
Lightweight Causal Cluster Consistency

Anders Gidenstam1, Boris Koldehofe2, Marina Papatriantafilou1,
and Philippas Tsigas1

1 Department of Computer Science and Engineering,
Chalmers University of Technology

{andersg, ptrianta, tsigas}@cs.chalmers.se
2 School of Computer and Communication Science, EPFL

boris.koldehofe@epfl.ch

Abstract. Within an effort for providing a layered architecture of ser-
vices supporting multi-peer collaborative applications, this paper pro-
poses a new type of consistency management aimed for applications
where a large number of processes share a large set of replicated objects.
Many such applications, like peer-to-peer collaborative environments for
training or entertaining purposes, platforms for distributed monitoring
and tuning of networks, rely on a fast propagation of updates on ob-
jects, however they also require a notion of consistent state update. To
cope with these requirements and also ensure scalability, we propose the
cluster consistency model. We also propose a two-layered architecture
for providing cluster consistency. This is a general architecture that can
be applied on top of the standard Internet communication layers and
offers a modular, layered set of services to the applications that need
them. Further, we present a fault-tolerant protocol implementing causal
cluster consistency with predictable reliability, running on top of decen-
tralised probabilistic protocols supporting group communication. Our
experimental study, conducted by implementing and evaluating the two-
layered architecture on top of standard Internet transport services, shows
that the approach scales well, imposes an even load on the system, and
provides high-probability reliability guarantees.

1 Introduction

Many applications like collaborative environments (e.g. [1, 2, 3]) allow a possibly
large set of concurrently joining and leaving processes to share and interact on
a set of common replicated objects. State changes on the objects are distributed
among the processes by update messages (a.k.a. events). Providing the infras-
tructure to support such applications and systems places demands for multi-peer
communication, with guarantees on reliability, latency, consistency and scalabil-
ity, even in the presence of failures and variable connectivity of the peers in
the system. Applications building on such systems would also benefit from an
event delivery service that satisfies the causal order relation, i.e. satisfies the
“happened before” relation as described in [4].

The main focus of earlier research in distributed computing dealing with these
issues has its emphasis in proving feasible, robust solutions for achieving reliable

A. Bui et al. (Eds.): IICS 2005, LNCS 3908, pp. 17–28, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

18 A. Gidenstam et al.

causal delivery in the occurrence of faults [5, 6, 7, 8], rather than considering
the aforementioned variations in needs and behaviour. Further, since the causal
order semantics require that an event is delivered only after all causally preceding
events have been delivered, the need to always recover lost messages can lead to
long latencies for events, while applications often need short delivery latencies.
Moreover, the latency in large groups can also become large because a causal
reliable delivery service needs to add timestamp information, whose size grows
with the size of the group, to every event.

To improve the latency, optimistic causal order [9, 10] can be suitable for sys-
tems where events are associated with deadlines. In contrast to the causal order
semantics, optimistic causal order only ensures that no events that causally pre-
cede an already delivered event are delivered. Events that have become obsolete
do not need to be delivered and may be dropped. Nevertheless, optimistic causal
order algorithms aim at minimising the number of lost events. In order to deter-
mine the precise causal relation between pairs of events in the system processes
can use vector clocks [11], which also allow detection of missing events and their
origin. However, since the size of the vector timestamps grow linearly with the
number of processes in the system one may need to introduce some bound on
the growing parameter to ensure scalability.

Recent approaches for information dissemination use lightweight probabilis-
tic group communication protocols [12, 13, 14, 15, 16, 17]. These protocols allow
groups to scale to many processes by providing reliability expressed with high
probability. In [16] it is shown that probabilistic group communication protocols
can perform well also in the context of collaborative environments. However, per
se these approaches do not provide any ordering guarantees.

