-object operations,” in Proceedings of
the 14th Annual ACM Symposium on the Principles of Distributed Comput-
ing, Aug. 1995.

[15] N. S. Arora, R. D. Blumofe, and C. G. Plaxton, “Thread scheduling for mul-
tiprogrammed multiprocessors,” in ACM Symposium on Parallel Algorithms
and Architectures, 1998, pp. 119–129.

[16] J. Aspnes and M. Herlihy, “Wait-free data structures in the asynchronous
PRAM model,” in ACM Symposium on Parallel Algorithms and Architec-
tures, 2000, pp. 340–349.

[17] N. Audsley, A. Burns, R. Davis, K. Tindell, and A. Wellings, “Fixed prior-
ity pre-emptive scheduling: An historical perspective,” Real-Time Systems,
vol. 8, no. 2/3, pp. 129–154, 1995.

[18] T. Baker, “Stack-based scheduling on real-time processes,” Real-Time Sys-
tems, vol. 3, no. 1, pp. 97–69, Mar. 1991.

[19] G. Barnes, “Wait-free algorithms for heaps,” Computer Science and Engi-
neering, University of Washington, Tech. Rep., Feb. 1992.

[20] ——, “A method for implementing lock-free shared-data structures,” in Pro-
ceedings of the fifth annual ACM symposium on Parallel algorithms and ar-
chitectures. ACM Press, 1993, pp. 261–270.

[21] G. Bollella, J. Gosling, B. Brosgol, P. Dibble, S. Furr, and M. Turnbull, The
Real-Time Specification for Java. Addison Wesley, 2000.

[22] L. Boug, J. Gabarr, and X. Messeguer, “Concurrent AVL revisited: Self-
balancing distributed search trees,” LIP, ENS Lyon, Research Report RR95-
45, 1995.

[23] A. Charlesworth, “Starfire: Extending the SMP envelope,” IEEE Micro, Jan.
1998.

[24] A. Charlesworth, N. Aneshansley, M. Haakmeester, D. Drogichen, G. Gilbert,
R. Williams, and A. Phelps, “The starfire SMP interconnect,” in Proceedings
of the 1997 ACM/IEEE conference on Supercomputing (CDROM). ACM
Press, 1997, pp. 1–20.

[25] J. Chen and A. Burns, “Loop-free asynchronous data sharing in multiproces-
sor real-time systems based on timing properties,” in Proceedings of the 6th
International Conference on Real-Time Computing Systems and Applications
(RTCSA 99), Nov. 1999.

BIBLIOGRAPHY 213

[26] R. David, N. Merriam, and N. Tracey, “How embedded applications using
an RTOS can stay within on-chip memory limits,” in Proc. of the Industrial
Experience Session, the 12th Euromicro Conference on Real-Time Systems,
June 2000.

[27] D. Detlefs, P. Martin, M. Moir, and G. Steele Jr, “Lock-free reference count-
ing,” in Proceedings of the 20th Annual ACM Symposium on Principles of
Distributed Computing, Aug. 2001.

[28] D. Detlefs, C. H. Flood, A. Garthwaite, P. Martin, N. Shavit, and G. L.
Steele Jr., “Even better DCAS-based concurrent deques,” in International
Symposium on Distributed Computing, 2000, pp. 59–73.

[29] A. Ermedahl, H. Hansson, M. Papatriantafilou, and P. Tsigas, “Wait-free
snapshots in real-time systems: Algorithms and their performance,” in Pro-
ceedings of the 5th International Conference on Real-Time Computing Sys-
tems and Applications (RTCSA ’98), 1998, pp. 257–266.

[30] M. Fomitchev, “Lock-free linked lists and skip lists,” Master’s thesis, York
University, Nov. 2003.

[31] M. Fomitchev and E. Ruppert, “Lock-free linked lists and skip lists,” in Pro-
ceedings of the twenty-third annual symposium on Principles of Distributed
Computing, July 2004, pp. 50–59.

