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ABSTRACT

Empirical analysis of network data has been widely conducted for understanding
and predicting the structure and function of real systems and identifying interesting
patterns and anomalies. One of the most widely studied structural properties of
networks is their community structure. In this thesis we investigate some of the
challenges and applications of community detection for analysis of network data
and propose different approaches for improving community detection methods.

One of the challenges in using community detection for network data analysis is
that there is no consensus on a definition for a community despite excessive studies
which have been performed on the community structure of real networks. There-
fore, evaluating the quality of the communities identified by different community
detection algorithms is problematic. In this thesis, we perform an empirical com-
parison and evaluation of the quality of the communities identified by a variety
of community detection algorithms which use different definitions for communi-
ties for different applications of network data analysis. Another challenge in using
community detection for analysis of network data is the scalability of the existing
algorithms. Parallelizing community detection algorithms is one way to improve
the scalability of community detection. Local community detection algorithms are
by nature suitable for parallelization. One of the most successful approaches to
local community detection is local expansion of seed nodes into overlapping com-
munities. However, the communities identified by a local algorithm might cover
only a subset of the nodes in a network if the seeds are not selected carefully. The
selection of good seeds that are well distributed over a network using only the lo-
cal structure of a network is therefore crucial. In this thesis, we propose a novel
local seeding algorithm, which is based on link prediction and graph coloring, for
selecting good seeds for local community detection in large-scale networks.

Overall, mining network data has many applications. The focus of this thesis is
on analyzing network data obtained from backbone Internet traffic, social networks,
and search query log files. We show that mining the structural and temporal
properties of email networks generated from Internet backbone traffic can be used to
identify unsolicited email from the mixture of email traffic. We also show that a link
based community detection algorithm can separate legitimate and unsolicited email
into distinct communities. Moreover, we show that, in contrast to previous studies,
community detection algorithms can be used for network anomaly detection. We
also propose a method for enhancing community detection algorithms and present
a framework for using community detection as a basis for network misbehavior
detection. Finally, we show that network analysis of query log files obtained from
a health care portal can complement the existing methods for semantic analysis of
health related queries.

Keywords: Networks, Community Detection Algorithms, Overlapping Communities,
Seed Selection, Misbehavior Detection, Spam, Medical Query Logs
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1 INTRODUCTION

Advances in technology and computation have provided the possibility of collecting
and mining a massive amount of real-world data. Mining such “big data” allows us
to understand the structure and the function of real systems and to find unknown
and interesting patterns.

Many types of real-world datasets can be modeled with networks. A network
provides a powerful mathematical tool to represent the relations in the data. Net-
works generated from real-world data are often divided into four categories, so-
cial, information, technological, and biological networks [1]. A social network is
a network connecting the people who contact or interact with each other. Social
networks are not limited to “online social networks” such as Facebook, Twitter, or
LinkedIn. Other examples of social networks are the network of people collabo-
ration, co-authorships, and co-appearance, as well as networks of communication
between people such as telephone calls and emails. An information network is a
network of entities containing information such as World Wide Web, network of
citations, and word co-occurrence networks. A technical network refers to a man-
made network such as the Internet, the electric power grid, networks of roads,
railways, and airline routes. A biological network represents a biological system
such as a network of metabolic pathways, protein-protein interactions, the food
web, and the network of blood vessels.

In this thesis we consider networks from two categories, i.e., social networks
and information networks. The focus of the thesis is on the structural properties
of these networks and the algorithms which exist for study of these properties,
particularly their community structure.

This thesis is organized into two parts. The first part is an introduction to
the thesis and the second part consists of a collection of papers. The remainder
of the introduction is organized as follows. In Section 1.1 we briefly summarize
the structural properties of social and information networks. In Section 1.2 we
focus on the community structure of networks and existing algorithms for identi-
fying network communities and investigate a number of challenges in community
detection, namely quality evaluation, scalability, and seed selection. In Section 1.3
we look into a number of applications of mining real network data for identifying

3



4 CHAPTER 1

interesting patterns and anomalies. In particular we look into identifying sources
of unsolicited email traffic based on the communication patterns observed on an
Internet backbone link. We also study the application of intrusion detection using
network flow data, scalable identification of communities in social networks, and
analysis of large query log files by identifying communities of related words from
a word co-occurrence network. In Section 1.4 we present the real datasets which
we have used in this thesis for generating different networks and analyzing their
structural properties. More specifically we describe the collection process of email
and flow data from an Internet backbone link, as well as the data which was ob-
tained from different social networks and the query logs of a health care portal. In
Section 1.5 our approaches towards analysis of network data and a brief description
of the appended papers are presented. Section 1.6 summarizes our contributions in
the thesis and, finally, Section 1.7 concludes the thesis and present possible future
research directions.

1.1 Structural Properties of Networks

A great deal of work has been devoted to study the structure and dynamics of
networks generated from real-world data. These networks are not random networks
and the nodes in these networks are organized into specific structures. A wide
variety of network mining methods and algorithms exists which can be used to
uncover the structure of such networks.

Traditionally, network data was modeled as random graphs [2]. However, em-
pirical studies on different types of real network data have revealed interesting
properties such as the “small-world effect” [3], also known as “six degrees of sep-
aration” [4], and the scale-free behavior of networks [5, 6]. These properties show
that social and information networks are fundamentally different from other types
of networks such as random networks [1]. A review of the structural properties of
these networks can be found in [7].

Many real networks have been modeled as small-world networks. A small-world
network has a small effective diameter and the distance between any pair of nodes
in the network is relatively short. The distance between two nodes is measured as
the number of edges in the shortest path connecting them. In addition to small
effective diameters or short average path lengths, small-world networks tend to be
highly clustered which can be quantified using the average clustering coefficient of
the networks [3].

Another robust measure of the structure of networks is their degree distribution
which characterizes the spread in the node degrees. It has been shown that for
social and information networks the degree distribution has a power law tail. This
means that in these networks most of the nodes have a very low degree while a few
of the nodes have very high degrees. Such networks are also known as scale-free
networks [5, 6].



1.2. COMMUNITY DETECTION 5

Numerous attempts to model the structure of social networks have also taken
other structural properties into account: the distribution of the size of the con-
nected components of the network, the presence of a giant connected component
(GCC), and the community structure of the networks. The studies of the changes of
structural properties of networks over time have also revealed interesting properties
of network evolution. As the networks grow over time, they become more dense
(densification power law) and the average distance between their nodes shrinks
(shrinking diameter) [9]. There are many other patterns which have been observed
in real world networks. A summary of different patterns, particularly the patterns
observed in weighted networks can be found in [8].

1.2 Community Detection

An excessively studied structural property of real-world networks is their commu-
nity structure. The community structure captures the tendency of nodes in the
network to group together with other similar nodes into communities. This prop-
erty has been observed in many real-world networks. Despite excessive studies of
the community structure of networks, there is no consensus on a single quantitative
definition for the concept of community and different studies have used different
definitions. A community, also known as a cluster, is usually thought of as a group
of nodes that have many connections to each other and few connections to the
rest of the network. Identifying communities in a network can provide valuable
information about the structural properties of the network, the interactions among
nodes in the communities, and the role of the nodes in each community.

1.2.1 Algorithms

A wide variety of community detection algorithms, also known as clustering al-
gorithms, have been proposed to identify the communities in a network. Since
different community detection algorithms use different definitions of a community,
they yield different communities. Figure 1.1 shows an example of the communities
identified by two fundamentally different community detection algorithms on a real
network (Zachary’s network of karate club members [10]).

Many traditional community detection methods are borrowed or inspired from
graph clustering algorithms. Partitioning the nodes in a network into a pre-
determined number of disjoint communities is one of the traditional methods for
identifying communities. However, since the community structure of real-world
networks are not usually known, making assumptions about the number of com-
munities or the size of the communities are not realistic. Moreover, many real-world
networks have a hierarchical structure where meaningful communities at different
scales can exist and such community structures cannot be captured by partition-
ing algorithms. Therefore, another group of community detection algorithms have
been introduced which can identify hierarchical communities. Hierarchical clus-
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Figure 1.1: The square and round nodes show the two groups of the members in the

Zachary karate club network. The four grey communities are found by applying a node-

based modularity optimization algorithm [11]. The solid and dashed edges show the two

communities identified by a link-based community detection algorithm [12].

tering techniques can be divided into agglomerative and divisive methods [13].
Agglomerative algorithms use a bottom-up approach where clusters are iteratively
merged. Divisive algorithms use a top-down approach where the clusters are iter-
atively split. Overall, using hierarchical algorithms allow us to choose the suitable
level of hierarchy and study the communities at that level of hierarchy.

In many real-world networks, nodes can naturally belong to multiple communi-
ties, therefore the communities can overlap. In social networks, an individual can
belong to a community of family members, to a community of friends, and to a
community of colleagues. In an information network, a web page can cover topics
that are associated with different communities. Traditional community detection
algorithms fail to uncover the community overlaps. Not being able to identify
community overlaps in networks with naturally overlapping communities means
missing valuable information about the structure of the network [14]. Therefore,
overlapping community detection algorithms have gained a lot of attention. Over-
lapping communities can be identified using different approaches. One of these
approaches is based on partitioning the edges of a network into communities rather
than partitioning the nodes [12, 15]. A thorough review and comparison of different
types of overlapping community detection algorithms can be found in [16].

The majority of existing community detection algorithms implicitly assume that
the entire structure of the network is known and is available. We refer to these
types of algorithms as global algorithms, since they require a global knowledge of
the whole network in order to uncover all the communities in that network. Since
such knowledge might not be available for large networks, local algorithms are gain-
ing more popularity [23, 27–29]. Local algorithms typically start from a number
of given seed nodes and expand them into possibly overlapping communities by
examining only a small part of the network. Since it is possible to find local com-
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Table 1.1: Community Detection algorithms.

Algorithm Type Description Complexity

N
o
n

-O
v
er

la
p

p
in

g

Blondel [11] G,H Fast modularity maximization (Louvain) is a
greedy approach to modularity maximization
and unfolds a hierarchical community struc-
ture.

O(m)

Infomap [17],
InfoH [18]

G,H Maps of random walks finds communities
based on the compression of the description
length of the average path of a random walker
over the network. Multilevel compression of
random walks is the hierarchical version of
infomap which minimizes a hierarchical map
equation to find the shortest multilevel de-
scription length.

O(m)

RN [19] G,H Potts model community detection minimizes
the Hamiltonian of a local objective function
(the absolute Potts model).

O(m1.3)

MCL [20] G,NH Markov Clustering is based on the probability
of random walks remaining for a long time in
a dense community before moving to another
community.

O(nK2)

O
v
er

la
p

p
in

g

LC [15] G,H Link Community detection uses the similarity
of the edges to identify hierarchical communi-
ties of edges rather than communities of nodes.

O(nK2)

LG [12] G,H Line Graph and graph partitioning runs a non-
overlapping node-based algorithm on a line
graph induced from the original graph to iden-
tify overlapping link-based communities.

O(nm2)

SLPA [21] G,H Speaker listener Label Propagation is an exten-
sion to the label propagation algorithm where
nodes adopt multiple labels based on the ma-
jority labels in their neighborhood.

O(tm)

OSLOM [22] L,H Order Statistics Local Optimization Method
identifies significant communities with respect
to a Null model similar to modularity.

O(n2)

DEMON [23] L,NH Democratic Estimate of the Modular Organi-
zation of a Network is a local algorithm which
uses the label propagation algorithm to find
communities in the egonet of each node and
then merges them into larger communities.

O(nK3−α)

PPR [24] L,NH Personalized PageRank-based, is a local al-
gorithm which uses the PageRank-Nibble al-
gorithm [25] to approximate a personalized
PageRank vector from a given seed node and
then uses the method in [26] to create the com-
munities based on a scoring function.

O(
∑

C∈C

vol(C))

In the “Type” column, L and G denote local and global, and H and NH denote hierarchical and
non-hierarchical, respectively. The LG algorithm can find hierarchical communities if the node-based
algorithm is hierarchical.
In the “Complexity” column, n denotes the number of nodes, m denotes the number of edges, K is the
maximum node degree, t is the number of algorithm iterations selected, α is the power-law exponent,
vol(C) is the sum of the degree of all the nodes in a community C, and C is the set of all the identified
communities.
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munities from each seed independently, they are very suitable for being parallelized
and therefore can scale well. The local communities identified from each seed can
be aggregated in order to uncover the global community structure of the network.
However, if the local community detection algorithm is naively started from each
node in a network, it can lead to many redundant communities and therefore is
computationally expensive. Therefore, it is important to identify a number of good
seeds which are well distributed over the network by using a seeding algorithm be-
fore running the local community detection. On the other hand, if the seeding
algorithm does not select enough seeds, the communities might only cover a sub-
set of the nodes in a network and therefore, the problem of selecting a reasonable
number of seeds which are well-distributed over the network is challenging. These
challenges are further investigated in Section 1.2.4.

In addition to different types of community detection algorithms, recently, a
number of studies have focused on proposing methods for improving the quality
of the existing community detection algorithms. Ciglan et al. [30] introduced a
method for adding edge weights to unweighted networks as a pre-processing step
to improve the quality of the identified communities with respect to ground truth
data. Soundarajan et al. [28] introduced a template for using existing community
detection algorithms for identifying more realistic communities. Another approach
for improving community detection is to use ensemble clustering, which is inspired
by ensemble learning, where multiple community detection algorithms run as an
ensemble and the identified communities are combined to improve the community
qualities. Staudt et al. [31] showed that ensemble clustering can be used to achieve
the best trade-off between quality of the communities and the speed of community
detection.

Thorough reviews of different types of community detection algorithms can
be found in [13, 16, 32]. Table 1.1 summarizes the algorithms which are used
throughout this thesis.

1.2.2 Quality Evaluation

Given the diverse nature of real-world networks and the high diversity of community
detection algorithms, it is necessary to perform experimental evaluation of the
algorithms to find the most suitable method for each type of network. However,
due to the ambiguity in the definition of a community, extracting communities and
evaluating their quality is proven to be very difficult.

Figure 1.2 shows the communities identified by different community detection
algorithms (see Table 1.1) in a toy network. It can be seen that different types
of algorithms identify different communities in the network since they use differ-
ent definitions for communities and take different approaches for identifying these
communities. In order to find out which algorithm yields the best set of commu-
nities, it is necessary to use a quantitative measure to evaluate the quality of the
communities identified by each algorithm.
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(a) Blondel, Infomap, RN, MCL, PPR (b) OSLOM

(c) LC (d) LG

(e) DEMON (f) SLPA

Figure 1.2: A comparison of the communities yield by different community detection

algorithms on a toy example network.

The most widely used structural quality function is modularity [33] which is also
widely used as an objective function or scoring function to be optimized by commu-
nity detection algorithms. In addition to modularity, many other quality functions
have been used and proposed in the literature. However, it has been shown that
there is no single perfect quality function for comparison of the quality of the com-
munities identified by different algorithms [34]. Moreover, many of the existing
quality functions are designed for evaluating disjoint communities and extending
them for evaluation of overlapping communities is not straightforward [16].
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One of the methods which is widely used for evaluating and comparing the
identified communities by different algorithms is to use synthetic networks from
different benchmarks. In the GN benchmark [35], communities of the same size are
embedded into a network for a given expected degree and a given ratio of internal
to external connections between the communities. Other benchmarks have been
proposed to improve and complement GN for example for overlapping communities.
One such widely used benchmark is the LFR benchmark [36] which introduces
heterogeneity into degree and community size distributions of a network.

The main reason for using benchmark graphs for evaluating community detec-
tion algorithms, is the lack of ground truth information about the communities in
real-world networks. Recently, more studies have used ground truth data. Ground
truth data is usually obtained from meta data or explicit group memberships of
the nodes. Ahn et al. [15] used meta data, e.g., tags assigned by users to annotate
the items in a co-purchase network, to define a number of quality functions based
on the purity of the attributes of nodes in communities and to assess how well the
identified communities reflect the meta data. Abrahao et al. [37] identified ground
truth communities from annotations, e.g., product categories and groups of pro-
tein functions, and compared the structural properties of the communities detected
by different algorithms with ground truth communities. Yang and Leskovec [24]
have studied a large number of social, collaboration, and information networks to
define ground truth communities based on the explicit declaration of group mem-
bership by the nodes. Their comparison of the ground truth communities with
different definitions of communities have shown that conductance is the best scor-
ing function for networks with well-separated and non-overlapping communities,
while the triad-participation ratio is the best scoring function for networks with
densely overlapping communities.

In this thesis, in addition to the above methods for evaluating community qual-
ity, we also propose to evaluate the logical quality of the communities identified by
different algorithms. The logical quality is defined based on the type of the edges
inside communities and how homogeneous these edges are. In other words, the
communities in which all of the edges are homogeneous, i.e., are of the same type,
are considered to have perfect logical quality (see Section 1.5.2).

1.2.3 Scalability

Identifying high quality communities from large-scale real-world networks is typ-
ically computationally expensive and does not scale well. One approach for im-
proving the scalability of community detection is to use parallelism. Parallelism
can significantly speed up the community detection and is also necessary for coping
with the massive volume of real-world datasets.

Recently, a number of studies have proposed parallel community detection algo-
rithms. Yang and Leskovec [42] proposed BigClam which is a model-based parallel
algorithm for community detection. Prat-perez [43] proposed SCD which is a par-
allel scalable algorithm which identifies disjoint communities.
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In addition to designing new parallel algorithms, there has been a number of
attempts to parallelize conventional community detection algorithms in order to
improve their scalability. Staudt et al. [31] provided the parallel implementation
of the Louvain algorithm by Blondel et al. [11] and the label propagation algo-
rithm [38]. Cheong et al. [39] proposed a hierarchical parallel algorithm based on
the Louvain algorithm implemented on single- and multi-GPU (Graphics Process-
ing Unit). Soman et al. [40] proposed a community detection algorithm based on
label propagation optimized for GPU architectures. Kuzmin et al. [41] proposed
a parallel version of the SLPA [21] algorithm for shared and distributed memory
machines.

Another fast and scalable approach to community detection is to use local
community detection algorithms. In local algorithms, the computations can be
done in parallel starting from seed nodes and expanding them into communities
by only investigating the neighborhood of the seed nodes in the network. A naive
approach to local community detection is to expand every node in the network
into a community. However, this approach is computationally expensive and will
generate many duplicate communities. Therefore, the challenge is to select an
optimal number of seeds to be expanded into communities which can cover the
majority of the nodes in a network.

1.2.4 Seed Selection

One of the most successful community detection methods is local seed expansion
which is, as mentioned earlier, also very scalable since it is parallelizable by nature.
However, the problem of selecting good seeds to be expanded into high quality
overlapping communities is far from trivial and is not widely studied.

A good seed is usually assumed to have many neighbors inside the target com-
munity. Andersen et al. [25] theoretically showed that a seed set that is “nearly
contained” in a target community is a good seed set for that community. They also
showed that a randomly selected seed set from a target community can also be a
good choice for identifying that community. However, Whang et al. [29] showed
that careful selection of seeds leads to better results compared to a simple random
selection.

One approach for selecting good seeds in a network is to use non-structural
knowledge of the network if such information exists. As an example, Gargi et
al. [14] have considered non-structural properties of the Youtube video network
and have selected the nodes which correspond to videos with the highest view
count as the seeds. Unfortunately, such non-structural information might not be
available for many types of networks particularly when no global knowledge about
the network exists.

In other studies, the structural properties of the networks have been used for
seed selection. Shen et al. [44] proposed to use maximal cliques as seeds since
they form the core of the communities. However, this approach is computationally
expensive. It was shown by Gleich et al. [45] that the egonets with low conductance
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(a) SH (k=3), MD (b) EC (c) CN+coloring (our algo-
rithm)

Figure 1.3: A comparison of the seeds yield by different seed selection algorithms on a

toy example network.

(EC) are good seeds for finding the best communities of a network with respect to
conductance. However, Whang et al. [29] showed that the communities expanded
from these egonets do not achieve a good coverage of the network. Chen et al. [46]
proposed an algorithm for selecting the nodes with local maximal degree (MD)
as seeds and suggested to repeatedly remove the identified communities expanded
from the selected seeds from the network and find new seeds in the remaining parts
of the network to improve the coverage.

Whang et al. [29] have proposed two seeding algorithms which can achieve good
coverage: Graclus centers and Spread hub. In the Graclus centers, first a parti-
tioning algorithm is used in order to find k partitions, where k is pre-determined,
and then the nodes in the center of these partitions are selected as seeds. In the
spread hub algorithm (SH), first the nodes in the network are sorted based on their
degree, then the nodes with the highest degree are selected as seeds until at least k
nodes are selected. These seeding methods are both shown to perform well in large
real-world networks. However, these methods require that the number of seeds to
be selected is known in advance. Unfortunately, making assumptions about the
number of communities in a network is not realistic since the community structure
of real-world networks is normally unknown to us.

Figure 1.3 shows the seed nodes which are selected by different seeding methods.
It can be seen that different algorithms pick different nodes as seeds since they take
different structural properties of the nodes into account. In this thesis, we propose
a new seed selection algorithm which does not require global information about
the network nor the number of seeds to be picked, and still is able to select a
reasonably small number of good seeds which are well distributed over the network
(see Section 1.5.4).

1.2.5 Other Challenges

Despite the excessive number of community detection algorithms proposed in the
literature, identifying communities in real-world networks is still a challenge. The
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challenges are not limited to quality evaluation of the identified communities and
the scalability of the algorithms. Some other challenges, which are not covered in
the thesis, but are very important to be studied are as follows.

• Identifying communities in dynamic networks, where new nodes can join, ex-
isting nodes can leave the network and new edges can be formed and existing
edges can break.

• Studying the stability of communities identified by different algorithms, par-
ticularly in evolving networks.

• Combining structural and non-structural information, where such knowledge
exists, for identifying more realistic communities.

• Interpreting what the identified communities show about the function of the
system and how the output of a community detection algorithm can be used
for different applications.

1.3 Applications

Mining large-scale real-world network data has many different applications such as
understanding the function of a system, modeling and predicting its behavior, and
identifying outliers and anomalies. In this section we present three network data
analysis applications which are the focus of this thesis.

1.3.1 Unsolicited Email Detection

Email is one of the most common services on the Internet with everyday business
and personal communications depending on it. Unfortunately, the vast amount
of unsolicited email (spam) consumes network and mail server resources, imposes
security threats, and costs businesses significant amounts of money. Spam can also
be exploited for phishing and scam and it can carry Trojans, worms, or viruses,
making email unreliable.

It is known that a large fraction of spam originates from botnets [47, 48]. A
botnet is a collection of compromised hosts (bots) where each bot contributes to con-
ducting malicious activities or attacks such as distributed denial of service (DDoS),
scanning, click frauds, and sending spam. Therefore, identifying the source of spam
can lead to the detection of the source of other malicious activities on the Internet.

