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Abstract

This thesis examines a general class of applications calledcollaborative
environmentswhich allow in real-time multiple users to share and modify in-
formation in spite of not being present at the same physical location. Two
views on collaborative environments have been taken by examining algo-
rithms supporting the implementation of collaborative environments as well
as using collaboration to support educational visualisation/simulation envi-
ronments in the context of distributed computing.

Important algorithmic aspects of collaborative environments are to pro-
vide scalable communication which allows interest management of processes
and deal with modification of information among collaborators in an efficient
and consistent manner. However, to support real-time interactions one may
need to trade strong reliability guarantees for efficiency and scalability. This
work examines lightweight decentralised peer-to-peer algorithms which can
scale to a large number of processes and offer reliability expressed with prob-
abilistic guarantees.

Besides proposing and evaluating peer-to-peer algorithms on support for
large scale event dissemination, this work considers the impact of buffer man-
agement and membership in achieving stable performance even under criti-
cal system parameters. Moreover, we examine consistency management as
well as interest management in combination with lightweight peer-to-peer
dissemination schemes. Lightweight cluster consistency management allows
a dynamic set of processes to perform updates on a set of processes which is
observed in optimistic causal order. Topic-aware membership management
supports lightweight dissemination schemes to propagate events which corre-
spond only to their interest by providing a fair work distribution are the same
time.

The second part deals with collaboration in the context of educational
simulation/visualisation. We present and evaluate a visualisation/simulation
environment for distributed algorithms called LYDIAN which helps studying
distributed algorithms and protocols. Besides looking at what environments
such as LYDIAN should provide in order to be successfully used in class, we
consider the use of collaboration in providing more interactivity in simula-
tion environments as well as a possibility for new visualisations of learning
concepts to evolve.





Preface

Since the start of the thesis there has been a rapid development in how people con-
nect to the Internet. Every year the amount of Internet users connected via high
bandwidth broadband networks increases significantly. Hand-in-hand with this de-
velopment, demanding applications have evolved which allow a large number of
users to cooperate together. Most solutions nowadays are bound to a client/server
model, where the server maintains control in updating shared data of the applica-
tion. This model allows one to easily maintain the applications data consistent,
however a server also becomes a single point of failure and a bottleneck which may
prevent an application to scale to many users. In order to use the potential of high
bandwidth networks, a good distribution of application data is the key to provide
scalability. Recent research on peer-to-peer systems has looked for solutions which
provide a fair distribution of the work performed by an application in the presence
of dynamic connections and disconnection of peers in the system. Each peer may
act as server as well as client. Whereas peer-to-peer computing is commonly asso-
ciated with the location of distributed data, peer-to-peer systems can also be used
to perform aggregation or large-scale information dissemination.

As part of this thesis, peer-to-peer based algorithms on support for collabora-
tive environments are examined and proposed. Collaborative environments allow
multiple users and processes to interact in a virtual, shared state in real-time. This
makes them interesting when building collaborative educational applications, for
example, in the context of distance learning. In fact, the original motivation for this
thesis stems from an educational application, LYDIAN, which is introduced and
evaluated in Part II. LYDIAN is an educational simulation/visualisation environ-
ment for learning and teaching distributed algorithms. Collaborative interactions
are discussed to increase the level of interactivity with a learning concept.
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One

Overview

Many applications, like collaborative text editing, video conferencing, multiplayer
games, or educational applications aim at providing to a potentially large set of
users or processes the possibility to interact in a shared, virtual state in real-time.
Even though users and processes may be physically distant, they can perform in-
teractions in a shared state to produce something, i.e.collaborationhappens. For
users to be able to collaborate efficiently, it is up to the application to provide a
meaningful interface. At a lower level, however, the performance of the applica-
tion and the semantics it can provide depend on the underlying communication
model. As the amount of users and processes grows larger, latency increases and
the application may not be able to offer the semantics promised to the user, i.e. a
user detects inconsistencies with respect to the shared state.

This work studies distributed systems which aim at providing collaboration to
multiple users and processes. In Part I we study system services and algorithms
to provide them for a general class of applications calledcollaborative environ-
ments. We examine and propose different communication models and algorithms
in support for event dissemination and interest management by considering reli-
ability, fault tolerance, scalability, and consistency. In particular the focus is on
lightweight peer-to-peer dissemination algorithms which can scale to a large num-
ber of processes and users. In addition to their support for fast dissemination, peer-
to-peer solutions in a collaborative environment can be used to organise a dynamic
and lightweight membership as well as to manage data replication.

Part II is devoted to the original motivation of this thesis, namely offering mean-
ingful interactions for many possible users of an educational simulation/visualisa-
tion environment for distributed algorithms. We present an implementation and
an evaluation of a learning environment called LYDIAN which gives evidence as
to what interactive learning environments such as LYDIAN should provide to be
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1. OVERVIEW

successfully used in class. Moreover, we examine ways of improving interactivity
by means of collaboration as well as new approaches to educational visualisation
building on collaboration.

The algorithmic aspects are presented in Part I, while the educational aspects
are discussed in Part II. Both parts are based on a collection of papers combined
with an introductory chapter for each. The contributions of the thesis are discussed
in Chapter 2.6 and Chapter 7.4 with focus on algorithmic and educational aspects
respectively. Part III summarises the basic findings of the thesis. In the following
we give a brief description of the content of each chapter as well as pointers to the
publications the chapter is based on.

Chapters of Part I:

Foundations and Communication Models.Chapter 2 gives background in-
formation on the algorithmic aspects of this thesis and looks at collaborative
environments from the perspective of consistency and event-based dissemi-
nation. Moreover, the contributions regarding the algorithmic aspects of this
thesis are discussed in this chapter.

Simple gossiping with balls and bins.Chapter 3 is based on publications
which appeared in

• the Proceedings of the 6th International Conference on Principles of
Distributed Systems (OPODIS’02), pages 109–118, 2002.

• Studia Informatica Universalis, Volume 3, Number 1, pages 43-60,
2004.

The chapter presents an analysis of gossip-based event dissemination using a
balls-and-bins paradigm to prove delivery of an event with high probability.

Buffer management in probabilistic peer-to-peer communication.Chap-
ter 4 appeared in

• the Proceedings of the 22nd Symposium on Reliable Distributed Sys-
tems (SRDS ’03),pages 76–85, 2003.

Buffer management is an important aspect in the configuration of gossip
based dissemination algorithms. This chapter evaluates and analyses buffer
management in combination with different dissemination schemes.

Lightweight causal cluster consistency.Chapter 5 is based on a technical
report written together with Anders Gidenstam, Marina Papatriantafilou, and
Philippas Tsigas. This paper deals with consistency management suitable for
lightweight peer-to-peer dissemination protocols.

2



A role-based distributed hash table.Chapter 6 is based on a technical re-
port written together with Sébastien Baehni, Rachid Guerraoui, Sidath B.
Handurukande, and Oana Jurca. The paper describes a membership which
can support publish/subscribe schemes in fairly distributing the load of the
dissemination according to the interest of processes and considers space ef-
ficiency.

Chapters of Part II:

Collaborative Learning Using Simulation and Visualisation. Chapter 7
gives background information on the educational aspects of this thesis and
discusses simulation and visualisation to support collaborative learning. The
chapter discusses also the contributions with respect to educational simula-
tion/visualisation in collaborative environments.

LYDIAN. Chapter 8 is a journal version based on the following publica-
tions:

• Koldehofe, B., Papatriantafilou, M., and Tsigas, P. 2003. Integrating
a simulation/visualisation environment in a basic distributed systems
course: A case study using LYDIAN. InProceedings of the 8th An-
nual SIGCSE Conference on Innovation and Technology in Computer
Science Education (ITiCSE’03), J. Impagliazzo, Ed. ACM Press, N.Y.,
35–39.

• Holdfeldt, P., Koldehofe, B., Lindskog, C., Olsson, T., Petersson, W.,
Svensson, J., and Valtersson, L. 2002. Envidia: An educational en-
vironment for visualisation of distributed algorithms in virtual environ-
ments. InProceedings of the 7th Annual SIGCSE Conference on Inno-
vation and Technology in Computer Science Education (ITiCSE’2002).
ACM press, 226.

• Koldehofe, B., Papatriantafilou, M., and Tsigas, P. 2000. LYDIAN,
an extensible educational animation environment for distributed algo-
rithms. In Proceedings of the 4th Annual SIGCSE/SIGCUE Confer-
ence on Innovation and Technology in Computer Science Education
(ITiCSE’2000). ACM Press, 189.

• Koldehofe, B., Papatriantafilou, M., and Tsigas, P. 1999. Distributed
algorithms visualisation for educational purposes. InProceedings of
the 4th Annual SIGCSE/SIGCUE Conference on Innovation and Tech-
nology in Computer Science Education (ITiCSE’99). ACM Press, 103–
106.

3



1. OVERVIEW

• Koldehofe, B., Papatriantafilou, M., and Tsigas, P. 1998. Build-
ing animations of distributed algorithms for educational purposes. In
Proceedings of the 3rd Annual SIGCSE/SIGCUE Conference on Inno-
vation and Technology in Computer Science Education (ITiCSE’98).
N.Y., 286.

This paper presents an educational environment for learning and teaching
distributed algorithms called LYDIAN.

Using Actors to Teach Self-Stabilisation.Chapter 9 is based on following
publication:

• Koldehofe, B. and Tsigas, P. 2001. Using actors for an interactive
animation in a graduate distributed system course. InProceedings of
the 6th Annual SIGCSE Conference on Innovation and Technology in
Computer Science Education (ITiCSE’2001). ACM press, 149–152.

This paper evaluates an animation using dramatisation to teach the concept
of self-stabilisation.

4



Part I

Algorithmic Aspects in
Collaborative Environments
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Two

Foundations and
Communication Models

Collaborative environmentsare a general class of applications which allow multiple
users to interact on a shared state in real-time. Typical examples of such applica-
tions are platforms for educational, training or entertaining purposes as well as for
distributed monitoring and tuning of networks. In contrast to human face-to-face
collaboration, collaborative environments decouple the physical location of the user
from the context of the application. Users can share a virtual space in spite of not
being physically present at the same location.

A fundamental assumption for allowing user interactions is the access to a com-
munication media. We look at collaborative environments in the context of com-
puter networks. A collaborative process may involve not only human users, but
also programs. By using terminology of distributed computing, we refer to “users”
and “programs” by “processes” instead.

A collaborative environmentcan be defined as a space in which multiple pro-
cesses share and modify the state of a set of common objects (information) in real-
time. The state of such an environment is formed by aworld of processes and
objects (c.f. Figure 2.1). A collaborative environment offers the following to pro-
cesses:

• a membership servicewhich allows them to dynamically join and leave the
world,

• an interest managementwhich establishes awareness of objects depending
on the context of a process,

• anevent notification servicewhich informs processes about state changes of

7



2. FOUNDATIONS AND COMMUNICATION MODELS

join

leave (self-)modify

objects

response

create/modify/delete

users/processes

World

Figure 2.1:The global state of a collaborative environment.

objects and processes and allows processes to perform interleaving modifi-
cations to objects.

The demands of collaborative environments make it difficult to scale them to
many users and objects. Interactions of an increasing number of users with the
world’s state require more synchronisation and induce a higher load on the com-
munication traffic. Moreover, the complexity and size of objects play an important
role. Therefore, it is often assumed that in the world communication happens by
sending updates on the state of objects, instead of sending the whole state of an ob-
ject. The real-time requirement demands that updates to the shared object should
reach all interested group members fast. On the other hand, all group members
should have an accurate estimation on the state of shared objects. An accurate state
estimation should even be possible if some part of the system is not functioning
correctly.

In other words, collaborative environments demand that the state of the system
must be handled in a consistent way by offering fast and reliable communication.
This requires one to choose both an appropriate consistency model as well as a
suitable organisation of the way information is propagated among group members.
Clearly, there is a tradeoff between the consistency guaranteed and the response
time of an interaction made by a user.