[32] K. A. Fraser, “Practical lock-freedom,” Ph.D. dissertation, University of
Cambridge, Feb. 2004, technical Report 579.

[33] H. Gao, J. F. Groote, and W. H. Hesselink, “Almost wait-free resizable
hashtables,” in 18th International Parallel and Distributed Processing Sym-
posium (IPDPS’04), Apr. 2004, p. 50a.

[34] A. Gidenstam, M. Papatriantafilou, and P. Tsigas, “Allocating memory in a
lock-free manner,” Computing Science, Chalmers University of Technology,
Tech. Rep. 2004-04, 2004.

[35] C. Gong and J. Wing, “A library of concurrent objects and their proofs
of correctness,” Computer Science Department, Carnegie Mellon University,
Tech. Rep. CMU-CS-90-151, July 1990.

[36] M. Grammatikakis and S. Liesche, “Priority queues and sorting for parallel
simulation,” IEEE Transactions on Software Engineering, vol. SE-26, no. 5,
pp. 401–422, 2000.

[37] M. Greenwald, “Non-blocking synchronization and system design,” Ph.D.
dissertation, Stanford University, Palo Alto, CA, 1999.

[38] ——, “Two-handed emulation: how to build non-blocking implementations
of complex data-structures using DCAS,” in Proceedings of the twenty-first
annual symposium on Principles of distributed computing. ACM Press, 2002,
pp. 260–269.

214 BIBLIOGRAPHY

[39] M. Greenwald and D. Cheriton, “The synergy between non-blocking syn-
chronization and operating system structure,” in Proceedings of the Second
Symposium on Operating System Design and Implementation, 1996, pp. 123–
136.

[40] P. H. Ha and P. Tsigas, “Reactive multi-word synchronization for multi-
processors,” in 12th International Conference on Parallel Architectures and
Compilation Techniques (PACT’03).

[41] ——, “Reactive multi-word synchronization for multiprocessors,” Journal of
Instruction-Level Parallelism, vol. 6, Apr. 2004.

[42] E. Hagersten and M. Koster, “Wildfire: A scalable path for SMPs,” in Pro-
ceedings of the Fifth IEEE Symposium on HighPerformance Computer Ar-
chitecture, Feb. 1999, pp. 172–181.

[43] T. Harris, K. Fraser, and I. Pratt, “A practical multi-word compare-and-
swap operation,” in Proceedings of the 16th International Symposium on Dis-
tributed Computing, 2002.

[44] T. L. Harris, “A pragmatic implementation of non-blocking linked lists,” in
Proceedings of the 15th International Symposium of Distributed Computing,
Oct. 2001, pp. 300–314.

[45] M. Herlihy, “Wait-free synchronization,” ACM Transactions on Programming
Languages and Systems, vol. 11, no. 1, pp. 124–149, Jan. 1991.

[46] ——, “A methodology for implementing highly concurrent data objects,”
ACM Transactions on Programming Languages and Systems, Nov. 1993.

[47] M. Herlihy, V. Luchangco, and M. Moir, “The repeat offender problem: A
mechanism for supporting dynamic-sized, lock-free data structure,” in Pro-
ceedings of 16th International Symposium on Distributed Computing, Oct.
2002.

[48] ——, “Obstruction-free synchronization: Double-ended queues as an exam-
ple,” in Proceedings of the 23rd International Conference on Distributed Com-
puting Systems, 2003.

[49] M. Herlihy and J. Moss, “Transactional memory: Architectural support for
highly concurrent data structures,” Digital Equipment Corp., Cambridge Re-
search Laboratory, Tech. Rep., Apr. 1992.

[50] M. Herlihy and J. Wing, “Linearizability: a correctness condition for concur-
rent objects,” ACM Transactions on Programming Languages and Systems,
vol. 12, no. 3, pp. 463–492, 1990.

[51] T. Herman and V. Damian-Iordache, “Space-optimal wait-free queues,” in
Proceedings of the sixteenth annual ACM symposium on Principles of dis-
tributed computing. ACM Press, 1997, p. 280.