Numerous attempts to fight spam have led to implementation of anti-spam
tools that are quite successful in hiding the spam from users’ mailboxes. Most of
the conventional approaches inspect email contents at the receiving mail servers,
and are very resource-intensive. Although such content-based filters are effective
in learning what the content of spam looks like, the spammers are very agile in
obfuscating email contents and encapsulating their messages in other formats such
as images to bypass these filters.
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As a complement to content-based filters, pre-filtering strategies are widely used
to stop spam before the email content is received and examined by the mail servers.
A commonly used pre-filtering method is IP blacklisting. The receiving mail servers
can consult IP blacklists to decide whether to accept or reject an incoming email.
However, IP addresses are not persistent, they can be obtained from dynamic pools
of addresses and they can be stolen [47, 49]. In addition, bots usually send spam
at a low rate to each individual domain and do not reuse IP addresses that have
become blacklisted.

In addition to the above mentioned anti-spam strategies, numerous other spam
detection and prevention techniques have been introduced. Approaches such as
enforcing laws and regulations, requesting proof-of-work (e.g., processing time) [50],
mail quota enforcement [51], port blocking, and user monitoring are proposed to
stop spam at the sender side. Greylisting [52], reputation-based approaches, sender
authentication, and domain verification are approaches that can be used on the
receiver side before accepting email contents. Replacing SMTP with a new protocol
or deploying overlay authentication protocols, are some other ideas proposed to stop
spam during transit.

Recently, approaches that focus on the network-level behavior of spam have
gained attention. These approaches are concerned about email sending behavior
of the spammers, which is expected to be more difficult for them to change than
the content of the email [53–55]. In order to improve and come up with more such
methods, there is a need to understand the network-level characteristics of spam
and how it differs from legitimate email (ham) traffic.

It is known that spam is sent automatically, therefore it is expected that it
does not exhibit the social properties of human-generated communications [56–59].
The social properties of email communications can be studied by analyzing the
structure of email networks generated from email traffic. An email network is an
implicit social network in which each node represents an email address and each
edge represents an email. It has been shown that email networks have the same
structural properties that other social and interaction networks have [60–62]. Our
intuition is that the structural properties of email networks containing unsolicited
email are not similar to the structure of email networks containing only legitimate
email. Therefore, analysis of email networks generated from a mixture of email
communications can be used for identifying the distinguishing properties of ham
and spam which can potentially be used for detecting the botnets based on their
anti-social behavior rather than on the content of what they send.

1.3.2 Network Intrusion Detection

Networked systems are continuously under attack causing considerable damages,
therefore, network intrusion detection systems are widely deployed. Network in-
trusions can be identified using two different approaches, i.e., misuse detection
and anomaly detection. Techniques for misuse detection rely on the signatures of
attacks, and search for patterns of well-known attacks to identify intrusions, there-
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fore, they lack the ability to detect new intrusions or zero-day attacks. Anomaly
detection techniques, on the other hand, do not require prior knowledge of an attack
signature. However, they might have a high false positive rate.

In this thesis, we focus on anomaly detection-based intrusion detection systems.
Anomaly detection has been extensively studied in the context of different appli-
cation domains and a variety of techniques have been proposed. An overview of
anomaly detection methods can be found in [63].

Anomalies are patterns in network traffic that do not conform to normal be-
havior. Any change in the network usage behavior or malicious activities such as
DoS attacks, port scanning, unsolicited traffic, and worm outbreaks, can be seen
as anomalies in the traffic.

The main challenge in using anomaly detection for identifying misbehaving
hosts is to define normal behavior and draw boundaries between normal and ab-
normal communication patterns. One approach to defining normality is to look
into the social behavior of normal nodes. Since many types of intrusions are au-
tomatically generated, it is expected that they do not conform to the expected
normal social behavior. Therefore, a number of features that are representative of
(anti)social communication patterns can be extracted for identification of misbe-
having nodes.

Recently, it was shown that network intrusions can successfully be detected
by examining the network communications that do not respect the community
boundaries [64]. In such an approach, normality is defined with respect to social
behavior of nodes concerning the communities to which they belong and intrusion
is defined as “entering communities to which one does not belong”. In this thesis we
propose an alternative definition for anomaly/intrusion and study how the network
structure and the community structure of graphs generated from network traffic
can be used for network misbehavior detection (see Section 1.5.3).

1.3.3 Query Analysis

Logs of search engines contain a wealth of information from the queries submitted
by users. Query logs have been widely studied and analyzed in order to improve the
service provided to the users and to better understand their behavior and needs.
Analysis of web query logs can provide useful information regarding the use of a
site considering when and how users seek information for topics covered by the
site [65]. Extracting information from query logs can also be useful for different
types of users such as terminologists, infodemiologists, and web analysts, as well as
specialists in Natural Language Processing (NLP) technologies such as information
retrieval and text mining.

Medical and health information seeking on the Internet is quite common. Min-
ing query logs of medical search can be beneficial to public officials in health and
safety organizations, epidemiologists, and medical data analysts. Information ex-
tracted from large-scale logs can be used both for a general understanding of public
health awareness and the information seeking patterns of users, and for optimizing
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search indexing, recommendations, query completion and presentation of results
for improved public health information.

In order to study query logs, several graph-based relations among queries can
be used [66]. A co-occurrence network for the words which co-occurred in different
queries is an information network which we use to capture the relations between
the words. We further study the structural and temporal properties of the co-
occurrence network and show that it is similar to other information and social
networks. We also look into the community structure of the network and how the
identified communities can potentially be used for improving our understanding of
the language used by users of the health care portal and improving their search
experience (Section 1.5.5).

1.4 Data Collection

Getting access to and performing analysis of large-scale real-world datasets is cru-
cial for many different applications. Collection and processing of real data is far
from trivial. The challenges involved are both of general and technical nature. Get-
ting access to the data, privacy and ethical concerns, pre-processing and analysis
of the dataset are just a number of challenges that need to be addressed before
the data can be used for an application. The main challenge, however, is handling
the massive amount of data. The data collection process has to keep up with the
speed in which the data is being produced or received. It is usually inevitable to
sample the data, to process summaries of the data or to only focus on analyzing
snapshots of data obtained during limited time windows. In some cases such as In-
ternet traffic collection, special measurement equipments which can cope with full
link-speed or allow high sampling frequencies are required. After the collection,
the data also needs to be parsed or pre-processed before it is possible to extract
relevant information for example to create a network from the relations observed in
the datasets. In many cases, obtaining ground-truth data for evaluating the results
of the data analysis can also be impossible or non-trivial. In this thesis we have
collected and obtained different types of real data including data captured from a
high speed Internet backbone link, data from social and information networks, and
query log files from a health care portal.

1.4.1 Email Dataset

One of the datasets which is collected by us is an email dataset which is used
for understanding the characteristics of legitimate and unsolicited email. The
study of the characteristics of email and spam can be conducted using different
types of email data. A number of studies have used SMTP log files from mail
servers [49, 57, 59, 67–69]. Although such datasets are limited to communications
to/from a single domain, they contain detailed information about each email and
the statistical summaries of accepted and rejected email communications, which
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allows comparison of the behavior of spam, ham, and the rejected traffic. The
spam captured in honeypots or relay sinkholes have also been used to study the
characteristics of spam [53, 70]. The honeypots only attract spammers, therefore
they do not allow the comparison of different characteristics and communication
patterns of spam and ham. Flow-level data collected on access routers have also
been used to study the properties of spam and rejected traffic [71]. These flows
only contain packet headers, and although they are not limited to a single domain,
they do not carry enough information to allow distinguishing spam from ham to
study their distinct characteristics. Another type of data that has been used to
understand the sending behavior of spam was collected from inside spam cam-
paigns [48, 72, 73]. The data collected at these campaigns has the view point of
spammers and makes it possible to closely investigate how spam is sent.

In our studies, we have used yet another type of email data. Our dataset enables
us to study the behavior of legitimate and unsolicited traffic from the perspective
of a network device which monitors the traffic traversing a backbone link. The
collected email traffic is not limited to a single organization or domain and allows
us to classify the observed email into ham, spam, and rejected communications to
compare their characteristics.

Collection of large datasets from backbone Internet traffic can face several chal-
lenges [74]. Not only is mere physical access to optical Internet backbone links
needed, but also rather expensive equipment in order to deal with the large data
volumes arriving at high speeds. Adding to the complexity, the collected data
traces must be desensitized since they may contain privacy-sensitive data. Packets
also need to be reassembled into application level “conversations” so that, finally
and maybe the most challenging part, methods and algorithms suitable for analysis
of massive data volumes can be run [75].

Our datasets were generated passively capturing traffic on a 10 Gbps backbone
link of SUNET (the Swedish University Network) [76]. The collection location is
shown in Figure 1.4. Each dataset was collected over 14 consecutive days with
roughly a year time span between them.

The process of collecting data and generating the first dataset is described in
more detail in the following. Table 1.2 summarizes the collected data during 14
consecutive days in March 2010. The second dataset was also collected similarly
during 14 consecutive days in spring 2011.

We used a hardware filter to only capture traffic to and from port 25 which
resulted in more than 183 GB of SMTP data. The captured packets belonging to a
single flow were then aggregated to allow the analysis of complete SMTP sessions.

The collected data contained both SMTP requests and SMTP replies. As each
SMTP request flow corresponds to an SMTP session, it can carry one or more
emails, thus we had to extract each email from the flows by examining the SMTP
commands. The resulting extracted email transaction contained the SMTP com-
mands including the email addresses of the sender and the receiver(s), email head-
ers, and the email content.
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Figure 1.4: OptoSUNET core topology. All SUNET customers are via access routers

connected to two core routers. The SUNET core routers have local peering with Swedish

ISPs, and are connected to the international commodity Internet via NORDUnet. SUNET

is connected to NORDUnet via three links: a 40 Gbps link and two 10 Gbps links. Our

measurement equipment collects data on the first of the two 10 Gbps links (black) between

SUNET and NORDUnet.

After the collection phase, first the dataset was pruned of all unusable email
traces. For example, flows with no payload are mainly scanning attempts and
should not be considered in the classification. Also, SMTP flows missing the proper
commands were excluded from the dataset as they most likely belong to other ap-
plications using port 25. Encrypted email communications cannot be analyzed, and
were also eliminated.1 Any email with an empty sender address is a notification
message, such as a non-delivery message [77]; it does not represent a real email
transmission and was also excluded. Finally, any email transaction that was miss-
ing either the proper starting/ending or any intermediate packet was considered
as incomplete. Possible reasons for having incomplete flows include transmission
errors and measurement hardware limitations caused by a framing synchronization
problem.

The remaining email transactions were then classified as accepted, i.e. those
emails that are delivered by the mail servers, or rejected. An email transaction can
fail at any time before the transmission of the email data (header and content) due
to rejection by the receiving mail server. Therefore, rejected emails are those that
do not finish the SMTP command exchange phase and consequently do not send
any email data. The rejections are mostly because of spam pre-filtering strategies

1Around 3.8% of the flows carried encrypted SMTP sessions.



1.4. DATA COLLECTION 19

Table 1.2: Email dataset statistics (2010).

Incoming (/106) Outgoing (/106)

Packets 626.9 170.1
Flows 34.9 11.9
Distinct source IPs 2.30 0.01
Distinct destination IPs 0.57 1.94
SMTP Replies 2.84 9.14
Email: 19.3 0.73

Ham email 1.32 0.21
Spam email 1.66 0.20
Rejected email 16.3 0.31

deployed by mail servers including blacklisting, greylisting, DNS lookups, and user
database checks.

Finally, we discriminated between spam and ham in our dataset. As we have
captured the complete SMTP flows, including IP addresses, SMTP commands,
and email contents, we can establish a ground truth for further analysis of only the
spam traffic properties and a comparison with the corresponding legitimate email
traffic. We deployed the widely-used spam detection tool called SpamAssassin2

to mark emails as spam and ham. SpamAssassin uses a variety of techniques
for its classification, such as header and content analysis, Bayesian filtering, DNS
blocklists, and collaborative filtering databases.3

The final pre-processing step of the dataset was to desensitize any user data.
Immediately after the classification of emails into ham and spam, we discard the
content of the emails and anonymized the email and IP addresses in the headers [75].
Once the sensitive data was discarded, the resulting anonymized dataset had a size
of 37 GB.

The second dataset from 2011 was collected and pre-processed similarly to the
first dataset. The infrastructure and the data collection equipment was updated
during the one year time span between the collections. Although, the changes have
caused differences in the collected data, these differences are in our favor since they
allow us to compare our observations over time and verify that our findings are not
limited to a single vantage point.

2http://spamassassin.apache.org
3The well-trained SpamAssassin applied to our dataset was in use for a long time at our

university, incurring an approximate false positive rate of less than 0.1%, and an detection rate
of 91.3% after around 94% of the spam being rejected by blacklists.
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Table 1.3: Unique hosts during the data collection 2010-04-01.

Inside SUNET Outside SUNET

Incoming Link Destination IPs 970,149 Source IPs 24,587,096
Outgoing Link Source IPs 23,600 Destination IPs 18,780,894

1.4.2 Flow Dataset

In order to study other types of misbehavior in network traffic such as network
intrusions, we have used network flow data collected from the backbone link of
SUNET. The network flow data was collected from the same location as the email
dataset (see Figure 1.4).

For a period of more than six months, a 24 hour snapshot of all flows was
regularly collected once a week. The dataset contains a total of 12 billion flows
in both directions. Table 1.3, summarizes all unique IP addresses found during
a single collection day to give an idea of the scale of the traffic passing by the
measuring point.

This dataset also contains metadata, including, for example, hosts known to
aggressively spread malware at the time of the collected snapshots. The source
addresses of these malicious sources in the dataset were defined by using the lists
reported by DShield and SRI Malware Threat Center during the data collection
period [78, 79]. By using the flow data together with this information, we can
then make more targeted types of analysis of hosts, despite their addresses being
anonymized.

We have used flow data from seven days in the dataset in order to study a
community-based network intrusion detection method (Section 1.5.3). More details
about the collection of the dataset and other analysis performed on the data can
be found in [80].

1.4.3 Social and Information Network Datasets

In addition to data from real network traffic, we have used data from other types of
social and information networks. We have used publicly available datasets provided
by the Stanford Large Network Collection [81] including a product network from
Amazon, a collaboration network from DBLP computer science bibliography, and
the social networks of users in Youtube and Livejournal. These datasets also include
the information about the ground truth communities.

In the Amazon network, nodes are products in the Amazon website and two
products have an edge if they were co-purchased frequently. The ground truth is
based on the product categories defined by Amazon. In the DBLP network, nodes
are authors and two authors are connected with an edge if they have co-authored
at least one paper, and the ground truth is obtained based on the publication
venues. In the Youtube and LiveJournal networks the nodes are the users of the
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video sharing and online blogging websites, respectively, and the edges correspond
to friendships and the ground truth is based on user-defined groups.

In addition to above datasets, we have collected a dataset from the SoundCloud
sound sharing site (http://soundcloud.com/). In SoundCloud, similar to Twitter,
users can follow each other, and popular artists tend to attract a large number of
followers. For the collection of Soundcloud data, we alternated between random
sampling and breadth-first-search, so that we could capture local neighborhood
information while covering different parts of the network [82]. After data collection,
we generated a network of “follow” relations, where the nodes are the users, and
an edge (u, v) exists if the user u follows the user v.

The data collection from SoundCloud is an ongoing process and by the time
this thesis is being written, we have collected data from more than 39 million users
with more than 642 million follows and around 76 thousand groups. We are going
to publish a more complete version of the datasets after finishing the collection
process. By the time we started to use the SoundCloud dataset, we had around 5
million users in the dataset. Even though our work is focused on a small subset
of the whole user base, this network has been the largest social network which we
used in our studies. In this thesis, we have used the datasets presented in this
section for evaluating our proposed local seed selection algorithm. Our algorithm
selects seeds by merely investigating the direct neighborhood of each node in the
network and therefore does not require the global structure of the network to be
accessible, so our analysis is not affected from the lack of global data.

1.4.4 Medical Query Logs

The last dataset which we used was obtained from the query logs of a Swedish
health care portal. We obtained 67 million queries for the period October 2010 to
the end of September 2013. The data was provided by vardguiden.se through an
agreement with the company Euroling AB which provides indexing and searching
functionality to vardguiden.se. 27 million of the queries are unique before any kind
of normalization, and 2.2 million after case folding.

The obtained queries are then automatically annotated with semantic labels
using two medically-oriented semantic resources, i.e., the Systematized Nomencla-
ture of Medicine - Clinical Terms (SNOMED CT) and the National Repository for
Medicinal Products (NPL), as well as a named entity (including the ontological
categories location, organization, person, time, and measure entities) recognizer.
We used these labels to identify semantic communities based on the co-occurrence
of words in the queries.

Moreover, from each query which contained more than one word/term, we ex-
tracted the words and created a network of word co-occurrences. We are interested
in analyzing the relations between the words and the language being used in the
queries, so the single-word queries were not of interest to us. This network was
used for structural analysis and identification of graph communities.
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Overall, the semantic and graph analysis of query logs can be of great inter-
est for different types of studies and can reveal important information about the
usage patterns, information needs, and the language of the users of the website
(Section 1.5.5).

1.5 Our Approach

As presented in the previous section we have collected and obtained large volumes
of real-world data and constructed different networks from the datasets and studied
their structural properties. In this section we summarize our approaches towards
the different applications which we had at hand. The details of our approaches are
covered in the appended papers.

1.5.1 Structural and Temporal Analysis of Email Networks

In order to understand the characteristics of unsolicited email traffic and how they
differ from legitimate traffic, we have performed a social network analysis of real
email traffic (Section 1.4.1). Our hypothesis is that social network analysis of email
traffic can reveal the differences in the communication patterns of legitimate and
unsolicited email traffic and can be used for identifying the sources of spam.

In order to verify our hypothesis, we have generated email networks from the
observed email communications in which each node represents an email address and
each edge represents an observed email communication between a pair of nodes.
The generated email network from the larger dataset contains 10,544,647 nodes
and 21,562,306 edges, and the email network from the smaller dataset contains
4,525,687 nodes and 8,709,216 edges. Based on our ground truth, we have gen-
erated a number of ham, spam, rejected, and complete email networks, and have
studied and compared their structural and temporal properties. We have looked
into the (in-/out-)degree distribution, average shortest path length, average cluster-
ing coefficient, distribution of the size of the connected components, the percentage
of total nodes in the giant connected component, as well as how these properties
change over time as the networks grow.

Our study reveals that the legitimate email traffic exhibit similar structural
properties as other social and interaction networks, and therefore a ham network
can be modeled as a scale-free small-world network. We also show the similarities
and differences in the structural and temporal properties of email networks of ham
and spam, and show that the anti-social behavior of spam and rejected traffic is not
hidden in a mixture of email traffic and causes anomalies (outliers) in the structural
properties of email networks. We also propose a method for identifying spamming
nodes by finding the outliers in the structural properties of email networks which
mainly are caused by the spammers.
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1.5.2 Evaluation of Community Detection Algorithms

Despite the excessive number of studies on community detection there is no consen-
sus on a definition for a community and different community detection algorithms
have been proposed in the literature based on the different definitions. Therefore, it
is not clear how to evaluate which algorithm is most suitable to be used for different
types of networks. Moreover, due to the ambiguity in the definitions for commu-
nity, assessing the quality of the communities identified by different algorithms can
be challenging.

In this thesis, we have conducted an empirical study to compare and evaluate a
variety of community detection algorithms based on a set of structural and logical
quality functions on our email networks. We have evaluated the structural quality
of the communities using different well-known and widely-used quality functions,
namely modularity, coverage, and conductance. We have also proposed to use the
logical quality of the communities based on how homogeneous the edges inside the
communities are. A community which only contains the same type of edges is
considered to have a perfect logical quality. Our aim is to find the most suitable
approach that can separate ham and spam emails from the mixture of traffic into
distinct communities.

Our study shows that both ham and spam networks, as well as networks contain-
ing a mixture of both, exhibit a community structure, and that different commu-
nity detection algorithms can be used to unfold the communities of these networks.
However, we also show that there is a trade-off in creating high structural quality
and high logical quality communities. We reveal that although different community
detection algorithms use different approaches to define and extract the communities
of a network, algorithms that create communities with similar granularity and size
distribution also achieve similar structural and logical qualities. We confirm that
community detection algorithms which find coarse-grained communities achieve
high structural quality. However, we reveal that they fail to find communities with
high logical quality since they tend to combine smaller homogeneous communities
into mixed communities in favor of better structural quality. We also show that an
edge-based community detection algorithm can achieve a high logical quality since
it can separate ham and spam emails into distinct communities.

1.5.3 Identifying Misbehavior Using Community

Detection Algorithms

Recently, it was shown that the community structure of a flow network can be used
for successful intrusion detection [64]. In a community-based anomaly detection
method, normality is defined with respect to the social behavior of nodes concern-
ing the communities to which they belong. Nodes that participate in anti-social
communications and disrespect community boundaries by “entering communities
to which they do not belong” can be identified as anomalous by a community-based
anomaly detection method. Despite the fact that these methods use a notion of
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community, Ding et al. [64] showed that a traditional modularity maximizing com-
munity detection algorithm is not suitable for intrusion detection in network flow
data since the majority of intruders end up inside a large community and do not
enter other communities.

Our intuition is that, in contrast to Ding et al. [64], community detection al-
gorithm can be used for successful network anomaly/intrusion detection. In order
to verify this, we look into communities identified by different types of community
detection algorithms to extend and complement the work in [64]. Our hypothesis
is that misbehaving nodes tend to belong to multiple communities. However, a vast
variety of community detection algorithms partition network nodes into disjoint
communities where each node only belongs to a single community, therefore they
cannot be directly used for verifying our hypothesis. Therefore, we introduce aux-
iliary communities to enhance non-overlapping community detection algorithms.
This enhancement is achieved by adding a layer of auxiliary communities over the
boundary nodes of neighboring communities, allowing nodes to be members of
several communities. Therefore, this enhancement enables us to show that, in con-
trary to [64], it is possible to use community detection algorithms for identifying
anomalies in network traffic.

In addition to traditional community detection algorithms, numerous overlap-
ping algorithms exist which allow a node to belong to several overlapping communi-
ties [16]. We also compare our proposed enhancement method for non-overlapping
community detection algorithms with a number of overlapping algorithms for net-
work anomaly detection, and show that they have comparable performance.

Finally, we propose a framework for network misbehavior detection. The frame-
work allows us to incorporate a community detection algorithm for identifying
anomalous nodes that belong to multiple communities. However, since legitimate
nodes can also belong to several communities [24], we also introduce a number
of application-specific filters based on different graph properties to be used for
discriminating the legitimate nodes from the anti-social nodes in the community
overlaps, thus reducing the induced false positives. Our experiments show that our
framework is suitable for identifying intruders and the sources of scanning attacks
from flow networks, and the sources of spam from email networks.

1.5.4 Local Seed Selection for Overlapping Community

Detection Algorithms

Local community detection algorithms are gaining more attention than global al-
gorithms which require the structure of the whole network to be known. In local
algorithms, first local communities are identified independently of each other only
based on local knowledge of the network, then they are combined to provide the
global community structure of the network. Local algorithms are easy to parallelize
and therefore can scale well. However, the selection of good seeds to be expanded
into communities that achieve good coverage of the network is challenging. Our
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aim is to design a local seeding algorithms which can select a reasonable num-
ber of seeds which are well-distributed over the network and therefore can lead to
communities covering the majority of the nodes.

