
Mitigating Distributed Denial of Service Attacks in Multiparty Applications in
the Presence of Clock Drifts

Zhang Fu, Marina Papatriantafilou, Philippas Tsigas
Department of Computer Science and Engineering, Chalmers University of Technology, Gothenburg Sweden

{zhafu,ptrianta,tsigas}@chalmers.se

Abstract

A weak point in network-based applications is that they
commonly open some known communication port(s), mak-
ing themselves targets for denial of service (DoS) attacks.
Considering adversaries that can eavesdrop and launch di-
rected DoS attacks to the applications’ open ports, solu-
tions based on pseudo-random port-hopping have been sug-
gested. As port-hopping needs that the communicating par-
ties hop in a synchronized manner, these solutions suggest
acknowledgment-based protocols between a client-server
pair or assume the presence of synchronized clocks. Ac-
knowledgments, if lost, can cause a port to be open for a
longer time and thus be vulnerable to DoS attacks; Time
servers for synchronizing clocks can become targets to DoS
attack themselves.

Here we study the case where the communicating parties
have clocks with rate drift, which is common in networking.
We propose an algorithm, BIGWHEEL, for servers to com-
municate with multiple clients in a port-hopping manner,
thus enabling support to multi-party applications as well.
The algorithm does not rely on the server having a fixed
port open in the beginning, neither does it require from the
client to get a “first-contact” port from a third party. We
also present an adaptive algorithm, HOPERAA, for hop-
ping in the presence of clock-drift, as well as the analysis
and evaluation of the methods. The solutions are simple,
based on each client interacting with the server indepen-
dently of the other clients, without the need of acknowledg-
ments or time server. Provided that one has an estimation
of the time it takes for the adversary to detect that a port is
open and launch an attack, the method we propose does not
make it possible to the eavesdropping adversary to launch
an attack directed to the application’s open port(s).

1 Introduction

A Denial of Service(DoS) attack is an attempt by the
attacker to prevent the legitimate users of a service from

using that service. One of the main methods that the at-
tacker will use is depleting the computational resources,
such as bandwidth, disk space, or CPU time. The situa-
tion is even worse with distributed denial of service(DDoS)
attacks, where multiple compromised machines or zombie
agents flood messages or requests of a specific service to the
corresponding server in order to make the service unavail-
able [7]. Common methods to protect systems from DoS
and DDoS attacks focus on mitigating packet flooding, as
that is the most simple and common method adopted by at-
tackers. Such methods rely on upstream routers that filter or
rate-limit the malicious traffic [2, 11], or on secure router-
overlays [5, 1, 4, 10]. These solutions are suitable for filter-
ing distinguishable network flooding but can be ineffective
when the attacker changes its strategy and strength to com-
ply to the filtering rules and attack an application directly,
as these solutions are general and lack access to application-
related information.

When considering network-based applications, a partic-
ularly weak point in this context is that they commonly pro-
vide some open port(s) for communication, making them-
selves targets for DoS attacks. Adversaries that can eaves-
drop messages exchanged by the application can identify
open ports and launch directed attacks to those that re-
main open for long enough time –as opposed to blind at-
tacks that can be launched to arbitrary ports, even by non-
eavesdropping adversaries. Moreover, it is important to note
that as an application may e.g. involve complex compu-
tations, it could be easier to exhaust its computational re-
sources with small volume of messages, especially when
many applications execute in one host and the resources al-
located to each application become even smaller.

Therefore a natural question is: what can the applica-
tions do to prevent or defend themselves from such situa-
tions? This question gets even more important considering
the evolution of application overlays, peer-to-peer applica-
tions and application-layer networking. A human analogy
for the problem is to contrast defense against a distinguish-
able crowd, that can be taken care by army or police forces,
versus protection from sets of seemingly uncoordinated le-

Symposium on Reliable Distributed Systems

1060-9857/08 $25.00 © 2008 IEEE

DOI 10.1109/SRDS.2008.30

63

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 20, 2009 at 04:45 from IEEE Xplore. Restrictions apply.

gitimate ”agents”, that intend to attack some unknown ”tar-
get”, such as a person, an enterprise, etc. The latter may
certainly want to ensure their own protection.

This problem was also posed earlier in the literature
and a simple and useful approach that has been proposed
involves port-hopping, inspired from the well-known fre-
quency hopping paradigm used in signal transmission pro-
tocols [8]. The application parties communicate via ports
that change periodically over time, according to a pattern
known to the two parties, such as a (pseudo)random se-
quence with common seed (cf. [3] and our section on re-
lated literature). These solutions have been presented for a
client-server pair of communicating parties. Port-hopping
in multi-party communication is an interesting challenge.
A critical issue involved in port-hopping is synchronizing
the communication parties. Two main kinds of coordina-
tion mechanisms are presented in the previous work, one is
acknowledgment-based and the other one depends on syn-
chronized clocks (cf. section on related work). As acknowl-
edgment loss can cause a situation where a port may remain
open for a time interval long enough for an eavesdropping
attacker to identify it and launch a directed attack to it, and
to have synchronized clocks may imply need for synchro-
nization server, which could be the weak point in the sys-
tem, there is interesting middle ground for investigation and
for employing the method on common networking systems.

In this paper we investigate such questions opened in
the earlier work, namely supporting port-hopping (i) in the
presence of timing uncertainty, i.e. clock-rate drifts, imply-
ing that clock values can vary arbitrarily much with time;
and (ii) in multi-party communication.