In this paper we propose a consistency management method denoted by causal
cluster consistency, providing optimistic causal delivery of update messages to
a large set of processes. Causal Cluster Consistency takes into account that
for many applications the number of processes which are interested in perform-
ing updates can be low compared to the overall number of processes which are
interested in receiving updates and maintaining replicas of the respective ob-
jects. Therefore, the number of processes that are entitled to perform updates
at the same time is restricted to n, which also corresponds to the maximum
size of the vector clocks used. However, the set of processes entitled to perform
updates is not fixed and may change dynamically. Our proposed approach is
in line with and inspired from recent approaches in multipeer information dis-
semination [12, 13, 14], where the aim is at what is called predictable reliability,
guaranteeing that each event is delivered to all non-faulty destinations with a
high-probability guarantee. We present a two-layer architecture implementing
cluster consistency that can make use of lightweight communication algorithms
which can in turn run using standard Internet transport services. Our method is
also designed to tolerate a bounded number of process failures, by using a com-
bined push-and-pull (recovery) method. We also present an implementation and
experimental evaluation of the proposed method and its potential with respect
to reliability and scalability, by building on recently evolved large-scale and

Lightweight Causal Cluster Consistency 19

lightweight probabilistic group communication protocols. Our implementation
and evaluation have been carried out in a real network, and also in competition
with concurrent network traffic by other users.

Also of relevance and inspiration to this work is the recent research on peer-
to-peer systems and in particular the methods of such structures to share in-
formation in the system (cf. e.g. [18, 19, 20, 21, 22]), as well as a recent position
paper for atomic data access on CAN-based data management [23].

2 Notation and Problem Statement

Let G = {p1, p2, . . .} denote a group of processes, which may dynamically join
and leave, and a set of replicated objects B = {b1, b2, . . .}. Processes maintain
replicas of objects they are interested in. Let B be partitioned into disjoint
clusters C1, C2, . . . with ∪iCi ⊆ B. Further, let C denote a cluster and p a
process in G, then we write also p ∈ C if p is interested in objects of C. Causal
Cluster Consistency allows any processes in C to maintain the state of replicated
objects in C by applying updates in optimistic causal order. However, at most n
processes (n is assumed to be known to all processes in C) may propose updates
to objects in C at the same time. Processes which may propose updates are
called coordinators of C. Let CoreC denote the set of coordinators of C. The
set of coordinators can change dynamically over time. Throughout the paper we
will use the term events when referring to update messages sent or received by
processes in a cluster.

The propagation of events is done by multicast communication. It is not as-
sumed that all processes of a cluster will receive an event which was multicast,
nor does the multicast need to provide any ordering by itself. Any lightweight
probabilistic group communication protocol as appears in the literature
[13, 14, 15] would be suitable. We refer to such protocols as PrCast. PrCast
is assumed to provide the following properties: (i) an event is delivered to all
destinations with high probability; and, (ii) decentralised and lightweight group
membership, i.e. a process can join and leave a multicast group in a decentralised
way and processes do not need to know all members of the group.

Within each cluster we apply vector timestamps of the type used in [24]. Let
the coordinator processes in CoreC be assigned to unique identifiers in {1, . . . , n}
(a process which is assigned to an identifier is also said to own this identifier).
Then, a time stamp t is a vector whose entry t[j] corresponds to the t[j]th event
send by a process that owns index j or a process that owned index j before (this
is because processes may leave and new processes may join CoreC). A vector time
stamp t1 is said to be smaller than vector time stamp t2 if ∀i ∈ {1, . . . , n} t1[i] ≤
t2[i] and ∃i ∈ {1, . . . , n} such that t1[i] < t2[i]. In this case we write t1 < t2.

For any multicast event e, we write te for the corresponding timestamp of
e. Let e1 and e2 denote two multicast events in C, then e1 causally precedes
e2 if te1 < te2 , while e1 and e2 are said to be concurrent if neither te1 < te2

nor te2 < te1 . Further we denote the index owned by the creator of event e as
index (e) and the event id of event e as 〈index (e), te[index (e)]〉.

20 A. Gidenstam et al.

Throughout the paper it is assumed that each process p maintains for each
cluster C a cluster-consistency-tailored logical vector clock (for brevity also re-
ferred to as cct-vector clock) denoted by clockC

p . A cct-vector clock is defined
to consist of a vector time stamp and a sequence number. We write T C

p when re-
ferring to the timestamp and seqC

p when referring to sequence number of clockC
p .