Existing seeding algorithms either require a global knowledge of the entire net-
work to be available or they will fail to pick an adequate number of seeds which
can lead to incomplete coverage of the network. Therefore, in this thesis we further
study the problem of local seed selection for finding a reasonably small number of
seeds. The seeds identified by such a seeding algorithm can then be expanded into
high quality overlapping communities using high quality local community detection
algorithms such as the Personalized PageRank-based algorithm (PPR) [24, 83].

We propose a novel seed selection algorithms for local overlapping community
detection. First, we define a similarity score which is calculated as the sum of the
similarity of a node with all of its connected neighbors by adopting the similarity
indices from link prediction techniques. In link prediction, the aim is to estimate
connections that are very likely to be formed between nodes in a network, therefore
link prediction methods typically use a similarity index to calculate the similarity
of the nodes which are not directly connected. If two nodes have a high similarity, it
is predicted that an edge will be formed between them. However, in our algorithm,
we use similarity indices to calculate the similarity of the nodes which already
share an edge. Our intuition is that a node that has a high aggregated similarity
with its neighbors is expected to belong to the same community as its neighbors.
Therefore, we propose to select the node with the highest score in its neighborhood
as a seed and expand it into a community. We have compared a number of different
widely used similarity indices for our seeding algorithm and have also compared
our seeding algorithm with a number of existing local seeding algorithms.

Although we show that by using similarity scores we can identify a small number
of very good seeds, we can also show that similar to other local seeding algorithms,
the expanded communities from these seeds do not achieve a high coverage of
the network. Therefore, we propose to use distributed random graph coloring
for enhancing our local seed selection algorithm. In order to combine similarity
scores with graph coloring for seed selection, we propose a biased graph coloring
algorithm in which the nodes with high similarity score are assigned a specific color
and color conflicts between neighbors are resolved at random. This enhancement of
our seeding algorithm makes sure that good seeds which have received the specific
color are well distributed over the network. Our biased coloring algorithm can also
be used for enhancing and improving other existing local seeding methods.

Our novel local seeding algorithms is parameter free, finds seeds that are well
distributed over the network, and does not pick neighboring nodes as seeds and
therefore does not lead to many duplicate communities. We empirically evaluate
the execution time of local community detection when seeding is used as the first
step of community detection and compare the quality and the coverage of the com-
munities expanded from the selected seeds using large-scale real-world networks.
Our experiments show that by using seeding, the execution time of community
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detection is dramatically reduced and the average quality of the communities is
preserved and a high coverage is achieved.

1.5.5 Graph-based Analysis of Medical Queries

Large search query logs carry a wealth of information about the behavior of the
users in information seeking and the language they use. Similar to many other
types of data, query log files can also be modeled as networks.

Our hypothesis is that graph-based analysis of words which have co-occurred
in different queries can provide a better understanding of the relations of words
and terms in different domains and in different languages. In order to verify our
hypothesis, we have generated a word co-occurrence network from the query logs
of a Swedish health care website. We study the structural and temporal properties
of the generated network and show that it is similar to other existing information
and social networks. We also look into the community structure of the word co-
occurrence network in order to understand the relation between the words in a
medical domain.

Moreover, we have introduced semantic communities which are communities
of words which have co-occurred with a semantic label. These labels are added
to the queries using medically-oriented semantic resources. We also apply a per-
sonalized PageRank-based community detection algorithm to the generated word
co-occurrence network and compare the identified graph communities with the se-
mantic communities. Our experiments show that while semantic communities can
cover only a small percentage of all the words in the logs, the graph communi-
ties can cover the vast majority of the words. Therefore, the graph-based analysis
can capture more relations among the words which have been used in the queries.
Moreover, the graph and semantic analysis capture different relations between the
words and identify communities which are only partially similar and therefore can
be used to complement each other. Overall, our graph-based approach can be used
as the first step towards a better understanding of the language usage in medical
domain as well as for providing better services and recommendations to the users
of the health care portal.

1.6 Summary of Contributions

This section summarizes the contributions of the papers included in this thesis.

1.6.1 PAPER I

In this paper, we show that an email network generated from legitimate email
traffic collected on an Internet backbone link (a ham network) can be modeled as
a scale-free small-world network similar to other social and interaction networks.
We also show the similarities and the differences in the structure of ham and spam



1.6. SUMMARY OF CONTRIBUTIONS 27

networks and how they change over time. We reveal that the anti-social behavior of
spam is not hidden in a mixture of email traffic and causes anomalies (outliers) in
the structural properties of email networks. Moreover, we propose a simple method
for identifying the nodes that correspond to outliers in the degree distribution of
email networks and show that they are mainly sending spam.

1.6.2 PAPER II

In this paper, we study the community structure of ham, spam, and email networks
generated from real email traffic and compare a number of well-known community
detection algorithms for identifying the communities of these networks. Our ex-
periments reveal that there is a trade-off in creating high structural quality and
high logical quality communities. We propose to evaluate the logical quality of the
communities based on the homogeneity of the edges inside each community, and
show that regardless of the approaches used to define and extract communities,
the algorithms that create communities with similar granularity and size distribu-
tion also achieve similar structural and logical qualities. We also show that the
most successful community detection algorithm for achieving high logical quality
(i.e., clustering ham and spam emails into distinct communities), finds overlapping
communities by partitioning the edges of the network instead of the nodes.

1.6.3 PAPER III

In this paper, we extend and complement the previous work on community-based
intrusion detection. We hypothesize that misbehaving nodes tend to belong to mul-
tiple communities. To investigate our hypothesis, we consider different definitions
for communities, and propose a framework in which different types of community
detection algorithms can be used as the basis for network anomaly and intrusion
detection. We propose two enhancement methods for adding auxiliary communities
over the disjoint communities identified by non-overlapping community detection
algorithms. We show that by using our enhancement methods, it is possible to use
traditional community detection algorithms for identifying anomalies in network
traffic which is in contrast to the observations in [64].

Moreover, we propose a framework that allows us to incorporate communities
identified by overlapping algorithms for identifying anomalous nodes that belong
to multiple communities. We show that the algorithms which tend to identify
coarse-grained communities are not suitable for network misbehavior detection.
We also propose to use application-specific filters to filter out legitimate nodes
which can naturally belong to several communities. Our experiments reveal that
our framework is suitable for identifying scanning nodes from network flow traffic
as well as spammers from email traffic.
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1.6.4 PAPER IV

In this paper, we propose a novel distributed seed selection algorithm for local
overlapping community detection. We define a similarity score using the similarity
indices from link prediction techniques and propose an algorithm in which each
node compares its similarity score with all its neighbors, and the nodes which
have the highest score in their neighborhood are selected as seeds. We show that
this algorithm succeeds in selecting a small number of very good seeds which are
expanded into high quality communities but cannot cover the whole network. We
also propose to use graph coloring for enhancing our local seed selection algorithm
in order to improve the coverage. We propose a biased graph coloring algorithm in
which the nodes with high similarity score are assigned a specific color and color
conflicts between neighbors are resolved at random. Our experiments using large-
scale real-world social networks show that our seeding algorithm is fast, and leads
to high quality communities with a good coverage of the networks.

1.6.5 PAPER V

In this paper, we create a word co-occurrence network from query log files obtained
from a medical and health care portal. We show that this network has the same
structural and temporal properties that other information networks exhibit. We
use a local overlapping community detection algorithm to identify the communi-
ties in the co-occurrence network. We also use the semantic labels assigned to the
queries in the log files and define semantic communities which are communities of
words which have co-occurred with a semantic label. We compare the graph com-
munities with the semantic communities and show that our graph-based analysis of
queries can improve and complement the semantic analysis. We also study how the
length of the time window in which queries are observed can affect our graph-based
analysis.

1.7 Conclusions and Future Work

In this thesis, we have looked into algorithms and methods for analyzing networks
generated from large-scale real-world datasets. Particularly, we have focused on
the community structure of networks and have looked into the challenges and the
applications of community detection algorithms.

One of the challenges in identifying communities in a network is the selection of
the most suitable algorithm for the network, since different algorithms use different
definitions for communities and use different methods for identifying the commu-
nities. In this thesis we have performed an empirical comparison and evaluation
of a number of different community detection algorithms and show that there is a
trade-off between the structural and the logical quality of the communities identi-
fied by different algorithms. Therefore, an algorithm which can create communities
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with very high structural quality might not be the most suitable algorithm for the
application at hand, for example, separating different types of edges into distinct
communities.

Another challenge in using community detection algorithms for analysis of large
datasets is scalability. It has been shown that local seed expansion algorithms
are very successful in fast and scalable detection of high quality communities. In
this thesis, we have proposed a fast local seed selection algorithm which can be
used as a pre-processing step for local community detection using seed expansion.
Our algorithm can dramatically reduce the execution time of community detection
while preserving the quality of the identified communities and achieving a good
coverage of the network. Moreover, there are many interesting trade-offs between
the number of selected seeds, the quality, and the coverage of communities which
can be further studied. Another property which can further be taken into account
for seed selection is to reduce the number of duplicate communities.

In addition to investigating and addressing some of the challenges of community
detection, we have also looked into some of the applications of network analysis
and community detection. One of the applications which has been considered in
this thesis is identifying the source of unsolicited email. Our goal has been to re-
veal the differences and similarities in the communication patterns of legitimate
and unsolicited email by mining email networks generated from traffic seen on an
Internet backbone link. To pursue this goal, we have taken a social network anal-
ysis approach and show that the behavior of spam senders causes anomalies in
the structural properties of email networks, and these anomalies can be detected
using an outlier detection approach. We can also show that spam and ham, which
are mixed in the observed traffic, can be separated into distinct communities by
deploying a link community detection algorithm. Moreover, we have proposed a
framework for network misbehavior detection which takes advantage of overlap-
ping communities for identifying sources of spam as well as sources of other types
of malicious traffic such as scanning. We are able to show that misbehaving nodes
belong to multiple communities and they can be identified by either using overlap-
ping community detection algorithms or by enhancing non-overlapping algorithms
with auxiliary communities.

The proposed approaches in this thesis for identifying sources of misbehavior
are promising and can potentially be used to complement existing anti-spam and
intrusion detection methods. The advantage of deploying our approaches is that
they provide us with the possibility of stopping unwanted traffic closer to its source
by merely observing the communication patterns of network traffic, for example
email communications. However, there is more work to be done before our findings
can be deployed practically as part of a working anti-spam or intrusion detection
tool. One desirable future direction is to investigate how our methods can be
combined with each other to be used as a stand-alone detection system or in co-
operation with existing tools. One possibility is to deploy a network device that
monitors the traffic on a link and that is able to tag suspicious traffic or populate
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a blacklist. Moreover, a study of the robustness of our findings in order to see how
easy it is for the spammers or intruders to change their sending behavior and how
easy it is to evade detection is another future research area.

Another goal of this thesis has been to improve community detection algorithms
so that they could be used for different applications. We have introduced auxiliary
communities to enhance existing non-overlapping community detection algorithms
in order to identify sources of misbehavior from real network traffic. However,
our approach can potentially be extended for converting disjoint communities into
overlapping communities which will allow the use of existing non-overlapping com-
munity detection algorithms for identifying overlapping communities.

In this thesis, we have also shown how to use network mining and community
detection methods to analyze other types of large datasets such as the query logs
obtained from a Swedish health care portal. A future direction is to improve
our graph-based query analysis by improving the pre-processing of the data, for
example by representing different variations of words with a single node in the word
co-occurrence network, filtering out non-medical related words, and introducing
edge weights based on the frequency of word co-occurrences. Moreover, other
information from the logs can be deployed to better understand the language used
by users and to be able to improve the search experience of the users by providing
better suggestions and recommendations to them.

Overall, with advances in technology and computation and proliferation of
smart and mobile devices, new opportunities for collecting and analyzing big data
emerge and more and more applications can benefit from the extracted knowledge
from the data. Therefore, there is an increasing need for fast, dynamic, and scal-
able solutions which also open more research questions. One of the challenges is
to design new network mining algorithms and to improve existing ones to run in
parallel and in distributed settings. The designed parallel and distributed algo-
rithms also need to cope with the lack of global knowledge of the networks, as well
as the dynamically changing structure of networks. Moreover, there is also a need
for improving the quality of the network mining algorithms, particularly commu-
nity detection algorithms. Recent studies using ground truth data have revealed
that existing community detection algorithms are not very successful in identifying
the real communities in large networks, therefore new approaches to community
detection which for example take non-structural properties of the networks into
account, are desirable. Another interesting future research direction is to develop
efficient methods, such as visualization, for interpreting the output of different
graph algorithms, to allow better understanding of the structure of networks and
identifying interesting patterns and anomalies. Finally, extending the applicabil-
ity of network mining algorithms to more real-time domains and applications is
another challenging future direction.
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2
Towards Modeling Legitimate and

Unsolicited Email Traffic Using
Social Network Properties

Identifying unsolicited email based on their network-level behavior rather than their
content have received huge interest. In this study, we investigate the social network
properties of large-scale email networks generated from real email traffic to reveal
the properties that are indicative of spam as opposed to the expected legitimate
behavior.

By analyzing the structural and temporal properties of the email networks we
confirm that legitimate email traffic generates a small-world, scale-free network
similar to other social networks. However, email traffic as a whole contains un-
solicited email, thus the structure of email networks deviates from that of social
networks. Our study points out the distinctive characteristics of spam traffic and
reveals that the anomalies in the structural properties of email networks are due
to the unsocial behavior of spam.

2.1 Introduction

Eliminating the excessive amount of unsolicited spam which is consuming network
and mail server resources is quite challenging. These email communications are
mostly originated from botnets of compromised machines [1, 2] that are also likely
the source of other malicious activities on the Internet. Although current anti-spam
tools are efficient in hiding spam from users’ mailboxes, there is a clear need for
moving the defense against spam as close to its source as possible. Therefore, it
is necessary to understand the network-level behavior of spam and how it differs
from legitimate traffic in order to design anti-spam mechanisms that can identify
spamming bots on the network. In this paper, we study the network-level behavior
of email by examining real email traffic captured on an Internet backbone link.
From the collected traffic, we have generated email networks in which the nodes
represent email addresses and the edges represent email communications. To the
best of our knowledge, this is the largest email traffic dataset used to study the

41



42 CHAPTER 2

structure of email networks which contain both legitimate (ham) and unsolicited
email traffic.

In this study, we show that the legitimate email traffic exhibit the same struc-
tural properties that other social and interaction networks (e.g., on-line social net-
works, the Internet topology, the Web, and phone call graphs) typically exhibit,
therefore, it can be modeled as a scale-free, small-world network. We also show
that the email traffic containing spam cannot be modeled similarly, and because
the unsocial behavior of spam is not hidden behind the social behavior of legiti-
mate traffic, the structure of email networks containing both ham and spam differ
from other social networks. Moreover, we show that the temporal variations in the
social network properties of email traffic can reveal more distinct properties of the
behavior of spam.

In this study our goal is to identify the differences in the social network prop-
erties of spam and ham traffic, and leverage these differences to spot the abusive
nodes in the network.

The remainder of this paper is organized as follows. Section 2.2 presents the
related works. The collected email datasets and their properties are discussed
in Section 2.3. Section 2.4 presents and discusses the observed structural and
temporal properties of our email networks. Section 2.5 presents a method to spot
spam senders in the structure of email networks. Finally, Section 2.6 concludes the
paper.

Table 2.1: Summary of the datasets of related works in comparison to our datasets.

Reference Nodes |V | Edges |E| Email types Dataset

Ebel et al. [3] (2002) 59,812 86,130 ham log files of the mail
server at Kiel Univer-
sity

Gomes et al. [4] (2005) 265,144 615,102 ham & spam log files of a univer-
sity mail server in
Brazil

Boykin et al. [5] (2005) - - ham & spam headers of emails in
one user’s inbox

Lam et al. [6] (2007) 9,150 - ham & simu-
lated spam

Enron dataset and
simulated spam

Tseng et al. [7] (2009) 637,064 2,865,633 ham & spam a mail server in Na-
tional Taiwan Uni-
versity

Leskovec et al. [8] (2007) 35,756 123,254 ham emails of a EU re-
search institution

Kossinets et al. [9] (2006) 43,553 ∗14,584,423 ham emails at a large uni-
versity

This paper, dataset A 10,544,647 21,562,306 ham & spam Internet backbone
SMTP traffic

This paper, dataset B 4,525,687 8,709,216 ham & spam Internet backbone
SMTP traffic

∗ Total number of emails exchanged during 355 days (separate graphs within time windows of 60 days)
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Table 2.2: Statistics of the collected data for dataset A.

Packets Flows Email Ham Spam Rejected Src1 Dst2 Domains3

Incoming 627M 35M 19302206 1319273 1663698 16319235 7780897 3169712 446694

Outgoing 170M 12M 729553 213306 202879 313368 324657 408429 167907

1 Distinct sender email addresses. 2 Distinct receiver email addresses. 3 Distinct domain names in email addresses.

2.2 Related Work

Social network analysis has been widely used in order to study the structural prop-
erties of real-world networks such as the Web graph [10], the Internet topology [11],
phone call and SMS networks [12], and online social networks [13]. The structure
of email networks was first studied by Ebel et al. [3] showing that an email net-
work generated from mail server log files of a university is a scale-free, small-world
network. Leskovec et al. [8] studied the evolution of a variety of real networks,
including an email network of a large institution, and observed that these social
networks densify over time and their diameter shrinks, while their power law degree
distribution exponent remains constant.

Deployment of social network analysis for discriminating spammers and legiti-
mate users was first proposed in Boykin et al. [5]. They generated an email network
from email headers in one user’s mailbox and found distinguishing structural prop-
erties of spam and ham messages. Gomes et al. [4] generated distinct graphs from
ham and spam email collected from mail server log files of their university depart-
ment, and found graph theoretical metrics that structurally and dynamically differ
for spam and ham. Lam et al. [6] and Tseng et al. [7] extracted different structural
features from email social networks and deployed them in building learning-based
spam detection systems.

Table 2.1 summarizes the properties of the email networks studied in the re-
lated works. All of the above studies have taken place on relatively limited email
datasets. In addition to previous studies, we perform an analysis of the structural
and temporal characteristics of email networks, reveal properties that distinguish
ham from spam, compare our observations with previous studies, and show how
our findings could reveal the spam sending nodes in the email networks.

2.3 Data Collection and Pre-processing

In this study we have used two distinct email datasets to generate email networks.
The datasets were created from passively captured SMTP packets on a 10 Gbps
link of the core-backbone of the SUNET1. Each dataset was collected during 14
consecutive days with a year time span between the collections. Throughout the

1Swedish University Network (http://www.sunet.se/) serves as a backbone for university
traffic, student dormitories, research institutes, etc. exchanging large amount of traffic with
commercial companies.
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paper, we refer to the larger dataset as dataset A, and the smaller dataset as dataset
B.

The unusable email flows, including those with no payload or missing packets
and encrypted communications were pruned from the datasets. The remaining
emails were first classified as being either accepted (delivered by the receiving mail
server) or rejected (unfinished SMTP command exchange phase and consequently
not containing any email headers and body). Rejection is generally the result of
spam pre-filtering strategies deployed by mail servers (e.g., blacklisting, greylisting,
DNS lookups). Then, all accepted email communications were classified to be
either spam or ham to establish a ground truth for our study. Similar to [4, 7], the
classification was done by a well-trained filtering tool2. Finally, all email addresses
were anonymized and email contents were discarded in order to preserve privacy.

After data collection and pre-processing, a number of email networks have been
generated from the datasets. In an email network the email addresses, which are
extracted from the SMTP commands (“MAIL FROM” and “RCPT TO”), represent
the nodes, and the exchanged emails represent the edges. In order to study and
compare the characteristics of different categories of email, from each dataset we
have generated a ham network, a spam network, and a rejected network, in addition
to the complete email network.

Table 2.2 summarizes the properties of the dataset A as an example. More
details on the measurement location, data collection, and pre-processing can be
found in [14].

2.4 Structural and Temporal Properties of Email

Networks

In this section we briefly introduce the most significant structural and temporal
properties of social networks.

Degree distribution. The degree distribution of a network is the probability
that a randomly selected node has k edges. In a power law distribution, the fraction
of nodes with degree k is n(k) ∝ k−γ , where γ is a constant exponent. Networks
characterized by such degree distribution are called scale-free networks. Many real
networks such as the Internet topology [11], the Web [10], phone call graphs [12],
and on-line social networks [13] are scale free.

Average path length. In small-world networks any two nodes in the network
are likely to be connected through a short sequence of intermediate nodes, and the
network diameter shrinks as the network grows [8].

Clustering coefficient. In addition to a short average path length, small-
world networks have high clustering coefficient values [15]. The clustering coef-

2The SpamAssassin (http://spamassassin.apache.org) was in use for a long time in our
University mail server and it incurs a false positive rate of less than 0.1%, and the detection rate
of 91.4% after 94% of the spam being rejected by blacklists.
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ficient of a node v is defined as Cv = 2Ev/(kv(kv − 1)), where, kv denotes the
number of neighbors of v, kv(kv − 1)/2 the maximum number of edges that can
exist between the neighbors, and Ev the number of the edges that actually exist.
The average Cv of a social network shows to what extent friends of a person are
also friends with each other and its value is independent of the network size [16].

Connected components. A connected component (CC ) is a subset of nodes
of the network where a path exists between any pair of them. As social networks
grow a giant CC (GCC), which contains the vast majority of the nodes in the
network, emerges in the graph and its size increases over time [16]. Moreover, the
distribution of CC size for some social networks follows a power law pattern [10, 12].

2.4.1 Measurement Results

In the following the observed structural and temporal properties of our email net-
works are presented. These properties can be used in order to model the behavior of
legitimate traffic and to find the distinguishing properties of the unsocial behavior
of spam. Although the duration of our data collections is not long enough to study
the evolution of email networks, it is still possible to track the changes in the struc-
ture of email networks in order to better understand the distinct characteristics of
ham and spam traffic.

Degree distribution. Figures 2.1(a) and 2.1(e) show that none of the email
networks generated from datasets A and B exhibit a power law degree distribution
in all points. However, the ham networks generated from each of the datasets are
scale free as their degree distribution closely follow the distribution n(k) ∝ k−γ with
γA = 2.7 and γB = 2.3, respectively 3. The in-degree (out-degree) distribution for
ham networks, which are shown in Figures 2.1(b) and 2.1(f), also follows a power-
low distribution with γAin

= 3.2 (γAout
= 2.3) and γBin

= 3.2 (γBout
= 2.1 ),

respectively. Moreover, in contrast to previous studies [4, 5], neither the spam, nor
the rejected networks are completely scale free (Figures 2.1(c), 2.1(g), 2.1(d), and
2.1(h)).

Figure 2.2(a) and 2.2(e) show that the shape of the degree distributions of the
complete email networks may change over time as the networks grow. The shape
of the degree distribution of spam and rejected networks can also change over time
(Figures 2.2(c), 2.2(g), 2.2(d), and 2.2(h)). However, the ham networks always
follow a power law distribution with an almost constant exponent (Figures 2.2(b)
and 2.2(f)).