The described problems are addressed by different research communities. Pos-

8



sible frameworks of organising objects and communication of collaborative en-
vironments are present in the area ofcollaborative virtual environments(CVE).
CVEs are an interesting example of collaborative environments because CVEs be-
long to the most demanding application regarding scalability and consistency of
the observed state. CVEs may also be the most studied application within the area
of collaborative environments. However, the notion of consistency is studied very
little. Most approaches provide a best effort to keep the view of the world’s ob-
jects consistent for group members. The specification of aconsistency modelgives
guarantees on how the system behaves on interactions of users and in this way
helps to reason on the correctness of an application for such an environment. Con-
sistency models and their performance have been formally analysed in the area of
distributed shared memories. Although their descriptions often address read/write
objects, many of the presented consistency models can be generalised to more com-
plex objects.

In collaborative environments the interest in objects may vary among processes.
Therfore, an interest management can help in reducing the amount of unnecessary
sent messages. Thepublish/subscribeparadigm allows processes to express an in-
terest by performing an operation called asubscription. Based on this subscription
a process will be notified on any publishedeventscorresponding to the expressed
interest.

The implementation of consistency models as well as publish/subscribe sys-
tems rely on the way events are propagated. In particular, consistency models ex-
ploit assumptions on how events, which can be issued from several sources, are
propagated at the communication level. Possible requirements can be ordering
guarantees for events and the reliability for an event to reach the respective desti-
nations. Another important aspect from the perspective of a collaborative environ-
ment is to allow users to dynamically join and leave the system. These problems
are examined in the area ofgroup communication.

In the following sections we present in more detail aspects and related work of
the respective research areas. In Section 2.1 an overview of existing work in collab-
orative virtual environments is presented. Section 2.2 discusses models known in
the area of distributed shared memory. Publish/subscribe in order to provide inter-
est management is introduced in Section 2.3, while Section 2.4 introduces the group
communication paradigm. In Section 2.5 peer-to-peer systems and their application
to large-scale event dissemination are presented. The algorithmic contributions of
subsequent chapters are discussed in Section 2.6.

9



2. FOUNDATIONS AND COMMUNICATION MODELS

2.1 Management of distributed objects in collaborative
virtual environments

A collaborative virtual environment(CVE) is a distributed multi-user system which
provides an immersed three-dimensional view for each user as well as the possibil-
ity to interact in real-time with the system such that users have i) a shared sense of
space, ii) a shared sense of presence, iii) a shared sense of time, iv) a way to com-
municate, v) a way to share (as defined in [Singhal and Zyda 1999]). The main dif-
ference from collaborative environments is the requirement to compute uniformly
3D-graphics data, i.e. all users have the same representation of the world. Often
for collaborative environments each user may choose a different representation and
multiple views can coexist at the same time. The state of objects in a CVE is com-
plicated and even updates locally at a user can be computationally costly. CVEs
usually favour to communicate on changes of objects by sending updates and try to
avoid communication of the object’s whole state. In order to scale such a system to
many users, a framework for managing objects also requires a good distribution of
objects.

Since the beginning of the 90s different frameworks for CVEs have been in-
troduced. SIMNET [Miller and Thorpe 1995] is one of the oldest multi-user real-
time environments originally created for military simulations. In order to scale the
system well, all processes and objects of the simulation are considered to be au-
tonomous and send continuous updates of changes to all other objects. A process
considers only group members which were able to send state update within two lo-
cal clock pulses. The time delays in the communication between two processes can
lead to different views of the same object. SIMNET allows states of objects to be
inconsistent among different processes, but tries to reduce the occurrence of incon-
sistencies. This is achieved by predicting the behaviour of objects and maintaining
a history of previous states and updates. If a process observes an inconsistency be-
cause of receiving an update late, a process can recalculate a correct state and then
behave to converge to the correct state. This method is often referred to asdead
reckoning.

Much of SIMNETs architecture has influenced the IEEE standard ondistributed
interactive simulation (DIS)[IEEE 1993]. The standard defines events which can
be used to interact with objects of a CVE. The objects of the CVE communicate
by sending and receiving predefinedprotocol data units (PDU). Different CVEs
often can interact by supporting a subset of the PDUs used in DIS.

Fully distributed approaches like SIMNET can scale well (assuming the broad-
casting of updates is handled efficiently), but they do not give guarantees to users as
to how their interactions affect the system. Therefore, some CVEs require updates
to reach all processes in the same order. For these CVEs the provided ordering

10



Management of distributed objects in collaborative virtual environments

(a)

Group

Aura

Object

(b)

Figure 2.2:Figure 2.2(a) shows a hexagonal division of the CVE. The dark filled areas
symbolise the area of interest of an object represented by a triangle. In Figure 2.2(b) a
spatial division of objects into groups is shown which uses the aura associated with an
object.

guarantee by the communication media determines the consistency guaranteed.
The ordering of updates can be achieved in various ways. The simplest form is

to use a central repository which orders the updates of objects. However, a central
repository quickly becomes a bottleneck in such a system. This is why imple-
mentations like DIVE [Carlsson and Hagsand 1993; Hagsand 1996], rely on group
communication where objects can be physically distributed. The group communi-
cation protocol guarantees the order in which updates reach their destinations (see
also Section 2.4). The communication of updates in DIVE uses the ISIS [Birman
and Joseph 1987a] process groups. All objects are replicated by a process. The
processes in DIVE belong to a single group in which group members use the ISIS
communication model to propagate updates. Depending on the consistency require-
ment, different ways of ordering can be chosen, e.g. a total ordering respecting also
the local order of events for each process.

Maintaining all objects in a single group facilitates the application of a consis-
tency model as discussed in Section 2.2. However, the approach is only feasible for
small systems because every update still involves many messages to be propagated.
With increasing number of objects in the system, latency of events will grow too
large in order to allow real-time interactions. In order to support better scalability,
one has to reduce the amount of updates propagated to the whole group.

MASSIVE [Greenhalgh and Benford 1995; Greenhalgh and Benford 1997] and
NPSNET [Macedonia et al. 1995] aim to increase scalability by partitioning the
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environment into spatial regions. Objects receive only information on other ob-
jects of an area of interest. NPSNET partitions the world in hexagonal regions,
while MASSIVE uses volumes to partition the world into groups, supporting sev-
eral levels of grouping. In order to detect when objects share a common interest,
MASSIVE associates the objects of the CVE with anaura. The object’s aura de-
termines the extent to which interaction is possible with other objects of the world.
A detection of intersecting auras takes care that those objects start communicating
about each other’s state, i.e. they becomeawareof each other. MASSIVE supports
different degrees of awareness depending on the subjective importance of related
objects. To measure awareness, MASSIVE applies two further properties called
focusandnimbus. The focus determines the attention of the observer while nim-
bus reflects the visibility and orientation of the observed object. The scalability of
MASSIVE depends on the number of objects with intersecting aura.

Although the discussed approaches are only a subset among the existing CVEs,
they give a good representation of existing approaches to support large-scale col-
laborative environments. Approaches like SIMNET and NPSNET achieve a large
number of users by sacrificing consistency requirements. Only a best effort is made
by using techniques like dead reckoning in order to achieve consistency. Other ap-
proaches like DIVE aim for all processes to observe all operations in total order.
Since the consistency requirement is very strong, the number of objects that can
be supported is much smaller. Other approaches aim for a compromise between
the two extreme ways of handling consistency, but do not give a formal definition
as discussed in Section 2.2. The discussed approaches also illuminate the impor-
tance of efficient group communication and publish/subscribe schemes, which help
to inform efficiently other processes about updates in the system, consider interest
management and organise at the same time membership of users and objects to the
world. MASSIVE and NPSNET exploit group communication by partitioning the
world into several regions. Many CVEs rely only on IP-Multicast, but as discussed
in Section 2.3 and Section 2.4 interest management, as well as reliability and scal-
ability aspects may lead to other ways of implementing group communication.

2.2 Consistency in distributed shared memory

When many processes share common objects which are updated and read concur-
rently, the correctness of a computation may depend on processes having a consis-
tent view of the shared object. Research indistributed shared memoryintroduced
different consistency models for multi-processor systems with processors placed
at different locations writing and reading to shared objects. Although the under-
lying communication to handle updates of the shared objects relies on message
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Figure 2.3:Interaction with a distributed shared memory. The application can commu-
nicate with familiar operations as read and modify with processes which implement the
required memory consistency.

passing, the distributed shared memory gives users the possibility to interact with
more familiar operations such as read/write (cf. Figure 2.3). In a distributed shared
memory interactions are handled by processes replicating the state of the shared
data objects and coordinating their changes with other processes. The consistency
model specifies a contract between the user of the system and the communication
model which determines how operations to shared objects can be ordered. In order
to verify the correctness of programs for a system in which multiple processors
modify shared objects, as it happens in collaborative environments, it is essential
to specify a consistency model.

In general, the choice of a consistency model has an impact on how a pro-
grammer can interact with a distributed system. Programmers prefer to observe the
operation as if they would interact with a single processor, i.e. all events happen
in sequential order. Observing events in sequential order facilitates the creation of
applications significantly because the users do not need to worry about concurrent
operations interfering with each other. However, the stricter the model, i.e. the
closer it is to provide serialisation of operations, the worse it scales with the num-
ber of processes of the system. This is why weaker consistency models, requiring
more thinking by the programmer, have evolved.

In this section we introduce important consistency models (c.f. Figure 2.4)
which support consistent modification of shared objects (much of the presented
material is based on [Mosberger 1993] and [Tanenbaum 1995]). The descriptions
of the models use read/write operations, while in collaborative environments often

13



2. FOUNDATIONS AND COMMUNICATION MODELS
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Figure 2.4:A categorisation of consistency models.

only updates of objects are communicated. However, in many cases one can adapt
a consistency model to other operations on data objects.

2.2.1 Overview on consistency models in distributed shared memory

In thestrict consistencyor atomic consistencymodel any read to a shared object
always returns the latest write value in real-time. This model is the strictest among
all consistency models and used for performance evaluation, but it is not imple-
mentable as long as there is a positive communication delay between processes.

The sequential consistencymodel is based on the work by [Lamport 1979].
A sequence of operations on a set of shared objects issequentially consistentif
the operations can be serialised in some global order respecting the local order of
operations.

A slightly stronger assumption is to requestlinearisability considering also
whether in the real-time ordering of events the response of an operation precedes
the call of another operation. In this case, the serialisation of events must also
respect the order of those operations. Both consistency schemes are easy to im-
plement on systems providingimperfect clocksandatomic broadcast[Birman and
Joseph 1987b]. Imperfect clocks are clocks which run at the same rate as real time,
but are not initially synchronised. They guarantee for the communication delay
of a message to be in the range[d − u, d] for some0 < u ≤ d whered denotes
the worst case deliver time, andu the worst case uncertainty. Atomic broadcast
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guarantees that all messages are delivered, and they arrive in the same order to all
destinations. Further, the sent order of two messages originating from the same
source is preserved.

Attiya and Welch [Attiya and Welch 1994] analyse lower and upper bounds on
linearisability and sequential consistency with respect to imperfect clocks and intro-
duce algorithms implementing these consistency models. In particular, it is shown
that the cost for one read plus one write is at leastd. For sequential consistency
either read or write operations can be executed locally, while for linearisability
always some communication cost is required.

Causal consistencyrequires that all writes that are potentially causally related
must be seen in the same order by all processes. The model is a weakening of
sequential consistency, i.e. there exists an execution which is causally consistent,
but not sequentially consistent, however all executions satisfying sequential consis-
tency are also causally consistent. In [Ahamad et al. 1995] an algorithm is intro-
duced which implements causal consistency by using vector time stamps. Reads
and writes are non-blocking operations, i.e. reads and writes can be executed im-
mediately without requiring further communication cost. This is achieved by intro-
ducing a priority queue for incoming updates which are ordered according to the
time stamps of messages. A time stamp consists of a vector with an entry for each
process of the system. With respect to a process’s local time stamp, a time stamp
for an update is smaller if i) all entries with exception of the entry for the respective
process are smaller, and ii) the entry for the process itself is equal to the respec-
tive value of the process’s time stamp increased by one. An update of the queue is
applied only if it is smaller than the local time stamp of a process.