T C
p is the timestamp of the latest delivered event while seqC

p is the sequence
number of the last multicast event performed by p. In Section 3 when describing
the implementation of causal cluster consistency, we explain how these values
are used. Note, whenever we look at a single cluster C at a time, we write for
simplicity clockp, Tp, and seqp instead of clockC

p , T C
p , and seqC

p respectively.

3 Layered Architecture for Optimistic Causal Delivery

This section proposes a layered protocol for achieving optimistic causal delivery.
Here we assume that coordinators of a cluster are assigned to vector entries and
that the coordinators of a cluster know each other. To satisfy these requirements
we choose a decentralised and fault-tolerant cluster-management protocol [25]
which can map a process to a unique identifier in the cct-vector clock in a
decentralised way and can inform all processes in CoreC about this mapping.

Protocol Description
The first of the two layers uses PrCast in order to multicast events inside the
cluster (cf. pseudo-code description Algorithm 1). The second layer, the causal-
ity layer, implements the optimistic causal delivery service. The causal delivery
protocol is inspired by the protocol by Ahamad et. al. [24] and is adapted and
enhanced to provide the optimistic delivery service of the cluster consistency
model and the recovery procedure for events that may be missed due to PrCast.

Each process in a cluster interested in observing events in optimistic causal
order (which is always true for a coordinator), maintains a queue of events de-
noted by HC

p . For any arriving event e one can determine from T C
p and the

event’s timestamp te whether there exist any events which (i) causally precede e,
(ii) have not been delivered, and (iii) could still be deliverable according to the
optimistic causal order property. More precisely we define this set of not yet
delivered deliverable events as

to deliver before(e) = {e′ | te′ < te ∧ ¬(te′ < T C
p)}

and their event ids, which can be used for recovery, can be calculated as follows

to deliver before ids(e)=
{〈i, j〉 | (∀i �= index (e) . T C

p [i]<j≤ te[i]) ∨ (i= index (e) ∧ T C
p [i] < j < te[i])}.

If there exist any such events, e will be enqueued in HC
p until it becomes ob-

solete (prior to that process p may “pull” missing events — see below). Oth-
erwise, p delivers e to the application. When a process p delivers an event

Lightweight Causal Cluster Consistency 21

e referring to cluster C, the cct-vector clock clockC
p is updated by setting

∀i T C
p [i] = max(te[i], T C

p [i]). Process p also checks whether any events in Hp

or recovered events now can be dequeued and delivered. Before a coordinator p
in CoreC , owning the jth vector entry, multicasts an event it updates clockC

p by
incrementing seqC

p by one. The event is then stamped with a vector timestamp
t such that t[i] = T p

C [i] for i �= j and t[j] = seqC
p .

Since PrCast delivers events with high probability, a process may need to
recover some events. The recovery procedure, which is invoked when an event
e in Hp is close to become obsolete, sends recovery messages for the missing
events that precede e. The time before e becomes obsolete depends the amount
of time since the start of the dissemination of e, and is assumed to be larger
than the duration of a PrCast (which is estimated by the number of hops that
an event needs to reach all destinations with w.h.p.) and the time it takes to
send a recovery message and receive an acknowledgement. At the time e ∈ Hp

becomes obsolete, p delivers all recovered events and events in Hp that causally
precede e and e in their causal order. A simple recovery method is to contact the
sender of the missing event. For this purpose the sender has a recovery buffer
which stores events until no more recovery messages are expected (this is e.g. the
case if ∀i te[i] < T C

p [i]). Below we will present and analyse a another recovery
method that enhances the throughput and the fault-tolerance.

Properties of the Protocol. The PrCast protocol provides a delivery service that
guarantees that an event will reach all its destinations with high probability,
i.e. PrCast can achieve high message stability. When an event needs recovery,
the number of processes that did not receive the event is expected to be low.
Thus a process multicasting an event is expected to receive a low number of
recovery messages. If there are no process, link or timing failures, reliable point to
point communication succeeds in recovering all missing events, and thus provide
causal order without any message loss. The following lemma is straightforward,
following the analysis in [24].

Lemma 1. An execution of the two-layer protocol guarantees causal delivery of
all events disseminated to a cluster if neither processes nor links are slow or fail.