Clustering coefficient. The observed average clustering coefficients for our
ham (spam) networks generated from both dataset are quite similar: CAham

=
9.92 × 10−3 (CAspam

= 1.59 × 10−3) and CBham
= 9.80 × 10−3 (CBspam

= 1.54 ×
10−3). These values, similar to small-world networks, are significantly greater than
that of random networks with the same number of nodes and average number

3The power law fits were calculated using the Maximum Likelihood estimator for power law
and Kolmogorov-Smirnov (KS) goodness-of-fit as presented in [17].
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Figure 2.1: Only the ham network is scale free as the other networks have outliers in

their degree distribution.
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Figure 2.2: Temporal variation of in the degree distribution of the email networks.
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of edges per node, and as Figures 2.3(b) and 2.3(f) show they remain relatively
constant as the networks grow.

Average path length. The ham and spam networks generated from both
datasets have short average path lengths, 〈l〉, as expected in small-world networks:
〈lhamA

〉 = 7.0, 〈lspamA
〉 = 8.5, 〈lhamB

〉 = 6.7, and 〈lspamB
〉 = 7.8. Figures 2.3(a)

and 2.3(e) show that 〈l〉 decreases for all networks as they grow, confirming the
shrinking diameter phenomenon observed in [8] for other social networks.

Connected components. Figure 2.4 shows the distribution of the size of the
CCs for ham and spam networks. It can be seen that the GCCs of the networks
are orders of magnitude larger than the other CCs. The distribution of the CC
size for the ham network, similar to Web [10] and phone call graphs [12], follows
a power law pattern, but the spam network have outliers in their distribution.
Figures 2.3(d) and 2.3(h) show that the number of CCs in all of the ham and
the spam networks increases over time, but this increase is much faster for spam.
Moreover, as shown in Figure 2.3(c), the respective size of the GCC of the networks
generated from dataset A increases for the ham but does not change much for
the spam network. However, although the ham network generated from dataset
B shows exactly the same behavior (Figure 2.3(g)), the spam network shows an
increase in the percentage of nodes in its GCC over time.

2.4.2 Discussion

In the following paragraphs we briefly discuss our observations regarding the struc-
ture of email networks and discuss to what extent our dataset is representative for
the structural and temporal analysis of email networks.

Table 2.3 summarizes the observed similarities and differences in the struc-
ture of the ham and spam networks. Although the studied datasets differ in size
and collection time, our observations reveal that legitimate email always exhibit
the structural properties that are similar to other social and interaction networks.
Previous studies on the structure of legitimate email networks have also shown that
these networks can be modeled as scale free, small-world networks [3–5, 8, 9]. In
contrast, a vast majority of spam are automatically sent, typically from botnets,
and it is expected that they show unsocial behavior. We have shown that the
structural and temporal properties of spam networks can reveal their anomalous
nature. Although spam networks show some properties that are similar to ham
(i.e., small-world network properties), they can still be distinguished from ham
networks as they have significantly smaller average clustering coefficient and larger
average path length, regardless of the size of the networks. Overall, we have shown
that although the behavior of spam might change over time, its unsocial behavior
is not hidden in the mixture of email traffic, even when the amount of spam is less
than ham (dataset B).

The datasets used in this study to analyze the characteristics of spam do not
contain the email communications that do not pass the measurement location.
Due to asymmetric routing and load-balancing policies deployed by the network
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Figure 2.3: Both networks are small-world networks (a,b,e,f), however, ham has a higher

average clustering coefficient. The ham networks become more connected over time (c,g),

and the number of CCs increases faster for the spam networks (d,h).
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Figure 2.4: The distribution of size of CCs. The GCCs of the networks are orders of

magnitude larger than other CCs.

Table 2.3: Structural properties of the ham and the spam networks.

Dataset Network Nodes Edges
C

〈l〉
relative No. γ deg.

(×10−3) GCC size CCs dist.

A
Ham 859,623 1,060,380 9.92 7.0 72.90% 85,992 2.7
Spam 1,795,197 2,506,298 1.59 8.5 53.53% 178,754 -

B
Ham 1,077,042 1,593,042 9.80 6.7 84.24% 50,742 2.3
Spam 578,158 1,044,714 1.54 7.8 79.21% 40,236 -

routers, not all traffic travels the link, and less traffic is seen in the outgoing than
the incoming direction of the link (Table 2.2). However, our goal is to perform a
comparative analysis of the distinguishing behavior of spam and ham traffic that
are observed over the link. Therefore, it is not required to generate a complete
email network of all exchanged emails to be able to study the differences in the
social network properties of legitimate and spam traffic.

In addition, the “missing past” problem, which is not limited to our dataset,
exists since it is not possible to gather data reaching all the way back to a network’s
birth. Leskovec et al. [8] showed that the effect of missing past is minor as we move
away from the beginning of the data observation. We investigated the effect of
missing past by constructing an email network which lacked the first week of data
from dataset A and comparing it with the network containing both weeks. We
have observed that the structural properties of the email networks were relatively
similar for both of the networks particularly for the legitimate email.

Earlier studies [3–7, 9] have also used incomplete email networks to study the
structure of email networks or to deploy a social network-based approach to mit-
igate spam. Even though our measurement duration was shorter than previous
studies [3, 4, 8, 9], we have generated the largest and most general datasets used
for this type of analysis. The 14 days of data collection might not be large enough
to study the evolution of email networks, but our analysis of the temporal variation
in the structure of email networks provides us with evidence on how their structure
might change with longer periods of measurements.
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Overall, this work has provided us with very large datasets of real traffic travers-
ing a high speed Internet backbone link. These datasets allow us to model the
behavior of email traffic as observed from the vantage point of a network device on
the link and reveal the differences in the network-level behavior of ham and spam
traffic.

2.5 Anomalies in Email Network Structure

The structural properties of real networks that deviate from the expected properties
for social networks, suggest anomalous behavior in the network [18]. In this section,
we show that the anomalies caused by the unsocial behavior of spam can be detected
in the email networks by using an outlier detection mechanism.

We have shown in Section 2.4 that the ham networks exhibit power law out-
degree distributions with γAout=2.3 and γBout=2.1 for dataset A and B respectively.
The outliers in the out-degree distribution of the email networks are of particular
importance, as we are interested in finding the nodes that send spam.

Procedure 2.1 presents the process of detecting outliers from the out-degree
distribution. First the ratio of the out-degree distribution of the email network,
containing both ham and spam, and our model is calculated. Then the Median
Absolute Deviation (MAD) method is deployed to calculate the median of the
absolute differences of the obtained ratios from their median. The nodes in the
network that have an out-degree that deviates a lot (based on a threshold value)
from the median are marked as outliers.

Table 2.5 shows the percentage of spam that were sent in different networks
and the percentage of spam sent by the identified outlier nodes. The nodes in the
email networks generated from dataset A (B) have sent in average around 70%
(40%) spam and the identified outlier nodes have sent just slightly more spam than
the average node. The reason is that the outlier detection method tends to mark
both nodes that have sent only one email and those that have sent a large number
of email as outliers. However, we have observed that the nodes which have sent
only one email had sent ham and spam with the same probability, and the nodes
with high out-degree have mostly sent legitimate email (e.g., mailing lists). By
excluding the nodes that have a high out-degree (100 in our experiments) from the
outliers as well as the nodes that have only sent one email during the collection
period, we can see that more than 95% (81%) of the email sent by the identified
outliers in dataset A (B) have actually been spam. Moreover, these nodes have
actually sent around 25% (35%) of the total spam in the network.

The outliers in the out-degree distribution of the complete email network which
in addition to ham and spam contains rejected email can be identified similarly. As
an example, the nodes in the complete email network generated from one day of
email traffic in dataset A have sent in average 94.8% spam and rejected email. The
emails sent by the outlier nodes detected by our method have been 99.3% spam or
rejected.
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Procedure 2.1: Finding out-degree distribution outliers

OUTLIERS_DETECTION
G_odd← out-degree distribution for graph G
M_odd← Ck−γ (the power law distribution model)
r ← the ratio between G_odd and M_odd
m←MAD(r)
for all nodes v ∈ G do

if r(kv) > m× threshold then
add v to the list of outliers

end if
end for

Table 2.4: Percentage of total spam, spam sent by all the identified outlier nodes, and

those with degree between one and 100, in email networks containing both ham and spam.

Dataset Network Total spam
Spam sent by Spam sent by outliers

outliers with 1 < k < 100

A
1 day 68% 69.9% 95.5%
7 days 70% 74.0% 96.8%
14 days 70% 74.8% 96.9%

B
1 day 40% 43.6% 82.7%
7 days 35% 42.8 % 81.3%
14 days 39 % 46.7% 87.3%

2.6 Conclusions

In this study we have investigated the social network properties of email networks
to study the characteristics of legitimate and unsolicited emails. The email net-
works were generated from real email traffic which was captured on an Internet
backbone link. We have analyzed the structural and temporal properties of the
email networks and have shown that legitimate email traffic generates a small-
world, scale-free network that can be modeled similar to many other social net-
works. Moreover, the unsocial behavior of spam, which might change over time, is
not hidden in the mixture of email traffic. Therefore, email networks that contain
spam do not exhibit all properties commonly present in social networks.

Moreover, we have shown that by identifying the anomalies in the structural
properties of email networks, it is possible to reveal a number of abusive nodes in
the network. More specifically, we have shown that the outliers in the out-degree
distribution of email networks to a large extent represent the spamming nodes
in the network. Therefore, the social network properties of email networks can
potentially be used to detect malicious hosts on the network.
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3
An Evaluation of Community

Detection Algorithms on
Large-Scale Email Traffic

Community detection algorithms are widely used to study the structural properties
of real-world networks. In this paper, we experimentally evaluate the qualitative
performance of several community detection algorithms using large-scale email net-
works. The email networks were generated from real email traffic and contain both
legitimate email (ham) and unsolicited email (spam). We compare the quality of
the algorithms with respect to a number of structural quality functions and a logical
quality measure which assesses the ability of the algorithms to separate ham and
spam emails by clustering them into distinct communities. Our study reveals that
the algorithms that perform well with respect to structural quality, don’t achieve
high logical quality. We also show that the algorithms with similar structural
quality also have similar logical quality regardless of their approach to clustering.
Finally, we reveal that the algorithm that performs link community detection is
more suitable for clustering email networks than the node-based approaches, and
it creates more distinct communities of ham and spam edges.

3.1 Introduction

Unfolding the communities in real networks is widely used to determine the struc-
tural properties of these networks. Community detection or clustering algorithms
aim at finding groups of related nodes that are densely interconnected and have
fewer connections with the rest of the network. These groups of nodes are called
communities or clusters and they exist in a variety of different networks [1].

The problem of how to find communities in networks has been extensively stud-
ied and a substantial amount of work has been done on developing clustering al-
gorithms (an overview can be found in [2, 3]). However, there is no consensus on
which algorithm is more suitable for which type of network. Therefore, a number
of studies have experimentally compared the qualitative performance of different
community detection algorithms on synthetic and benchmark graphs with built-in
community structure [4, 5]. However, these graphs are different from real-world
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networks as the assumptions they make are not completely realistic [2]. Delling
et al. [6] have shown that the implicit dependencies between community detection
algorithms, synthetic graph generators, and quality functions used for assessing
the qualitative performance of the algorithms make meaningful benchmarking very
difficult. Therefore, empirical studies of the existing algorithms on real-world net-
works are crucial in order to evaluate different algorithms and to find the most
suitable methods for different types of networks.

Moreover, community detection in real-networks has many different applica-
tions. Community detection algorithms can be used to find users with similar
interests in a social network in order to provide recommendations to them, to
group the peers that are geographically close in a peer-to-peer system to improve
the performance of the system, or to detect the communities generated by ma-
licious users in order to mitigate Sybil attacks [7]. In this paper, we study the
community structure of a number of large email networks containing both legiti-
mate ham and unsolicited spam emails. In an email network, the nodes represent
email addresses and the edges represent email communications. In addition to a
qualitative comparison of the algorithms, our goal is to find the best community
detection algorithm that can separate spam and ham emails by clustering them
into distinct communities. Such an algorithm can potentially be deployed in spam
detection mechanisms that aim at mitigating the spam problem by looking at email
traffic rather than email contents.

In order to achieve our goals, we have selected a number of broadly used commu-
nity detection algorithms that are known to perform well on synthetic, benchmark,
and a limited number of real graphs. In this study we evaluate and compare the
qualitative performance of these algorithms when they are applied to large-scale
email networks. Since the true community structure of our networks is unknown,
it is important to use a quality measure to compare the algorithms. It is known
that there is no single perfect quality metric for the comparison of the communities
detected by different algorithms [8], therefore we use a number of structural qual-
ity functions such as modularity [9], coverage, and conductance [10], as well as a
logical quality measure which is determined based on how homogeneous the edges
inside the communities are. We use this measure to investigate and compare the
ability of the selected algorithms in separating ham and spam emails into distinct
communities.

The contributions of the paper are as follows. We show that there is a trade-off
between creating high structural and high logical quality communities. Therefore,
hierarchical and multiresolution algorithms which allow us to select the granularity
of the clustering are more suitable to create the communities with the desired
quality. We reveal that different algorithms that create communities with similar
size distribution achieve similar structural and logical qualities, even though they
use different approaches for clustering. Finally, we show that an algorithm that
clusters networks based on the similarity of edges is superior to the algorithms that
perform node-based clustering.
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The rest of this paper is organized as follows. Section 3.2 presents the qual-
ity functions which are used for evaluating and comparing the algorithms. The
community detection algorithms being compared are presented in Section 3.3. Sec-
tion 3.4 reviews related previous research. In Section 3.5, the dataset used for
empirical comparison is presented and the experimental results are discussed. Fi-
nally Section 3.6 concludes the work.

3.2 Quality of Community Detection Algorithms

In this section, we present the notations and the quality functions that are used in
the rest of the paper.

Preliminaries

Let G = (V, E) represent a connected, undirected, and unweighted graph where V is
the set of n nodes and E is the set of m edges of G. A clustering C = {C1, . . . , Ck}
is a partitioning of V into k clusters Ci, by a node-based community detection
algorithm. A cluster containing only a single node is called a singleton, and a cluster
with only one internal edge is called trivial. If nodes can be shared between clusters,
the clustering is called overlapping. The number of intra- and inter-cluster edges of
a cluster C are denoted by m(C) and m(C), respectively and m(C) :=

∑

C∈C m(C)
is the total number of intra-cluster edges in C.

Quality Functions

A quality function is used either as an objective function to be optimized in order
to find the communities of a network, or as a measure for assessing the quality of
a clustering [6]. When the true community structure of a network is not known,
quality functions are necessary for evaluating the qualitative performance of clus-
tering algorithms. Since no single best quality function exists [8], we investigate
three widely used structural quality functions: coverage, modularity [9], and con-
ductance [10].

Coverage. Coverage of a clustering,

cov(C) :=
m(C)

m
,

is the most simple quality function, however, it is biased towards coarse-grained
clusterings.

Modularity. Modularity of a clustering is defined as

Q(C) :=
m(C)

m
−

1

4m2

∑

C∈C

(

∑

v∈C

deg(v)

)2

,
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and is based on the idea that a good cluster should have higher internal and lower
external density of edges compared to a null model with similar structural proper-
ties but without a community structure [9].

Conductance. Conductance of a cut (C, V \ C) in a graph is defined as

φ(C) :=
m(C)

min(
∑

v∈C deg(v),
∑

v∈V \C deg(v))
,

and tends to favor clusterings with fewer number of clusters [8]. Inter-cluster
conductance, δ(C) := 1 − maxi φ(Ci), i ∈ {1, . . . , k}, is usually used as a worst-
case measure to assess the quality of a clustering. The average conductance
( 1

|C|

∑

C∈C φ(C)) is also a useful metric, since if an algorithm creates singletons,
the inter-cluster conductance value will be dominated by the zero value for these
clusters, while the average would not [11].

The above widely used structural quality functions cannot be directly calcu-
lated for assessing the quality of link community detection methods because of the
community overlaps. For instance, modularity of a link community can be cal-
culated by applying a modified modularity function on a projected and weighted
transformation of the network [12]. In this paper we investigate the structural qual-
ity of link communities by using two of the quality measures introduced in [13].
Community coverage measures the fraction of the nodes that belong to at least
one non-trivial community, and Overlap coverage measures the average number of
times a node is clustered inside non-trivial communities. Higher values for over-
lap coverage mean that the algorithm has extracted more information from the
network. The algorithms that don’t find overlapping communities yield the same
value for both overlap and community coverage.

In addition to the structural quality, we determine the logical quality of a clus-
tering based on the type of the edges inside its communities. A clustering which
yields only homogeneous communities, in which all of the edges are of the same
type, has a perfect logical quality. For instance, a clustering with communities that
contain only spam emails or only ham emails has higher logical quality compared
to a clustering which yields communities containing a mixture of both ham and
spam. In addition, the amount of spam and ham emails that can be separated into
distinct homogeneous communities by an algorithm is used to determine its logical
quality.

3.3 Studied Community Detection Algorithms

In this section we briefly describe the community detection algorithms we have
selected and compared using our email networks.

Fast modularity optimization (Blondel) by Blondel et al. [14]. This algorithm,
also known as Louvain method, is a greedy approach to modularity maximiza-
tion. The algorithm starts with assigning each node to a singleton and progresses
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by moving nodes to neighboring clusters in order to improve modularity. This
method has complexity O(m) and unfolds a hierarchical community structure with
increasing coarseness and meaningful intermediate communities.

Maps of random walks (Infomap) by Rosvall and Bergstrom [15]. This algo-
rithm is a flow-based and information theoretic clustering approach with complex-
ity O(m). It uses a random walk as a proxy for information flow on a network
and minimizes a map equation, which measures the description length of a random
walker, over all the network clusters to reveal its community structure. Infomap
aims at finding a clustering which generates the most compressed description length
of the random walks on the network.

Multilevel compression of random walks (InfoH) by Rosvall and Bergstrom [16].
This method generalizes the Infomap method to reveal multiple levels of a net-
work. InfoH minimizes a hierarchical map equation to find the shortest multilevel
description length of a random walker.

Potts model community detection (RN) by Ronhovde and Nussinov [17]. This
algorithm is based on minimization of the Hamiltonian of a local objective function,
the absolute Potts model. The multiresolution variant of the algorithm deploys
information theory-based measures to find the best communities on all scales. The
complexity of this method is superlinear O(m1.3) for the community detection
algorithm and O(m1.3 log n) for the multiresolution algorithm.

Markov clustering (MCL) by Dongen [18]. MCL is based on the idea that a
random walk entering a dense cluster likely remains for a long time inside the clus-
ter before switching between sparsely connected communities. The random walks
are calculated deterministically and simultaneously using a matrix of transition
probabilities. The MCL algorithm has a complexity of O(nk2), where k refers to
the average or maximum number of allowed neighbors for the nodes.

Link community detection (LC) by Ahn et al. [13]. All of the above algorithms
aim at clustering nodes into densely connected communities. However, Ahn et
al. [13] have defined communities as a group of topologically similar edges and have
introduced a link community detection algorithm for revealing them. Their algo-
rithm has complexity O(nk2

max), where kmax is the maximum degree, and unfolds
the hierarchical structure and overlapping communities of a network. Although the
clustering is meaningful at all scales, an objective function, the partition density,
is used to select the optimum level of hierarchy.

All of the above algorithms are known to perform well on large networks. In-
fomap, InfoH, and MCL are suitable for clustering networks where edges represent
flows. Emails can be seen as flows of data between people, so flow-based approaches
are good candidates for clustering email networks. Email communications can also
be seen as pairwise relationships between people, so the other topological methods
could also be suitable. LC which is based on calculating the similarity of the edges
in a network can also be suitable since we are interested in grouping the same type
of edges into the same clusters.
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In this study, we have used the implementations of the algorithms, which were
publicly available, in order to conduct the experiments. Blondel creates a hierarchy
of clusterings where the best modularity is achieved at its last level. We have also
looked at the clustering yield at Blondel’s first level of hierarchy, which has smaller
meaningful communities, and refer to it as Blondel L1. We have also used the basic
RN algorithm instead of its multiresolution variant to be able to choose the desired
clustering granularity. The granularity of the clusterings should be considered
when comparing the quality of the algorithms since structural quality functions
are usually in favor of coarse-grained clusterings [8].

3.4 Related Work

Experimental comparisons of different community detection algorithms have been
conducted on both real and benchmark graphs. Lancichinetti and Fortunato [4]
compared different algorithms including Blondel, Infomap, RN, and MCL, on GN
and LFR benchmark graphs. They showed that Infomap, Blondel, and RN perform
well, but MCL performs worse especially for large communities. They also showed
that the performance of Blondel decreases for large graphs, whereas Infomap re-
mains stable. Brandes et al. [11] conducted an experimental evaluation of three
clustering methods including MCL using random clustered graphs and showed that
MCL performs well with respect to some quality functions but produces more clus-
ters than contained in the network.

Community detection algorithms have also been evaluated and compared using
different real networks. Tibély et al. [19] have analyzed the community structure
of a large mobile phone call graph using Blondel L1, Infomap, and an overlapping
method. Leskovec et al. [20] studied a number of real networks, including the Enron
email network and an email network of a large organization, to empirically compare
two different clustering methods. The latter dataset was also used by Lancichinetti
et al. [21], in addition to other real networks, to study the characteristics of com-
munities in different types of complex networks. They used Infomap together with
another algorithm to show that although different methods output different clus-
terings, the statistical properties of their communities are quite similar for similar
classes of networks. Studies of the community structure of email networks have
also been conducted by Guimerà et al. [22] using emails in a university.

In contrast to previous studies, the dataset used in this study is based on email
traffic captured on a high speed Internet backbone link, and is not limited to a single
organization. To the best of our knowledge, this is the first study of the community
structure of large-scale email networks containing spam. This dataset enables us
to evaluate the ability of the community detection algorithms in separating spam
from ham by clustering them into distinct clusters.
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3.5 Experimental Evaluation

In this section, the email dataset and the experimental results are presented.

3.5.1 Dataset

The dataset used for creating the email networks was generated by collecting SMTP
packets on a 10 Gbps link of the core-backbone of SUNET1 during a period of 14
consecutive days in March 2010. During the collection period more than 797 million
SMTP packets were collected, which were sent and received by 614,601 distinct
domains. Around 3.4 million emails were extracted from the collected packets
after removing unusable and rejected email transmissions. These emails were then
classified to be either spam or ham using a well-trained filtering tool 2. Following
that, email contents were discarded and email addresses were anonymized in order
to preserve privacy in a way that no information about the senders, receivers, and
content of the emails are retrievable.

In addition to a complete email network, we generated daily and weekly email
networks. An email network consists of email addresses as nodes, and the email
communications between them as edges. More details on the measurement location,
data collection and pre-processing, and the structural and temporal properties of
the email networks can be found in [23] and [24], respectively.

3.5.2 Comparison of the Algorithms

In this section, the experimental results regarding the qualitative performance of
the clustering algorithms with respect to their structural and logical quality is
presented. A summary of the results can be found at the end of the section.