Pipelined RAM (PRAM) consistencyrequires that all writes done by a single
process are observed in the same order by all other processes. Writes performed
by different processors may be ordered differently. PRAM is easy to implement
by adding sequence numbers to each update. Similar to the implementation of
causal consistency discussed above, a process maintains a FIFO queue, dispatching
updates and adding respective sequence numbers. For incoming messages a process
maintains a vector keeping track of the highest sequence number for each process.
Incoming messages are stored in a priority queue. Updates are dequeued if the
attached tag’s value is one more than the value in the local vector. Obviously,
PRAM is a weakening of causal consistency. As for causal consistency, all updates
can be performed locally, but PRAM can achieve a better bit complexity for the
tags associated with each update.

Coherenceor local consistencyweakens the sequential consistency by only
requiring the order of operations to respect the local order of operations for each
process. The weakening is often exploited by a protocol guaranteeing sequential
consistency on a smaller entity, for instance a page containing objects.
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Processor consistencyrequires an ordering of writes respecting both PRAM
and coherence. Writes done by a single process must be observed in the same order
by all processes. Writes performed by different processes may occur in different
order as long as they do not have the same location.

The definitions so far look at consistency defined by processes acting on mem-
ory. An alternative approach is to look from the perspective of the computa-
tion [Frigo and Luchangco 1998]. In many practical scenarios it is only impor-
tant that the shared objects are consistent at certain points in an application.Weak
consistency[Dubois et al. 1986] introduces in addition to ordinary read and write
accesses a special synchronisation access. All synchronisation accesses are se-
quentially consistent. A synchronisation access may perform if all previous read or
write accesses have performed. A read or write access may perform if all previous
synchronisation accesses have performed.

Release Consistency[Gharachorloo et al. 1990] extends the weak consistency
model by dividing the synchronisation access into two primitives calledacquire
and releasewhich are required to perform with respect to processor consistency.
Read and write accesses may only perform if all previous acquire accesses have
performed. A release access may perform if all previous read and write accesses
have performed.

DAG consistency[Blumofe et al. 1996] considers how a multi-threaded com-
putation affects the result of a computation on shared memory. Hereby, each thread
must see the result of updates to shared locations with respect to a serial execu-
tion of the invocation and termination of threads, forming a directed acyclic graph.
DAG consistency can be implemented by the BACKER [Blumofe et al. 1996] al-
gorithm and is used in CILK [Blumofe et al. 1995], a multi-threaded programming
language.

2.2.2 Consistency in collaborative environments

Most collaborative environments which implement a consistency model require a
total ordering among all operations which respects also the local order of events for
each process. This corresponds to sequential consistency. In order to improve the
number of objects which can be supported, a weaker consistency model like causal
consistency can be of interest. Weaker consistency models allow access to objects
at lower communication cost. On the other side, for the weaker consistency models
shown in Figure 2.4 it can take a long time until an update which was performed by
a process locally can actually be observed by another process. This, however, can
be of importance in collaborative environments where the real-time requirement
implies that the consistency model should also provide a notion of the freshness
with respect to an update. In this case, a mixed consistency model like weak con-
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sistency or release consistency could be of interest where synchronisation happens
only at special synchronisation points. Otherwise the implementation can focus on
propagating updates fast within the world. So far little is known about consistency
models which are suitable for collaborative environments. However, collaborative
environments which are used to build new applications need to provide a way to
reason on the correctness of an application. Defining a consistency model can give a
better insight on how changes performed by users will affect the state of the world.
Most previous work has dealt with techniques to resolve inconsistencies as dead
reckoning and addinglag [Mauve 2000] to the communication, i.e. each update is
delayed before it may perform in order to detect potential inconsistencies.

2.3 Publish/subscribe

As discussed in the context of CVEs (cf. Section 2.1) a collaborative environment
may consist of a large number of processes and objects. Coordinating all interac-
tions of the world with respect to a consistency model as discussed in Section 2.2
easily results in performance problems. Instead processes may only need to pre-
serve a small subset of objects consistent. This subset of objects may however
change dynamically. The communication model of a collaborative environment
needs to support processes in expressing their interest and in return be able to be
aware of interesting objects. Moreover, a process needs to be able to perform and
receive updates relying on some delivery guarantee.

Publish/subscribe provide an event-based communication paradigm which al-
lows processes to express their interest in form of subscriptions. After successful
subscription, processes receive all published events in the system corresponding to
their interests. In the context of collaborative environment an event can correspond
to updates of an object or the discovery of a relevant object. A process performing
an update of an event is called apublisher. Publish/subscribe systems support de-
coupling of space between publisher and subscriber, i.e. publisher and subscriber
do not need to have any information about each other. This makes publish/subscribe
an interesting communication paradigm for designing collaborative environments.

Various ways of expressing interest in publish/subscribe systems have evolved
(cf. [Eugster et al. 2003] for an overview). Most commonly the focus is ontopic-
basedandcontent-basedpublish/subscribe. Intopic-basedpublish/subscribe event
channels correspond to topics. A process can express its interest by subscribing to
a set of topics and after subscription only receive information about these topics.
Often topics form a natural containment relation. Topic hierarchies are an acyclic,
directed graph capturing the containment relation between events. Each vertex of
the graph corresponds to a topic name. After subscribing to a topic, sayA, in a
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topic hierarchy a process will also receive events corresponding to topicsB for
which there exists a path starting inA and ending inB. This way a subscription to
a high level topic also gives the subscriber a higher load of events to be processed.

Topics can be used in collaborative environments to specify the region of inter-
est and the names of objects. Hierarchies can also model the relationship between
objects. For example in a graphical representation the level of detail perceived
can be related to the level in the topic hierarchy a process subscribed. Also the
frequency of events received can be controlled by publishing to subtopics in the
hierarchy.

A lot of work has dealt with increasing the expressiveness of event notification
services. Instead of associating each object with a topic, a process may be inter-
ested in events with special properties over a large set of objects. As an alternative
way of describing each possible subset of properties by subtopics, events can carry
attributes describing the properties of its content.Content-basedpublish/subscribe
allows to express the interest of a subscriber by using filters. The subscriber will
only receive those events whose property matches the filter. For content-based pub-
lish/subscribe programmers have more flexibility in expressing interest. However,
this flexibility comes at higher communication cost or requires a more centralised
flow of information.

The literature discusses many solutions for implementing publish/subscribe
systems. Centralised solutions like JEDI [Cugola et al. 2001] for topic-based and
SIENA [Carzaniga et al. 2001] for content-based publish/subscribe distinguish
between clients and brokers where brokers provide to clients event channels de-
pending on their interests and manage subscriptions and unsubscriptions. However,
there are differences in how brokers themselves are organised. While JEDI consid-
ers a hierarchical organisation of brokers, SIENA considers a peer-to-peer organi-
sation among the brokers. Scalable decentralised solutions (e.g. Scribe [Rowstron
et al. 2001] and Data-Aware Multicast [Baehni et al. 2004]) using structured and
unstructured peer-to-peer systems are discussed in Section 2.5. In general the is-
sues involved in the implementation of topic-based publish/subscribe are close to
the concept of group communication as discussed in Section 2.4. In fact, group
communication can be used as a fundamental building block in implementing pub-
lish/subscribe systems. The main difference to the publish/subscribe paradigm is
that process groups are formed corresponding to a single interest. Subscribing to
multiple topics corresponds to subscribing to multiple process groups.
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2.4 Deterministic group communication

So far we have discussed communication models supporting event-based interac-
tions between processes. A fundamental building block is the dissemination of
events according to an interest.Group communicationprovides an abstraction to
many processes communicating on events so that processes which share a common
interest can receive events disseminated by other processes sharing the same inter-
est, while processes which do not share the same interest are not involved in the
communication process. Processes sharing a common interest are said to form a
group. A membership service allows processes to join and leave the group dynam-
ically and every group member is allowed to communicate with other processes by
using an event dissemination service.

One distinguishes among three different ways of how processes in a group com-
municate:

• unicast communicationconsiders a peer-to-peer communication where a sin-
gle process informs another process about an event,

• multicast communicationconsiders a single process informing multiple pro-
cesses about the same event,

• many-to-many communicationconsiders multiple processes to multicast an
event in a group of processes.

Often multimedia streaming uses an organisation which is restricted to multicast
communication, but does not support many-to-many communication. Multiple pro-
cesses can join a group and receive the respective service offered by a single pro-
cess. Collaborative environments are not restricted to objects with these properties.
They support also updates on objects to be sent from several sources corresponding
to changes carried out interactively by multiple processes. This type of communi-
cation corresponds to a many-to-many communication model where all or multiple
processes of the group can inform anybody else.

An important property of protocols supporting multicasting of events is the re-
liability criteria provided by the protocol. Formally, a protocol is said to bereliable
if it can guarantee for an event to inform either all group members or none. Reliable
communication also requires one to consider failures of processes or communica-
tion links. In this case, the reliability is expressed by requiring the protocol to
inform all non-faulty processes or none about any event. Sometimes reliable com-
munication is also associated with ordering guarantees like total ordering, i.e. all
processes observe all events in the system in the same order. A group communica-
tion protocol which supports total ordering of events is also calledatomic. Often
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atomic multicasting is expressed together with further ordering like FIFO (all op-
erations by a process are observed in the same order) or causal ordering of events.
The ordering can be exploited as discussed before in distributed shared memory
(see Section 2.2).

[Birman and Joseph 1987a] have introduced a scheme for reliable group com-
munication calledvirtual synchronywhich was the basis for the successful ISIS
group communication system. The system can support various guarantees regard-
ing the order of events, which hold in the occurrence of failures. On the other hand,
a limitation of providing this strong reliability model is the scalability of the ap-
proach. Interestingly ISIS was used to support group management in DIVE (cf.
Section 2.1). More recent approaches, also often referred to as reliable approaches,
deal with various kinds of faults, but in many cases do not provide the full end-to-
end reliability, which is essential in the definition of reliability.

An overview of these approaches is presented in [Levine and Garcia-Luna-
Aceves 1998]. In order to support reliability, protocols have to detect when an event
was not received at a destination. This is achieved by sending acknowledgements
or negative acknowledgements.Sender initiatedprotocols require that the source of
the multicast has to receive from all receivers an acknowledgement (ACK) before
it can release a message from its buffer. In case a message was not received or an
error occurred during the transmission, the sender can retransmit the same message
to the destination. The problem with this approach is scalability. In such protocols
the sender needs to process all acknowledgements. This problem is often referred
to as theacknowledgement implosionproblem. Moreover, within this approach the
sender has to know all group members.

In order to reduce the number of acknowledgements that need to be sent and
processed,receiver initiatedprotocols like SRM [Floyd et al. 1997] operate with
negative acknowledgements (NACKs). If a process observes that a message was
lost it multicasts the NACK to all members of the group. Any member can answer
by multicasting a repair message with the requested data. Since multiple NACKs
could cause multiple multicasts of the same message, SRM uses timers before send-
ing or responding to a NACK. If a process, waiting to send a NACK with respect to
a message, observes a NACK to the same message, it will skip its own NACK mes-
sage. Similarly, a process ready to answer a request will cancel its repair message
if it observes a corresponding repair message of another process. Clearly, a good
choice of parameters for timers is crucial for the protocol to avoid an implosion of
NACKs. If the number of participants is large and the communication delays vary
a lot, it is hard to obtain a good choice for timers, which also limits the scalability
of the protocol. Another problem with the described approach is that the source
ideally needs to keep the message in its buffer forever because it can never be sure
that a process may require its retransmission.
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Memory requirements can be overcome by using a hierarchical organisation
like RMTP [Lin and Paul 1996]. The group is divided into several subgroups, of
which a local coordinator is in charge to acknowledge successful delivery to the
source or another coordinator in the hierarchy. In this way one can avoid the source
processing too many ACKs or NACKs. The method requires one to compute a tree
structure in which the source has no knowledge of all members. If coordinators
fail, non-faulty processes may not receive a message and thus violate the reliability
criteria. Peaks in the communication traffic can overload the coordinators that will
become hotspots in the multicast tree. Especially on a larger scale, hierarchical
approaches are likely to suffer from perturbed network traffic. Moreover, the main-
tenance of the multicast tree by subgroups joining and leaving adds an additional
burden for the scalability of these protocols.