Event Recovery Procedure, Fault-Tolerance and Throughput
The throughput and fault-tolerance of the protocol can be increased by intro-
ducing redundancy in the recovery protocol. All processes could be required to
keep a history of some of the observed events, so that a process only needs to
contact a fixed number of other processes to recover an event. Further, such re-
dundancy could help the recovery of a failed process. As it is desirable to bound
the size of this buffer we analyse the recovery buffer size and number of processes
to contact such that the recovery succeeds with high probability.

Following [15], we describe a model suitable to determine the probability for
availability of events that are deliverable and may need recovery in an arbitrary
system consisting of a cluster C of n processes that communicate using the Two-
Layer protocol. Let C denote this system and T denote the time determined by

22 A. Gidenstam et al.

Algorithm 1. Two-Layer protocol
VAR

Hp: set of received events that can not be delivered yet
R: set of recovered events that can not be delivered yet
B: fixed size recovery buffer with FIFO replacement.

On p creates e
te := T C

p ; te[p] := seqC
p ; seqC

p := seqC
p + 1 /* Create timestamp te */

PrCast(〈e, te〉)
Insert e into recovery buffer B

On p receives 〈e, te〉
Insert e into recovery buffer B
if e can be delivered then

deliver(e)
for all e′ ∈ Hp ∪ R that can be delivered

deliver(e′)
else

if e is not delivered or obsolete then
delay(e, time to terminate)

On timeout(e, time to terminate)
for all eid ∈ to deliver before ids(e) not in Hp ∪ R and eid not already under recovery

send(〈RECOVER, eid〉) to source(eid) or to k arbitrary processes in cluster
delay(e, time to recover)

On timeout(e, time to recover)
for all e′ ∈ to deliver before(e) ∩ (Hp ∪ R) that can be delivered

deliver(e′)
deliver(e)
for all e′ ∈ Hp that can be delivered

deliver(e′)
On p receives 〈RECOVER, source(e′), eid〉

if p has e with identifier eid in its buffer then
respond(〈ACKRECOVER, e, et〉)

On p receives 〈ACKRECOVER, e, et〉
Insert e into recovery buffer
if e can be delivered then

deliver(e)
for all e′ ∈ R ∪ Hp that can be delivered

deliver(e′)
else

if e is not delivered or obsolete then
R := R ∪ {e}

On deliver(e)
∀i T C

p [i] := max(te[i], T C
p [i]) /* Update T C

p */
Remove e from R and Hp

Deliver e to the application

the number of rounds an event stays at most in C. Note the similarity of the
buffer system to a single-server queueing system, where new events are admitted
to the queue as a random process. However, unlike common queueing systems,
the service time (time needed for all processes in C to get the event using the
layered protocol) in this model depends on the arrival times of events. The service
time is such that every event stays at least as long in the queue as it needs to
stay in the buffer of C in order to guarantee delivery/recovery (i.e. whether the
queue is stable is not an issue here). Below we estimate the probability that the
length of the queue exceeds the choice of the length for the recovery buffer of C.
If ai denotes the arrival time of an event ei, the “server” processes each event
at time si = ai + T . Observe that if the length of the buffer in C is greater
than the maximum length of the queue within the time interval [ai, si] then C
can safely deliver ei. Consider [ta, ts] denoting an interval of length T and the
random variable Xi,j denoting the event that at time ta + i process j inserts a

Lightweight Causal Cluster Consistency 23

new event in the system. Further, assume that all Xi,j occur independently, and
that Pr[Xi,j = 1] = p and Pr[Xi,j = 0] = 1−p. The number of admitted events
in the system can be represented by the random variable X :=

∑n
j=1

∑T
i=1 Xi,j ,

hence the random process describing the arrival rate of new events is a binomial
distribution and the expected number of events in the queue in an arbitrary time
interval [ta, ts] equals E[X] = npT. Clearly, the length of the recovery buffer must
be at least as large as E[X], or we are expected to encounter a large number
of events that cannot be recovered. Now, using the Chernoff bound [15, 26], we
bound the buffer size so that the probability of an event that needs recovery not
to be present in the recovery buffer of any arbitrary process becomes low.