Table 3.1 shows the total number of nodes and edges, and the number of spam
edges in each studied email network, as well as the number of communities created
by each clustering algorithm. The algorithms were applied to the giant connected
component (GCC) of each email network, which is a subset of the nodes in the
network where a path exists between any pair of them. The networks are also
considered as unweighted and undirected. The distribution of the community sizes
for one daily, one weekly, and the complete email network created by the different
community detection algorithms is shown in Figure 3.1. Since LC creates commu-
nities with overlapping nodes, we have also plotted the distribution of the number
of communities per node in Figure 3.1(h). It can be seen that the shapes of the
distributions do not change much as the size of the networks grow.

Blondel creates a coarse-grained clustering and in average achieves 46% modu-
larity gain over Blondel L1. InfoH also creates coarse clusters and in average gains

1The Swedish University Network (http://www.sunet.se/) serves as a backbone for university
traffic, student dormitories, research institutes, etc.

2The SpamAssassin (http://spamassassin.apache.org) was in use for a long time in our
University mail server and it incurs high detection and low false positive rates.
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Table 3.1: The properties of the GCC of the generated email networks (larger networks

become more connected) and the number of communities created by each algorithm.

Nodes Edges Spam Bl. InfoH Infom. Bl. L1 MCL RN LC

Day 1 167,329 236,673 173,640 253 546 10,505 39,477 38,775 41,215 88,028
Day 2 153,734 194,797 97,260 194 397 8,025 28,077 27,011 28,499 61,027
Day 3 123,878 168,896 108,996 218 412 8,151 29,150 28,031 30,022 64,310
Day 4 128,200 172,836 113,299 218 398 8,484 29,123 28,043 30,167 63,165
Day 5 101,643 135,195 89,119 195 311 6,664 22,212 21,593 23,935 46,928
Day 6 72,068 99,361 75,713 236 183 4,714 13,904 13,716 17,697 30,236
Day 7 73,131 103,293 85,879 199 271 4,842 17,305 16,808 18,631 37,581

Week 1 901,699 1,441,731 961,809 558 1,470 41,916 149,131 144,054 187,960 451,275

Day 8 115,232 155,919 90,299 234 379 7,745 27,661 26,514 28,409 57,931
Day 9 112,713 152,569 88,273 188 383 7,521 26,395 25,549 26,942 56,443
Day 10 140,843 195,999 121,158 255 441 8,664 31,033 30,231 39,020 67,741
Day 11 125,029 179,410 116,056 192 398 8,171 28,501 27,897 30,484 65,285
Day 12 106,816 149,407 100,595 211 380 7,319 25,314 24,328 28,040 54,317
Day 13 73,325 98,713 71,954 339 296 5,275 16,736 16,074 22,476 32,403
Day 14 68,315 100,089 76,408 179 210 4,741 14,567 14,254 17,822 31,463

Week 2 810,543 1,348,373 859,324 436 380 40,553 143,569 139,366 156,822 430,232

All 1,599,732 2,790,322 1,858,686 1,028 1,740 63,471 230,013 220,346 294,581 817,074

more than 15% in the compression of the description length of the random walks
on the networks over the non-hierarchical version (Infomap). MCL allows us to
select the granularity of the clustering by choosing an inflation parameter. It is
also possible to choose the resolution parameter for RN to achieve a clustering with
the desired granularity. We have selected the inflation parameter in MCL and the
resolution parameter in RN so that for most of the networks they yield clusterings
with a close granularity to that of Blondel L1. This allows us to further investigate
and compare the effect of the granularity of the clusterings on their quality. LC is
different in nature from the other algorithms as it is based on link community de-
tection rather than a node-based approach. LC yields the finest-grained clustering
for all of the networks at its best level of hierarchy.

Figure 3.2 summarizes the distribution of the size of the communities created
by the different algorithms for the “week 2” email network. The distributions for
other daily and weekly networks are quite similar. It can be seen that Blondel and
InfoH, which create very coarse-grained clusters, have very different community
size distributions compared to each other and the rest of the algorithms. It can
also be seen in Figure 3.2(b) that, surprisingly, Blondel L1, MCL, and RN follow
similar distributions. The main difference is that MCL and RN create a number
of singletons, but Blondel L1 does not. The community size distribution of LC is
also close to the other three methods, but it creates more clusters.

Structural Quality

Figure 3.3 shows a comparison of the structural quality of the different clusterings.
Each bar corresponds to a daily network (day 1 to day 14), except the last three
bars from the left for each of the algorithms, which correspond to week 1, week 2,
and complete email networks, respectively. It can be seen that Blondel, which aims
at maximizing modularity, have the highest structural quality with respect to all
of the quality functions. Although InfoH uses a fundamentally different approach
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Figure 3.1: Comparison of community size distribution for email networks.
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Figure 3.2: A comparison of community size distribution using “Week 2” email network.

Blondel L1, MCL, and RN follow very similar distributions.

it achieves equally good structural quality, however its quality degrades for larger
networks. Blondel L1, MCL, and RN, which have closer granularities, also show
similar quality with respect to coverage, modularity, and average conductance.
However, based on the inter-cluster conductance, MCL and RN do not perform
well since they might create a number of singletons which results in an inter-cluster
conductance of zero.

Our experimental results reveal that the structural quality of clusterings are
roughly consistent for different daily networks. The clusterings with similar granu-
larity and community size distribution also show similar structural quality, there-
fore, it is important to take the granularity of the clusterings into account when
comparing the algorithms. LC creates a clustering with the finest granularity, how-
ever the studied structural quality functions cannot be directly used for assessing
the quality of this algorithm due to its different nature. In this paper, we look at
community coverage and overlap coverage which were introduced for assessing the
quality of link-based clustering by Ahn et al. [13].

LC, Blondel, and InfoH yield full community coverage for all of the email net-
works. Infomap, Blondel Ll, MCL, and RN achieve community coverage of around
0.99, 0.84, 0.83, and 0.8, respectively. However, this function on its own is not
enough for assessing the quality of a clustering method, it is also important to
consider the overlap coverage of the clusterings. None of the algorithms, except
MCL and LC, find overlapping clusters so their overlap coverage is equal to their
community coverage. MCL is not an overlapping clustering method, but for some
specific graphs it might find overlaps [18]. In our email networks, MCL yields very
few overlapping communities so its overlap coverage is just slightly higher than its
community coverage. LC yields overlap coverage of 2.6, 3.1, and 3.4 in average
for the daily, weekly, and complete email networks, meaning that it unfolds more
overlaps in larger networks.
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Figure 3.3: Comparison of structural quality of the algorithms on daily, weekly, and

complete email networks. Blondel and InfoH yield the best structural quality.

Logical Quality

Our experiments show that all algorithms create a number of spam communities
that only contain spam, ham communities that only contain ham, and mix commu-
nities with a mixture of both ham and spam edges. Figure 3.4 shows a comparison
between the percentage of spam, ham, and mix communities created by the dif-
ferent algorithms. The last three bars from the left for each of the algorithms
correspond to week 1, week 2, and the complete email networks, respectively. It
can be seen that InfoH and Blondel perform worse, since these algorithms tend to
merge smaller homogeneous communities into mix communities to achieve higher
structural quality. The best results for all networks are achieved by LC.

Moreover, it is important to assess the amount of spam and ham emails that can
be separated by community detection algorithms, in order to investigate the pos-
sibility of deploying clustering approaches to perform spam detection. Figure 3.5
shows the ratio of total spam and ham edges that are inside homogeneous spam
and ham communities. In all of the networks, communities created by LC contain
the highest number of spam and ham edges. Blondel and InfoH have the worst
logical quality and Blondel L1, MCL, and RN have almost similar quality. For all
algorithms, except LC, some of the spam and ham emails end up as inter-cluster
edges and can therefore not be separated by the clustering algorithms. It can also
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Figure 3.4: Comparison of percentage of spam, ham, and mix communities created by

different algorithms. LC creates the highest number of homogeneous communities.
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Figure 3.5: Ratio of spam (ham) in homogeneous spam (ham) communities. LC clusters

have a higher ratio of total spam (ham) edges inside the spam (ham) communities.

be seen that the percentage of spam (ham) edges which are clustered inside spam
(ham) communities decreases for larger networks.

Our experiments suggest that the logical quality tends to be higher for fine-
grained clusterings. The granularity of the best clustering created by LC is finer
than the other clusterings in our experiments. LC cuts its hierarchy of clustering
at an optimum threshold which results in maximal partition density. By choos-
ing a threshold below the optimum value, we can have a clustering with coarser
granularity. Since the algorithm reveals meaningful communities at all scales, we
changed the threshold so that the granularity of the clustering became more similar
to that of Blondel L1, MCL, and RN. Our experiments with the new clusterings
show that, the percentage of spam (ham) edges inside the spam (ham) communi-
ties was reduced. For instance, for the first daily network the percentage of spam
(ham) edges decreased from 87% to 66% (from 76% to 56%). Although the logical



3.5. EXPERIMENTAL EVALUATION 69

quality degrades by changing the coarseness of the clustering, LC still shows higher
logical quality than all of the other algorithms.

Furthermore, we have looked at the communities found in ham and spam net-
works and compared them with the communities identified in the mix email net-
works. Figure 3.6 shows the community size distribution for communities of ham
and spam networks generated from “week 1” email data. The ham network only
contains ham edges and the spam network only spam emails. It can be seen that
these networks, similar to the complete email networks, exhibit community struc-
ture. The spam network has n = 531, 856 nodes and m = 928, 329 edges which
is larger than the ham network with n = 349, 814 nodes and m = 457, 912 edges,
therefore all of the algorithms find more communities in the spam network. Al-
though the type and the nature of the edges in these networks are different, each
community detection algorithm creates clusterings with roughly similar community
size distribution shapes for both the ham and the spam network.

Moreover, Figure 3.7 shows the community size distribution of the distinct ho-
mogeneous ham and spam communities which were created from the “week 1” mix
email network. Blondel L1, MCL, RN, and LC create spam and ham communities
that follow a size distribution which is more or less similar to the distribution of the
communities created in the distinct ham and spam networks. This suggests that
even though the mix email network contains a mixture of both type of edges, these
algorithms are still able to extract most of the communities that they also found in
the corresponding ham and spam networks. However, it seems that Blondel, InfoH,
and Infomap perform worse in this respect as they also find more mix communities
than the other algorithms (see Figure 3.4).

Summary of the Experimental Results

• Blondel and InfoH create coarse-grained clusters and achieve the best quality
with respect to all of the structural quality functions. However, they have
the worst logical quality with respect to both number of homogeneous com-
munities and amount of spam and ham emails that are clustered inside these
homogeneous communities.

• Infomap, which is the non-hierarchical version of InfoH, achieves quite good
structural quality and decent logical quality. However, Blondel L1, which
is based on the first level of Blondel’s hierarchy of clusterings, yields much
better logical quality than Infomap, but worse structural quality with respect
to all of the structural quality functions.

• MCL and RN allow us to change the resolution of the clustering by modifying
different parameters. When the granularity of their clusterings is set to be
close to that of Blondel L1, they show almost similar community size distri-
bution as well as similar structural and logical quality. However, Blondel L1
is superior to the other two methods due to its lower complexity.
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Figure 3.6: Comparison of community size distribution for the communities created by

different algorithms from distinct ham and spam networks which were generated from

“week 1” email data.
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Figure 3.7: Comparison of community size distribution for ham and spam communities

(i.e., the mix communities are excluded) created by different algorithms from the mix “week

1” email network.
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• LC, which performs link community detection, has the best logical quality
and separates the highest amount of spam and ham emails into distinct ho-
mogeneous communities.

3.6 Conclusions

In this study, we have performed an empirical comparison and evaluation of a
number of high quality community detection algorithms using large-scale email
networks. The studied email networks contain both legitimate and spam emails and
are created from real email traffic. Our study reveals that yielding high structural
quality by community detection algorithms is not enough to unfold the true logical
communities of the email networks. Therefore, it is necessary to deploy more
realistic measures for clustering real-world networks.

More specifically, our study suggests that the community detection algorithms
that achieve maximum modularity, coverage, inter-cluster conductance, or mini-
mum average conductance do not reveal the communities that coincide with the
true clustering of the email networks. For instance the algorithms which yield
worse, but acceptable, average conductance values actually could separate a large
number of spam (ham) emails into distinct spam (ham) communities. Therefore,
the value of this function can be indicative of good logical quality. However, this
observation is based on our email networks, and might not be conclusive as it was
shown that different classes of networks show different community structures [4, 8].

Overall, our experiments reveal that link community detection is the most suit-
able approach for separating spam and ham emails into distinct communities com-
pared to the other node-based algorithms.
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4
Overlapping Communities for

Identifying Misbehavior in Network
Communications

In this paper, we study the problem of identifying misbehaving network communi-
cations using community detection algorithms. Recently, it was shown that identi-
fying the communications that do not respect community boundaries is a promising
approach for network intrusion detection. However, it was also shown that tradi-
tional community detection algorithms are not suitable for this purpose.

In this paper, we propose a novel method for enhancing community detection
algorithms, and show that contrary to previous work, they provide a good basis for
network misbehavior detection. This enhancement extends disjoint communities
identified by these algorithms with a layer of auxiliary communities, so that the
boundary nodes can belong to several communities. Although non-misbehaving
nodes can naturally be in more than one community, we show that the majority of
misbehaving nodes belong to multiple overlapping communities, therefore overlap-
ping community detection algorithms can also be deployed for intrusion detection.

Finally, we present a framework for anomaly detection which uses community
detection as its basis. The framework allows incorporation of application-specific
filters to reduce the false positives induced by community detection algorithms.
Our framework is validated using large email networks and flow graphs created
from real network traffic.

4.1 Introduction

Network intrusion detection systems are widely used for identifying anomalies in
network traffic. Anomalies are patterns in network traffic that do not conform to
normal behavior. Any change in the network usage behavior, for example caused
by malicious activities such as DoS attacks, port scanning, unsolicited traffic, and
worm outbreaks, can be seen as anomalies in the traffic.

Recently, it was shown that network intrusions can successfully be detected
by examining the network communications that do not respect the community
boundaries [1]. In such an approach, normality is defined with respect to social
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behavior of nodes concerning the communities to which they belong and intrusion
is defined as “entering communities to which one does not belong”.

A community is typically referred to as a group of nodes that are densely inter-
connected and have fewer connections with the rest of the network. However, there
is no consensus on a single definition for a community and a variety of definitions
have been used in the literature [2–4]. For network intrusion detection, Ding et
al. [1] defined a community as a group of source nodes that communicate with at
least one common destination. They also showed that a traditional community
detection algorithm which is based on a widely used definition, i.e., modularity, is
not useful for identifying intruding nodes.

In this paper, we extend and complement the work of Ding et al. [1] by looking
into other definitions for communities, and investigate whether the communities
identified by different types of algorithms can be used as the basis for anomaly
detection. Our hypothesis is that misbehaving nodes tend to belong to multiple
communities. However, a vast variety of community detection algorithms parti-
tion network nodes into disjoint communities where each node only belongs to a
single community, therefore they cannot be directly used for verifying our hypoth-
esis. Therefore, we propose a simple novel method which enhances these disjoint
communities with a layer of auxiliary communities. An auxiliary community is
formed over the boundary nodes of neighboring communities, allowing nodes to be
members of several communities. This enhancement enables us to show that, in
contrary to [1], it is possible to use traditional community detection algorithms for
identifying anomalies in network traffic.

In addition to traditional community detection algorithms, another class of al-
gorithms exist which allow a node to belong to several overlapping communities [5].
In this study, we compare a number of such overlapping algorithms with our pro-
posed enhancement method for non-overlapping community detection algorithms
for network anomaly detection.

Finally, we propose a framework for network misbehavior detection. The frame-
work allows us to incorporate different community detection algorithms for iden-
tifying anomalous nodes that belong to multiple communities. However, since
legitimate nodes can also belong to several communities [4], application-specific fil-
ters can be used for discriminating the legitimate nodes from the anti-social nodes
in the community overlaps, thus reducing the induced false positives.

We have evaluated the framework by using it for network intrusion detection
and unsolicited email detection in large-scale datasets collected from a high-speed
Internet backbone link. These types of misbehavior have traditionally been very
hard to detect without inspecting the content of the traffic. To conclude, we show
that by using our methodology, it is possible to effectively detect misbehaving
traffic by only looking at the network communication patterns.

The remainder of the paper is organized as follows. Section 4.2 presents re-
lated work. Section 4.3 presents our proposed method for uncovering community
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overlaps. The framework is presented in Section 4.4. Section 4.5 summarizes our
findings and experimental results. Finally, Section 4.6 concludes our work.

4.2 Related Work

Anomaly detection has been extensively studied in the context of different applica-
tion domains [6]. In this study, we propose a new graph-based anomaly detection
method for identifying network intrusion and unsolicited email in real network traf-
fic. Although there has been considerable amount of research on detecting these
types of misbehavior, it is still a challenge to identify anomalies by merely investi-
gating communication patterns without inspecting their content.

A taxonomy of graph-based anomaly detection methods can be found in [7]. A
number of previous studies have proposed methods for finding unusual subgraphs,
anomalous substructure patterns, and outlier nodes inside communities in labeled
graphs [8–10]. In this study, we merely use the graph structure and therefore we
consider only plain graphs without any labels.

Akoglu et al. [11] proposed a method to assign anomaly scores to nodes based
on egonet properties in weighted networks. Our framework allows us to incorporate
such properties as application-specific filters. Sun et al. [12] proposed a method
for identifying anomalous nodes that are connected to irrelevant neighborhoods in
bipartite graphs. Ding et al. [1] showed that although finding the cut-vertices can be
used for intrusion detection, more robust results can be achieved by using clustering
coefficient in a one-mode projection of a bipartite network. Moreover, they showed
that using a modularity maximization community detection algorithm [13] is not
suitable for spotting network intruders.

In this paper, we revisit the problem of finding anomalous nodes in bipartite/u-
nipartite plain graphs by using community detection algorithms. We deploy an
alternative definition for an anomaly as suggested in [1] and confirm their finding
that maximizing modularity is not suitable for identifying intruders on its own.
However, we show that there are several types of algorithms which are useful for
misbehavior detection if enhanced with auxiliary communities.

4.3 Community Detection

In this section, we introduce a novel approach which enables us to deploy existing
community detection algorithms for identifying anomalies in network traffic.

4.3.1 Auxiliary Communities

In this paper, we introduce the concept of auxiliary communities. An auxiliary
community is added over the boundary nodes of disjoint communities, forcing nodes
to become members of more than one community.
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Algorithm 4.1: Neighboring Auxiliary Communities (NA)

Input: a graph G(V, E); a non-overlapping community set C;
Output: auxiliary community set A;

1: for all v ∈ V do
2: Com(v) = {C ∈ C : v ∈ V (C)};
3: for all u ∈ Neighbors(v) do
4: if Com(v) 6= Com(u) then
5: A← A ∪ {u, v};
6: end if
7: end for
8: A ← A∪A;
9: end for

10: return A

Algorithm 4.2: Egonet Auxiliary Communities of Sinks (EA)

Input: a graph G(V, E); a non-overlapping community set C;
Output: auxiliary community set A;

1: for all v ∈ V do
2: Com(v) = {C ∈ C : v ∈ V (C)};
3: for all u ∈ Neighbors(v) do
4: if Com(v) 6= Com(u) and Sink(u) then
5: A← Egonet(u);
6: A ← A∪A;
7: end if
8: end for
9: end for

10: return A

The most basic approach is to introduce one auxiliary community for each
boundary edge between two different communities. However, a boundary node can
have multiple boundary edges. Therefore, an improvement over the above approach
is to add only one auxiliary community over a boundary node and all its boundary
edges, covering all its neighbors that are members of other external communities
(Algorithm 4.1). Our approach can be further refined to consider the whole one-
step neighborhood, i.e., egonet, of a boundary node as an auxiliary community
instead of just its boundary neighbors.

Ding et al. [1] defined a community in a directed bipartite network as a group
of source nodes that have communicated with at least one common destination.
In a bipartite network, there are two distinct sets of source nodes and destination
nodes. Based on this definition, the source nodes that belong to the egonet of
a destination node form a community. In a unipartite network, a distinct set
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(b) Egonet of sinks

Figure 4.1: Auxiliary communities.

of source and destination nodes does not exist. Therefore, we apply the above
definition of communities only to the sink nodes which have only incoming edges
(Algorithm 4.2).

Figure 4.1 shows a comparison of the proposed methods for adding auxiliary
communities. It can be seen that each approach places the intruding node (black
node) in different auxiliary communities (grey communities). The main difference
of our methods is that Algorithm 4.1 only adds neighboring auxiliary (NA) com-
munities over the boundary nodes, whereas Algorithm 4.2 also allows the neighbors
of the boundary sink nodes to be covered by egonet auxiliary (EA) communities.
Therefore, a misbehaving node which is not in the boundary of its community can
still belong to multiple communities by using Algorithm 4.2.

The complexity of adding auxiliary communities for a network with a degree
distribution pk = k−α, is O(nk3−α

max), where n is the number of nodes, kmax is the
highest degree, and α is the exponent of the degree distribution.

4.3.2 Community Detection Algorithms

In this paper, we use a number of well-known and computationally efficient (over-
lapping) community detection algorithms, which are listed in Table 4.1. Our goal
is to investigate which definition of a community and which types of algorithms are
more suitable for network misbehavior detection.

LC and LG find overlapping communities in a graph based on the edges. LG,
induces a line graph from the original network to which any non-overlapping al-
gorithm can be applied. In this paper, we uses a weighted line graph with self-
loops, E, and refer to LG using this graph as LG(E). SLPA and OSLOM are both
node-based methods and have very good performance [5]. Finally, DEMON is an
state-of-the-art node-based, local, overlapping community detection algorithm.

The non-overlapping algorithms used in this study also have very good per-
formance [14]. Blondel greedily maximizes modularity and unfolds a hierarchical
community structure with increasing coarseness. In this study, we consider the
communities identified at both the last and the first level of the hierarchy and refer
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Table 4.1: Community detection algorithms. n and m denote the number of nodes and

edges, respectively, kmax is the maximum degree, t is the number of iterations, and α is

the exponent of the degree distribution.

Algorithm Complexity

Overlapping

LC [15] O(nk2
max)

LG [16] O(nm2)
SLPA [17] O(tm)
OSLOM [18] O(n2)

DEMON [19] O(nk3−α
max)

Non-Overlapping
Blondel (also known as Louvain method) [20] O(m)
Infomap [21] O(m)

Auxiliary
NA (Neighboring Auxiliary Communities) O(nk3−α

max)

EA (Egonet Auxiliary Communities) O(nk3−α
max)

to them as Blondel and Blondel L1, respectively. We also use the communities
formed by Blondel as input to OSLOM, which modifies these communities in order
to improve their statistical significance. Finally, Blondel L1 is also used to partition
the nodes in the induced line graphs by LG(E).

4.4 Framework

This section presents our framework for community-based anomaly detection. Al-
gorithm 4.3 shows the first component of our framework, where overlapping al-
gorithms can be directly used, but non-overlapping algorithms only after being
enhanced with auxiliary communities.