2.5 Peer-to-peer membership and dissemination

Whereas the aforementioned deterministic approaches (cf. Section 2.4) originally
aimed at providing a robust reliable service,peer-to-peer (P2P) communication
is suited to manage large sets of entities in a decentralised way which is highly
resilient to failures. However, the strong reliability for event dissemination is traded
with the strength of the reliability guarantee which is often expressed in terms of
probability for an operation to succeed.

Peer-to-peer systems provide a communication infrastructure called anoverlay
which is decoupled from the physical interconnection of processes although the
physical interconnection may be considered when constructing the overlay. The
infrastructure is designed to enforce a good distribution of the load of the work
performed by the system, i.e. all processes may perform both as client and server.
Similar to the group communication model, the infrastructure is maintained by
processes performing join and leave operations. In order to join the structure it
suffices to know an arbitrary member of the peer-to-peer system.

The literature distinguishes betweenstructuredandunstructuredpeer-to-peer
systems.Structured peer-to-peer systemsprovide a lookup service which binds any
given key to a location maintained by one process of the system. Any process of the
system can efficiently route for a given key to the respective location. Peer-to-peer
systems which provide this property are also said to implement adistributed hash
table (DHT). DHTs commonly use a technique, called uniform hashing [Karger
et al. 1997], i.e. a known hash function is used by all processes. Typically the
hash function is designed such that keys are well distributed among locations of
the peer-to-peer system. If an adversary would select a pair of keys a collision is
unlikely to happen. Many existing solutions choose a cryptographic hash function
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as SHA1 [NIST 2002] which maps keys of bits to values of bits. DHTs can be
powerful in constructing distributed services such as persistency management and
publish/subscribe.

Unstructured peer-to-peer systemsdo not rely on a lookup service, but rather
maintain a set of communication partners which may change dynamically over
time. Typically, such systems are constructed application-specific, e.g. for imple-
menting aggregation, large-scale data dissemination, or publish/subscribe.

In the following, an overview of related work of structured and unstructured
peer-to-peer systems is presented with focus on membership management and large-
scale event dissemination.

2.5.1 Structured peer-to-peer systems

Recent research has proposed a variety of structured peer-to-peer systems which
are also referred to as DHTs. As a main characteristic, a DHT offers a lookup
service to its members. Every process which joins the DHT is mapped to at least
one location. When the membership performs stable, a lookup of a valid key is
uniquely mapped to a single location, and the process performing this lookup can
efficiently route to this location.

A typical application of a lookup service is an object location service as used
in many file-sharing systems and in persistency management. Each object can be
associated with a unique identifier, e.g. by using consistent hashing. LetΣ and
I be alphabets andhash : Σ∗ → I l denote a hash function which is collision
free in a cryptographic sense, i.e. it is difficult for an adversary to findω1 ∈ Σ∗

andω2 ∈ Σ∗ such thathash(ω1) = hash(ω2). Thenhash(object) determines the
location where the object should be stored. Any process which knows the name
of the object can usehashand perform a lookup to determine the location and
perform operations such as read or modify on the object. Besides object location,
the lookup service of a DHT can be used to support other services such as large-
scale event dissemination and publish/subscribe with the help of application level
multicast trees (cf. Section 2.5.2).

Almost all algorithms in the literature provide an efficient lookup service. Let
N denote the number of locations of a DHT, then a lookup can be implemented us-
ing O(log N) routing steps by using for each process a routing table ofO(log N).
For some algorithms such as CAN [Ratnasamy et al. 2001] space can be traded
against time complexity as an algorithm parameter. In spite of sharing many simi-
larities, algorithms often differ in how locality and failure resilience are supported.
A good categorisation of DHT based algorithms is presented in [Gummadi et al.
2003] considering the geometry of DHTs and the effect of geometry on proxim-
ity and failure resilience. In the following, the ideas behind some representative
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algorithms categorised according to their geometry are briefly introduced.

Ring. In Chord [Stoica et al. 2001] locations maintained by processes are aligned
according to a cyclic predecessor successor relation. Each process in a Chord ring
can identify its location by performing uniform hashing. Assume thatI l = ZZM .
Let p denote a process andlp its location, then processes maintain a routing table
of a maximum numberi ∈ {1, . . . , log M} in addition to its successor/predecessor
pair locations closest tolp + 2i modM . A lookup request ofx is forwarded to
lp + 2j modM if there existsk > 0 such thatlp + 2j < x + Mk < lp + 2j+1.
Under the assumption of a uniform distribution, a lookup needsO(log N) hops
to succeed. Chord also proposes a self-stabilisation protocol to deal with wrong
routing table entries.

Hypercube. In CAN [Ratnasamy et al. 2001] a location and key are ad-dimen-
sional vector mapped to ad-torus, i.e.I l = ZZd

M . Thed-torus is divided into zones
associated with a single location. A lookup is forwarded to the locations along the
line between source and destination in the Cartesian space. Assume all locations are
perfectly distributed. In this case each location is expected to have2d neighbouring
zones determining the space requirement of the routing information. Moreover, for
each dimension the maximum path length is bounded byn−d. Hence, a lookup
involves at mostO(dn−d).

Tree combined with ring. In the aforementioned approaches locality was not a
design issue. However, each hop in a peer-to-peer network can take a long distance
in the underlying physical network. For example, in a geographical setting a path
of a lookup may travel between two continents several times although the source
and the destination of the lookup are close.

PRR-tress proposed in [Plaxton et al. 1997] were originally designed to min-
imise the cost of a lookup on a set of replicated objects. Although the focus of the
work was not on providing a dynamic assignment of processes to locations in com-
bination with a lookup service, PRR-trees have influenced the design of the routing
table maintained in Pastry [Rowstron and Druschel 2001] and Tapestry [Zhao et al.
2004]. Let in the followingI = {0, . . . , b − 1}. Both schemes use a prefix-based
routing mechanism in which a lookup visits in every hop a location sharing a larger
prefix with the key. Therefore, each location maintains for every prefix of lengthi
b − 1 locations which differ for a prefix of lengthi + 1, and this way the common
prefix can be increased when forwarding a lookup request. A lookup is terminated
if the location is closest to the key. In order to decide closeness, processes maintain
also a set of children of closest locations. Some of the latter have larger value and
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some are required to have lower value than the value of the maintained location –
similar to the cyclic predecessor/successor relation of Chord.

For a prefix of lengthi there are potentially many more thanb − 1 possible
locations. This freedom is used by Pastry in choosing locations according to best
locality properties.

2.5.2 Event dissemination in structured peer-to-peer systems

Besides object location services, structured peer-to-peer systems are of interest for
event dissemination systems such as group communication and publish/subscribe.
In combination with formerly mentioned structured peer-to-peer systems there exist
dissemination services such as the one described in [Ratnasamy et al. 2001; Row-
stron et al. 2001], developed for CAN and Pastry, respectively. A common tech-
nique in supporting event dissemination services is the construction ofapplication-
level multicast trees. An application-level multicast tree is a tree embedded in the
structure of the peer-to-peer system connecting a set of members forming a group.
A typical issue in constructing and maintaining application-level multicast trees
is support for self organisation, i.e. processes which are interested in receiving an
event service are responsible for being included in the multicast tree. The only
requirement is that a process needs to know the identifier of the multicast tree’s
root.

Given an application-level multicast tree it is easy to provide topic-based pub-
lish/subscribe. Each topic can be associated with a location e.g. by using consistent
hashing. This location becomes the root of the tree and all published events with
respect to the topic are forwarded via the root.

A way of constructing an application-level multicast tree, as it is proposed in
Scribe [Rowstron et al. 2001], is to perform a lookup to the root of the application-
level multicast tree. Letr denote the root of an application-level multicast tree and
p denote a process which likes to join the application-level multicast tree formed
by r. When performing a lookup tor, p takes the first process on the path tor as its
father. No other processes on the path towards the root become involved. Routing
towards the root of the multicast tree allows a decentralised self-organisation since
in the occurrence of failures a process only needs to start another lookup towards
the root. However, if the group size is small compared to the overall size of the
peer-to-peer network than this approach is expected to lead to a fairly unbalanced
tree where nodes close to the root are expected to have a fairly large number of
children.

In the approach taken by Bayeux [Zhuang et al. 2001],p first performs an
ordinary lookup tor. Afterwardsr uses the multicast tree to perform a lookup to
p. At the point where a process, sayq, cannot route any closer top, p is inserted as
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a child. This technique allows a better balance among processes, however the root
of the multicast tree is involved in every join operation. Bayeux uses the idea of
multiple root processes.

An alternative way of achieving a better balance and decreasing the involve-
ment of processes in each join is to combine the approaches taken by Scribe and
Bayeux by performing a reverse lookup from the first process on the path between
p andr.

A disadvantage of the presented solutions is that the selected root node is not
necessarily interested in being a group member, but is the most involved node in
maintaining the tree as well as in forwarding messages. Moreover, there is a fair-
ness issue since processes which join the multicast tree at a lower level are more
involved as forwarders than the majority of processes which are only consuming
messages.

A way to address the latter problem is to split the multicast data into several
items as suggested by SplitStream [Castro et al. 2003] and Bullet [Kostić et al.
2003]. Bullet considers bandwidth requirements of processes and tries to pair pro-
cesses according to already delivered content. This is achieved by performing a
protocol on top of an application-level multicast tree discovering possible pairing.
SplitStream disseminates events using a forest of multicast trees instead of a sin-
gle multicast tree. Before performing a multicast the data is split intok items and
propagated viak sources. Dissemination using multiple multicast tree sources bal-
ances the work in forwarding messages if for the different multicast trees the set
of processes performing the work in forwarding differs. This is likely because of
the uniform distribution of locations typically achieved in structured peer-to-peer
systems. Splitting of data can also be used to provide different services suited to
the demands of a process. A process which is interested in obtaining information
which requires need for higher bandwidth needs to subscribe to more multicast
trees. This is especially useful for multimedia data where data may be transmitted
using various levels of quality.

In cases were the size of data is small, splitting data could be used to achieve
redundancy, but it is not useful to share the load while disseminating the data.
Instead one may try to balance the load induced by sending a series of events, e.g.
by performing random choices in order to select which of the multiple multicast
sources to use for dissemination of an event.

2.5.3 Unstructured peer-to-peer systems for large-scale dissemination

Structured solutions to support event dissemination organise processes in some hi-
erarchical form e.g. an application-level multicast tree. Although in a faultless
execution a hierarchical organisation can give good performance, a failure close
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to the top of the hierarchy can disconnect a large set of processes. To deal with
failures we have to introduce some form of redundancy such as maintaining multi-
ple application-level multicast trees. Moreover, the protocols require some form of
continuous maintenance of data structures to achieve a good and fair balance of the
work.

In the following, we consider unstructured solutions for event dissemination
with good scalability guarantees and good resilience to failures. Instead of requir-
ing the strong end-to-end reliability as provided by virtual synchrony (cf. Sec-
tion 2.4), we look at reliability which guarantees the dissemination of an event to
all non-faulty processes expressed withhigh probability, which is with probability
1 − O(n−c) for some positive constantc.

Unstructured solutions for event dissemination follow a flat communication
model where each process maintains a possibly dynamic set of group members
called itsview. Consider the directed graph formed by inserting for each processp
an edge fromp to all members ofp’s view, If the directed graph is connected then
flooding, i.e. forwarding events to all neighbours, succeeds in disseminating an
event to all processes of a group. Alternatively, when performinggossiping, com-
munication happens with a subset of the communication partners of a view during
a round. The number of communication partners, called thefanout, is a tuning
parameter of gossiping protocols. The actual subset of communication partners is
typically chosen uniformly at random from the whole view. In the context of event
dissemination, communication can be used to either push an event, pull an event,
or perform combined push and pull.