Theorem 1. Let e be an event admitted to a system C executing the two-layered
protocol, where each event is required to stay in C for T rounds. Each of the n
processes in the system admits a new event to C in a round with probability p.
Then C can guarantee the availability of e in the recovery buffer of an arbitrary
process with probability strictly greater than 1 −

(
e
4

)npT if the size of the buffer
is chosen greater than or equal to 2npT .

Due to space constraints, please see our technical report [27] for the proofs.
To estimate T , we can use the estimated duration of a PrCast, e.g. as in [15].
Let PrCastTime denote this time. An event e is likely to be needed in C for
(i) PrCastTime rounds (to be delivered to all processes with high probability);
(ii) plus PrCastTime rounds, if missed, to be detected as missing by the re-
ception of a causally related event (note that this is relevant under high load,
since in low loads PrCast algorithms are even more reliable); (iii) plus the time
time to terminate+ time to recover spent before and after requesting recovery.

Further, since processes may fail, a process that needs to recover some event(s)
should contact a number of other processes to guarantee recovery with high
probability. Assume that processes fail independently with probability pf and
let Xf be the random variable denoting the number of faulty processes in the
system. Then E[Xf] = pfn. By applying the Chernoff bound as in Theorem 1
we get:

Lemma 2. If, in a system of n processes where each one may fail independently
with probability pf , we consider an arbitrary process subset of size greater than
or equal to 2npf , with probability strictly greater than 1−

(
e
4

)npf there will be at
least one non-failed process in the subset.

This implies that if a process requests recovery from R = 2pfn processes then
w.h.p. there will be at least one non-faulty to reply.

Theorem 2. In a system of n processes where each one may fail independently
with probability pf ≤ k/(2n) for fixed k, an arbitrary process that needs to recover
events according to the Two-Layer protocol, will get a reply with high probability
if it requests recovery from k processes.

Note that requesting recovery only once and not propagating the recovery mes-
sages is good because in cases of high loss due to networking problems we do not

24 A. Gidenstam et al.

flood the network with recovery messages. Compared to recovery by asking the
originator of an event, this method may need k times more recovery messages.
However, the advantages are tolerance of failures and process departures, as well
as distributing the load of the recovery in the system.

Regarding replacement of events in the recovery buffer, the simplest option is
FIFO replacement. Another option is an aging scheme, e.g. based on the number
of hops the event has made. As shown in [15], an aging scheme may improve per-
formance from the reliability point of view. However, to employ such a scheme
here we need to sacrifice the separation between the consistency layer and the un-
derlying dissemination layer to access this information. Instead, note that using
a dissemination algorithm such as the Estimated-Time-To-Terminate-Balls-and-
bins(ETTB)-gossip algorithm [15] that uses an aging method to remove events
from process buffers and guarantees very good message stability, implies that
the reliability is improved since fewer processes may need to recover events.

4 Experimental Evaluation

In this section we investigate the scalability of causal cluster consistency and the
reliability and throughput effects of the optimistic causality layer in the Two-
Layer protocol. We refer to a message/event as lost if it was not received or
could not be delivered without violating optimistic causal order.

The evaluation of the Two-Layer protocol was done on 125 networked comput-
ers at Chalmers University of Technology. The computers were Sun Ultra 10 and
Blade workstations running Solaris 9 and PC’s running Linux distributed over
a few different subnetworks of the university network. The average round-trip-
time for a 4KB IP-ping message was between 1ms and 5ms. As we did not have
exclusive access to the computers and the network, other users might potentially
have made intensive use of the network concurrently with the experiments.

The Two-Layer protocol is implemented in an object oriented, modular man-
ner in C++. The implementation of the causality layer follows the description in
Section 3 and can be used with several group communication objects within our
framework. Our PrCast is the ETTB-dissemination algorithm described in [15]
together with the membership algorithm of lpbcast [13]. TCP was used as mes-
sage transport (UDP is also supported). Multi-threading allows a process to send
its gossip messages in parallel and a timeout ensures that the communication
round has approximately the same duration for all processes.