In particular, for dealing with hopping in the presence
of clock-rate drifts, we propose the Hopping-Period-Align-
and-Adjust algorithm, or HOPERAA for brevity, which is
an adaptive algorithm, executed by each client when its
hopping period length and alignment drift apart from the
server’s. For enabling multi-party communication with
port-hopping, we present the BIGWHEEL algorithm for a
server to support hopping with many clients, without the
server needing to keep state for each client individually. The
basic idea in both algorithms is that each client interacts in-
dependently with the server and considers the server’s clock
as the point of reference. In this way there is no need for
group synchronization which would have raised scalability
issues. This makes it also possible to use the method in (e.g.
multi-party) applications.

The protocol is presented in terms of client-server type
of communication but a symmetric protocol can be run be-
tween the two parties with exchanged role, for ensuring the
properties in duplex-communication scenario, e.g. similar
to the way that TCP applies its reliability algorithms in du-
plex communication. Our solution is general, because all
the mechanisms and algorithms are only based on the clients

and the server. The options for the adversary to launch a di-
rected attack to the application’s ports after eavesdropping
is minimal, since the port hopping period is fixed. Potential
message loss due to the hopping period deviation caused by
the clock-rate drift can be controlled by adjusting a param-
eter in the HOPERAA algorithm and we explain how this is
done at the corresponding sections.

We proceed by describing in more detail the related
work. Subsequently, we give a detailed definition of the
problem and the system model in section 2. We continue
with the description of the HOPERAA and BIGWHEEL al-
gorithms in sections 3 and 4 respectively. In section 5 we
give an analysis of the properties of the methods. Following
these we present an experimental study of the algorithms in
section 6 and we conclude with section 7.

Related Work

The most closely related results are the port-hopping
protocols presented in [3]. The ack-based protocol in that
paper is focused on the communication only between two
parties, modeled as sender and receiver. The receiver sends
back an acknowledgment for every message received from
the sender, and the sender uses these acknowledgments as
the signals to change the destination port numbers of its
messages. Since this protocol is ack-based, time synchro-
nization is not necessary. But note that the acknowledg-
ments can be lost in the network, and this may keep the
two parties using a certain port for a longer time. If the
attacker gets the port number during this time, then a di-
rected attack will be launched under which the communi-
cation can hardly survive. To cope with that, a solution
that reinitializes the protocol is presented in [3]. The lat-
ter solution depends on that the clocks have the same rate;
it allows for bounded drift in the clock phases (resulting
in bounded differences of clock values) but not their rates
(which would imply arbitrary differences of clock values).
In [3] the authors also present a rigorous model and anal-
ysis of the problem of possible DoS to applications (ports)
by an adaptive adversary, i.e. one that can eavesdrop, as in
our case, too. The analysis, besides the parts that involve
the port-hopping protocols proposed in that paper, also in-
cludes a part on the effect of the adversary when it launches
blind attacks. As that part of the analysis holds regardless
of the applications’s defense mechanism, it carries over any
setting. Hence, we do not elaborate on that part.

Another port-hopping scheme for the client-server mode
was proposed in [6]. There, time is divided into discrete
time slots. The clients and the server share a pseudo-random
function to compute which port should be used in a cer-
tain time slot. This scheme bounds the time offset and the
message delay by a constant value l, so there is no time
synchronization mechanism. Instead, the valid time of the

64

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 20, 2009 at 04:45 from IEEE Xplore. Restrictions apply.

communication port for a time slot is prolonged both back-
ward and forward by 1

2 l. This scheme shows the basic idea
of the time-based port hopping, but it only works when no
clock drift exists, which limits its adaptability.

There is a client-transparent approach proposed in [9]
which is quite similar to port hopping. This approach uses
JavaScript to embed authentication code into the TCP/IP
layer of the networking stack, so the messages with in-
valid authentication code would be filtered by the server’s
firewall. In oder to defend the DoS attacks, the authen-
tication code changes periodically. There is a challenge
server in charge of issuing keys, controlling the number
of clients connected with the server and synchronizing the
clients with the server as well. Since this approach re-
lies on the challenge server, the protection of the challenge
server is quite important. The paper mentions that a cryp-
tographic based mechanism can be used to protect the chal-
lenge server, but this was not discussed in detail.

2 Problem and System Model Definitions

We consider the problem that the adversary wants to sub-
vert the communication of client-server applications which
communicate via communication channels or, for brevity,
ports. Each time some port must be open at the server side
to receive the messages sent from the legitimate clients. At
the server side there are N ports can be used, so the size
of the port number space is N . The server and the legiti-
mate clients share pseudo-random function fψ to generate
the port number which will be used in the communication.
We assume that there exists a preceding authentication pro-
cedure which makes the server to distinguish the messages
from the legitimate clients. And we also assume that every
client is honest which means any execution of the client is
based on the protocol and clients can not be compromised
by the adversary.

We model the attacker as an adaptive adversary which
can eavesdrop and launch a bounded number of directed
attacks. As mentioned in the related work section, the anal-
ysis of the problem presented rigorously in [3], include
the analysis of the effect of an adaptive adversary when it
launches blind attacks. As that analysis holds regardless of
the applications’s defense mechanism, it carries over any
setting. Hence, we do not elaborate on the case of blind
attacks. Regarding the adversary considered here, it is as-
sumed that when it knows that some ports are being used
by the server, it can attack at most Q of them and in general
it can attack at most Q arbitrary ports of the server simul-
taneously. For the purpose of the analysis, we bound the
strength of the adversary by Q. We also assume that when
the adversary attacks a certain port of the server then this
port cannot receive any message from the clients. Since the
adversary can get the number of the port being used from

the clients’ messages by eavesdropping but it takes some
time to get this information and get ready to launch the di-
rected attack to the port, we model this as the exposure delay
and bound it by E time units.