BIBLIOGRAPHY 215

[52] W. H. Hesselink and J. F. Groote, “Waitfree distributed memory management
by create and read until deletion (CRUD),” CWI, Amsterdam, Tech. Rep.
SEN-R9811, 1998.

[53] ——, “Wait-free concurrent memory management by create and read until
deletion (CaRuD),” Distributed Computing, vol. 14, no. 1, pp. 31–39, Jan.
2001.

[54] G. Hunt, M. Michael, S. Parthasarathy, and M. Scott, “An efficient algorithm
for concurrent priority queue heaps,” Information Processing Letters, vol. 60,
no. 3, pp. 151–157, Nov. 1996.

[55] A. Israeli and L. Rappoport, “Efficient wait-free implementation of a con-
current priority queue,” in Proceedings of the 7th International Workshop
on Distributed Algorithms, ser. Lecture Notes in Computer Science, vol. 725.
Springer Verlag, Sept. 1993, pp. 1–17.

[56] ——, “Disjoint-access-parallel implementations of strong shared memory
primitives,” in Proceedings of the thirteenth annual ACM symposium on Prin-
ciples of Distributed Computing, Aug. 1994.

[57] A. Israeli and A. Shaham, “Optimal multi-writer multi-reader atomic regis-
ter,” in Proceedings of the eleventh annual ACM symposium on Principles of
distributed computing. ACM Press, 1992, pp. 71–82.

[58] P. Jayanti, “A complete and constant time wait-free implementation of cas
from ll/sc and vice versa,” in DISC 1998, 1998, pp. 216–230.

[59] P. Jayanti and S. Petrovic, “Efficient and practical constructions of LL/SC
variables,” in Proceedings of the twenty-second annual symposium on Princi-
ples of distributed computing. ACM Press, 2003, pp. 285–294.

[60] D. W. Jones, “Concurrent operations on priority queues,” Commun. ACM,
vol. 32, no. 1, pp. 132–137, 1989.

[61] A. Karlin, K. Li, M. Manasse, and S. Owicki, “Empirical studies of competi-
tive spinning for a shared-memory multiprocessor,” in Proceedings of the 13th
ACM Symposium on Operating Systems Principles, Oct. 1991, pp. 41–55.

[62] S. Kelly-Bootle and B. Fowler, 68000, 68010, 68020 Primer. Howard W.
Sams & Co., 1985.

[63] L. M. Kirousis, P. Spirakis, and P. Tsigas, “Reading many variables in
one atomic operation: Solutions with linear or sublinear complexity,” IEEE
Transactions on Parallel and Distributed Systems, vol. 5, no. 7, pp. 688–696,
July 1994.

[64] H. Kopetz and J. Reisinger, “The non-blocking write protocol nbw: A solu-
tion to a real-time synchronization problem,” in Proc. of the 14th Real-Time
Systems Symp., 1993, pp. 131–137.

216 BIBLIOGRAPHY

[65] L. Lamport, “Concurrent reading and writing,” Communications of the ACM,
vol. 20, no. 11, pp. 806–811, Nov. 1977.

[66] ——, “How to make a multiprocessor computer that correctly executes mul-
tiprocess programs,” IEEE Transactions on Computers, vol. C.-28, no. 9, pp.
690–691, 1979.

[67] ——, “A fast mutual exclusion algorithm,” ACM Transactions on Computer
Systems, vol. 5, no. 1, pp. 1–11, 1987.

[68] R. P. LaRowe Jr, “Page placement for non-uniform memory access time
(numa) shared memory multiprocessors,” Ph.D. dissertation, Duke Univer-
sity, Durham, North Carolina, 1991.

[69] A. Larsson, A. Gidenstam, P. H. Ha, M. Papatriantafilou, and P. Tsigas,
“Multi-word atomic read/write registers on multiprocessor systems,” in Pro-
ceedings of the 12th Annual European Symposium on Algorithms (ESA 2004),
Sept. 2004, pp. 736–748.