Our first experiment evaluates how the number of coordinators affect through-
put, latency and message size. In our test application a process acts either as
a coordinator, which produces a new event with probability p in each PrCast
round, or as an ordinary cluster member. The product of the number of coor-
dinators and p was kept constant (at 6). To focus on the performance of the
causality layer the PrCast was configured to satisfy the goal of each event reach-
ing 250 processes w.h.p. (the fan-out was 4 and the event termination time was
5 hops). PrCast was allowed to know all members to avoid side effects of the
membership scheme. The maximum number of events transported in each gossip

Lightweight Causal Cluster Consistency 25

 0

 10

 20

 30

 40

 50

 60

 20 40 60 80 100 120

M
es

sa
ge

s
pe

r
se

co
nd

Processes

Throughput, under low communication failures and event loss

5 Updater Gossip/TCP
25 Updater Gossip/TCP

Full Updater Gossip/TCP

(a) Throughput

 0

 200

 400

 600

 800

 1000

 1200

 1400

 20 40 60 80 100 120

D
el

ay
 in

 m
s

Processes

Latency, under low communication failures and event loss

5 Updater Gossip/TCP
25 Updater Gossip/TCP

Full Updater Gossip/TCP

(b) Latency

 0

 1000

 2000

 3000

 4000

 5000

 6000

 20 40 60 80 100 120

Si
ze

 in
 b

yt
es

Processes

Message size, under low communication failures and event loss

5 Updater Gossip/TCP
25 Updater Gossip/TCP

Full Updater Gossip/TCP

(c) Message size

Fig. 1. Throughput and latency with in-
creasing number of cluster members

 0

 200

 400

 600

 800

 1000

 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55

D
el

ay
 in

 m
s

Probability to create a new event

Latency

Caual layer with R4 recovery
Causal layer with R1 recovery
Causal layer without recovery

No Causal layer

(a) Latency

 0

 2

 4

 6

 8

 10

 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55

Pe
rc

en
ta

ge
 o

f
kn

ow
n

ev
en

ts
 lo

st

Probability to create a new event

Event loss

Caual layer with R4 recovery
Causal layer with R1 recovery
Causal layer without recovery

No Causal layer

(b) Message loss

 0

 20

 40

 60

 80

 100

 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55

Pe
rc

en
t o

f
re

co
ve

ry
 a

tte
m

pt
s

su
cc

es
sf

ul
l

Probability to create a new event

Event recovery success

Caual layer with R4 recovery
Causal layer with R1 recovery

(c) Percentage of successful recovery attempts

Fig. 2. Event latency, loss and recovery be-
haviour under varying load with and with-
out the causality layer

message was 20. The size of the history buffer was 40 events, which according
to [15] is high enough to prevent w.h.p. PrCast from delivering the same event
twice. The duration of each PrCast round was tuned so that all experiments had
approximately the same rate of TCP connection failures (namely 0.2%). Fig. 1
compares three instances of the Two-Layer protocol: the full-updater instance
where all processes act as coordinators, the 5-updater and the 25-updater in-
stances with 5 and 25 coordinators, respectively. The causality layer used the

26 A. Gidenstam et al.

first recovery method, described in Section 3. The results show the impact of
the size of the vector clock on the overall message size and throughput. For the
protocols using a constant number of coordinators message sizes even decreased
slightly with growing group size since the dissemination distributes the load of
forwarding events better then, i.e. for large groups a smaller percentage of pro-
cesses performs work on an event during the initial gossip rounds. However, for
the full updater protocol messages grow larger with the number of coordinators
which influences the observed latency and throughput. For growing group size
the protocols with a fixed number of coordinators experience only a logarith-
mic increase in message delay and throughput remains constant while for the
full-updater protocol latency increases linearly and throughput decreases.