Gossiping was originally introduced into distributed computing in the context
of data replication [Demers et al. 1987]. Since the introduction of bimodal multi-
cast [Birman et al. 1999] gossiping has received a lot of attention in group com-
munication.

The gossiping paradigm has been used under different assumptions depending
on the underlying network. While in a wired network (which we assume in the con-
text of this thesis) the view is decoupled from the physical interconnection forming
an overlay network, for sensor networks the view is formed by the direct communi-
cation partners in the range of the sensor. For sensor networks, gossiping is a way
of reducing the overall work performed during a dissemination.

In wired networks, the view is an additional tuning parameter to determine the
reliability of a dissemination. A random selection of processes inside a view and
communication partners during a round distributes the communication load evenly
between the processes of the group. In contrast to hierarchical approaches where
a failure of a process or link can affect a huge part of group members, a failure
of a process or link in gossiping protocols has only a small effect on the overall
statistical reliability provided.
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The statistical reliability of gossiping depends on the rules used for achieving
event dissemination. This comprises not only the view and the way communication
partners are selected during a round, but also the decision criteria for propagating
an event and terminating the dissemination of an event. Often the mathematical
analysis of epidemics and rumour spreading is applied to analyse the statistical
reliability of gossiping protocols. Hereby, an event is associated with a disease or a
rumour with the goal to infect as many processes as possible (see also Section 3.2).

Analytical approaches often assume that the view of a process consists of all
group members. In the setting of group communication the view corresponds to the
membership information stored at a process. Storing information about all group
members limits scalability supported by a protocol. Therefore, it is important to ini-
tialise views in a decentralised manner such that a view contains only a reasonable
small subset of the group members. The membership schemes oflpbcast[Eugster
et al. 2001a] andSCAMP[Ganesh et al. 2001] are two representative approaches.
In lpbcast the size of the view is a system parameter and the view changes dynam-
ically by exchanging continuously group members in each communication step of
the gossip protocol. This shuffling technique is intended to allow the selection of
processes from the view as if the selection took place uniformly at random over
all group members. Letn denote the number of processes inside a group andC a
constant, then SCAMP automatically adapts the average size of its view approxi-
mately tolog n + C. However, if the group membership remains static the view
also remains the same. In [Kermarrec et al. 2003] an analysis shows that a fanout
of O(log n) suffices to inform all processes w.h.p.

The scalability properties have been successfully demonstrated for collabora-
tive multi-player applications. NEEM [Pereira et al. 2003] combines gossiping
with semantic knowledge about events to reduce the number of actively dissemi-
nated events. The protocol has been tested with a fairly large number of spectators
in a distributed flight simulation.

Gossip groups have also been suggested to implement publish/subscribe. Data
Aware Multicast [Baehni et al. 2004] proposes a protocol implementing topic-
based publish/subscribe by also supporting topic hierarchies. The delivery guaran-
tee for a subscriber is related to the deliver guarantee provided by SCAMP.

2.6 Contributions

In the following chapters we look at various algorithmic aspects towards building
large-scale collaborative environments. The focus is on failure resilient and de-
centralised peer-to-peer algorithms supporting large-scale event dissemination and
interest management. For achieving event dissemination we consider structured
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and unstructured peer-to-peer systems using gossip-based event dissemination and
application-level multicast trees. For gossip-based event dissemination this thesis
presents:

• an analysis of gossip-based event dissemination,

• an evaluation of resource management,

• an evaluation of termination strategies,

• comparison of dissemination strategies,

• experimental evaluation using simulation as well as network experiments,

• consistency management supporting causal ordering,

• bootstrapping of membership in order to provide random choices.

In the context of publish/subscribe systems we consider application-level multicast
trees as well as gossiping. The main focus here is to support

• a fair work distribution according to processes interest,

• well balanced trees.

Analysis of gossiping. Chapter 3 proposes a method for analysing gossip-based
group communication systems in order to provide an end-to-end reliability guaran-
tee expressed with high probability. Typically, the analysis of gossiping is based on
an approximation modelling an epidemic using differential equations or by using
random graphs. In this thesis, gossiping is analysed by modelling the dissemina-
tion as a balls-and-bins game. Based on this method, a dissemination scheme has
been proposed which can be combined with lightweight membership algorithms.
The dissemination scheme has been evaluated in combination with lightweight re-
source management and consistency management.

Resource management. Limitations on the resources have an effect on the de-
livery guarantee of gossip-based protocols. Apart from membership information
stored at a process, gossip protocols keep a history for events which have been al-
ready delivered. This avoids multiple delivery of the same event to the application,
but is also used by some protocols as a way of termination. Since the number of
events can be large, the size of the buffer is bounded. Chapter 4 provides an analy-
sis for estimating a safe buffer size so that there is a low probability for events being
delivered multiple times. In a dynamic system the analysis can help to adapt the
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buffer size based on observable parameters. Besides the size of the buffer, the order
in which events are inserted and removed are also important and are evaluated with
different dissemination schemes.

Termination strategies. Buffer management also has an impact on the termina-
tion strategy. Often the history buffer is also used as a criterion to terminate the
dissemination of events. Chapter 4 shows that even for almost safe buffer sizes this
termination policy can lead to low reliability and a large number of multiple deliv-
eries. Since some events may propagate a long time, it is suggested to explicitly
terminate the dissemination by considering the number of hops an event performed
in the dissemination system.

Comparison of dissemination. In the traditional analysis of rumour spreading
(cf. [Pittel 1987]), a process communicates with only one process at a time. Each
process needs to gossip about an event received for as many rounds as it takes until
every process of the group has received the event w.h.p. This dissemination strategy
may limit the amount of events which can be disseminated at the same time if many
concurrent events exist in the system.

Approaches likepbcast[Birman et al. 1999] andlpbcast[Eugster et al. 2001a]
suggest instead to disseminate an event only the first time it is observed by provid-
ing at the same time a higher fanout. However, in order to provide guarantee w.h.p.
the fanout needs to be at least inΩ(log n).

According to theballs and bins disseminationproposed in Chapter 3 a pro-
cess propagates an event whenever it receives it unless the event has travelled the
maximum number of allowed hops.

Chapter 4 evaluates both dissemination schemes in combination with a frame-
work which supports the dissemination of concurrent events. Balls and bins dis-
semination has been shown to provide a better message stability by using the same
amount of traffic and requiring a low number of multiple deliveries.

Consistency management. Gossip-based protocols per se do not provide any or-
dering guarantees. Chapter 5 proposes a lightweight dynamic consistency manage-
ment which can be combined with lightweight dissemination algorithms. The pro-
posed consistency management implements an optimistic causal ordering of mes-
sages. The key to provide scalability is to limit the number of concurrent updater
by providing a dynamic, decentralised and fault-tolerant cluster management proto-
col. The delivery guarantee of gossip-based dissemination gives good performance
results in combination with the causal ordering protocol since only a small amount
of communication deals with recovery messages and the likelihood of overloading
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a process is reduced. The evaluation also shows that the ordering scheme adds only
a low overhead.

Experimental evaluation. In order to support the evaluation of dissemination
schemes presented in this thesis, a simulation as well as a group communication
framework have been developed. The simulation considers a synchronous execu-
tion model. In each round all processes receive incoming messages which were sent
in the previous round, perform a computation, and send messages to be delivered
in the next round. The communication assumes an overlay in which a process can
exchange information with any other process it is aware of. On top of this model,
all discussed variations for achieving dissemination and buffer management dis-
cussed in Chapter 4 were implemented in combination with a lightweight dynamic
membership algorithm similar to lpbcast. The simulation has been used to follow
the lifetime of events in the dissemination system and could reveal the importance
of event termination.

In order to evaluate the behaviour in a networked environment an object-ori-
ented group communication framework has been implemented supporting multiple
multi-threaded layers. The basic layer, the group communication interface, pro-
vides basic point-to-point communication by using UDP or TCP as the transport
protocol. The group communication layer is a group object which implements
membership services as well as multicast on top of the basic layer. Within the
framework it is possible to maintain multiple group objects using different im-
plementations at the same time. The group interface will propagate events to the
correct group object. It is possible to establish several layers on top of a group
object.

The experiments in Chapter 5 use the balls-and-bins dissemination in combi-
nation with the general group communication framework described in Chapter 3
and a lightweight dynamic membership protocol. The causal ordering algorithm is
implemented as a layer which can be also used in combination with other group
objects. The network experiments served to measure the performance of the dis-
semination system regarding throughput, latency, message size, and the impact of
causal event ordering. Moreover, the experiment revealed several issues in tuning
the dissemination algorithm: using TCP as a transport does not show significantly
worse performance to UDP. Moreover, in combination with timeouts TCP provides
feedback on how to set parameters as to the duration of a gossip round. If pro-
cesses perform gossiping by using approximately the same round duration then the
protocol gives a higher reliability.

Bootstrapping of membership. An assumption made for pbcast and balls and
bins dissemination is that a process can selectK random processes from its view
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as if the processes have been chosen uniformly at random among all processes
of the system. In an unstructured peer-to-peer network one can use the shuffling
technique of views proposed by lpbcast to obtain an approximate random view.
However, it is not clear whether an algorithm using this approximation is required
to maintain a larger fanout and how large the view needs to be maintained.

In Chapter 6 the bootstrap problem is approached in a structured peer-to-peer
system by using a technique called random routing. This allows one to maintain a
view as small as the required fanout for the dissemination.

Fair work distribution. Achieving publish/subscribe in peer-to-peer systems by
using application-level multicast trees may distribute the work in forwarding un-
evenly among processes and also involve processes which do not share an inter-
est in the event they disseminate. Chapter 6 proposes a topic-aware peer-to-peer
membership which allows one to route between processes sharing the same interest
without involving any processes which do not share the same interest.

Balanced trees. Application-level multicast trees as discussed in Section 2.5.2
often are not well balanced or the maintenance for balancing a tree frequently in-
volves the root. By using random routing in a role-based distributed hash table,
Chapter 6 shows how one can construct a forest of well balanced application-level
multicast trees.
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Three

Simple Gossiping with Balls and
Bins

Boris Koldehofe

Abstract

Recent research suggests decentralised probabilistic protocols on support
for multipeer communication. The protocols scale well and impose an even
load on the system. They provide statistical guarantees for the reliability, i.e.
an information sent from an arbitrary source will reach all its destinations.
Analysing the reliability is based on modelling the propagation of events as
an epidemic process often referred to as gossiping or rumour spreading.

This work1 provides a new method for analysing such protocols, by
representing the propagation of information as a balls-and-bins game. The
method gives a simple relation between the number of hops a gossip mes-
sage is propagated and the reliability provided. This way it can facilitate the
analysis of the multiple delivery problem i.e. to prevent multiple deliveries
of the same message to the application layer. By introducing a new proto-
col it is shown how existing approaches can be adapted to the balls-and-bins
approach. Furthermore, the proposed method is applied to analyse the per-
formance of this protocol.

1A version of this paper has been published in the proceedings of the 6th International Conference
on Principles of Distributed Sytems (OPODIS’02)
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3.1 Introduction

Multipeer communicationapplies to all scenarios where multiple senders and mul-
tiple receivers, associated with physically distributed processes, communicate in-
formation of common interest. Processes sharing a common interest form a group,
in which they exchange messages on information. Every piece of information is
embedded in anevent, which processes deliver to the application layer of the pro-
tocol. Supporting collaboration for large groups of users can be seen as one ap-
plication relying on multipeer communication. Group members require a fast and
reliable propagation of events within such an environment. Moreover, the group
needs mechanisms that allow an efficient handling of membership, i.e. ongoing
joining and leaving of group members should not add a significant overhead to the
group communication.