The second component of our framework consists of a set of graph properties
which are used as filters. Our hypothesis is that intruding nodes are likely to be
placed in community overlaps. However, non-misbehaving nodes can also belong
to more than one community, and basing detection merely on community overlaps,
can lead to false positives. Therefore, these filters are used to reduce the induced
false positives by the community detection algorithms.

The framework uses a simple method for combining the extracted properties.
For each node v in the graph, the anomaly score is calculated as score(v) =
∑

i wiI(φi(v), ti), where i is the index of the property which is being aggregated,
wi is a weight for property φi where

∑

wi = 1, and I(φi(v), ti) is an indicator
function which compares the value of a graph property φi(v) to a corresponding

threshold value ti such that I(φi(v), ti) =

{

1, φi(v) > ti

0, otherwise.
The threshold values and weights are dependent on the type of data and prior

knowledge of normal behavior, which is necessary for anomaly detection and can
be achieved from studies of anomaly-free data. Finally, the anomaly score score(v)
can be used to quantify to what extent a node v is anomalous.
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Algorithm 4.3: Community-based anomaly detection

Input: a graph G(V, E); a community detection algorithm CD;
Output: a set AS of 〈v, score(v)〉;

1: Set AS = ∅; Set C = ∅; Set A = ∅;
2: C = CD(G);
3: if CD is non-overlapping then
4: A ← Auxiliary(G, C);
5: C ← C ∪ A;
6: end if
7: for all v ∈ V do
8: score(v)← Filters(v, G, C);
9: AS ← 〈v, score(v)〉;

10: end for
11: return AS

Algorithm 4.4: Application-specific filters

Input: a node v; a graph G(V, E); a set of communities C; weights
wi ∈ [0, 1] s.t.

∑

wi = 1; user-defined threshold values ti, where i is the index
of the property;

Output: an anomaly score score(v);
1: Coms(v) = {C ∈ C : v ∈ V (C)};
2: φ1(v) = |Coms(v)|;
3: φ2(v) = |Coms(v)|/|Neighbors(v)|;
4: φ3(v) = 1− ClusteringCoeff(v);
5: φ4(v) = OutDeg(v)/Deg(v);
6: φ5(v) = Deg(v)/EdgeWeights(v);
7: score(v) =

∑

wiI(φi(v), ti);
8: return score(v)

The properties presented in Algorithm 4.4 are examples of community and
neighborhood properties that we have used as filters in our experiments for intrusion
and unsolicited email detection. The selection of appropriate filters depends on the
application of anomaly detection.

Network intruders are normally not aware of the community structure of the
network, and therefore communicate to random nodes in the network [22]. It is
expected to be very expensive for attackers to identify the network communities,
and even if they do, limiting their communication with the members in the same
community can inversely affect their gain. Therefore, the number of communities
per node, as well as the ratio of the number of communities per node over the num-
ber of its neighbors, which correspond to φ1 and φ2 in Algorithm 4.4, respectively,
are expected to be promising properties for finding intruders.
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The rest of the properties, are graph metrics that correspond to the social
behavior of nodes and can be extracted from the direct neighborhood of the nodes.
We have used these properties for detecting unsolicited email (Section 4.5.3) and
therefore in the following we explain them in the context of spam detection.

The clustering coefficient of a node is known to have a lower value for spammers
than legitimate nodes [23, 24]. Property φ3 calculates one minus the clustering
coefficient so that spammers are assigned higher values. It has also been shown
that spammers are mostly using randomized fake source addresses and therefore it
is not expected that they receive many emails [25]. Property φ4 calculates the ratio
of the out-degree over the degree of the nodes, which is expected to be high for the
spammers. Finally, it has been shown that spammers tend to use the fake source
email address to send only a few spam, and target each receiving email address
only once [25]. Therefore, the degree of a node over its edge weights, property
φ5, is expected to be higher for spammers than legitimate nodes, where the edge
weights correspond to the number of exchanged emails.

4.5 Experimental Results

We have evaluated the usability of different algorithms in our framework using two
different datasets which were generated from network traffic collected on a 10 Gbps
Internet backbone link of a large national university network.

Flow Dataset. The flow level data was collected from the incoming network
traffic once a week during 24 hours for seven weeks in 2010 [26]. The flows were
used to generate bipartite networks where source and destination IP addresses form
the two node sets. The malicious source addresses in the dataset were taken from
the lists reported by DShield and SRI during the data collection period [27, 28].
This dataset is used to compare our approach with the method proposed by Ding
et al. [1] for network intrusion detection. The datasets are similar with respect to
the ground truth and only differ with respect to the collection location and the
sampling method used.

Email Dataset. This dataset is generated from captured SMTP packets in
both directions of the backbone link. The collection was performed twice (2010
and 2011), where the duration of each collection was 14 consecutive days. This
dataset was used for generating email networks, in which email addresses represent
the nodes, and the exchanged emails represent the edges. The ground truth was
obtained from a well-trained content-based filtering tool1 which classified each email
as legitimate (ham) or unsolicited (spam).

1SpamAssassin (http://spamassassin.apache.org) which provided us with an estimated false
positive rate of less than 0.1% and a detection rate of 91.4%
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Figure 4.2: Percentage of nodes in multiple communities in email dataset (2010).

4.5.1 Comparison of Algorithms

In this section, we present a comparison of the algorithms using the email dataset.
Figure 4.2(a) shows the percentage of ham and spam nodes (averaged over the 14
days in 2010), which are placed in multiple communities by different algorithms.
It can be seen that many ham nodes belong to more than one community, which
is an expected social behavior. It can also be seen that, most algorithms place the
majority of spammers into more than one community, except OSLOM and Blondel
which tend to form very coarse-grained communities.

The figure also shows that, regardless of which non-overlapping algorithm being
used, adding egonet auxiliary communities (Algorithm 4.2) places more spam than
ham nodes into several communities compared to adding neighboring auxiliary
communities (Algorithm 4.1). The reason is that NA communities are only added
over the boundary nodes, however, EA communities also allow the neighbors of the
boundary sink nodes to be covered by auxiliary communities.

Finally, Figure 4.2(b) shows that a higher percentage of spammers belong to
more than eight communities compared to legitimate nodes. The same observation
holds for the data collected in 2011. Therefore, we can confirm that both fine-
grained algorithms enhanced with EA communities, and overlapping algorithms
can be used to spot misbehaving nodes based on the number communities to which
they belong.

4.5.2 Network Intrusion Detection

It has been shown that a non-overlapping community detection algorithm (which
maximizes modularity) is not suitable for identifying intruders in network flow
data [1]. In this study, we have further investigated the possibility of using differ-
ent community detection algorithms, including a modularity-based one, by using
auxiliary communities for network intrusion detection.

One example of network intrusion is port scanning, where a scanner searches for
open/vulnerable services on selected hosts. Current intrusion detection systems are
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quite successful in identifying scanners. In this paper, we just verify the possibility
of detecting scanners using a community-based technique.

We generated one bipartite graph from the flows collected for each day. As an
example, the flow graph generated from the first day of data contained 51,720 source
nodes sending 93,113 flows to 32,855 destination nodes. This includes 607 malicious
nodes (based on DShield/SRI reports) that have sent 7,861 flows. We made the
assumption that the malicious source nodes that have tried to communicate with
more than 50 distinct destinations are suspected of scanning. Figure 4.3(a) shows
the ROC curves for seven different days. These curves show the trade-off between
the true positive rate (TPR) and the false positive rate (FPR). We have used
Blondel L1 enhanced with egonet auxiliary communities (EA), and have only used
property φ1, i.e., the number of communities to which a node belongs, as the filter.
It can be seen that this approach yields high performance with mean area under
curve (AUC) of 0.98, where around 90% to 100% of malicious scanners are detected
with a FPR of less than 0.05. This observation confirms that our framework is
successful in identifying scanners.

Network intrusion attacks are not limited to scanning attacks, therefore we have
also tried to identify other malicious (DShield/SRI) sources and have compared
our approach with the method proposed by Ding et al. [1]. Our experiments show
that the performance of both methods are quite consistent with mean AUC 0.60
(standard error 0.009) for the method by Ding et al. and 0.62 (standard error
0.015) for our approach using LG(E) as the overlapping community detection and
properties φ1 and φ2 as filters. Overall, these results confirm that the community
structure of a network provides a good basis for network intrusion detection and
both non-overlapping communities enhanced with EA communities and overlapping
communities can indeed be used for this purpose.

4.5.3 Unsolicited Email Detection

Our experimental comparison of community detection algorithms in Section 4.5.1
showed that most of the studied algorithms place spammers into multiple com-
munities. In this section, we investigate how these algorithms can be used in our
framework to detect these spammers only by observing communication patterns.

For this study, we have generated one email network from the emails collected
for each day. The community detection algorithms were applied to the undirected
and unweighted giant connected component of each email network. The edge direc-
tions and weights were later taken into account for adding auxiliary communities
and calculating different graph properties. We consider an email address to be
a spammer if it has sent more than one spam to more than one recipient. As
an example, the email network generated from the first day of data in 2010, con-
tains 167,329 nodes and 236,673 edges, where 23,628 nodes were spammers sending
126,145 spam emails. It is important to note that the vast majority of the spam-
mers have not sent large volumes of email and therefore a simple volume-based
detection method would not be suitable for spammer detection.
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Figure 4.3: Performance of different algorithms for network misbehavior detection.

Figure 4.3(b) shows the ROC curves for our spam detection method using dif-
ferent algorithms and the community-based properties φ1 and φ2. It can be seen
that OSLOM, which aims at forming statistically significant communities fails to
identify spamming nodes. It can also be seen that a node-based overlapping al-
gorithm, SLPA, and an edge-based algorithm, LG(E), perform similarly, and the
AUC (not shown in the figure) is identical for both algorithms (0.76).

Figure 4.3(b) also shows the ROC curves for non-overlapping algorithms which
are enhanced with our auxiliary communities. It can be seen that Blondel, which
aims at optimizing modularity, performs very poor. This observation is in accord
with the observation in [1] that a modularity maximization algorithm is not suitable
for anomaly detection due to its resolution limit. However, Blondel L1 (first level in
the community hierarchy of Blondel), which forms finer granularity communities,
performs dramatically better than its last level using either type of the auxiliary
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Figure 4.4: Area under the ROC curve for spam detection over time.

communities. Moreover, it can be seen that adding EA communities leads to better
results compared to NA communities.

Overall, our experiments for different days in both email datasets showed that
Blondel L1 and Infomap enhanced with EA, SLPA, LG(E), and DEMON all per-
form well with respect to placing spamming nodes into multiple communities. In
practice, low false positive rates are essential for spam detection, therefore both
Blondel L1 with EA communities and LG(E) that allow us to, on average, detect
more than 25% and 20% of spamming nodes, respectively, for different days with
very low FPR (less than 0.01) are the most suitable algorithms.

These results confirm that our method for adding EA communities to enhance
non-overlapping algorithms yields not only comparable, but even better, results
than an overlapping algorithm. Although both Blondel L1 with EA communities
and LG(E) use the same modularity-based algorithm as their basis (we have applied
Blondel L1 on the induced line graph of LG(E)), adding EA communities has also
a lower complexity than inducing weighted line graphs (Table 4.1).

As mentioned earlier, our framework allows us to incorporate a number of
application-specific filters to reduce the induced false positives (Algorithm 4.4).
Figure 4.3(c) shows a comparison of the spam detection using filters based on
community properties (φ1 and φ2 only) and the combination of community and
neighborhood properties (φ1 - φ5) for the first day of data in 2010. It can be seen
that use of additional filters improves the detection (the same observation also
holds for the algorithms not shown).

Finally, Figure 4.4 shows the AUC for spam detection using our framework with
LG(E) and Blondel L1 enhanced with EA communities over 14 days during 2010
and 2011. It can be seen that the results are quite stable over time and the AUC of
our method for adding EA communities compared to a more complex overlapping
algorithm is much better when only community properties are used.
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4.6 Conclusions

In this paper, we have evaluated the performance of community detection algo-
rithms for identifying misbehavior in network communications. This paper extends
and complements the previous work on community-based intrusion detection, by
investigating a variety of definitions for a community, introducing auxiliary com-
munities for enhancing traditional community detection algorithms, and showing
that, in contrary to previous work, these algorithms can indeed be deployed as the
basis for network anomaly detection.

We have also provided a framework for community-based anomaly detection
which allows us to find the nodes that belong to multiple communities by either
using auxiliary communities or overlapping algorithms. It also enables us to deploy
neighborhood properties, which are indicative of social behavior, for discriminating
the nodes that naturally belong to more than one community from the anti-social
ones. The applicability of our framework for identifying network intrusions and
unsolicited emails was evaluated using two different datasets coming from traffic
captured on an Internet backbone link. Our experiments show that our framework
is quite effective and provides a consistent performance over time. These results
suggest that detecting community overlaps is a promising approach for identifying
misbehaving network communications.
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5
A Local Seed Selection Algorithm

for Overlapping Community
Detection

One of the widely studied structural properties of social and information networks
is their community structure, and a vast variety of community detection algorithms
have been proposed in the literature. Expansion of a seed node into a community
is one of the most successful methods for local community detection, especially
when the global structure of the network is not accessible. An algorithm for local
community detection only requires a partial knowledge of the network and the
computations can be done in parallel starting from seed nodes. The parallel nature
of local algorithms allow for fast and scalable solutions, however, the coverage of
the communities heavily depends on the seed selection. The communities identified
by a local algorithm might cover only a subset of the nodes in a network if the seeds
are not selected carefully.

In this paper, we propose a novel seeding algorithm which is parameter free, uti-
lizes merely the local structure of the network, and identifies good seeds which span
over the whole network. In order to find such seeds, our algorithm first computes
similarity indices from local link prediction techniques to assign a similarity score
to each node, and then a biased graph coloring algorithm is used to enhance the
seed selection. Our experiments using large-scale real-world networks show that
our algorithm is able to select good seeds which are then expanded into high quality
overlapping communities covering the vast majority of the nodes in the network us-
ing a personalized PageRank-based community detection algorithm. We also show
that using our local seeding algorithm can dramatically reduce the execution time
of community detection.

5.1 Introduction

The emergence of large-scale social and information networks have motivated nu-
merous studies of the structural properties of these networks such as their com-
munity structure. A community typically refers to a group of densely connected

95



96 CHAPTER 5

nodes which have sparse connections with the rest of the nodes in the network, and
a wide variety of algorithms have been proposed for identifying communities [1, 2].

Community detection algorithms can be divided into global and local algo-
rithms. Global algorithms require a global knowledge of the entire structure of
the network in order to uncover all the communities in that network. Since such
knowledge might not be available for large-scale networks, local algorithms are
gaining more popularity [3–6]. Local algorithms typically start from a number of
seed nodes (sets) and expand them into possibly overlapping communities by ex-
amining only the neighborhood of the seeds. Due to their nature, local algorithms
can be parallelized and are scalable. However, they might only cover a subset of
the nodes in a network if the seeds are not chosen carefully. A naive approach for
achieving high coverage is therefore to consider all the nodes in a network as seeds.
However, this approach is computationally expensive and leads to many redundant
communities. Although the goal of local algorithms is not to achieve a complete
coverage of a network, finding a small number of seeds which are well distributed
over the network and can lead to a high coverage is very desirable.

Since our knowledge of the community structure of large-scale real-world net-
works is usually limited, finding good seeds that span over the network using only
the knowledge of the local structure of a network is a challenging problem. In
this paper, we present a novel local seed selection algorithm which achieves a high
coverage and a community quality similar to the naive approach (where all nodes
are used as seeds) but with a significantly lower execution time.

Our algorithm uses similarity indices from link prediction techniques. In link
prediction, similarity indices are used to estimate the similarity of nodes which are
expected to get connected, however, we use them to asses the similarity of nodes
which are already connected. We assign a local similarity score to each node based
on a similarity index and identify nodes that are similar to their neighbors and
therefore are expected to be in the same community. Andersen et al. [7] theoreti-
cally showed that a seed set that is “nearly contained” in a target community is a
good seed set for that community. We select a node as a seed if it has the highest
score among its neighbors, and we show that this method is very effective in finding
a small number of very good seeds in a network which can be expanded into high
quality communities. However, similar to other existing local seeding algorithms,
the communities expanded from these seeds do not achieve a high coverage of the
network.

In order to improve the coverage, we propose to use distributed graph coloring.
Although we show that we can select good seeds using graph coloring, we also
introduce a new distributed biased graph coloring algorithm to further enhance our
seeding algorithm, where the nodes with the highest local similarity score, which
are expected to be good seeds, are assigned a specific color. Then the ties are
broken at random so that no two adjacent nodes pick the same color. In the end,
the nodes which received the specific color are selected as seeds. Our proposed
algorithm is parameter free, is computed locally, selects seeds from parts of the
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network where the other local similarity methods fail to pick any seeds, and does
not lead to many duplicate communities since it does not pick any neighboring
nodes as seeds.

The selected seeds are then expanded into overlapping communities using a
personalized PageRank-based local community detection algorithm, which can be
computed locally and is known to result in high quality communities [8]. We have
empirically compared our proposed seeding algorithm with a number of existing
seeding methods, as well as a state-of-the-art local community detection algorithm
with respect to quality and coverage of the identified communities. The quality is
assessed using ground truth data where such data exists, and conductance which
is a widely used quality function.

Overall, our contributions in this paper are as follows.

• We define a similarity score which is calculated as the sum of the similarity
of a node with all of its connected neighbor by adopting the similarity indices
from link prediction techniques.

• We propose a new local seeding algorithm which uses these similarity scores
(link prediction-based seeding).

• We propose to use graph coloring for picking random seeds in a network and
introduce biased graph coloring for enhancing our seeding algorithm (biased
coloring-based seeding).

• We empirically compare the different similarity indices which we have used
in our seeding algorithm. We also experimentally evaluate our seeding algo-
rithm and show that it can find a reasonably small number of seeds which
are expanded into communities with high coverage and a similar quality com-
pared to when all the nodes are used as seeds but with significantly reduced
execution time.

• We show that our biased coloring algorithm is also successful in improving
the coverage of other existing local seeding algorithms.

The remainder of the paper is organized as follows. Sections 5.2 and 5.3 present
the related work and the background, respectively. Our seeding algorithm is pre-
sented in Section 5.4. Section 5.5 presents the experimental results. Finally, Sec-
tion 5.6 concludes our work.

5.2 Related Work

There have been numerous studies proposing different types of community detection
algorithms [1, 2]. In this paper, we only consider local algorithms.

Coscia et al. [6] have proposed the Demon algorithm, which starts from all the
nodes in a network to identify the local communities in each neighborhood and then
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uses merging to form the optimal global communities. A closely related approach
is the Node Perception by Soundarajan et al. [4] which is a template for first finding
local sub-communities and then identifying all the communities.

There are a variety of local community detection algorithms which assume that
the seeds are given, e.g., [3] or can be picked at random, e.g., [9]. However, there are
not many studies which have looked into the problem of selecting good seeds. Shen
et al. [10] proposed to use maximal cliques, which form the core of the communities,
as seeds which is computationally expensive. Gargi et al. [11] used the number of
times a video has been viewed in the Youtube network to select the top videos as
seeds, however, this type of non-structural information is not available for many
networks.

Gleich et al. [12] showed that the egonets with low conductance are good seeds
for finding the best communities of a network with respect to conductance. How-
ever, Whang et al. [5] showed that these communities do not achieve high coverage.
Chen et al. [13] proposed an algorithm for selecting the nodes with local maximal
degree as seeds. The authors suggested to remove the identified communities ex-
panded from these seeds from the network and find new seeds in the remaining
parts of the network repeatedly to improve the coverage. These methods are ex-
plained in more detail in the next section and are compared against our proposed
seeding algorithm.

Whang et al. [5] have proposed two seeding algorithms which achieve high
coverage. In the Graclus centers they run a partitioning algorithm to create k
network partitions and then the nodes in the center of these partitions are selected
as seeds. In the spread hub algorithm, at least k nodes with the highest degree
in the network are selected as seeds. Both seeding algorithms require some global
knowledge as well as the number of seeds to be known which is not a realistic
assumption since we typically do not know the community structure of the real-
world networks in advance.

Our seeding algorithm is parameter free and uses similarity indices from local
link prediction and local graph coloring. Yan and Gregory [14] have used a simi-
larity index to add edge weights to unweighted networks in order to improve the
quality of existing global community detection algorithms. Psicologia et al. [15]
have used simple graph coloring as the first step for a label propagation commu-
nity detection algorithm. These works do not introduce local seeding algorithms
and therefore are fundamentally different from our work.

Our algorithm can be used for seeding any local community detection algorithm.
In this paper, we have used a variant of a personalized PageRank algorithm by Yang
et al. [8]. Although Yang et al. have shown that this algorithm is very successful in
identifying the communities to which a given seed belongs, they did not investigate
the effect of using a seeding algorithm.
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5.3 Background

5.3.1 Notations

Let G = (V, E) be a connected, undirected, and unweighted graph, where V is the
set of n nodes and E is the set of m edges or links of G. Let v ∈ V be a node in
G. The set of the neighbors of v is denoted by Γ(v) = {u : u ∈ V, (u, v) ∈ E}. The
degree of v is shown as kv = |Γ(v)|, and ∆ refers to the maximum degree in the
graph. The egonet of v is the subgraph induced by the node and its neighbors and
is defined as egonet(v) = {v} ∪ {u : u ∈ Γ(v), (u, v) ∈ E}.

A local community detection algorithm expands a seed node s into a community
C which is a set of nodes including s. We denote by C = {C1, . . . , Ck} the collection
of overlapping communities expanded from k distinct seed nodes which are selected
by a seeding algorithm. The coverage of the collection of communities C is defined

as cov(C) =
|
⋃

k

i=1
Ci|

|V | . The conductance of a community, which is used both as a

scoring function and as a quality function, is defined as φ(C) = m(C)
min(vol(C),vol(V \C)) ,

where m(C) = |{(u, v) ∈ E : u ∈ C, v /∈ C}| is the number of inter-cluster edges
and vol(C) =

∑

v∈C kv is the volume of a community C and corresponds to the
sum of the degree of all the nodes in the community.

5.3.2 Existing Seeding Methods

In this study, we have selected a number of state-of-the-art algorithms to be com-
pared against our proposed algorithm.

Spread hub (SH) [5] In this method, first the nodes are sorted in order of
decreasing degree. Then, as long as the number of selected seeds is less than k,
the nodes with the maximum degree are greedily chosen as seeds. This algorithm
can pick more than k seeds, where k is given as input, and only picks neighboring
nodes as seeds when their degree is equal. The complexity of SH is O(n log n + k).

Low conductance cuts (EC) [12] Gleich et al. have shown that the low
conductance egonets are good seed sets. This algorithm selects around 3% of the
network nodes as seeds. A node v can be a seed if for all u ∈ Γ(v), φ(egonet(v)) ≤
φ(egonet(u)). EC can find these seeds with time complexity O(m∆). Whang et
al. [5] showed that this method performs poorly with respect to coverage.