For the time model, we assume that each communication
party has its local clock, and the clock rate of each local
clock is constant. We use the server’s clock as the standard
one; each client’s clock drift is defined as the ratio between
its own clock rate and the server’s clock rate. We use ρC
to denote the clock drift of client C. We have to emphasize
that in this paper every time variable is related to the server’s
clock unless otherwise stated. If the server’s clock value is
t, we use hc (t) to denote the clock value of client C.

Considering that our solution mitigates DoS attacks at
the application layer, we assume that the network is always
available meaning that there are no attacks depleting the
bandwidth of the server’s network. However, the network
may lose messages. Finally, for the analysis we assume the
maximum delivery latency for messages is μ.

3 Protocol for Single Client Case

We first present the protocol for communication between
a single client (denoted by C) and a server (denoted by S).
In the subsequent section we describe the BIGWHEEL al-
gorithm that enables the multi-party communication case.

We first give an outline of the protocol and then present
more details for its phases. Roughly speaking, after the
contact-initiation phase, the application data from C to S is
sent out through ports of S that change with period L time
units of S’s clock, corresponding to Pc time units in C’s
clock (initially Pc = L). What is achieved in the contact-
initiation phase is that (i) C has succeeded in finding the
first port to contact S, without the need of having S keep
some ”well-known” open ports, nor C relying on a third
party to get the port information; and (ii) C has got the seed
from S for the pseudo-random function to compute the port
sequence. Since C’s clock has rate drift compared to S’s
clock, the periods of C and S may start drifting apart after
some time. This would result in message loss, due to the
fact that C may send messages to some of S’s ports that has
been closed or has not opened yet —depending on whether
C’s clock runs slower or faster that S’s clock, respectively.
To solve this, C executes the HOPERAA algorithm at in-
tervals that are adaptively computed by C itself. Roughly
speaking, S and C timestamp with their clock values the
contact-initiation messages during the contact-initiation and
the Hopping Period Alignment and Adjustment phases and
C uses the timestamps of those messages to estimate an in-
terval where their clock drift may lie in. C then decides the
next Hopping Period Alignment and Adjustment execution-
interval and also how it can adjust its period so as to cover
for the clock rate drift and thus avoid sending messages to

65

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 20, 2009 at 04:45 from IEEE Xplore. Restrictions apply.

closed ports. In the following subsections we describe in
detail all the parts of the protocol. Before that, let us give
some auxiliary definitions:

Definition 1. The open ports in the server side for receiving
the data messages from the client are called worker ports.
The open ports in the server side for receiving coordination
messages from the client are called guard ports.

3.1 Contact Initiation Phase

To enable C to initiate contact with S without having S
listen at ”well-known” ports and without relying on a third
party, we propose the algorithm described below.

Algorithm 3.1 Algorithm for C in the initiation stage
Tc ← undef
reply← false

– sending contact-initiation
messages:

while reply =false do
I ← select(Ii|i ∈
{1, 2, . . . , k})
for all p ∈ I do

send 〈init, time, p〉
end for
wait(2μ + L)

end while

– receiving reply:

receive 〈reply, σ, time, h1, t1〉
if reply =false then

reply =true
Tc = 0
start sending data

end if

We divide the range of port numbers into k intervals
evenly; the server opens k different guard ports at the same
time, one guard port per one interval, and changes them ev-
ery τ time units but still keeps one guard port in one inter-
val. Here we assume that k can divide N . C sends contact-
initiation messages to all the ports in an interval which is
randomly chosen. When S receives the contact-initiation
message, it replies with the seed σ for computing the next
worker port and opens a session for C. If S does not re-
ceive any messages from C by the next worker port it will
close the session. Since the network is unsafe and can lose
messages and since open ports can be disabled by the ad-
versary, C may not get the reply from S. If C does not re-
ceive a reply from S it will choose another interval and send
contact-initiation messages again until it gets the reply from
S. In section 5 we show the bound of the expectation of how
many trials C would make to get the reply from S. The al-
gorithms for C and S in the initiation stage are shown in
Algorithm 3.1 and Algorithm 3.2, respectively.

3.2 Sending the Application Data

In this stage, C will send data messages to the worker
ports of S. We assume that C and S share a common pseudo-
random function fψ and integer σ as the seed, which is used

Algorithm 3.2 Algorithm for S in the initiation stage
– receiving contact-initiation message:
receive 〈init, time, p〉
t1 ← T imenow
if sessionC = undef then

open (session,C)
h1 ← time

end if
wait until next worker port pi opens
send 〈reply, σ, timestamp, h1, t1〉

μL L

pi

pi+1

Figure 1. Worker ports’ open interval with overlap

for computing the sequence of worker ports. The open in-
terval of the worker ports is L + μ, where L > μ. The
new worker port will be opened μ time units earlier than the
closing time of the old one, as shown in Figure 1. When
S receives the contact-initiation messages from C, it will
send the reply message at the time when the next worker
port is opened, and the integer σ has the value for generat-
ing the next worker port. When C gets the integer σ from
S’s reply, it will send the data messages immediately to the
port computed from fψ (σ). C has a timer Tc which will
be assigned to 0 when C receives the reply message from
S. Tc increases at the same rate as the local clock of C.
The destination port number of the data messages will be
recomputed when Tc = iL, at every i ∈ N

∗. Since there
exists delivery latency, some messages that sent to port pi
(the i-th port in the hopping sequence) may arrive when pi
is closed. So we duplicate these messages, with destination
port of the duplicates being pi+1. In our model, if there is
no time drift then messages that are sent during the inter-
val [(i − 1)L, iL − μ] should arrive at pi when pi is open
(otherwise we consider them being lost), so the messages
sent both to pi and pi+1 are the messages sent in the inter-
val [iL − μ, iL]. C will end the communication by sending
termination message and getting it acknowledged.