General aspects of interest in group communication concern thereliability of
the communication and thescalability of the protocol. Reliable group communi-
cation protocols provide guarantees that group events reach all their destinations.
They may also be required to give ordering guarantees, which are needed in many
cases where shared data objects are modified with respect to some consistency
model. Reliable group communication protocols must also be robust against faults
and bursts in the communication traffic. Apart from providing guarantees that an
event will be delivered, some models are also concerned with prohibiting multiple
deliveries of events to the application. Protocols that lack this property are said to
suffer from themultiple deliveryproblem. Thescalability of a group communi-
cation protocol is determined by how many group members can be supported and
which reliability mechanisms are provided.

A common categorisation used in [Wittmann and Zitterbart 1999] divides pro-
tocols supporting group communication services in three different classes.

Reliable group servicesguarantee that if an event is delivered to one destina-
tion it will eventually be delivered to all operating destinations. Further, ordering
guarantees for events are provided. However, these requirements imply a high syn-
chronisation overhead for such protocols. The high communication cost let those
protocols scale only to a low number of processes.

Unreliable group servicesfocus on best effort strategies which scale well. Un-
der ideal conditions some protocols even give reliability guarantees. However, un-
der perturbed conditions the protocols can show unpredictable behaviour and thus
cannot be used for time critical applications.

The focus of this paper is on group services that providepredictable reliability
guaranteeswhich scale well and hold even under perturbed conditions. In particu-
lar, we focus on those protocols which are based ongossipingor rumour spreading
where processes exchange in every round messages on events according to a prob-
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abilistic scheme. By processes communicating with random destinations, hot spots
are avoided, compared to the typically hierarchical flow of events within reliable
group services. In the context of gossiping protocols, an event is also called a
rumour. This notation is commonly used in the analysis of gossiping protocols.

Organisation of this paper. Section 3.2 introduces theepidemic model, which
is the mathematical foundation for most existing gossiping protocols, followed by
a presentation of known theoretical results for this model. Further, an overview is
presented on related protocols based on gossiping in the area of multipeer com-
munication. Some of the protocols use an approximation of the theoretical results
presented. In the next sections it is shown how to modify the epidemic model so
that the balls-and-bins analysis can be applied. A definition of aballs-and-bins-
compliant gossiping protocolis introduced in Section 3.3, where the balls-and-bins
approach is described. In Section 3.4 a new protocol with this property is de-
scribed. The framework of the protocol is based on recently proposed protocols
for this problem, such aspbcast[Birman et al. 1999] andlpbcast[Eugster et al.
2001a]. Moreover, Section 3.5 presents an analysis based on the balls-and-bins
model. Hereby, the reliability of the protocol is determined as a statement with
high probability that all processes will receive an event propagated within such a
system after gossiping this event for a fixed number of rounds. The event can origi-
nate from any arbitrary process. Section 3.6 discusses the applicability of the given
approach in the context of themultiple delivery problem.

Remarks on the notation. Throughout the paperlog and ln denote the loga-
rithms in basis of2 and basis ofe, respectively. For any other basis, saya, the
logarithmic function is expressed asloga. In the analysis the expression “with high
probability”, i.e. with probability1 − O(n−k) for a constantk > 0, is abbreviated
by writing w.h.p.

3.2 Related work and models

The epidemic model. The idea of applying the mathematical theory of gen-
eral epidemics [Bailey 1975] to rumour spreading in distributed systems was first
adapted in [Demers et al. 1987]. In this approach, the protocol models the spread-
ing of a rumour as an epidemic process, with the purpose to infect as many other
processes as possible. Processes can be

1. susceptibleto the rumour, i.e. they have not received the rumour yet,
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2. infectedby the rumour, i.e. the rumour is received and processes are spread-
ing this rumour to other processes,

3. resistant, i.e the process has received the rumour, but does not participate in
the propagation of the rumour.

Let s, i, r denote the fraction of susceptible, infected and resistant processes at time
t such thats+i+r = 1. Assume that within the time fraction∆t the infectious rate
denoted byα is proportional to the number of infected processes and to the number
of susceptible processes, respectively. Then, the fraction of new infection is given
by αis∆t. On the other hand, the constant removal rate denoted byβ needs to be
considered, such that the fraction of new resistant processes is given byβi∆t. The
resulting differential equations are given by

δs

δt
= −αsi

δi

δt
= αsi − βi

δr

δt
= βi.

By i(t) = i(t(s)) we can expressi as a function ofs. Hence,

δi

δs
=

αsi − βi

−αsi

= −1 +
β

α

1
s
.

Let s0 denote the initial fraction of susceptible processes whilei0 denotes the initial
fraction of infected processes. The anti-derivative for−1 + β

α
1
s is given by−s +

β
α ln s + C. Applying i0 = −s0 + β

α ln s0 + C, we obtain

i(s) = i0 + s0 − s +
β

α
ln

s

s0
.

The maximum number of infected processes at the same time is given byi(β
α ). The

term β
α also represents the threshold for the ratio of susceptible processes needed to

start an epidemic. The epidemic process terminates ifi(s) = 0, which is the case if

s = s0 e
α
β

(s−i0−s0).

Initially, only one process knows about the rumour ands0 + i0 = 1. Thus for large
groups,

s ≈ e−
α
β

(1−s).
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Theoretical bounds. Theoretical work presents results on how to bound the num-
ber of rounds and the number of transmissions needed to infect every process with
high probability.

B. Pittel [Pittel 1987] analyses a simplified model, in which processes never
loose interest, i.e. the removal rate is zero. Letn denote the group size and assume
that an infected process informs only one other process in a round. In probability
the number of rounds needed to infect all group members is determined by

log n + log10 n + O(1) as n → ∞

Karp et al. [Karp et al. 2000] introduce a combined push and pull scheme in
which processes cease to push a rumour when the expansion of the rumour has ex-
ceeded a certain threshold. Since the basic scheme is based on an exact estimation
on the number of informed processes, an algorithm for terminating the spreading
of the rumour is introduced. The complete scheme is address-oblivious, i.e. it does
not depend on the state of neighbour processes. The number of transmissions of
the scheme isO(n log log n). Further, it is shown that any such scheme needs at
leastΩ(n log log n) transmissions independent of the number of rounds.

Rumour spreading in group communication. Rumour spreading (gossiping)
has received a lot of attention in group communication, especially after the in-
troduction ofpbcast[Birman et al. 1999]. The arguments in favour of rumour
spreading are that those protocols introduce an even load on the system and are ro-
bust against bursts in the network traffic. Further, they usually provide mechanisms
that support fault tolerance and scale better than deterministic approaches. The re-
liability is based on an approximation of the epidemic model, in which each event
associated with a rumour will be spread to all other processes with high probability.
However, approaches likepbcastrely on global knowledge of all group members
and often on a centralised organisation of membership. This way the organisation
of a dynamic membership, i.e. processes can join a group or leave a group, requires
a lot of synchronisation overhead and a lot of memory resources affecting the scal-
ability. In contrast, recent work [Ganesh et al. 2001; Eugster et al. 2001a] suggests
protocols that support decentralised handling of membership where processes only
have a partial view on the system.

In lightweight probabilistic broadcast(lpbcast) [Eugster et al. 2001a] the size
of the view, i.e. the set of group members known to a process, as well as the size
of buffers storing recent events, are statically fixed. When propagating an event,
a process communicates only with a fixed number of processes randomly chosen
from the local view. The reliability is derived by an approximation of the theoretical
result presented in [Pittel 1987]. With respect to the approach introduced in this
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paper, it provides the interesting property that the view converges to a situation
where it is as if members of the local view have been selected uniformly randomly
among all group members.

Similar to lpbcast SCAMP[Ganesh et al. 2001] presents a scheme support-
ing decentralised group services. However, instead of using a fixed view size, the
membership scheme takes care that the view automatically adapts depending on
the group size. The local view size converges to approximatelylog n + C + 1
wheren denotes the group size andC is a constant determining the fault tolerant
behaviour of the protocol. The reliability of the event transmission is related to
the connectivity in the random graph model and is analysed in [Kermarrec et al.
2003].

3.3 The balls-and-bins model

The occupancy problem considers a random allocation ofm indistinguishable ob-
jects denoted by balls onn destinations denoted as bins. Many problems in com-
puter science can be modelled using the occupancy problem. For example, in dis-
tributed computing the random allocation problem has received a lot of attention.
One of the many issues in the analysis is to bound the maximum number of balls
that can fall into a single bin.

In the setting of spreading a rumour amongn processes, we associate each
process with one bin. LetHn =

∑n
k=1

1
k denote thenth harmonic number. If the

rumour is carried within balls which are randomly placed into bins, it is known
thatnHn balls are expected to be placed until every process has received at least
one ball. To obtain a statement with high probability, i.e. with probability at least
1 − n−k for some positive constantk, we look at the random variableX denoting
the number of empty bins and the respective expectation value

E[X] = n

(
1 − 1

n

)m

.

Since forn ≥ 1 the inequality
(
1 − 1

n

)n ≤ e−1 holds, the expectation value can
be bounded by

E[X] ≤ ne−m/n.

Indeed, we can also writeE[X] ∼ ne−m/n. By choosingm and k such that
m = cn log n andk ≥ c + 1 for a constantc > 1, one can deriveE[X] ≤ n−k.
From Markovs inequality it is known thatPr[X ≥ 1] ≤ E[X], which gives

Pr[X = 0] ≥ 1 − n−k.
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This reasoning, summarised in theorem 3.3.1, is the basis for the approach of
analysing the rumour spreading as a balls and bins game.

Theorem 3.3.1 Let c > 1 be a constant and letm denote the number of balls
that are placed inton bins chosen uniformly and independently at random. If
m ≥ cn log n then every bin contains at least one ball with high probability.

Now, the balls-and-bins model is introduced by defining what aballs-and-
bins-compliant gossiping protocolis. Hereby, it is required to send a rumour to
O(n log n) destinations which are uniformly and independently chosen at random.
Since balls representing a rumour can only be placed by processes that have re-
ceived the rumour before and initially only one process knows the rumour, it is al-
lowed that the rumour is propagated in multiple rounds. This way, processes which
received balls in previous rounds can create themselves new balls. As long as balls
are placed in each round independently of the round the ball was created, the pro-
tocol can terminate after overallO(n log n) balls have been placed. The resulting
scheme of a balls-and-bins-compliant protocol, as defined in definition 3.3.1, is
illustrated in Figure 3.1.

Definition 3.3.1 A protocol for spreading a rumour is said to be balls-and-bins-
compliant if for some fixed integerr > 0 and a constantc > 1

• the protocol provides a scheme that createsmi > 0 balls associated with the
rumour in consecutive rounds1 ≤ i ≤ r,

• the protocol guarantees that
∑r

i=1 mi ≥ cn log n,

• the destination of each ball is chosen uniformly at random and independently
of the destination of the other balls,

• and the protocol terminates afterr rounds, i.e.mi = 0 for all i > r.

Corollary 3.3.1 Any balls-and-bins-compliant protocol terminating afterr rounds
informs all processes about a rumour with high probability.

With respect to a rumour and a set of balls associated with the rumour, in this
scheme a process is

• susceptiblewhen no ball has fallen into the bin associated with the process
for the first time,

• infectiouswhenever it creates balls that are placed randomly into some bins,
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m1 balls

...

. . . ∑r

i=1
mi ≥ cn log n balls

round1:

round2:

roundr:

m1 + m2 balls

mr

m2

m1

. . .

. . .

. . .

. . .

. . .

Figure 3.1: A scheme for spreading a rumour that terminates afterr rounds and
guarantees that at leastcn log n balls where placed into random bins.

• andresistantwhen the process knows about the rumour, but does not create
balls.

Compared to the state description of the epidemic model shown, the description
based on balls and bins is more flexible regarding the state changes of a process.
The balls-and-bins model allows processes to change several times between being
infectious and being resistant without affecting the underlying analysis.