The second experiment studies the effects of the causality layer and the recov-
ery schemes in the Two-Layer protocol. Fig. 2 compares the gossip protocol and
the Two-Layer protocol with and without recovery. The recovery is done in two
ways, both described in Section 3: (i) from the originator (marked “R1 recov-
ery”) and (ii) from k arbitrary processes (marked “R4 recovery” as the recovery
fan-out k was 4). The recovery buffer size follows the analysis in Section 3, with
the timeout-periods set to the number of rounds of the PrCast. Unlike the first
experiment, the number of coordinators and processes was fixed to 25; instead
varying values of p were used, to study the behaviour of the causality layer under
varying load. Larger p values imply increased load in the system; at the right
edge of the diagrams approximately n/2 new events are multicast in each round.
As the load increases, more events are reordered by the dissemination layer and
message losses begin to occur due to buffer overflows, thus putting the causality
layer protocols under stress. The results in Fig. 2(b) show that the causality layer
significantly reduces the amount of lost (ordered) events, in particular when the
number of events disseminated in the system is high. With the recovery schemes
almost all events could be delivered in optimistic causal order. With increasing
load latency grows only slowly (cf. Fig. 2(a)), thus manifesting scalability. The
causality layer adds a small overhead by delaying events in order to respect the
causal order. The recovery schemes do not add much overhead with respect to
latency, while they significantly reduce the number of lost events. At higher loads
the recovery schemes even improve latency since by recovering missing events
causally subsequent events in Hp can be delivered before they time out. Fig. 2(c)
shows the success rate for the recovery attempts. The number of recovery at-
tempts increase as the load in the system increases, when the load is low very few
events need recovery (cf. the event loss without the causality layer in Fig. 2(b)).
There are three likely causes for a recovery to fail: (i) the reply arrives too late;
(ii) the process(es) asked did not have the event; and (iii) the reply or request(s)
messages were lost. The unexpectedly low success rate during low load for the
R4 method could be because a PrCast may reach very few processes when a
gossip message is lost early in the propagation of an event. Also note that as the
load is low the number of missing events and recovery attempts is very small.
However, as load and the number of recovery attempts increase the success rate
converges towards the predicted outcome.

Lightweight Causal Cluster Consistency 27

5 Discussion and Future Work

We have proposed lightweight causal cluster consistency, a hierarchical layer-
based structure for multi-peer collaborative applications. This is a general archi-
tecture, can be applied on top of the standard Internet transport-layer services,
and offers a layered set of services to the applications that need them.

We also presented a two-layer protocol for causal cluster consistency running
on top of decentralised probabilistic protocols supporting group communication.
Our experimental study, conducted by implementing and evaluating the pro-
posed architecture as a two-layered protocol that uses standard Internet trans-
port communication, shows that the approach scales well, imposes an even load
on the system, and provides high-probability reliability guarantees.

Future work include complementing this service architecture with other con-
sistency models such as total order delivery with respect to objects. Object
ownership and caching are other topics that is worth studying.

References

1. Miller, D.C., Thorpe, J.A.: SIMNET:the advent of simulator networking. In: Proc.
of the IEEE. Volume 8 of 83. (1995) 1114–1123

2. Greenhalgh, C., Benford, S.: A multicast network architecture for large scale collab-
orative virtual environments. In: Proc. of the 2nd European Conf. on Multimedia
Applications, Services and Techniques. Volume 1242 of LNCS., Springer-Verlag
(1997) 113–128

3. Carlsson, C., Hagsand, O.: DIVE - a multi-user virtual reality system. In: Proc.
of the IEEE Annual Int. Symp. (1993) 394–400

4. Lamport, L.: Time, clocks, and the ordering of events in a distributed system. In:
Communications of the ACM. Volume 7 of 21. (1978) 558–565

5. Birman, K.P., Joseph, T.A.: Reliable communication in the presence of failure.
ACM Transactions on Computer Systems 5 (1987) 47–76

6. Birman, K., Schiper, A., Stephenson, P.: Lightweight causal and atomic group
multicast. ACM Transactions on Computer Systems 9 (1991) 272–314

7. Raynal, M., Schiper, A., Toueg, S.: The causal ordering abstraction and a simple
way to implement it. Information Processing Letters 39 (1991) 343–350

8. Kshemkalyani, A.D., Singhal, M.: Necessary and sufficient conditions on informa-
tion for causal message ordering and their optimal implementation. Distributed
Computing 11 (1998) 91–111

9. Baldoni, R., Prakash, R., Raynal, M., Singhal, M.: Efficient Δ-causal broadcasting.
Int. Journal of Computer Systems Science and Engineering 13 (1998) 263–269

10. Rodrigues, L., Baldoni, R., Anceaume, E., Raynal, M.: Deadline-constrained causal
order. In: Proc. of the 3rd IEEE Int. Symp. on Object-oriented Real-time dis-
tributed Computing. (2000)