[70] J. Laudon and D. Lenoski, “The SGI origin: A ccNUMA highly scalable
server,” in Proceedings of the 24th Annual International Symposium on Com-
puter Architecture (ISCA-97), vol. 25, no. 2. ACM Press, 1997, pp. 241–251.

[71] J. Lehoczky, L. Sha, and J. Strosnider, “Aperiodic responsiveness in hard
real-time environments,” in IEEE Real-Time Systems Symposium, 1987, pp.
262–270.

[72] I. Lotan and N. Shavit, “Skiplist-based concurrent priority queues,” in Pro-
ceedings of the International Parallel and Distributed Processing Symposium
2000. IEEE press, 2000, pp. 263–268.

[73] S. Lumetta and D. Culler, “Managing concurrent access for shared memory
active messages,” in Proceedings of the First Merged International Parallel
Processing Symposium and Symposium on Parallel and Distributed Process-
ing.

[74] P. Martin, M. Moir, and G. Steele, “DCAS-based concurrent deques support-
ing bulk allocation,” Sun Microsystems, Tech. Rep. TR-2002-111, 2002.

[75] H. Massalin and C. Pu, “A lock-free multiprocessor OS kernel,” Computer
Science Department, Columbia University, Tech. Rep. CUCS-005-91, June
1991.

[76] J. M. Mellor-Crummey and M. L. Scott, “Algorithms for scalable synchro-
nization on shared-memory multiprocessors,” ACM Transactions on Com-
puter Systems, vol. 9, no. 1, pp. 21–65, Feb. 1991.

[77] M. M. Michael, “High performance dynamic lock-free hash tables and list-
based sets,” in Proceedings of the 14th ACM Symposium on Parallel Algo-
rithms and Architectures, 2002, pp. 73–82.

BIBLIOGRAPHY 217

[78] ——, “Safe memory reclamation for dynamic lock-free objects using atomic
reads and writes,” in Proceedings of the 21st ACM Symposium on Principles
of Distributed Computing, 2002, pp. 21–30.

[79] ——, “CAS-based lock-free algorithm for shared deques,” in Proceedings of
the 9th International Euro-Par Conference, ser. Lecture Notes in Computer
Science. Springer Verlag, Aug. 2003.

[80] ——, “Hazard pointers: Safe memory reclamation for lock-free objects,”
IEEE Transactions on Parallel and Distributed Systems, vol. 15, no. 8, Aug.
2004.

[81] ——, “Practical lock-free and wait-free LL/SC/VL implementations using 64-
bit CAS,” in The 18th Annual Conference on Distributed Computing (DISC
2004), Oct. 2004.

[82] ——, “Scalable lock-free dynamic memory allocation,” in Proceedings of the
2004 ACM SIGPLAN Conference on Programming Language Design and Im-
plementation, June 2004, pp. 35–46.

[83] M. M. Michael and M. L. Scott, “Correction of a memory management
method for lock-free data structures,” Computer Science Department, Uni-
versity of Rochester, Tech. Rep., 1995.

[84] ——, “Simple, fast, and practical non-blocking and blocking concurrent queue
algorithms,” in Proceedings of the fifteenth annual ACM symposium on Prin-
ciples of distributed computing. ACM Press, 1996, pp. 267–275.

[85] ——, “Relative performance of preemption-safe locking and non-blocking syn-
chronization on multiprogrammed shared memory multiprocessors,” in Pro-
ceedings of the 11th International Parallel Processing Symposium, 1997, pp.
267–273.

[86] ——, “Nonblocking algorithms and preemption-safe locking on multipro-
grammed shared memory multiprocessors,” Journal of Parallel and Dis-
tributed Computing, vol. 51, no. 1, pp. 1–26, 1998.

[87] M. Moir, “Practical implementations of non-blocking synchronization primi-
tives,” in Proceedings of the 15th Annual ACM Symposium on the Principles
of Distributed Computing, Aug. 1997.

[88] ——, “Transparent support for wait-free transactions,” in Proceedings of the
11th International Workshop on Distributed Algorithms, Sept. 1997.