Algorithm 3.3 Algorithm for C in data transmission stage
Seq ← 0
Pold ← fψ (σ)
Pnew ← fψ ((σ + 1))

– SA (*sending the mes-
sages*)

while true do
send 〈Data, Pold〉
if (i− 1) L ≤ Tc ≤ iL−
μ then

send 〈Data, Pnew〉
end if

end while

– UA (*changing the destina-
tion port*)
{Tc = iL}
Pold ← Pnew
Pnew ← fψ ((σ + i + 1))

66

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 20, 2009 at 04:45 from IEEE Xplore. Restrictions apply.

3.3 Adaptive Hopping Period

As mentioned in section 2, client C has a constant clock
drift ρ related to the server. It may happen that in the ap-
plication data sending phase, the hopping time of C will
drift apart from the server’s. This might cause C send mes-
sages to a port that is already closed (corresponding to the
previous period of S) or is not opened yet (corresponding
to the next period of S), depending on whether C’s clock is
slower or faster that S’s. This would imply message loss, so
C has to align the hopping time at adaptively chosen time
intervals, to control the phenomenon. These are called the
HOPERAA execution-intervals. In particular, if the client’s
clock is slower than the server’s, which means ρ < 1, and
if we want to keep the offset of the closing times counted
by the server and the client of a worker port within Δ time
units, then the HOPERAA execution interval is ρΔ

1−ρ . If the
client’s clock is faster than the server which means ρ > 1,
and we want to keep the offset of the opening times counted
by the server and the client of a worker port within Δ time
units, then the HOPERAA execution interval is ρΔ

ρ−1 . But
the client has no idea about its clock drift related to the
server’s clock. We suggest a method that exchanges mes-
sages (which are piggybacked) with information about the
sending and receiving times (timestamped with local clock
values) between C and S, to estimate the clock drift. This is
illustrated in Figure 4. The procedure of the alignment part
in the HOPERAA algorithm is described below:

• The HOPERAA execution interval is initiated to 0.
In the contact initiation phase, every contact-initiation
message will be attached with the time stamp (the
clock value of the client) of its sending time.

• The server will record the sending time hc (t1) and the
arrival time t2 of the first contact-initiation message
sent by client C.

• When C executes HOPERAA, it will execute the same
operations as in the contact initiation phase, the server
will add a timestamp of the sending time to every reply
message, say t3, as well as hc (t1) and t2 recorded in
the first time that client C initiates contact with the
server. The client will record the arrival time of the
reply, say hc (t4). Then C bounds its clock drift as

hc (t4) − hc (t1)
t3 − t2 + 2μ

≤ ρ ≤ hc (t4) − hc (t1)
t3 − t2

(1)

• If both the lower bound and the upper bound are
smaller than 1, then the new HOPERAA execution in-
terval is ρΔ

1−ρ , where ρ will be replaced with the lower
bound. If both bounds are greater than 1, then the new
HOPERAA execution interval is ρΔ

ρ−1 , where ρ will be
replaced with the upper bound. If the lower bound is

smaller than 1 but the upper bound is greater than 1,
then the new HOPERAA execution interval will be

min
{

ρlΔ
1 − ρl

,
ρuΔ

ρu − 1

}
,

where ρl and ρu denote the lower and upper bound
respectively.

In the next section we will show the correctness of for-
mula 1, and we will also show that every time C estimates
its clock drift related to the server, it will get a better bound
than the one it got from the previous estimation. The ad-
justment part of HOPERAA is described in the following
items:

• If 1 ≤ ρl ≤ ρu, then adjust Pc to L · ρl, and the HOP-
ERAA execution interval is set to ρuρlΔ

ρu−ρl
.

• If ρl ≤ ρu ≤ 1, then adjust Pc to L · ρu, and the
HOPERAA execution interval is set to ρuρlΔ

ρu−ρl
.

• Otherwise, do nothing.

Before C adjusts Pc, it has to know whether its clock rate
is faster or slower than the server, otherwise it has no idea
whether to shorten Pc or extend Pc. Since the bounds of
the drift improve monotonically, (cf. section 5) gradually C
will know whether to shorten Pc or extend Pc. Intuitively,
if the clock drift of C is big then it takes few rounds of drift
estimation to let C make the adjustment to Pc, since the
influence of the message delivery latency is relatively small.
If the clock drift is very close to 1 then it may take more
rounds to let C make the decision. Consider an extreme
example that the clock drift is equal to 1 meaning that the
client’s clock rate is equal to the server, then the client can
never know whether its clock rate is faster or slower than
the server. But on the other hand, if ρ is close to 1, it means
that ρΔ

1−ρ or ρΔ
ρ−1 can not be very short and C does not have

to do the alignment frequently before the adjustment of Pc.

4 Supporting Multiple Clients per Server

The extension to multiple clients per server is based on a
simple idea: Each client follows the server’s hopping proce-
dure; since each client considers the server’s clock as refer-
ence clock, it can interact with the server independently of
the other clients, and send the application’s data to S’s port
which is active each time. For scalability reasons it is de-
sirable that the server has more than one worker ports open
each time (but still a small constant number of those), so as
to balance the load among them. Moreover, by having the
same hopping period but different phases in the correspond-
ing hopping sequences, such a method can manage to bound
better the time it takes for each client to initiate contact with
the server.

67

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 20, 2009 at 04:45 from IEEE Xplore. Restrictions apply.

Intuitively, and as the name also suggests, the BIG-
WHEEL algorithm proposed here, aiming at meeting the
aforementioned goals, functions as the Big Wheel rides
at amusement parks: clients queue for the next available
compartment —each compartment represents a hopping se-
quence; compartments are deployed in a way that aims at
balancing the load among them and also at minimizing the
clients’ waiting times to initiate contact with the server. The
procedure is described in more detail below.