Local maximal degree (MD) [13] This algorithm uses a list of nodes in
the graph. If a node has the highest local degree, it is added to a seed set and is
removed from the list together with all its neighbors with lower degrees. If a node
is not a local-maximal-degree node, it is also removed from the list. This process is
repeated until all the nodes are removed from the list. The complexity of MD is
O(n∆).
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5.3.3 Link Prediction and Similarity Indices

Link prediction is the problem of predicting the relations that should exist in a
network or are very likely to be formed in the future. These methods typically esti-
mate the similarity of nodes which are not connected to each other using similarity
indices. We have selected a number of basic and widely used similarity indices for
local link prediction [16].

Neighbors index (CN) is a very basic metric which calculates the size of the
neighborhood overlap of two nodes and is formally defined as

CN(u, v) = |Γ(u) ∩ Γ(v)|.

Hub promoted index (HP) assigns higher scores to the edges adjacent to
high degree nodes (hubs) and is defined as

HP(u, v) = CN(u, v)/min(ku, kv).

Leicht-Holme-Newman index (LHN) assigns high values to the nodes that
have many common neighbors compared to the expected number of neighbors and
is defined as

LHN(u, v) = CN(u, v)/(ku × kv).

Resource Allocation index (RA) is motivated by the resource allocation
process where the common neighbors of two nodes act like transmitters which
distribute their recourses to all their neighbors. Therefore, the amount of recourses
a node u receives from a node v can be used for calculating their similarity as

RA(u, v) =
∑

w∈Γ(u)∩Γ(v)

1

kw

.

Preferential Attachment (PA) is motivated by the preferential attachment
mechanism, where the probability that a new link is connected to a node v is
proportional to the degree of the node kv and is defined as

PA(u, v) = ku × kv.

5.3.4 Graph Coloring

The problem of coloring the nodes of a graph with a small number of colors is
a fundamental graph problem and has been widely studied. The goal of a graph
coloring algorithm is to color the nodes in a graph with at most ∆+1 colors, where
∆ is the maximum degree in the graph, so that no two neighboring nodes share the
same color. Coloring has many applications such as assigning time or frequency
slots for communications of wireless devices.



5.4. OUR METHOD 101

Algorithm 5.1: Link prediction-based seed selection

Input: A graph G(V, E).
Output: The seed set S.

Let S = ∅;
2: for all v ∈ V do

score(v) =
∑

u∈Γ(v) sim(u, v);
4: end for

for all v ∈ V do
6: if score(v) > 0 and (∀u ∈ Γ(v)) score(v) ≥ score(u) then

S = S ∪ {v};
8: end if

end for
10: return S

The most well-known distributed algorithm for ∆+1 graph coloring is a random-
ized algorithm based on the maximum independent set algorithm of Luby [17, 18]
which needs O(log n) time. Barenboim et al. [19] have shown that deterministic
distributed coloring can be implemented in linear O(∆) time.

In distributed graph coloring, each node picks a color uniformly at random from
the set of colors which are available to it, and solves the conflicts with its neighbors
by picking new colors and exchanging confirmations. Eventually, the algorithm
converges when each node has a color different from the colors of all its neighbors.

5.4 Our Method

In this section we present our approach to overlapping community detection in
large-scale networks using our novel seeding algorithm and a personalized PageRank-
based seed expansion algorithm.

5.4.1 Link Prediction-based Seed Selection

In our seeding algorithm, we propose to use similarity indices from link prediction
methods to calculate the similarity of the nodes which are directly connected. Our
intuition is that if a node has high similarity with its neighbors, it is expected
that they belong to the same community. Moreover, a node is a good seed if it
has many neighbors in the target community [7]. Therefore, a node which is very
similar to its neighbors can be a good representative for its neighborhood, thus can
be selected as a seed for local community detection.

Our seed selection algorithm is presented in Algorithm 5.1. Each node v calcu-
lates its similarity with its direct neighbors and assigns a score(v) to itself based
on the sum of the similarities. The sim(u, v) function refers to any of the similarity
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Algorithm 5.2: Biased coloring-based seed selection

Input: A graph G(V, E).
Output: The seed set S.

Let S = ∅;
2: for all v ∈ V do

score(v) =
∑

u∈Γ(v) sim(u, v);
4: end for

for all v ∈ V do
6: Let SC = ∅;

∀u ∈ Γ(v), confirm(u, v) = 0; converge(v) = false; color(v) = 0;
8: available_colors(v)={c1, ..., ckv+1} where kv = |Γ(v)|;

SC = {score(u) : ∀u ∈ egonet(v)};
10: for all u ∈ egonet(v) do

if score(u) = max(SC) then
12: color(u) = c1;

end if
14: end for

if color(v) = 0 then
16: color(v) = pick_color(available_colors(v));

end if
18: while converge(v) = false do

for all u ∈ Γ(v) do
20: if color(v)=color(u) and score(v)≤score(u) then

color(v) = pick_color(available_colors(v));
22: else if color(u) > 0 then

confirm(u, v) = 1;
24: end if

end for
26: if ∀u∈Γ(v), confirm(u, v)=1 and color(v)>0 then

converge(v) = true;
28: end if

end while
30: if color(v) = c1 and kv > 1 then S = S ∪ {v}; end if

end for
32: return S

indices introduced in the previous section. Then, each node compares its score
with its neighbors and decides if it is a seed or not.

Table 5.1 shows a summary of the names we use in the rest of the paper for
the instances of our seeding algorithm when different similarity indices are used for
calculating the score of the nodes.
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Table 5.1: Summary of the names used for the instances of our seed selection algorithm

based on the similarity indices being used.

Similarity index
sim(u, v) Instance name

Link prediction-based

CN(u, v) CN

Seeding (Algorithm 5.1)

HP (u, v) HP
LHN(u, v) LHN
RA(u, v) RA
P A(u, v) PA

Biased coloring-based

CN(u, v) CN + coloring

Seeding (Algorithm 5.2)

HP (u, v) HP + coloring
LHN(u, v) LHN + coloring
RA(u, v) RA + coloring
P A(u, v) PA + coloring

Random coloring - RN (coloring)

5.4.2 Biased Coloring-based Seed Selection

Although our proposed seeding algorithm using similarity scores can be used on
its own for seed selection, we propose to enhance it by adopting a graph coloring
algorithm. Coloring helps us to pick seeds that are better distributed over the
network and therefore can lead to improved coverage. First, we propose a basic
random coloring method for seed selection based on the randomized distributed
coloring algorithm of Luby [18].

Random Coloring (RN) can be directly used for selecting seeds, by picking
the nodes which have the same color, for example color c1. The RN seed selection
has some advantages over simply picking seeds at random. It does not require the
number of seeds to be picked to be known and it does not pick two neighbors as
seeds resulting in fewer redundant communities.

Although basic random coloring can be used for seed selection, we also propose
a biased graph coloring algorithm which favors the nodes with high similarity scores
to improve the seed selection. The main difference between the biased and the basic
coloring is that, in biased coloring, the nodes which are expected to be better seeds
with respect to link prediction-based similarity scores pick a specific color, but in
basic coloring, random nodes get the specific color.

Algorithm 5.2 shows our enhanced seeding algorithm with our biased graph
coloring. First each node v calculates its score using a local similarity function,
and then assigns the color c1 to the nodes with the highest score in its egonet,
egonet(v). If a node has not received the color c1 from itself or any of its neighbors,
it picks a color for itself at random from the set of available colors. In other words,
if a node has the highest score in at least one neighborhood it gets the color c1,
otherwise, it picks a random color. After initialization, each node checks the color
of its neighbors, if there is no conflict, the color is confirmed. Otherwise, if the
score of the node is less than or equal to the score of its conflicting neighbor, the
node picks a new color uniformly at random using pick_color. This makes sure
that the nodes with high scores preserve their original color c1.
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Method Seeds

CN 0, 1, 2, 3, 4, 5, 13, 14

HP 0, 1, 2, 3, 13, 14

LHN 0, 1, 2, 3, 7, 13, 14

RA 4, 5, 13, 14

PA 5

EC [12] 0, 1, 2, 3, 7, 10, 13, 14

(k=3)[5]

Method Seeds

CN + coloring 5, 7, 14

HP + coloring 3, 6, 14

LHN + coloring 3, 10, 14

RA + coloring 5, 8, 14

PA + coloring 5, 8, 14

EC + coloring 0, 9, 13

RN (coloring) 3, 7, 13

SH + coloring 

MD + coloring

0, 6, 14

4, 5, 6MD [13] 

SH 4, 5, 6

4, 6, 14
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Method Seeds

CN + coloring 5, 15, 21

HP + coloring 6, 13, 15, 21

LHN + coloring 6, 15, 17, 18

RA + coloring 1, 8, 16, 21

PA + coloring 7, 14, 16, 21

EC + coloring 5, 14, 16, 21

Method Seeds

CN -

HP -

LHN -

RA -

PA 0, 8

EC [12] 1, 8, 18
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RN (coloring) 6, 15, 21

SH + coloring 0, 8, 14, 16, 210, 8, 14, 16SH 

MD + coloring 0, 8, 15, 210, 8, 14, 16MD [13] 

(b)

Figure 5.1: Example graphs and the selected seeds using different methods. Biased col-

oring improves the seed selection.

The algorithm converges when all the nodes in the network have a confirmed
color. After convergence, the nodes which have the color c1 are selected as the
seeds, since these nodes have the highest similarity score in their neighborhood
and are expected to be good seeds.

Figure 5.1 shows two scenarios where coloring dramatically improves seed selec-
tion1. Figure 5.1(a) shows an example where three densely connected communities
exist and therefore it is expected that a good seed selection algorithm can pick at
least one seed in each community. However, it can be seen that while PA only
picks one seed, the others pick many seeds including neighboring nodes. For in-
stance, SH (see Section 5.3.2) which requires the number of seeds k to be known in
advance, picks node 4, 5, and 6 which have the highest degree in the network but
are directly connected. We can also see that by adding biased coloring, the seed
selection improves. For instance, PA combined with coloring selects one seed from
each community and the methods which earlier picked many neighbors, now pick
fewer seeds which are better distributed across the network.

1In practice, due to the randomness in the coloring, the selected seeds are not deterministic.
In our experiments section we discuss this topic further.
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Figure 5.1(b) shows another example where the neighboring nodes do not have
any common neighbors. Therefore, by using the common neighbor-based similarity
indices, i.e., CN, HP, LNH, and RA, all the nodes get a similarity score of zero,
so our algorithm fails to pick any seeds at all. However, the figure also shows that
when adding biased coloring to the local seeding methods, a number of seeds are
selected which are well distributed over the graph. In these scenarios, the biased
coloring actually works similar to the random coloring, since a node will only receive
color c1 if it has picked it at random.

Time complexity: The time complexity of link prediction-based score calculation
is O(n∆). Our distributed biased coloring algorithm which is used for enhancing
seeding is based on the algorithm by Luby which can run in O(log n).

5.4.3 Local Community Detection

After selecting the seeds, any type of seed expansion algorithm can be used to
identify local communities. In this paper, we use a local algorithm by Yang et al. [8]
which uses truncated random walks to approximate personalized PageRank. The
main advantages of random walk-based techniques are that they can be computed
locally and in parallel, the time and space requirements of such algorithms do not
depend on the size of the network [7], and the communities identified by these types
of algorithms are structurally close to real-world communities [20].

The algorithm by Yang et al. works as follows. First, the PageRank-Nibble
algorithm of Andersen et al. [7] is used to compute an approximate personalized
PageRank vector starting from the seed node.2 Then, the algorithm by Spielman
and Teng [21] is used to create a collection of sets of nodes. The set which has
the first local optima of a scoring function is selected as the final community.
The details of the algorithm can be found in [7, 8, 21]. In this study, we have
used conductance as the scoring function which has been shown to be good for
identifying ground truth communities [8].

Time complexity: The overall complexity of the local community detection
algorithm can be approximated with O(

∑k
i=1(vol(Ci))), where k is the number of

the seeds obtained from the seeding algorithm3.

5.5 Experimental Results

In this section, we evaluate and compare our local seeding algorithm with other
existing algorithms using large scale real-world networks.

2The community detection algorithm approximates PageRank with an accuracy value ǫ. In
our experiments, we use a constant ǫ = 10−4 for comparing different seeding algorithms, instead
of trying to find the accuracy value which leads to the best conductance.

3The complexity of PageRank-Nibble, which is the main components of the community detec-

tion algorithm, is O(|S| log3 m

φ2 ), where it can return a community S with conductance < φ.
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Table 5.2: Summary of the networks.

Dataset |V | |E| |CT |∗

Amazon [8] 334,863 925,872 151,037
DBLP [8] 317,080 1,049,866 13,477
Youtube [22] 1,134,890 2,987,624 8,385
LiveJournal [8] 3,997,962 34,681,189 287,512
SoundCloud 5,187,722 36,989,364 N/A

∗the number of ground truth communities

5.5.1 Datasets

The networks we have used for this study are listed in Table 5.2. We have selected
different types of publicly available real-world datasets. Additionally, we have
collected a subset of users from an online social network of a sound sharing website
(SoundCloud) and have generated a new network for this study.

Amazon is a product network in which nodes are products and two products
have an edge if they were co-purchased frequently. DBLP is a collaboration network
where nodes are authors and two authors are connected with an edge if they have
co-authored at least one paper. In the Youtube and LiveJournal networks, the
nodes are the users of the video sharing and online blogging websites, respectively,
and the edges correspond to friendships. In the SoundCloud network, nodes are
users and edges correspond to following relations.

5.5.2 Comparison

In order to compare the seeding algorithms, we have considered the number of
nodes which are selected as seeds by each algorithm, the quality of the identified
communities from these seeds, and the number of nodes being covered by these
communities.

In order to compare the quality of the identified communities, we use both
the conductance of the communities and the similarity with the ground truth
communities. The similarity is calculated using the F1-score which is defined as
F1-score = 2 precision . recall

precision+recall
, where recall = |S∩C|

|C| , precision = |S∩C|
|S| , and S and

C denote the detected and the ground truth community, respectively. The average
f1-score over all the communities is used to compare the communities expanded
from the seeds by different seeding algorithms.

If there is more than one community that overlaps with a ground truth com-
munity, we select the one with the highest f1-score, and the duplicate communities
are ignored. Moreover, communities which do not have any common nodes with
the ground truth communities are not considered in the calculation of the average
f1-score. Such communities exist, since there are nodes in the networks which be-
long to a community but are not annotated to be in the ground truth community,
i.e., the networks are “partially annotated” [5].
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Figure 5.2: A comparison of different local seeding algorithms and the expanded com-

munities from the selected seeds. CN, HP, LHN, RA, and PA refer to our local seeding

algorithm (Algorithm 5.1) using the respective similarity indices (see Table 5.1). EC [12]

and MD [13] refer to the local seeding algorithms being compared with our algorithm, and

All refers to when all the nodes in the network are used as seeds.
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Figure 5.3: A comparison of different local seeding algorithms and the expanded com-

munities from the selected seeds. CN, HP, LHN, RA, and PA refer to our local seeding

algorithm enhanced with biased coloring (Algorithm 5.2) using the respective similarity

indices, and RN refers to our basic random coloring algorithm (see Table 5.1). EC +

coloring and MD + coloring refer to existing local seeding algorithms which are also en-

hanced with our biased coloring algorithm, and All refers to when all the nodes in the

network are used as seeds.
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Link Prediction-based Seed Selection

Figure 5.2 shows a comparison of our link prediction-based seeding algorithm (Al-
gorithm 5.1) using similarity indices CN, HP, LHN, PA, and RA (see Table 5.1)
with two other local seeding algorithms EC [12] and MD [13] (see Section 5.3.2),
as well as when all the nodes in the network are used as seeds (All). It can be seen
that PA results in the highest average f1-score and the lowest average conductance
for most of the networks being studied. The other four similarity indices used in
our algorithm also succeed in selecting a small number of good seeds, which are ex-
panded into high quality communities. However, none of the local seeding methods
can achieve a high coverage in all the networks.

Biased Coloring-based Seed Selection

Figure 5.3 shows a comparison of seed selection enhanced with biased coloring,
as well as the basic random coloring (RN). It can be seen, that by adding biased
coloring, the coverage of the communities is dramatically improved regardless of
the similarity index being used. Without biased coloring, our seeding algorithm
(Algorithm 5.1) was able to identify a few very high quality communities, but after
being enhanced with coloring (Algorithm 5.2), it selects a small number of seeds
but now leads to communities with a similar average quality compared to when all
the nodes are used as seeds (All). The figure also shows that using biased coloring
has improved the coverage of existing local seeding methods, i.e., EC and MD (see
Section 5.3.2).

Note that the biased coloring is not deterministic since the color conflicts are
resolved at random. Although it is possible to use a deterministic distributed color-
ing algorithms, e.g., [19], our experiments have shown that the induced randomness
does not affect the community detection much and the results are quite stable.4

Local versus Global Seeding

The seeding algorithms compared up to this point are all local methods. There are
also seeding algorithms which assume that a global knowledge of a network exists,
and therefore this knowledge can be used for selecting good seeds. In this study,
we include the Spread hub (SH) algorithm [5] which requires the degree of all the
nodes in the network to be known and which is shown to select good seeds (see
Section 5.3.2). Table 5.3 shows the results using SH for three of the networks.

In addition to the global knowledge, SH requires the minimum number of seeds,
k, to be known in advance. Unfortunately, our knowledge of the real community
structure of many real networks is very limited, therefore it is not easy to estimate
a correct value for k. It can be seen in the table that the selection of k dramatically

4In the figures, all the results for the coloring enhanced seeding methods are computed at least
5 times and the figures show the mean values with 95% confidence interval (the error bars were
too small to be shown).
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affects the quality and the coverage of the communities. The table also shows the
community quality and coverage when SH is enhanced with our biased coloring,
and it can be seen that coloring can compensate for a bad selection of k. Although
the global knowledge is available in this scenario, our experiments show that using
local coloring for seed selection is a good and safe choice, since even with a global
knowledge of the network, selecting the right number of seeds is not easy.

Table 5.3: Comparison of SH with different percentage of graph nodes as k

Dataset k (% of n) Seeds F1-score Conductance Coverage

Amazon

3% 0.03 0.50 0.16 0.89
10% 0.11 0.53 0.20 0.98
15% 0.18 0.52 0.23 0.99

3%+coloring 0.11 0.56 0.22 0.99

DBLP

3% 0.03 0.28 0.25 0.83
10% 0.12 0.23 0.28 0.96
15% 0.17 0.21 0.30 0.98

3%+coloring 0.16 0.21 0.30 0.99

Youtube

3% 0.03 0.10 0.40 0.61
10% 0.10 0.11 0.40 0.87
15% 0.18 0.10 0.41 0.94

3%+coloring 0.15 0.10 0.41 0.92

Execution Time

Finally, we have compared the execution time of personalized PageRank-based com-
munity detection using our seeding algorithm (PA + coloring) versus running the
community detection for all the nodes in the network (All). We have also compared
the execution times with an state-of-the-art local overlapping community detection
algorithm, DEMON [6], which is based on the idea that different nodes have dif-
ferent views of the communities in their neighborhood and these communities can
be merged into the global communities of the network. All the implementations
we have used are in Python.5

Table 5.4 summarizes the execution times. It can be seen that our seeding
algorithm (PA + coloring) is very fast and that the use of seeding dramatically
reduces the execution time of the community detection. It can also be seen that
our algorithm leads to a better combination of high coverage with good quality
communities compared to DEMON.

5.6 Conclusions

In this paper, a novel distributed parameter-free seed selection algorithm is pre-
sented which only requires local computations. In our algorithm, we have taken
advantage of the similarity indices widely used for link prediction to select a small
number of good seeds. We have also enhanced our seeding algorithm with a novel

5We have used the implementation of Demon provided by its authors, and have used ǫ = 0.3
and the default minimum community size for the experiments.
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Table 5.4: Execution time

Seeding Community
Detection

F1-Score Conductance Coverage

Amazon
PA+coloring 52 s 2 h 38 m 0.55 0.22 0.99

All - 17 h 15 m 0.51 0.23 1.00
Demon - 37 h 40 m 0.51 0.50 0.79

DBLP
PA+coloring 2 m 16 s 1 h 12 m 0.19 0.30 0.96

All - 8 h 42 m 0.21 0.31 1.00
Demon - 32 h 54 m 0.25 0.63 0.85

Youtube
PA+coloring 7 m 54 s 1 h 38 m 0.12 0.37 0.80

All - 14 h 47 m 0.09 0.47 0.99
Demon - 52 h 48 m 0.23 0.73 0.23

biased coloring algorithm to further improve the seed selection. The seeds identified
by our algorithm have then been expanded into high quality overlapping commu-
nities using a personalized PageRank-based community detection algorithm which
can also be computed locally.

Experiments using different types of large-scale real-world networks have shown
that our seeding algorithm is able to pick nodes that are well-distributed over the
networks and are expanded into communities with both high coverage and good
quality. Our results also show that using seed selection can dramatically reduce the
execution time of community detection while preserving the quality of the identified
communities.
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6
A Graph-Based Analysis of Medical

Queries of a Swedish Health Care
Portal

Today web portals play an increasingly important role in health care allowing
information seekers to learn about diseases and treatments, and to administrate
their care. Therefore, it is important that the portals are able to support this
process as well as possible. In this paper, we study the search logs of a public
Swedish health portal to address the questions if health information seeking differs
from other types of Internet search and if there is a potential for utilizing network
analysis methods in combination with semantic annotation to gain insights into
search behaviors. Using a semantic-based method and a graph-based analysis of
word co-occurrences in queries, we show there is an overlap among the results
indicating a potential role of these types of methods to gain insights and facilitate
improved information search. In addition we show that samples, windows of a
month, of search logs may be sufficient to obtain similar results as using larger
windows. We also show that medical queries share the same structural properties
found for other types of information searches, thereby indicating an ability to re-use
existing analysis methods for this type of search data.

6.1 Introduction

Query logs which are obtained from search engines contain a wealth of information
about the language used in the logs and the behavior of users. Searching for health
and medical related information is quite common, and therefore analysis of query
logs of medical websites can give us insight into the language being used and the
information needs of the users in the medical domain.

In this study, we analyze 36 months of query logs from a Swedish health care
portal, which provides health, disease, and medical information. On one hand, we
perform a semantic enhancement on the queries to allow analysis of the language
and the vocabulary which has been used in the queries. On the other hand, we
perform a graph-based analysis of the queries, where a word co-occurrence graph is
generated from the queries. In a word co-occurrence graph each node corresponds
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to a word and an edge exists between two words if they have co-occurred in the
same query.

Our study reveals that a word co-occurrence graph generated from medical
query logs has the same structural and temporal properties, i.e., small world prop-
erties and power law degree distribution, which has been observed for other types
of networks generated from query logs and different types of real-world networks
such as word association graphs. Therefore, the existing algorithms and data min-
ing techniques can be applied directly for analysis of word co-occurrence graphs
obtained from health search.

One of the widely studied structural properties of real-world networks is the
communities in these networks. In this study, we apply a state-of-the-art local
community detection algorithm on the word co-occurrence graph. A community
detection algorithm can uncover a graph community which is a group of words that
have co-occurred mostly with each other but not with the rest of the words in
the network. The community detection algorithm used in this study is based on
random walks on the graph and can find overlapping communities.