In the next section a scheme implementing a balls-and-bins-compliant protocol
is introduced. Further, the number of rounds the protocol needs to terminate is
analysed for a fixed fan-out value.
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3.4 A balls-and-bins-compliant protocol

The balls-and-bins compliant protocol obtained in this section considers a frame-
work which also applies to epidemic protocols. Note that such a framework is not
only intended to propagate new events fast, but must also be able to organise the
membership of a group, i.e. it must deal with members joining and leaving the
group.

Hereby, a groupG = {p1, . . . , pn} is defined as a set of processes. Processes
exchange in every roundgossipmessages where each gossip message includes in-
formation about members that joined the group, members that left the group, and
events to be delivered to the application layer of the gossip protocol. In order to
keep track of possible communication partners, each processpi maintains a view
Vi ⊂ G. Let K denote the fan-out, i.e. the number of communication partners
chosen in a round. Each processpi communicates withK communication part-
ners chosen uniformly at random from its viewVi. The framework of the protocol
is based on every process doing the following computation in every synchronous
round (see also the basic protocol in Figure 3.2):

1. evaluate received gossip messages by processing joining and leaving mem-
bers and events

2. create a new gossip message and send it toK randomly chosen neighbours
known from the view

For the later analysis it may be helpful to keep in mind that the destination of a
gossip message will determine the destination of a ball associated with an event.

The first part of the framework is concerned with the maintenance of the local
view of processes. The evaluation of members which either join the group or leave
the group determines the new view of the process. In the following we assume that
the view of a process allows the selection ofK randomly chosen elements from
the whole group. If the process maintains only a partial view, we consider only
schemes as [Ganesh et al. 2001; Eugster et al. 2001a] where the views converge
to a uniform random distribution.

The second part of the framework deals with the propagation of events such
that every process can receive the event. Therefore, we provide a scheme in order
to place sufficiently many balls associated with an event into distinct bins. By using
a set denoted bynewevents, a process keeps track of the events which have been
delivered in the current round. Another set denoted byhistory contains the events
which have been delivered to the application layer. An evente with e ∈ newevents
ande 6∈ historywill be added tohistoryand delivered to the application layer.

In order to provide termination for the propagation of an event, each event is
associated with atag value, which indicates the number of rounds the event has
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Basic Protocol:

for all rounds in whichpi ∈ G do
evaluate received gossip messages by processing joining and leaving members
and events
create a new gossip messageM
for l = 1 to K do

choosej ∈ Vi uniformly at random
sendM to pj

end for
end for

Evaluation of events:

for all eventse received in a rounddo
if e 6∈ history then

deliver(e)
end if
tag= gettag(e)
if tag < r then

M = M ∪ (e, tag + 1) /* add the event to the gossip messageM */
end if

end for

Figure 3.2: The balls-and-bins compliant protocol consists out of the basic protocol
and the evaluation of events. It can be adapted to various schemes determining the
membership of a group.

been propagated. A new gossip message contains, in addition to the information on
members joining and leaving the group, all eventse ∈ neweventswhose tag value
is smaller than a parameterr, indicating the maximum number of rounds an event
needs to be propagated.

The complete scheme including the basic protocol and the evaluation of events
is illustrated in Figure 3.2. Only the evaluation of members joining and leaving
the group is omitted since the protocol is intended to serve many different ways to
organise the membership.

Now, one can look at the spreading of each event as a separate balls and bins
game, where the placing of the balls is determined by the random destination of
the gossip message. Whenever a process receives an event which has stayed less

42



Performance analysis

thanr rounds in the system, the process will createK balls, which are sent withK
different gossip messages to their destinations. Hence, by choosingr = cn log n
for c > 1 we can derive theorem 3.4.1.

Theorem 3.4.1 Let K denote the fan-out and letr denote the maximum number
of rounds an event is propagated with respect to the provided gossiping scheme.
Then, for anyK ≥ 1 there exists a fixedr such that the provided scheme becomes
balls-and-bins-compliant.

Note that the introduced scheme makes explicit use of the possibility to al-
low processes to change states between being infectious and being resistant several
times. In the following section a performance analysis is presented, which bounds
the value ofr depending on the fan-outK.

3.5 Performance analysis

The focus of this analysis is to bound the number of rounds indicated by parameter
r such that the introduced balls-and-bins-compliant protocol of the previous section
can be applied for practical purposes. The reliability of the protocol is expressed
as a guarantee that an event created by a process will reach all other processes
with high probability. As a main result it is shown that for a small fan-outK =
d2e ln n/ ln ln ne, it is sufficient to chooser = O(log n) to guarantee the delivery
of an event to all destinations w.h.p. Further, an analysis for constant fan-out proves
thatr = O(

√
n) is sufficient.

The analysis is based on the balls-and-bins model introduced in Section 3.3 and
uses in particular corollary 3.3.1. We must ensure that withinr rounds sufficiently
many balls associated with an event are created. This is achieved by examining the
number of balls which are placed within a roundi denoted bymi and determining
r such that

r∑
i=1

mi ≥ cn log n w.h.p.

Hereby, we aim to relate the number of balls which are placed into random bins
within two consecutive rounds, i.e. we are looking for a statement such that for a
positive constantd > 1

mi+1 ≥ d · mi w.h.p. (3.1)

From such a statement it is shown how one can derive the number of rounds until
a minimum number of balls is created in every round, where the number of rounds
needed is required to be logarithmic in the minimum number of balls. Therefore,
similar to the random allocation problem we look into the maximum number of
balls that may fall into any single bin.
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Theorem 3.5.1 Let m denote the number of balls, which are placed inton bins
chosen uniformly and independently at random. Ifm ≤ n holds, then every bin
contains no more thane ln n

ln lnn balls with probability 1
n .

The proof is not presented since a detailed proof of this theorem is given in [Mot-
wani and Raghavan 1995] (see pages 44 ff.). A generalisation of theorem 3.5.1 can
be found in [Raab and Steger 1998].

Let nowmi denote the number of balls placed into random bins in theith round.
Applying theorem 3.5.1 leads to the following corollary, which gives an estimate
of how much time is needed until we can expect at leastn balls to be placed into
bins within a round.

Corollary 3.5.1 If K ≥ 2e ln n
ln lnn andmi ≤ n, thenmi ≥ 2mi−1 with probability

1 − 1
n .

Finally, from theorem 3.5.2 we can conclude that the protocol needsO(log n)
rounds to terminate.

Theorem 3.5.2 LetK denote the fan-out of the presented balls-and-bins compliant
protocol. IfK ≥ 2e lnn

ln lnn , then afterO(log n) rounds every process of the group is
informed about an event w.h.p.

Proof. We show that afterO(log n) rounds an overall ofcn log n balls have been
placed into bins.
Let ξi denote the event that the number of balls did not double in roundi for which
m ≤ n. Then, by corollary 3.5.1 it follows that

Pr[ξi] ≤ 1
n

.

Therefore, the occurrence of any event can be expressed as the union oflog n events
ξi:

Pr[ ∪log n
i=1 ξi] ≤

log n∑
i=1

ξi ≤ n−1/2

and thus afterlog n rounds the number of balls placed into random bins in a round
is at leastn with probability1 − n−1/2.
Using the same argument for the nextc log n rounds, the number of created balls in
a round will not decrease belown with probability1 − c n−1/2.
Hence, with probability1 − o(1), cn log n balls have been created and placed into
random bins after(c + 1) log n rounds. 2

Note that lnn/ ln lnn grows very slowly, so that the fan-out value can be
regarded as sufficiently small for all practical purposes. Further, the maximum

44



Performance analysis

number of messages a process receives in a round is expected to be smaller than
O( log n

ln ln n) since the number of balls which are created within one round is clearly
bounded byKn, and placingO(n log n) balls randomly into bins gives a maximum
of O(log n) balls in each single bin.

If we assume that the fan-outK is constant, one needsΩ(log n) rounds as we
cannot expect to place more thanKn balls in a round. Further, as stated in theo-
rem 3.5.3, it is shown in the following thatO(

√
n) rounds are sufficient. To deter-

mine the result, we examine once again for which values it is possible to achieve a
statement as given by equation 3.1.

Lemma 3.5.1 If m ≤ √
n log20(n) holds, then every bin contains no more than6

balls with probability 1
n .

Proof. For m =
√

n log20(n) the probability that bini receives exactlyj balls is
given by (

m

j

)(
1
n

)j (
1 − 1

n

)m−j

≤
(

em

jn

)j

=
(

e log20(n)
j
√

n

)j

.

Let ξi(k,m) denote the event that bini hask or more balls in a bin after m balls
have been tossed. Then fork ≥ 6,

Pr[ξi(k,m)] ≤
n∑

j=k

(
e log20(n)

j
√

n

)j

≤
(

e log20(n)
k
√

n

)k 1

1 −
(

e log20(n)
k
√

n

)

≤ 2
(

e log20(n)
k
√

n

)k

.

In particular, for the eventξi(6,m) we obtain

Pr[ξi(6,m)] ≤ 2
(

e log20(n)
6
√

n

)6

.

By applyinglog20(n) ≤ n1/3, it follows that

Pr[ξi(6,m)] ≤ n−2.
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Taking the union of the eventsξi(6,m), for i = 1, . . . , n, yields the desired result.
2

Using the same proof technique as for theorem 3.5.2 one can derive theorem 3.5.3.

Theorem 3.5.3 LetK denote the fan-out of the presented balls-and-bins compliant
protocol. If K ≥ 12 holds, the protocol needsO(

√
n) rounds in order to inform

every process of the group about an event w.h.p.

3.6 Discussion

Although the epidemic model has been shown to be useful to estimate the perfor-
mance of various protocols, it is a hard problem to obtain a precise bound if one
assumes limitations on the resources available to processes. As motivated bylpb-
cast[Eugster et al. 2001a] andSCAMP[Ganesh et al. 2001] the next generation
of protocols will exactly deal with these requirements.

To cope with limited resources, the epidemic model needs to consider the pos-
sibility that a resistant process may become susceptible again. Although in general
this scenario is undesirable, it occurs when protocols limit the size of the history
buffer. The history buffer itself determines whether a process can stay resistant
against an event. If a process deletes an event too early from its history buffer it
is susceptible again and potentially delivers the event multiple times to the appli-
cation layer. In this case the protocol is said to suffer from themultiple delivery
problem. Even worse an epidemic process which almost stopped could be started
once over again, thus preventing the epidemic process to terminate. In fact, simu-
lation results confirm that even a small infection rate of new events can lead to a
significant overhead.

This scenario requires to consider more differential equations and needs a far
more complex analysis. Therefore, the motivation for this work was to provide a
simpler model as an alternative. The analysis as presented in Section 3.5 is based
on elementary mathematics and can this way facilitate the buffer analysis by exam-
ining the collisions of balls containing different events.

3.7 Conclusion

This work has shown an alternative approach of analysing gossiping based on the
occupancy problem. With respect to the balls-and-bins model, a new protocol is
presented based on existing practical approaches [Eugster et al. 2001a; Birman
et al. 1999]. The maintenance of the group membership can be adapted to various
schemes which allow processes to select uniformly random group members from its
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view. The reliability of the protocol is proven as a statement with high probability
that an event, created by an arbitrary process, will reach all group members. The
presented analysis shows that an event needs to remain forO(log n) rounds in the
system if the fan-out isd2e ln n/ ln ln ne, andO(

√
n) rounds if a constant fan-out

is used.
The future work focuses on analysing the tightness of the presented bounds.

Moreover, an analysis on the average number of gossip messages imposed by the
spreading of an event is needed. Note that only a lower bound can be derived
from the fact that at least an overall ofcn log n messages are needed in order to
ensure that every process receives the event with high probability. Finally, work
in progress looks into ways to manage buffer space so as to improve the multiple
delivery problem discussed in Section 3.6.
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Four

Buffer Management in
Probabilistic Peer-to-Peer
Communication Protocols

Boris Koldehofe

Abstract

In multipeer communication decentralised probabilistic protocols have
received a lot of attention because of their robustness against faults in the
communication traffic and their potential to provide scalability for large groups.
These protocols provide a probabilistic guarantee for a propagated event to
reach every group member. Recent work aims to improve the scalability of
such protocols by reducing memory requirements. In saving memory re-
sources, the history buffer, which is used to “remember” received events and
to prevent multiple deliveries of events to the application, plays a very signif-
icant role. In this paper1 we examine how the buffer size should be chosen
to challenge the multiple delivery problem. Further, we propose and evaluate
several methods of organising the dissemination of events in order to pro-
vide high reliability and reduce the number of multiple deliveries at the same
time.