11. Mattern, F.: Virtual time and global states of distributed systems. In: Proc. of
the Int. Workshop on Parallel and Distributed Algorithms. (1989) 215–226

12. Birman, K.P., Hayden, M., Ozkasap, O., Xiao, Z., Budiu, M., Minsky, Y.: Bimodal
multicast. ACM Transactions on Computer Systems 17 (1999) 41–88

13. Eugster, P.T., Guerraoui, R., Handurukande, S.B., Kermarrec, A.M., Kouznetsov,
P.: Lightweight probabilistic broadcast. In: Proc. of the Int. Conf. on Dependable
Systems and Networks. (2001) 443–452

28 A. Gidenstam et al.

14. Ganesh, A.J., Kermarrec, A.M., Massoulié, L.: Scamp: Peer-to-peer lightweight
membership service for large-scale group communication. In: Proc. of the 3rd Int.
COST264 Workshop. Volume 2233 of LNCS., Springer-Verlag (2001) 44–55

15. Koldehofe, B.: Buffer management in probabilistic peer-to-peer communication
protocols. In: Proc. of the 22nd Symp. on Reliable Distributed Systems, IEEE
(2003) 76–85

16. Pereira, J., Rodrigues, L., Monteiro, M., Kermarrec, A.M.: NEEM: Network-
friendly epidemic multicast. In: Proc. of the 22nd Symp. on Reliable Distributed
Systems, IEEE (2003) 15–24

17. Baehni, S., Eugster, P.T., Guerraoui, R.: Data-aware multicast. In: Proc. of the
5th IEEE Int. Conf. on Dependable Systems and Networks. (2004) 233–242

18. Stoica, I., Morris, R., Karger, D., Kaashoek, F., Balakrishnan, H.: Chord: A scal-
able Peer-To-Peer lookup service for internet applications. In: Proc. of the ACM
SIGCOMM 2001 Conf., ACM Press (2001) 149–160

19. Alima, L.O., Ghodsi, A., Brand, P., Haridi, S.: Multicast in DKS(N; k; f) overlay
networks. In: Proc. of the 7th Int. Conf. on Principles of Distributed Systems.
Volume 3144 of LNCS., Springer-Verlag (2003) 83–95

20. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Shenker, S.: A scalable content-
addressable network. In: ACM SIGCOMM Computer Communication Review.
Volume 31. (2001) 161–172

21. Rowstron, A., Druschel, P.: Pastry: scalable, decentralized object location and
routing for large-scale peer-to-peer systems. In: Proc. of the 18th IFIP/ACM Int.
Conf. on Distributed Systems Platforms (Middleware). Volume 2218 of LNCS.,
Springer-Verlag (2001)

22. Zhao, B.Y., Huang, L., Stribling, J., Rhea, S.C., Joseph, A.D.: Tapestry: A resilient
global-scale overlay for service deployment. IEEE Journal on Selected Areas in
Communications 22 (2004) 41–53

23. Lynch, N., Malkhi, D., Ratajczak, D.: Atomic data access in distributed hash
tables. In: Proc. of the 1st Int. Workshop on Peer-to-Peer Systems. Volume 2429
of LNCS., Springer-Verlag (2002) 295–305

24. Ahamad, M., Neiger, G., Kohli, P., Burns, J.E., Hutto, P.W.: Casual memory:
Definitions, implementation and programming. Distributed Computing 9 (1995)
37–49

25. Gidenstam, A., Koldehofe, B., Papatriantafilou, M., Tsigas, P.: Dynamic and fault-
tolerant cluster management. In: Proc. of the 5th IEEE Int. Conf. on Peer-to-Peer
Computing, IEEE (2005)

26. Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press
(1995)

27. Gidenstam, A., Koldehofe, B., Papatriantafilou, M., Tsigas, P.: Lightweight causal
cluster consistency. Technical Report 2005-09, Computer Science and Engineering,
Chalmers University of Technology (2005)

	Introduction
	Notation and Problem Statement
	Layered Architecture for Optimistic Causal Delivery
	Experimental Evaluation
	Discussion and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