[89] S. Prakash, Y. H. Lee, and T. Johnson, “Non-blocking algorithms for concur-
rent data structures,” University of Florida, Tech. Rep. 91–002, July 1991.

[90] ——, “A nonblocking algorithm for shared queues using compare-and-swap,”
IEEE Trans. Comput., vol. 43, no. 5, pp. 548–559, 1994.

[91] W. Pugh, “Skip lists: a probabilistic alternative to balanced trees,” Commu-
nications of the ACM, vol. 33, no. 6, pp. 668–676, 1990.

218 BIBLIOGRAPHY

[92] R. Rajkumar, “Real-time synchronization protocols for shared memory mul-
tiprocessors,” in Proceedings of the 10th International Conference on Dis-
tributed Computing Systems, 1990, pp. 116–123.

[93] ——, Synchronization in Real-Time Systems: A Priority Inheritance Ap-
proach. Kluwer Academic Publishers, 1991.

[94] S. Ramamurthy, M. Moir, and J. Anderson, “Real-time object sharing with
minimal system support,” in Proc. of the 15th Annual ACM Symp. on Prin-
ciples of Distributed Computing, May 1996, pp. 233–242.

[95] L. Sha, R. Rajkumar, and J. Lehoczky, “Priority inheritance protocols: An
approach to real-time synchronization,” IEEE Transactions on Computers,
vol. 39, no. 9, pp. 1175–1185, Sept. 1990.

[96] O. Shalev and N. Shavit, “Split-ordered lists: lock-free extensible hash ta-
bles,” in Proceedings of the twenty-second annual symposium on Principles of
distributed computing. ACM Press, 2003, pp. 102–111.

[97] C.-H. Shann, T.-L. Huang, and C. Chen, “A practical nonblocking queue algo-
rithm using compare-and-swap,” in Proceedings of the Seventh International
Conference on Parallel and Distributed Systems, 2000, pp. 470–475.

[98] N. Shavit and D. Touitou, “Software transactional memory,” in Proceedings
of the fourteenth annual ACM symposium on Principles of distributed com-
puting. ACM Press, 1995, pp. 204–213.

[99] N. Shavit and A. Zemach, “Scalable concurrent priority queue algorithms,”
in Symposium on Principles of Distributed Computing, 1999, pp. 113–122.

[100] A. Silberschatz and P. Galvin, Operating System Concepts. Addison Wesley,
1994.

[101] P. Sorensen, “A methodology for real-time system development,” Ph.D. dis-
sertation, University of Toronto, 1974.

[102] P. Sorensen and V. Hemacher, “A real-time system design methodology,”
INFOR, vol. 13, no. 1, pp. 1–18, Feb. 1975.

[103] H. Sundell and P. Tsigas, “Space efficient wait-free buffer sharing in mul-
tiprocessor real-time systems based on timing information,” in Proceedings
of the 7th International Conference on Real-Time Computing Systems and
Applications (RTCSA 2000). IEEE press, 2000, pp. 433–440.

[104] ——, “NOBLE: A non-blocking inter-process communication library,” in Pro-
ceedings of the 6th Workshop on Languages, Compilers and Run-time Systems
for Scalable Computers, ser. Lecture Notes in Computer Science. Springer
Verlag, 2002.

[105] ——, “Fast and lock-free concurrent priority queues for multi-thread sys-
tems,” Computing Science, Chalmers University of Technology, Tech. Rep.
2003-01, Jan. 2003.

BIBLIOGRAPHY 219

[106] ——, “Fast and lock-free concurrent priority queues for multi-thread sys-
tems,” in Proceedings of the 17th International Parallel and Distributed Pro-
cessing Symposium. IEEE press, Apr. 2003, p. 11.

[107] ——, “Scalable and lock-free concurrent dictionaries,” Computing Science,
Chalmers University of Technology, Tech. Rep. 2003-10, Dec. 2003.

[108] ——, “Simple wait-free snapshots for real-time systems with sporadic tasks,”
Computing Science, Chalmers University of Technology, Tech. Rep. 2003-02,
Jan. 2003.