Algorithm 4.1 Algorithm for S using several sequences.
Buffer B stores valid contact-initiation messages.

whenever

(
T imenow = OpenT imepi

j

)
λ← the corresponding value for sequence j
σ ← the corresponding value for pij
for all the clients of messages in B do

if sessionC = undef then
open (session,C)
h1 ← timestamp of the contact-initiation message

end if
send 〈reply, σ, timestamp, h1, t1, λ〉

end for
Clear B

Let the clock drift of client C be denoted by ρC and con-
sider a trivial big wheel with one compartment. In such
a setting the server opens a session for each client whose
contact-initiation messages are received, and closes the ses-
sion after the corresponding termination message’s arrival.
Again in the same setting, since every client uses the same
pseudo-random function to generate the destination port
number, one worker port has to receive the messages from
all the active clients. Moreover, when the server receives
a contact-initiation message, it will not send its reply (so
that the client starts its periods in-sync with S) until the
next worker port is open, which increases the clients waiting
time by at most L time units. In order to afford more clients
and also decrease the maximum waiting time for a client,
we can add one more parameter into the pseudo-random
function, say λ: fψ will generate different port number se-
quences if different values of λ are given. Suppose there are
m ≥ 2 values for λ (i.e. we have m compartments in the big
wheel). It means that S supports m port number sequences.
Let us use pij to denote the ith worker port in the jth port
number sequence, where 0 ≤ j ≤ m − 1. The server will
change the worker ports according to each sequence in the
following way: If the open time of port pi0 is ti then the
open time of port pij is ti + jL

m . The open interval of every
worker port is still L + μ. Figure 2 shows the situation of
m = 3 and the open time of pi0 is t.

Based on this mechanism, when the server receives a
contact-initiation message from a client, it will send the
reply at the closest open time of a worker port, including
λ with the corresponding value for the sequence to which
that worker port belong. A pseudocode is shown in Algo-

sequence 0

sequence 1

sequence 2

t

t + L
3

t + 2L
3

L μ

Figure 2. The
open intervals of
port pi0, pi1 and pi2.

p1 p2 pγ

v1 v2 vγ

τ

Figure 3. Arrival
duration covers γ
changing period of
guard ports.

rithm 4.1. By using multiple port number sequences, the
maximum waiting time for a client in the contact initiation
phase can be decreased to 2μ + L

m time units.

5 Analysis of the Protocol

We start by some auxiliary definitions that are useful in
this section:

• We say a client gets a successful access to the server,
when at least one of its contact-initiation messages are
received by the server.

• A contact-initiation trial is a part of an execution start-
ing with a client randomly choosing an interval of the
port space and send contact-initiation messages to each
of the ports in that interval and ending with the reply
from the server or reaching a time out of waiting.

• We say that the adversary launch a blind attack if the
adversary arbitrarily chooses and attacks Q ports of the
server simultaneously.

First, we analyze the contact initiation part of the proto-
col. Since without initiation the client cannot hop together
with the server and since the guard ports cannot be fixed, we
have to hop guard ports but in a range which is smaller than
N . Note that if we fix this range then the adversary can learn
it from the contact-initiation messages of the client (be-
cause client always send contact-initiation messages to that
range) and then launch a directed attack to the application’s
open port(s). In our protocol, we divide the port number
space into k intervals, Ii =

{
pj |iNk ≤ j ≤ (i + 1) Nk − 1

}
,

i = 0, 1, 2, . . . , k − 1. Since a client has no idea which port
is open as the guard port in Ii, it sends contact-initiation
messages to every port in the interval it chooses and expects
that the server can receive one of them. In the presence
of delivery latency and guard ports’ changing, the contact-
initiation message sent to the current guard port of the cho-
sen interval may miss the port, then this contact-initiation
trial may fail. We show how to bound this probability and
also give the corresponding experiment result in section 6.

Lemma 1. If the adversary launches a blind attack, the
probability that it disables the guard port in the interval

68

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 20, 2009 at 04:45 from IEEE Xplore. Restrictions apply.

Client

Server

hc (t1) hc (t4)

t1 t2 t3 t4

M1 M2

Figure 4. Messages exchange and associated times and
timestamps.

chosen by the client in the synchronization stage is Q
N , even

if the adversary knows the partition of the ports space.

Proof. Suppose the adversary knows the partition, and it
disables qi ports in interval Ii, i = 0, 1, 2, . . . , k − 1. Since
we have k intervals, and every interval has N/k ports, the
probability that the adversary disables the guard port in the
interval chosen by the client, say I ′, is

k−1∑
i=0

Pr[Ii = I ′] =
k−1∑
i=0

1
k
· qi
N
k

=
∑k−1

i=0 qi
N

Since
∑k−1
i=0 qi = Q, the probability is Q

N . If the adver-
sary does not know the partition, then it will attack arbitrary
ports, so the probability that the guard port is under attack
is Q
N .

Based on lemma 1 we will give a lower bound on the
probability that one contact-initiation trial can lead to suc-
cessful access.

Lemma 2. Suppose the adversary launches a blind attack,
and the size of the port space is N , and there is no mes-
sage loss during the transmission but there exists delivery
latency, then the probability that one contact-initiation trial

can lead to successful access is at least 1 − (1
e

)F
, where

F = N−Q
N is the fraction of non disabled ports .