The communities of words, identified from the graph, are then compared with
the communities of words obtained from a semantic analysis of the queries. In
semantic enhancement, if a word or term in a query exists in medical oriented
semantic resources, it is assigned a label. The words and terms which have co-
occurred with these labels are used to create a semantic community. We have
compared the obtained semantic communities with the graph communities using a
well-known similarity measure and observed that the communities identified from
these two different approaches overlap. Moreover, we observed that the graph com-
munities can cover the vast majority of the words in the queries while the semantic
communities do not cover many words. Therefore, the graph-based analysis can be
used to improve and complement the semantic analysis.

Furthermore, we study the effect of the time window lengths for analysis of log
queries. Our goal is to investigate whether short snapshots of log queries also can
be useful for this type of analysis, and how the increase in the size of the log files
over time can affect the results.

The reminder of this paper is organized as follows. In Section 6.2 we review
the related work. Section 6.3 presents the Swedish log corpus used for this study.
Section 6.4 describes the semantic enhancement on the query logs. In Section 6.5
we describe the graph analysis methods. Section 6.6 summarizes our experimental
results. Finally, Section 6.7 concludes our work.

6.2 Related Work

In this paper, we study the co-occurrence of words in medical queries and perform
both a semantic and graph analysis to identify and compare the communities of
related words. In this section, we briefly present a number of related works which
deal with analysis of query logs.
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Q   929C0C14C209C3399CAE7AEC6DB92251   1377986505    symptom brist folsyra hidden:meta:region:00     =    13    1    -N    -     sv      =

Q   2E6CD9E0071057E4BEDC0E52B0B0BDAC   1377986578    folsyra hidden:meta:region:00 =    36    1    -N    -     sv    =          

Q   527049C35E3810C45B22461C4CCB2C23    1377986649    kroppens anatomi hidden:meta:region:01    =    25    1    -N    -    sv    =        

Q   F86B6B133154FD247C1525BAF169B387    1377986685    stroke hidden:meta:region:00    =    320    1    -N    -     sv    =        

Q   17CCB738766C545BFE3899C71A22DE3B    1377986807    diabetes typ 2 vad beror på hidden:meta:region:12 =     61    1    -N    -    sv    =

Figure 6.1: Example queries. A query consist of (Q)uery, session ID, time stamp, search

query, metadata, number of links returned, the batch ID of the visited link, (N)o spelling

suggestions, Swedish search.

Query logs have been previously studied for identifying clusters of similar queries.
In [2] a method was described for clustering similar queries using different notions
of query distance, such as string matching of keywords. In [1] clicked Web page
information (terms in URLs) was used in order to create term-weight vector models
for queries, and cosine similarity was used to calculate the similarity of two queries
based on their vector representations.

Several previous works have also dealt with graph analysis of query logs. In [3]
several graph-based relations were described among queries based on different
sources of information, such as words in the text of the query, clicked URL terms,
clicks and session information. In [4] vector space models were compared, by em-
bedding them in graphs, and graph random walk models in order to determine sim-
ilarity between concepts, and showed that some random walk models can achieve
results as good as or even better than the vector models. In [5], it was shown
that drawing clusters of synonyms in which pairs of nodes have a strong confluence
is a strong indication of aiding two synonymy graphs accommodate each others’
conflicting edges. Their work was a step for defining a similarity measure between
graphs that is not based on edge-to-edge disagreement but rather on structural
agreement.

6.3 Material - a Swedish Log Corpus

The Stockholm Health Care Guide, http://www.vardguiden.se/, is the official
health information web site of the County of Stockholm, sponsored by the Stock-
holm County Council and used mostly by people living in the Stockholm area
and provides information on diseases, health and health care. In January 2013 the
Stockholm County Council reported that vardguiden.se had two million visitors per
month. As of November 2013, vardguiden.se and another similar portal, 1177.se
(which was a common web site for Swedish regions and counties, and the official
national telephone number for health information and advice), are merged into one
called 1177 Vårdguiden, sharing the same interface and search engine. The corpus
data used in this study consists of the search queries for the period October 2010
to the end of September 2013. The data is provided by vardguiden.se, through
an agreement with the company Euroling AB which provides indexing and search-
ing functionality to vardguiden.se. We obtained 67 million queries in total, where
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27 million are unique before any kind of normalization, and 2.2 million after case
folding. Figure6.1 shows an example of a query log.

Information acquisition from query logs can be useful for several purposes and
potential types of users, such as terminologists, infodemiologists, epidemiologists,
medical data and web analysts, specialists in NLP technologies such as information
retrieval and text mining, as well as, public officials in health and safety organiza-
tions. Analysis of web query logs can provide useful information regarding when
and how users seek information for topics covered by the site [6]. Such information
can be used both for a general understanding of public health awareness and the
information seeking patterns of users, and for optimizing search indexing, query
completion and presentation of results for improved public health information. For
an overview of some common applications and methods for log analysis see [7].

Deeper mining into queries can reveal more important information about search
engine users and their language use and also new information from the search
requests; cf. [8]. The basis for Search Analytics is made of different kinds of logs of
search terms and presented and chosen results by web site users [9]. At a syntactic
level queries may contain e.g., synonyms and hyponyms, and to be able to study
patterns of search behavior at a more abstract level, we map the syntactic terms to
semantic concepts. To our knowledge this is the first of its kind resource for Swedish
and as such it can be used as a test bed for experimental work in understanding
the breadth and depth of usage patterns, the properties of the resource and the
challenges involved in working with such type of data. The only study we are
aware of using Swedish log data, in the context of health-related information, is
described by [10]. In their study, three million search logs from vardguiden.se (June
’05 to June ’07) were used for the purpose of influenza surveillance in Sweden, and
seven symptoms, roughly corresponding to cough, sore throat, shortness of breath,
coryza (head cold), fever, headache, myalgia (muscle pain) were studied.

6.4 Semantic Enhancement

Description of various corpus analytics that enables us to gain insights into the
language used in the logs; e.g., terminology and general vocabulary provide, to a
certain degree, an indication of the search strategies applied by the users of the
web site service from where the logs are obtained. Findings can serve as back-
ground work that, e.g., can be incorporated in search engines or other web-based
applications to personalize search results, provide specific site recommendations
and suggest more precise search terms, e.g., by the automatic identification of lay-
men/novices or domain experts. The logs have been automatically annotated with
two medically-oriented semantic resources [11] and a named entity recognizer [12].
The semantic resources are the Systematized Nomenclature of Medicine — Clinical
Terms (SNOMED CT) and the National Repository for Medicinal Products (NPL,
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http://www.lakemedelsverket.se/)1. We perceive all these resources as highly
complementary for our task since the Swedish SNOMED CT does not contain drug
names and of course none of the two contain information about named entities.

6.4.1 SNOMED CT and NPL

SNOMED CT provides a common language that enables consistency in capturing,
storing, retrieving, sharing and aggregating health data across specialties and sites
of care. SNOMED CT provides codes and concept definitions for most clinical
areas. SNOMED CT concepts are organized into 18 top-level hierarchies, such as
Body Structure and Clinical Finding, each subdivided into several sub-hierarchies
and contains around 280,000 terms. More detailed information about SNOMED
CT can be found at the International Health Terminology Standards Development
Organisation’s web site, IHTSDO, at: http://www.ihtsdo.org/snomed-ct/.

The NPL is the official Swedish product registry for drugs and contains 11,250
entries. Every product in the registry contains metadata about its substance(s),
names, dosages, producers and classifications, like prescription and Anatomical
Therapeutic Chemical codes (ATC). For instance, for the question “missbruk st
göranssjukhus” (“abuse st göran hospital”) from the query “Q \t C7ED234574EE24
\t 1326104437 \t missbruk st göranssjukhus meta:category:PageType;Article \t =
\t 0 \t ...” (here “\t” signals a tab separation), we add three new tab-delimited
columns (named entity label, SNOMED-CT, NPL or N/A if no match can be
made) to each query. In this case, the three added columns for this particular query
will get the labels “FUNCT-ENT”, “finding–32709003–missbruk” and “N/A” (no
annotation), where the first stands for a FUNCTional-ENTity, the second for a
finding category with concept-id “32709003” and “missbruk” as the recommended
term.

6.4.2 Semantic Communities

We use the semantic labels obtained from the semantic enhancement to group
words into communities. Communities can be used for getting insight into the
language and the related words being used for medical search. The words which
are matched with the same semantic label are clearly relevant to each other as they
belong to the same semantic hierarchy. For each semantic label, we create a set of
all the words in the queries which received this label. In other words, the words
in queries that co-occurred with the same label are assumed to belong to the same
community.

1Named entities have not been used for this study. However, we intend to use them in future
studies. Nevertheless, the named entity annotation includes the ontological categories location,
organization, person, time, and measure entities. Such entities can capture a wide range of
entities searched by in such logs such as addresses to health care centers and various health care
organizations.
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Figure 6.2: The degree distribution of the co-occurrence graph.

We have generated such communities only from SNOMED CT and NPL labels
and refer to them as semantic communities in the rest of the paper. As an exam-
ple, the community {borrelia, serologiska, blodprover, test, serologisk, testning}
was obtained from the queries which received the label “qualifier value–27377004–
serologisk”.

6.5 Graph Analysis

Query log data can be modeled using different types of graphs [3]. In this study, we
have generated a word co-occurrence graph, in which each node corresponds to a
word and two nodes are connected with an edge if they have appeared in the same
query. The generated graph is undirected and unweighted and has no multiedges.
To generate the graph we have used the words as they appeared in the logs, i.e.,
we did not replace words with their synonyms, correct misspellings, or translate
non-Swedish words to Swedish. For example, “eye”, “öga”, “ögat”, “ögon”, and
“ögonen” appear as five different nodes in the graph but mean the same thing.

The graph G(V, E) generated from the queries which contained two or more
words has |V | = 265,785 nodes and |E| = 1,555,149 edges. The words in one-word
queries which did not co-occur with any other words could not be considered for
the graph analysis. The generated graph consists of 6,688 connected components.
A connected component is a group of nodes where a path exists between any pair
of them. The largest connected component of the graph, also known as giant
connected component (GCC), contains around 95% of the nodes in the graph.

It was shown in [13], that a graph generated from the co-occurrence of words in
sentences in human languages, exhibit two structural properties that other types
of complex networks have, i.e, the graph is a small world network and it has a
power-law degree distribution [14]. Later studies on different types of word graphs
have also been shown to follow the above properties. In this paper, we also show
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Table 6.1: Structural properties of the word co-occurrence graph over time.

Time window |V | |E| |VGCC | clustering coeff. effective diameter

1 month 16,045 52,403 14,877 0.29 5.47
3 months 30,681 168,045 29,220 0.30 5.42
6 months 48,229 298,331 46,435 0.31 5.38
12 months 69,380 414,643 67,245 0.32 4.97
36 months 265,785 1,555,149 251,597 0.34 4.88

that a word co-occurrence graph generated from medical queries exhibits the same
structural properties.

In small world networks, there is a short path connecting any pair of nodes in
the GCC of the network. This property can be examined by calculating the effective
diameter of the network [15]. Small word networks also are highly clustered and
therefore have a high clustering coefficient value. The effective diameter of our
co-occurrence graph is 4.88, and it has an average clustering coefficient of 0.34.
These values confirm that our word co-occurrence graph is a small world network.

The degree distribution of the co-occurrence graph is shown in Figure 6.2. It
can be seen that the degree distribution follows a power law distribution. This
observation is similar to the observations presented by [16] that almost all the
measures of a graph generated from query log files follow power laws. Therefore,
the user behavior in medical search does not seem different from general search
behavior. In addition to networks of word relations, power law degree distributions
have also been observed in social, information, and interaction networks where
there are many nodes with low degrees and a few nodes with very high degrees [17].
The word with the highest degree in our graph is “barn” (child/children) which has
17,086 edges. Some other high-degree nodes are “sjukdom” (disease), “behandling”
(treatment), “ont” (pain), “gravid” (pregnant), and “feber” (fever).

We have also looked into how the structural properties of the word co-occurrence
graph change over time as the graph increases in size with an increasing number of
queries. Table 6.1 summarizes the results. It can be seen that similar to many other
networks, the diameter of the graph shrinks when more nodes become connected
and its average clustering coefficient does not change much as the graph becomes
larger.

Overall, the structural properties of the word co-occurrence graph are similar to
many other real-world networks. Although it was shown in [18] that the queries and
information needs of medical practitioners in accessing electronic health records are
different from users of general search engines, our analysis reveals that there are
similarities between information seeking of general users on health data and on
general data. Therefore, the algorithms introduced for analysis of such networks
can be directly deployed for analysis of word co-occurrence graphs.
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6.5.1 Graph Community Detection

One of the widely studied structural properties of real-world networks is their
community structure. A community, also known as a cluster, is defined as a group
of nodes in a graph which have dense connections to each other, but have few
connections to the rest of the nodes in the network. There have been numerous
studies on the community structure of social and information networks and a variety
of algorithms have been proposed for identifying the communities in these networks.
A thorough overview of different types of community detection algorithms can be
found in [19, 20].

Community detection algorithms can be divided into global and local algo-
rithms. The global algorithms require a global knowledge of the entire structure
of the network to be able to find its communities. Therefore, these types of algo-
rithms do not scale well for log analysis since query logs are usually very large and
are continuously growing. The local algorithms, on the other hand, only require a
partial knowledge of the network and therefore can identify network communities
in parallel. However, the identified communities might not cover all the nodes in a
network.

Moreover, community detection algorithms can be divided into overlapping and
non-overlapping algorithms. Traditional partitioning and clustering algorithms
typically divide the nodes in a network into disjoint communities. But in many
real networks, a node can actually belong to more than one community. For ex-
ample, in a social network, a user can belong to a community of family members,
a community of friends, and a community of colleagues. In a co-occurrence graph,
a symptom can co-occur with different types of diseases. Therefore, a community
detection algorithm which can identify overlapping communities is more suitable
for analysis of the graphs generated from search queries.

For the analysis of log queries, we have used a local overlapping community
detection algorithm. This algorithm is a random walk-based algorithm which uses
an approximation of a personalized PageRank [21, 22] and is shown to perform
well in detecting real communities in social and interaction networks [23]. The
algorithm starts from a seed node and expands the seed into a community until
a scoring function is optimized. One of the widely used functions for community
detection is conductance. The conductance of a community C in a graph G(V, E)

is defined as φ(C) = m(C)
min(vol(C),vol(V \C)) , where m(C) is the number of inter-cluster

edges and vol(C) =
∑

v∈C deg(v) is the volume of a community and corresponds to
the sum of the degree of all the nodes in the community. The lower the conductance
of a community, the better quality the community has. The complexity of this
algorithm is independent of the size of the network and only depends on the size
of the target communities.
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6.6 Experimental Results

In this section we present our experimental results and discuss the possible appli-
cations for graph-based analysis of medical data.

6.6.1 Semantic and Graph Analysis

From the semantic enhancement, we have generated 16,427 unique semantic com-
munities which cover less than 11% of the nodes in the network. This means that,
the majority of the queries in the network did not contain words that match the
medical concepts provided by of SNOMED CT and NPL. This observation suggests
that a semantic enhancement of queries on its own is not adequate for understand-
ing the relations between all the words used in medical search.

For the graph analysis, we have used the local overlapping community detec-
tion algorithm of [23] to identify the communities from the co-occurrence graph
generated from the complete query logs. The algorithm identified 107,765 unique
communities in the GCC of the graph with average conductance 0.74. This shows
that the communities are not well separated from each other and that there are
many edges between distinct communities. Moreover, the identified communities
cover 93% of the nodes in the network which means that the graph analysis is
more suitable for the study of the relations between the words than the semantic
analysis.

The semantic communities and the graph communities are both dependent on
the co-occurrence of words in queries, but identify communities differently. The
semantic method places the nodes which belong to the same semantic hierarchy
together with the words that co-occurred with them in the same community. How-
ever, the graph-based method places the words based on the structure of the gen-
erated network in the communities.

We have compared and calculated the similarity between the graph commu-
nities and the semantic communities using the jaccard index which is defined as
JI(C, S) = |C∩S|

|C∪S| . The jaccard index shows the normalized size of the overlap
between a graph community C and a semantic community S. Similarity functions,
including Jaccard, have been used before for measuring the distance of two differ-
ent queries. In this study we use similarity to assess the similarity of communities
of words obtained from the two distinct methods.

We have compared each semantic community with all the graph communities
and show the similarity distribution in Figure 6.3. It can be seen that the majority
of the communities partially overlap. As an example, from the word “tandsjuk-
dom” (dental disease) as the seed, we identified the graph community {tandsjuk-
dom, licken, munhåleproblem, rubev, emalj, tändernaamelin, hypopla, permanen-
tatänder, lixhen, hypoplazy, hipoplasy, hypoplazi, bortnött, hipoplazy}. From the
semantic enhancement, “tandsjukdom” and “tandsjukdomar” both have received
semantic label “disorder–234947003–tandsjukdom”. From the queries which re-
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Figure 6.3: The distributions of jaccard similarity of semantic-based and graph-based

communities.

ceived this label we have generated the semantic community {tandsjukdom, emalj,
olika, vanligaste, tandsjukdomar, licken, plack, ovanliga}. The similarity of these
communities is low, i.e., 0.16, however, they both contain the words which are
clearly relevant to teeth and dental diseases.

As another example, “osteoklast” and “osteoklaster” both receive the semantic
label “cell–27770000–osteoklast”. From the graph analysis, we have found {osteok-
laster, osteoblster, osteocyter, osteoblaster} as a community with “osteoklaster” as
the seed. We have also obtained the semantic community {osteoblaster, osteoklast,
osteoporos, osteocyter, benskörhet, osteoklaster, osteoblster}. In this example, the
graph community is a subset of the semantic community, and their similarity is
0.57. The above examples suggest that a graph-based analysis of medical queries
can be used to complement the semantic analysis.

6.6.2 Frequent Co-Occurrence Analysis

In the query logs, we observed that there are many misspellings, meaningless words,
etc. In order to clear the dataset, it is common in different studies of log files, to
filter out queries which appeared less frequently. By removing such queries, we can
dramatically reduce the number of such words.
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In this study, we have generated another graph from the words which co-
occurred frequently in different queries. We have only considered words that co-
occurred five times or more, and the graph contains 32,449 nodes and 217,320
edges, with average clustering coefficient of 0.29 and effective diameter of 5.66.

In the GCC of this graph we found 22,890 graph communities with average
conductance of 0.65 and coverage of 95%. Moreover, we have also used the words
which co-occurred at least five times to generate the semantic communities. The
similarity of these communities with graph communities using jaccard similarity
was 0.16 in average which is slightly lower than when no filtering was used. Over-
all, our observations suggest that filtering can be used to reduce the noise in the
datasets and allow us to perform a faster analysis on a smaller graph.

6.6.3 Time Window Analysis

Another property which we have empirically studied in this paper is the effect of
time window length during which the queries are analyzed. We have observed that,
in average, more than 31% of the nodes and 12% of the edges have re-appeared
in each month compared to their previous month. This suggests that the search
content changes over time perhaps depending on the changes in the monthly or
seasonal information requirements of the users. It also means that over time the
size of the word co-occurrence graph increases (see Table 6.1), and since in each
month new co-occurrences shape, the graph becomes more and more connected.
Therefore, when the time window is long, the analysis requires more time and the
identified communities do not have good conductance. When the time window
is short, the small size of the graph speeds up the analysis but might affect the
analysis result. In this section we investigate the effect of time window length on
our analysis.

We started by setting the time window length to one month. From the queries
which were observed during each month, we generated a co-occurrence graph and
identified the graph communities and the semantic communities. As presented
in Section 6.5, the structural properties of a graph generated from one month are
quite similar to that of the complete graph. We have also observed that the average
conductance of the communities identified by the community detection algorithm
is around 0.5 which is lower than when the complete graph was used. This means
that the communities in the graphs generated from one month of queries have
better quality since they have fewer connections to the rest of the graph.

We observed that the similarities between graph communities and semantic
communities are higher when a one-month window is used (in average 0.26). By
increasing the length of the time window from one to three, six, twelve, and thirty-
six months, we observed a reduction in the similarities (in average 0.23, 0.22, 0.21,
and 0.19, respectively). The similarity distributions are shown in Figure 6.3. It
seems that with more queries over time, more words get connected and it becomes
more difficult to identify good communities. Therefore, using short time windows
can improve the quality of the analysis. Moreover, analysis of different time win-
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dows can also shed light on how the word relations and user requirements are
affected by the months or seasons of the year.

6.6.4 Discussion

Our empirical analysis of a large-scale query log of medical related search presented
in this paper can be used to improve our knowledge of the terminology and general
vocabulary, as well as the search strategies of the users. In addition to providing
a background for language analysis, a potential application for community detec-
tion could be to provide better spelling suggestions to users. We have observed
that there are communities with very low conductance which contain a number of
words which seem to correspond to guessing attempts to find a correct spelling,
e.g., {shoulder, froozen, frosen, cholder, sholder, fingers, frozen, scholder, shulder,
schoulder, shoulders}. The low conductance of the community means that the
community is very isolated and has very few edges outside it and therefore it can
easily be cut from the graph. Therefore, the community detection can be used for
identifying such cases.

Another potential application of our graph analysis method is to provide rec-
ommendations and suggest more precise search terms based on the words that
appear in the same community as the keywords entered by the users. For example,
since the communities can overlap, each word can belong to more than one graph
community or semantic community. We observed that in average, in the complete
graph (generated from 36 months of logs), each word belongs to 3.8 unique graph
communities and 3.6 semantic communities. It means that a word which can be
related to multiple groups of words or have different meanings, can belong to sev-
eral communities. This knowledge can potentially be used to provide suggestions
to the users and help them to select the intended meaning and therefore reducing
the ambiguity in the searched queries.

Overall, in this paper, we have presented a promising approach for analysis
of medical queries using co-occurrence graphs. As a future work, the following
improvements could be of interest for complementing our empirical study:

• Representing different variations of the words with only a single node in the
graph, e.g., “öga” for “ögat”, and “ögon”.

• Filtering out the non-medical related words such as person and location enti-
ties from the queries based on the semantic enhancement with name entities
from NER. Overall, more than 136,000 queries contained a person name en-
tity, and around 127,000 contained a place entity.

• Filtering out high frequency words/terms which do not have medical signifi-
cance, e.g., “olika” (different).
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6.7 Conclusions

Our analysis of a large-scale medical query log corpus is the first step towards un-
derstanding the language and the word relations in health/medical related queries.
We have performed a semantic enhancement of queries based on medically related
semantic resources to find the communities of words which have co-occurred with
a semantic label. We have also performed a graph-based analysis of the word
co-occurrences and have shown that since a word co-occurrence graph has similar
structural properties to many types of real-world networks, existing algorithms for
network analysis can be deployed for our study. We then have used a random walk-
based community detection algorithm in order to identify communities of words in
our graph. Our empirical results show that the communities identified from the
semantic analysis and the graph analysis overlap, however the graph-based analy-
sis can identify many more communities and achieves much higher coverage of the
words in the queries. Therefore, the graph-based analysis can be used in order to
improve and complement the semantic analysis. Our experiments also show that
short time window lengths for analysis of query logs, such as a month, would suffice
for graph-based analysis of medical queries.
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