[109] ——, “Lock-free and practical deques using single-word compare-and-swap,”
Computing Science, Chalmers University of Technology, Tech. Rep. 2004-02,
Mar. 2004.

[110] ——, “Scalable and lock-free concurrent dictionaries,” in Proceedings of the
19th ACM Symposium on Applied Computing. ACM press, Mar. 2004, pp.
1438–1445.

[111] ——, “Simple wait-free snapshots for real-time systems with sporadic tasks,”
in Proceedings of the 10th International Conference on Real-Time and Em-
bedded Computing Systems and Applications, Aug. 2004, pp. 325–340.

[112] H. Sundell, P. Tsigas, and Y. Zhang, “Simple and fast wait-free snapshots
for real-time systems,” in Proceedings of the 4th International Conference On
Principles Of Distributed Systems (OPODIS 2000), ser. Studia Informatica
Universalis, 2000, pp. 91–106.

[113] H. Thane, “Asterix the t-rex among real-time kernels: Timely, reli-
able, efficient and extraordinary,” Mälardalen Real-Time Research Centre,
Mälardalen University, Tech. Rep., 2000, in preparation.

[114] P. Tsigas and Y. Zhang, “Non-blocking data sharing in multiprocessor real-
time systems,” in Proceedings of the 6th International Conference on Real-
Time Computing Systems and Applications (RTCSA’99). IEEE press, 1999,
pp. 247–254.

[115] ——, “Evaluating the performance of non-blocking synchronization on
shared-memory multiprocessors,” in Proceedings of the international confer-
ence on Measurement and modeling of computer systems. ACM Press, 2001,
pp. 320–321.

[116] ——, “A simple, fast and scalable non-blocking concurrent FIFO queue
for shared memory multiprocessor systems,” in Proceedings of the 13th An-
nual ACM Symposium on Parallel Algorithms and Architectures (SPAA ’01).
ACM press, 2001, pp. 134–143.

[117] ——, “Efficient wait-free queue algorithms for real-time synchronization,”
Computing Science, Chalmers University of Technology, Tech. Rep. 2002-05,
2002.

220 BIBLIOGRAPHY

[118] ——, “Integrating non-blocking synchronisation in parallel applications: Per-
formance advantages and methodologies,” in Proceedings of the 3rd ACM
Workshop on Software and Performance. ACM Press, 2002, pp. 55–67.

[119] ——, “Lock-free object-sharing for shared memory real-time multiproces-
sors,” Computing Science, Chalmers University of Technology, Tech. Rep.
2003-03, 2003.

[120] J. Turek, D. Shasha, and S. Prakash, “Locking without blocking: Making lock
based concurrent data structure algorithms nonblocking,” in Proceedings of
the 11th ACM Symposium on Principles of Database Systems, Aug. 1992, pp.
212–222.

[121] J. D. Valois, “Implementing lock-free queues,” in Proceedings of the Seventh
International Conference on Parallel and Distributed Computing Systems,
1994, pp. 64–69.

[122] ——, “Lock-free data structures,” Ph.D. dissertation, Rensselaer Polytechnic
Institute, Troy, New York, 1995.

[123] ——, “Lock-free linked lists using compare-and-swap,” in Proceedings of the
14th Annual Principles of Distributed Computing, 1995, pp. 214–222.

[124] P. Vitanyi and B. Awerbuch, “Atomic shared register access by asynchronous
hardware,” in 27th IEEE Annual Symposium on Foundations of Computer
Science, Oct. 1986, pp. 233–243.

[125] J. Zahorjan, E. D. Lazowska, and D. L. Eager, “The effect of scheduling dis-
cipline on spin overhead in shared memory parallel systems,” IEEE Trans-
actions on Parallel and Distributed Systems, vol. 2, no. 2, pp. 180–198, Apr.
1991.