Proof. (Sketch) Set V be the number of ports in one inter-
val. In one contact-initiation trial, the client will send V
messages to the interval it chooses, one message to one port
in that interval. As shown in Figure 3, the arrival duration
of those V messages may cover γ changing periods of the
guard ports. We use pi, 1 ≤ i ≤ γ to denote the guard port
for period i, and use vi to denote the number of messages
that arrive within period i. We assume that each vi > 0,
since if vi = 0, the probability that pi receives the message
sent to it will be definitely zero. The probability that the
server does not receive any contact-initiation message is

Pr[trial fails] = Πγ
i=1Pr[pi does not receive the message sent to it],

= Πγ
i=1 (Prd + Prl − Prd · Prl) ,

where Prd is the probability that pi is disabled by the ad-
versary, Prl is the probability that the message sent to pi
does not arrive within period i. So we have

Pr[trial fails] = Πγi=1

(
Q

N
+

V − vi

V
− Q

N
· V − vi

V

)

= Πγi=1

(
1− (N −Q) vi

N · V
)

.

Using the method Lagrange multipliers, we know that
Pr[trial fails] has the maximum value when v1 = v2 = . . . =
vγ = V

γ . So we have

Pr[trial fails] ≤
(

1− N −Q

N · γ
)γ

=

⎛
⎝1− 1

N·γ
N−Q

⎞
⎠

N−Q
N

(
N·γ

N−Q

)
.

Since we know that function
(
1 − 1

x

)x
is a monotoni-

cally increasing but bounded function when x > 0, and the
limit is 1

e when x → +∞, where e is the mathematical
constant and e ≈ 2.72. Hence, we have

Pr[trial fails] ≤
(

1

e

)F
, F =

N −Q

N

then it is obvious to see that the the probability that one
contact-initiation trial can lead to successful access is at
least 1 − (1

e

)F
.

Corollary 1. The expected value of the number of contact-
initiation trials is at most 1

1−(1
e)F . The expected value of the

number of contact messages used in the contact-initiation
phase by one client is at most Nk · 1

1−(1
e)F , where k is the

number of intervals in the port space.

Recall the assumption that the adversary can do eaves-
dropping and launch directed attacks to the open ports, but
this takes it E time units from the time it gets a data mes-
sage from the client. Our protocol aims at keeping the open
interval of the worker ports smaller than E. But remember
that some client’s clock may be faster than the server, and
can send messages to a worker port before its opening which
will let the adversary get the port number earlier than sup-
posed. But the clients will execute HOPERAA algorithm to
align the hopping period to keep itself not drift apart from
the server more than Δ time units. So we get the following:

Lemma 3. If E > L + μ + Δ, then the adversary can not
launch a directed attack to an open port of our protocol.

The next lemma shows the correctness of formula 1 used
in HOPERAA to estimate the clock drift.

Lemma 4. Suppose we use server’s clock as standard, and
consider that the client sent message M1 at time t1 with the
timestamp hc (t1), received by the server at time t2. Con-
sider also that the server sent later one message M2 at time

69

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 20, 2009 at 04:45 from IEEE Xplore. Restrictions apply.

t3 with timestamp t3, which is received by the client at time
t4 which is hc (t4) according to the client’s clock. Then we
have

hc (t4) − hc (t1)
t3 − t2 + 2μ

≤ ρ ≤ hc (t4) − hc (t1)
t3 − t2

,

where ρ is the client’s clock drift related to the server’s
clock, and μ the maximum of the message delivery latency.

Proof. (Sketch) Consider Figure 4. According to the clock
drift definition, we have

ρ = (hc (t4) − hc (t1)) / (t4 − t1) =
hc (t4) − hc (t1)
t3 − t2 + d1 + d2

,

where d1, d2 are the delivery latencies of M1 and M2 re-
spectively. Since 0 ≤ d1+d2 ≤ 2μ, the lemma follows.

From Lemma 4, we can see that the influence of the mes-
sage delays on the clock drift estimation will decrease when
the value of t3−t2 is increased, i.e. as the execution evolves
and C has repeated the HOPERAA algorithm several times.
In our protocol, the server keeps hc (t1) and t2 unchanged,
so t3 − t2 is equal to the time elapsed from the first initia-
tion. Hence the value of t3 − t2 used in every HOPERAA
execution will be greater than the value used in the previous
time. Hence, the client will be converging to better and bet-
ter lower and upper bounds of its clock drift as the execution
progresses.

Lemma 5. Using the HOPERAA algorithm, consider the
client starts sending data messages to port p at time t (ac-
cording to the server’s clock) and changes the destination
port at time t′ (according to the server’s clock). Then t will
not be Δ time units smaller than the corresponding opening
time of port p by the server, and t′ will not be Δ time units
greater than the corresponding closing time of port p by the
server.

Proof. (Sketch) Suppose the client’s clock drift is ρ, then
the client uses 1

ρ time unit to count 1 time unit, the offset

will be
∣∣∣1 − 1

ρ

∣∣∣. So if we want to keep client’s hopping

times not drifting Δ time units away from the server’s, then
the HOPERAA execution interval should be ρΔ

|1−ρ| . Since

ρl ≤ ρ ≤ ρu, ρΔ
|1−ρ| ≥ min

{
ρlΔ

|1−ρl| ,
ρuΔ

|1−ρu|
}

, and we use

min
{

ρlΔ
|1−ρl| ,

ρuΔ
|1−ρu|

}
as the HOPERAA execution interval,

the client hopping times will not drift away from the server’s
Δ time units.
Suppose that the client knows that its clock drift is bigger
than 1, then it will change the hopping period to L · ρl,
which is ρl

ρ L time units according to the server’s clock then

the difference is
(
1 − ρl

ρ

)
L, so the HOPERAA execution

interval should be ρlΔ
1− ρl

ρ

, and the client uses ρuρlΔ
ρu−ρl

as the

HOPERAA execution interval. Since ρuρlΔ
ρu−ρl

≤ ρlΔ
1− ρl

ρ

, the

difference of the hopping times of the client will not drift
Δ time units away from the server’s. The situation is sym-
metric when the client knows its clock drift smaller than 1,
hence the lemma follows.

Overhead induced by the HOPERAA algorithm:
When a client executes the HOPERAA algorithm, it per-
forms the same operations as in the contact initiation phase.
Hence, the expected message overhead of HOPERAA is
also N

k · 1

1−(1
e)F for every time that it is executed. In sec-

tion 6 we will see that the HOPERAA execution interval be-
comes significantly longer as the execution evolves. Hence,
the overall overhead becomes smaller in the course of the
execution.

Next we focus on the analysis of BIGWHEEL. In the
analysis, we give bounds of the expectation of the number
of worker ports being open at the same time, and shows the
the probability that at least one of them is under attack when
the adversary launches a blind attack.

Lemma 6. If we have m port sequences in our system, and
let M be the number of worker ports being open at the same
time, then the expectation of M can be bounded by the fol-
lowing formula:

m∑
n=1

n·
(
N
n

)
Sn (m)

Nm
≤ E (M) ≤

2m∑
n=1

n·
(
N
n

)
Sn (2m)

N2m
, where

Sn (x) =

{
1, n = 1,

nx −∑n−1
i=1

(
n
i

)
Si (x) , n ≥ 2, x ∈ {m, 2m}

Proof. (Sketch) Since we assume that every port sequence
is randomly generated, it is possible that sometimes several
sequences choose the same port as the worker port. The
expectation of the number of worker ports opening at a spe-
cific time point t is:

M =
∑

n · Pr [n worker ports are open at time t] ,

where 1 ≤ n ≤ max {all possible values of M}. The
size of the port space is N and we have m port sequences.
Each sequence chooses a port number randomly. If we
use the choices of the sequences to form a string (e.g.
p0p1p2 · · · pm−1), then the total number of different strings
is Nm. Note that the probability of n worker ports open at
time t is the ratio between the number of different strings
such that exactly n ports are chosen by m sequences and
the total number of different strings. The number of com-
binations of choosing n ports from N ports is

(
N
n

)
. The

recursive function Sn (x) is used for computing the number
of different strings such that all of the n ports are chosen
by x sequences in a way that each of the sequence chooses
one port from the n ports. Remember that the open inter-
vals of the old worker port and the new worker port in a

70

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 20, 2009 at 04:45 from IEEE Xplore. Restrictions apply.

sequence have an overlap, hence that can be regarded as the
server opens worker ports for 2m sequences. Hence, we use
Sn (m) and Sn (2m) for the lower and upper bound respec-
tively. Now the only thing left is proving the correctness
of Sn (x). The proof of Sn (x) is very simple: Note that
for specific n ports and x sequences, where x ≥ n, each
sequence chooses a port from these n ports. The number
of different strings such that all the n ports are chosen by
the x sequences equals to the difference between the total
number of different strings and the number of strings such
that not all the n ports are chosen by the x sequences. So
this difference can be expressed by

nx −
n−1∑
i=1

(
n

i

)
Si (x) .

Note that when n = 1, the number of different strings such
that all of the sequences choose this port is trivially one,
hence the lemma follows.

Lemma 7. Suppose the adversary launches blind attack,
and it can disable Q ports simultaneously, if M worker
ports are open at the same time, then the probability that
at least one of the worker ports is under attack is

1 −
(

N − M

Q

)
/

(
N

Q

)
,

where N is the size of the port number space.

Proof. (Sketch) Since the probability that none of the
worker ports are under attack is

(
N−M
Q

)
/
(
N
Q

)
, the lemma

follows.

6 Experimental Study

In this section we present results from several simula-
tions experiments which can illustrate further some impor-
tant properties of our protocol. The first experiment simu-
lates the contact-initiation phase. We choose N = 65536,
and k = 64, which translates to 64 intervals in the port
space and each one having 1024 ports that can be used.
We vary the strength of the adversary from Q = 10000 to
Q = 50000, and for each value of Q we let the client per-
form 50 repetitions of the contact-initiation phase, and then
record the number of trials of each contact-initiation phase.
We computed the average number of trials that a client has
to perform over all these contact-initiation phases. Figure 5
shows both the experimental outcome and the upper bound
of the expectation computed in corollary 1. The average
number of trials grows with Q, but we can see that even
for Q = 50000, the average number of trials during the
contact-initiation phase is still not high (4.2 trials).

In the second experiment we study how the HOPERAA
execution interval grows (i.e. the protocol overhead de-
creases) as a function of the number of executions of the

HOPERAA algorithm under different values of clock-rate
drift. As shown in Figure 6, we choose Δ = 0.1L and the
HOPERAA execution interval is shown in units of the mes-
sage latency bound, μ. In most cases, the client will know
whether its clock rate is faster or slower than the server’s
after executing HOPERAA 3 times, then it will adjust its
hopping period. From Figure 6, it is easy to see that the
HOPERAA execution interval grows exponentially with the
number of HOPERAA executions.