Index

ABA problem, 5, 20, 25
atomic, 4, 10, 15, 22, 43, 61, 64,

71, 72
atomic primitive, 4–6, 10–14, 16–

18, 25, 97, 171, 205, 209

back-off, 12, 82, 84, 104, 185
blocking, 9, 12, 41, 57, 58, 65, 74,

92, 132, 168

CAS, 5, 6, 11, 13, 16, 19, 31, 33,
97, 136, 171, 209, 210

CAS2, 6, 24–26, 34, 35, 98, 169,
175, 197

CASN, 19, 34, 35, 197, 210
concurrent, 1, 8, 27, 40, 93, 132,

146, 205
consensus number, 14, 16

deadlock, 9, 12, 41, 59, 92
deque, 25, 33, 168, 207
dictionary, 26, 132, 149, 159, 206
doubly linked list, 23, 33, 169, 171,

174, 198, 207, 209

experiment, 37, 52, 83, 110, 159,
194, 206, 207

FAA, 5, 21, 97, 136, 171
fault tolerant, 10, 41, 59

garbage collection, 19, 20, 22, 34,
169, 173, 175, 191, 203,
209, 210

hash-table, 26, 133
hazard pointer, 19, 20, 24–26, 35,

175, 209
helping, 13, 104, 185

IPCP, 9

linearizability, 10, 44, 62, 68, 94,
104, 105, 149, 159, 186,
209

LL/SC, 5, 16, 19
lock-based, 59, 75, 83, 84, 110
lock-free, 10, 11, 12, 12, 23, 31,

41, 59, 60, 74, 84, 92, 104,
132, 159, 168, 205–207

memory management, 19, 27, 31,
32, 34, 77, 97, 98, 133, 136,
137, 140, 151, 175, 210

message passing, 1, 9, 205
multi-processor, 1, 16, 17, 21, 40,

42, 57, 58, 60, 89, 95, 206
mutual exclusion, 4, 9, 10, 18, 40,

57–59, 92, 132, 168

non-blocking, 10, 11, 14–19, 22,
41, 57–60, 62, 74, 92, 132,
168, 172, 205, 207, 210

NUMA, 2, 37, 207

obstruction-free, 10, 168

parallel, 1, 8, 74, 121
PCP, 9, 13

221

222 INDEX

PIP, 58
pre-emption, 1, 15, 94, 98, 136,

146, 164, 206
priority inversion, 9, 12, 40, 41, 58,

59, 92
priority queue, 26, 31, 32, 92, 206
process, 1, 41, 43, 53

queue, 24, 25, 76

real-time, 7, 25, 122
embedded systems, 22, 205
hard, 7, 12, 28, 74, 207, 210
operating system, 60
soft, 7
system, 6, 7, 9, 15–17, 22, 25,

27, 42, 57–60, 62, 64, 65,
69, 72, 127

reference counting, 20, 35, 97, 136,
175, 209

schedulability, 58
shared data structure, 18, 30, 40,

74, 205, 207, 209
shared memory, 1, 2, 9, 18, 42, 60,

61, 69, 75, 95, 205
singly linked list, 23, 76, 84, 137,

172
skip list, 27, 30, 31, 94, 96, 110,

121, 127, 133, 135, 140,
164, 165, 206, 207, 209

snapshot, 22, 30, 42, 43, 53, 76,
205

software library, 36, 75, 205
stack, 24, 76, 82
starvation, 12, 92
synchronization, 8, 40, 41, 74, 122,

205, 207

TAS, 5, 16, 84, 110
task, 7, 8, 40, 61, 95

aperiodic, 7
periodic, 7, 30, 46, 65, 122
sporadic, 7, 30, 46

thread, 1, 83, 104, 110, 206
time-stamp, 28–31, 60, 63, 122
timing information, 15, 17, 27, 53,

58, 60, 64, 72, 205

UMA, 2, 37, 38, 53
uni-processor, 1, 15, 16, 41, 58

wait-free, 10, 12, 13, 14, 14, 17,
19, 20, 22, 24, 25, 30, 41,
53, 57, 59, 60, 72, 74, 93,
133, 168, 205, 207, 210

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