The last experiment considers the effect of drifts and
studies the percentage of messages received by the server
under the settings where Q = 0 (i.e. the receiv-
ing percentage is only affected by HOPERAA), ρ ∈
{0.6, 0.7, 0.8, 0.9, 1.1, 1.3, 1.5} and Δ ∈ {0.1L, 0.3L} and
μ = 100 ms. For each value combination of ρ and Δ, we
let the client execute 10 times the HOPERAA algorithm and
we record the percentage of the messages received by the
server. The results of this experiment are shown in Figure 7.
We can see that the percentage of messages received is very
high (above 95%) for all time drifts used when Δ = 0.1L.
When we choose Δ = 0.3L, the percentage of messages re-
ceived is close to 90% for ρ > 1 and around 95% for ρ < 1.
The reason for getting better performance when ρ < 1 is
because the client uses the ρlρuΔ

ρu−ρl
as the HOPERAA execu-

tion interval. From the proof of lemma 5 we can see that
this value is smaller than the expected one which is ρρlΔ

ρ−ρl

for ρ > 1 and ρρuΔ
ρu−ρ for ρ < 1. This means that the client

will pause the message sending process (in order to execute
the HOPERAA algorithm) before the hopping time offset
reaches Δ time units. And in particular, when ρ < 1 this
phenomenon is even prominent since the message delivery
latency bound μ is much bigger than the actual message
delivery latency (i.e. bounded by approximately 50 ms in
these experiments—recall that μ was set to 100 ms), and ρu
is closer to ρ than ρl. Hence, the ratio between the HOP-
ERAA execution interval ρlρuΔ

ρu−ρl
and ρρuΔ

ρu−ρ is smaller than

that between ρlρuΔ
ρu−ρl

and ρρlΔ
ρ−ρl

, which causes the receiving
percentage for ρ < 1 to be higher than the respective one
for ρ > 1.

7 Conclusions

In this work we investigate the application-level pro-
tection against DoS attacks. More specifically, supporting
port-hopping in the presence of timing uncertainty and en-
abling multi-party communications. In particular, we pre-
sented an adaptive algorithm for dealing with port hop-
ping in the presence of clock-rate drifts (such a drift im-
plies that the peer’s clock values may differ arbitrarily with
time). For enabling multi-party communications with port-
hopping, we present an algorithm for a server that supports
port hopping with many clients, without the server needing

71

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 20, 2009 at 04:45 from IEEE Xplore. Restrictions apply.

1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

1

1.5

2

2.5

3

3.5

4

4.5

5

Q

A
ve

ra
ge

 n
um

be
r

of
 c

on
ta

ct
−

in
iti

at
io

n
tr

ia
ls

experiment results
upper bound of expectation

Figure 5. The average number of
contact-initiation trials in one con-
tact initiation phase, τ = 1000 mil-
lisecond,and client sending speed is 1
message per millisecond

1 2 3 4 5 6 7 8 9 10
0

200

400

600

800

1000

1200

Number of executions of HoPerAA with Δ=0.1L

H
oP

er
A

A
 e

xe
cu

tio
n

in
te

rv
al

 d
iv

id
ed

 b
y

 μ

ρ=0.7

ρ=0.95

ρ=1.5

Figure 6. The HOPERAA execu-
tion interval grows with the number of
HOPERAA executions. The interval is
expressed in terms of μ.

0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

ρ

T
he

 p
er

ce
nt

ag
e

of
 m

es
sa

ge
s

re
ce

iv
ed

 b
y

th
e

se
rv

er

Δ=0.1L

Δ=0.3L

Figure 7. The receiving message per-
centage affected by the drift.

to keep the state for each client individually. This makes it
also possible to use the protocol in multi-party applications.
The methods do not induce any need for group synchroniza-
tion which would have raised scalability issues. The options
for the adversary to launch a directed attack to the applica-
tion’s ports after eavesdropping is minimal, since the port
hopping period of the protocol is fixed. We have presented
an analytical and experimental evaluation of the algorith-
mic components of the protocol, the latter using simulation
studies.

References

[1] D. G. Andersen. Mayday: distributed filtering for internet
services. USITS’03: Proceedings of the 4th conference on
USENIX Symposium on Internet Technologies and Systems,
pages 3–3, 2003.

[2] K. Argyraki and D. R. Cheriton. Active internet traffic filter-
ing: real-time response to denial-of-service attacks. ATEC
’05: Proceedings of the annual conference on USENIX An-
nual Technical Conference, pages 10–10, 2005.

[3] G. Badishi, A. Herzberg, and I. Keidar. Keeping denial-of-
service attackers in the dark. IEEE Trans. Dependable Secur.
Comput., 4(3):191–204, 2007.

[4] X. Fu and J. Crowcroft. Gone: an infrastructure overlay
for resilient, dos-limiting networking. ACM NOSSDAV ’06:
Network and Operating Systems Support for Digital Audio
and Video, 2006.

[5] A. D. Keromytis, V. Misra, and D. Rubenstein. Sos: se-
cure overlay services. SIGCOMM Comput. Commun. Rev.,
32(4):61–72, 2002.

[6] H. Lee and V. Thing. Port hopping for resilient networks. Ve-
hicular Technology Conference, 2004. VTC2004-Fall. 2004
IEEE 60th, 5:3291–3295, 2004.

[7] J. Mirkovic and P. Reiher. A taxonomy of ddos attack and
ddos defense mechanisms. SIGCOMM Comput. Commun.
Rev., 34(2):39–53, 2004.

[8] S. S. Scene. http://sss-mag.com/ss.html 2008-03-01.
[9] M. Srivatsa, A. Iyengar, J. Yin, and L. Liu. A client-

transparent approach to defend against denial of service at-
tacks. SRDS ’06: Proceedings of the 25th IEEE Symposium
on Reliable Distributed Systems, pages 61–70, 2006.

[10] A. Stavrou and A. D. Keromytis. Countering dos attacks
with stateless multipath overlays. CCS ’05: Proceedings of
the 12th ACM conference on Computer and communications
security, pages 249–259, 2005.

[11] A. Yaar, A. Perrig, and D. Song. Siff: A stateless internet
flow filter to mitigate ddos flooding attacks. IEEE Security
and Privacy Symposium, page 130, 2004.

72

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 20, 2009 at 04:45 from IEEE Xplore. Restrictions apply.