Keywords: peer-to-peer communication, multipeer communication, gossiping, network-
ing, evaluation, fault tolerant communication, fault tolerant protocols

1A version of this paper has been published in the proceedings of the Proceedings of the 22nd
Symposium on Reliable Distributed Systems (SRDS ’03)
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4.1 Introduction

Many distributed applications like multi-user collaboration rely on multipeer com-
munication. In multipeer communication processes sharing a common interest
form a group. Inside a group multiple senders can communicate with multiple
receivers on a peer-to-peer basis (many-to-many communication) by sending infor-
mation embedded in anevent. Multipeer communication must

• provide a management of group membership to support processes joining
and leaving a group,

• give reliability guarantees of the communication,

• provide scalability which is determined by the number of processes sup-
ported and the reliability provided,

• and be robust against multiple deliveries of the same event to the application.

The focus of this paper is on lightweight probabilistic peer-to-peer dissemina-
tion protocols like lpbcast [Eugster et al. 2001a; Eugster et al. 2001b], SCAMP
[Ganesh et al. 2001], and [Koldehofe 2002]. While previous approaches require
processes to maintain a full view of all group members, these protocols aim to save
memory resources by introducing for processes a partial view of the whole group.

In this paper we study another important and memory intensive resource of
lightweight probabilistic dissemination protocols, thehistory buffer. While deter-
ministic approaches maintain a history of events in order to handle retransmis-
sion of events (a study of such a kind of buffer management is presented in [Xiao
et al. 2002]), the history buffer in lightweight probabilistic dissemination protocols
serves a different purpose. Lightweight approaches use the history buffer in order
to detect whether an event, received by a message, isnew, i.e. it is delivered for the
first time. Since the flow of information is non-hierarchical and we aim for many-
to-many communication, onecannot rely on global sequence numberswhich could
be used to detect new events. Instead, a structure like the history buffer is needed to
make the protocol robust against themultiple delivery problemwhich is the occur-
rence of multiple deliveries of the same event to the application. The information
whether an event is new is sometimes also exploited in order to decide whether to
end the dissemination of an event.

Limited resources, for instance in embedded systems [Davis et al. 2000; Gupta
et al. 2001], indicate the need for restrictions on the size of the history buffer. How-
ever, a process which provides only a buffer of bounded size becomes vulnerable
to multiple deliveries. As shown in the study of lpbcast [Eugster et al. 2001b] the
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size of the buffer can affect the reliability of the protocol. Events may stay a long
time in a system and reduce the probability of successful delivery for other events.

It is a difficult problem for processes to estimate a suitable size of their buffers
in order to avoid multiple deliveries. Processes themselves are not aware of hav-
ing delivered the same event multiple times. However, the occurrence of multiple
deliveries themselves may change the settings of the system, for instance the time
during which events stay in the system may increase. At the time, in order to esti-
mate a suitable buffer size, processes can mainly rely on

• observations of the frequency at which new events are created,

• an estimation of the group size,

• and an estimation of the time events are disseminated in the system in order
to provide reliability.

So far only little work has been carried out to study the buffer management of
lightweight probabilistic dissemination protocols. In [Kouznetsov et al. 2001] a
framework is shown in which events are removed from their buffer depending on
their age, which is determined by the number of hops an event has performed. The
study evaluates on the example of pbcast [Birman et al. 1999] and lpbcast [Eugster
et al. 2001a] possible improvements of the approach in throughput and message
stability (i.e. all members of a group have received the event).

In this paper we study buffer management and dissemination with respect to the
multiple delivery problem by combining reliability with the avoidance of multiple
deliveries for an event. We present a model which relates the buffer system to a
queueing model. Based on this model we show an analysis suitable to estimate the
vulnerability to multiple deliveries by determining from known parameters in the
system when the size of the buffer becomes critical. For critical buffer sizes we
show that events need an explicit way to terminate the dissemination. Building on
these results and previous work [Koldehofe 2002], we propose and evaluate several
ways to organise buffer space in order to provide high reliabilityanda low rate of
multiple deliveries.

Organisation of the paper. In Section 4.2 background information on probabilis-
tic multipeer communication is presented. Section 4.3 relates the buffer system to a
queueing model and proves a bound on the occurrence of multiple deliveries in any
dissemination system. Further, in Section 4.4 the impact of the dissemination on
multiple deliveries is studied based on common ways to disseminate events and a
general framework which supports multiple event dissemination and management
of group membership. It is shown that events need to provide an explicit way to
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terminate the dissemination. Building on this result, Section 4.5 proposes several
approaches to manage buffer space and provide termination to the dissemination.
In Section 4.6 the proposed approaches are evaluated together with the introduced
dissemination systems.

4.2 Background

This section gives some background information on the existing literature on prob-
abilistic multipeer communication protocols, as well as reliability and scalability
properties.

Generally in group communication, reliability is the guarantee that an event
will inform all group members. One can express reliability guarantees for group
services (see also [Wittmann and Zitterbart 1999]) by distinguishing among group
services which are i)reliable, i.e. either all non faulty processes or no process will
be informed about an event sent by a process, or ii)predictable reliable, i.e. the
protocol gives a probabilistic guarantee that events will reach all non faulty group
members.

Virtual synchrony [Birman and Joseph 1987a], a deterministic approach, satis-
fies the (strong) reliability criteria in the presence of faults, but provides only very
limited scalability. More recent deterministic approaches like receiver-initiated and
hierarchical approaches improved scalability a lot. However, receiver initiated ap-
proaches like SRM [Floyd et al. 1997] require unbounded memory and synchroni-
sation of timers, while hierarchical approaches like RMTP [Lin and Paul 1996] do
not provide, as required in the definition of reliability, full end-to-end reliability in
the occurrence of faults.

Alternatively, one can reason on predictable reliability. Protocols based ongos-
siping provide predictable reliability and they can scale at the same time to large
groups. Gossiping protocols in group communication have received a lot of atten-
tion since the introduction of pbcast [Birman et al. 1999]. The communication in
each round is based on a process selecting its communication partners at random.
Because of the non hierarchical flow of information a failure of a single process
affects the overall reliability only very little.

The predictable reliability of gossiping protocols is often related to an approxi-
mation of the epidemic model [Bailey 1975], which was first adapted to distributed
computing in the context of replicated databases [Demers et al. 1987]. The dis-
semination of events is handled to infect as many processes as possible. Analytical
evaluation of several variants of the epidemic model [Pittel 1987; Karp et al. 2000]
allows to give a probabilistic guarantee of the number of processes that will receive
an event as well as to bound the number of rounds to terminate the protocol. Ide-

52



Modelling and analysing the history buffer

ally, the guarantee is given with high probability, i.e. with probabilityO(1−(n−k))
wherek is a constant andn denotes the number of processes.

While previous approaches usually consider a process to know all members of
the group, recent work like lpbcast [Eugster et al. 2001a] and SCAMP [Ganesh
et al. 2001] showed how to provide for processes a partial view on the group. Fur-
ther, the protocols have a decentralised membership scheme inherent. The member-
ship scheme allows processes to join and leave the group arbitrarily by contacting
any process of the group. The reliability of lpbcast is based on maintaining the
distribution of members inside a view such that a process can choose its communi-
cation partners as if they were chosen uniformly at random among all members. In
SCAMP the reliability is based on modelling the possible choice of communication
partners as a random graph.

The communication of gossiping protocols usually happens by processes send-
ing gossip messages toK destinations in a round, whereK denotes thefan-outof
the protocol. In an asynchronous setting, a process sends gossip messages to its
destination periodically after a fixed time interval has passed. Selecting communi-
cation partners at random makes these protocols robust against processes and link
failures. Moreover, the load of the communication is evenly distributed among all
processes. Thedissemination systemof a gossiping protocol decides which events
a process includes in a gossip message and how the destinations are chosen. In
addition, it decides when to deliver an event to the application. To provide relia-
bility most dissemination systems reflect the epidemic model. An important aspect
for analysing the performance of gossiping protocols is to obtain a good estimation
on the number of rounds, denoted byr, until a predictable reliability is given for
an event to inform all members of the group. Such a bound can also be useful to
terminate the dissemination of events, as we discuss in Section 4.4 and Section 4.5.
In this case events that stay longer thanr in the system will not be considered by
the dissemination system.

4.3 Modelling and analysing the history buffer

The history buffer, as used in many gossiping protocols, consists of a set of identi-
fiers, each identifier referring to an event. We also say an event is contained in the
history buffer if and only if its identifier is contained in the history buffer. Since
events are propagated in a randomised way, they are likely to reach destinations
several times. Whenever a process receives an event, the process can check the
history buffer whether the event is new and in this way avoid multiple deliveries of
the same event to the application. However, a process which removed the identifier
of an event too early, may suffer from multiple deliveries. If an event is delivered
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at most once to all locations it is said to be deliveredsafe.
A bounded buffer size in a dynamic system where new members join and leave

the group is always vulnerable to multiple deliveries since there is no bound on
the number of events which are disseminated at the same time and events may be
observed out of order. Nevertheless, a process can estimate based on local obser-
vations the probability that a new event which is not contained inside the history
buffer was delivered before. By using a probabilistic approach one can distinguish
between safe and critical buffer sizes. We define the size of the buffer to besafe
with respect to a safety-parameter denoted byλ if the size of the buffer is suf-
ficiently large to ensure safe delivery for an event with probability greater than
1 − λ. Otherwise the size of the buffer is calledcritical.

In the following we consider a general model and analysis suitable to deter-
mine the probability for multiple deliveries for an arbitrary dissemination system
denoted byD. Let m denote the time determined by the number of rounds an
event stays at most inD andn the number of processes communicating withD.
We relate the buffer system to a queueing model using a single server where new
events are admitted to the queue as a random process. However, contrary to ordi-
nary queueing-theory the service time in this model depends on the arrival times
of events. The service time is chosen such that every event stays at least as long in
the queue as it needs to stay in the buffer ofD in order to guarantee safe delivery.
Hence, the question whether the queue is stable is not an issue here. Instead, we
investigate the probability that the length of the queue exceeds the choice of the
length for the buffer ofD.

Let ai denote the arrival time of an eventei. Then the server processes each
event at timesi = ai +m. Hence, if the length of the buffer inD is greater than the
maximum length of the queue within the time interval[ai, si] thenD can deliverei

safe.
Let [ta, ts] denote an interval of lengthm and the random variableXi,j denote

the event that at timeta + i processj admits a new gossiping event to the sys-
tem. Further, we assume that allXi,j occur independently and each event yields
Pr[Xi,j = 1] = p andPr[Xi,j = 0] = 1 − p. The number of admitted gossiping
events can be represented by the random variable

X :=
n∑

j=1

m∑
i=1

Xi,j .

Then the random process describing the arrival rate of new events is a binomial
distribution and the expected number of events in the queue in an arbitrary time
interval [ta, ts] equals

E[X] = pnm.
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Clearly, the length of the buffer must be chosen at least as large asE[X]. Otherwise
we are expected to encounter a large number of multiple deliveries.

As a next step we bound the buffer size so that the probability for multiple
deliveries of an event becomes low by applying a Chernoff bound for binomial
distributions as stated in [Motwani and Raghavan 1995].

Theorem 4.3.1 Let ei be an event admitted to a gossiping algorithm with dissem-
ination systemD where each event is required to stay inD for m rounds. Further,
for each of then processes in the system letp denote the probability that the single
process admits a new event toD in a round. ThenD can prevent the multiple
delivery ofei with probability strictly greater than

1 −
(

e

4

)nmp

if the size of the buffer is chosen greater than or equal to2nmp.

Proof. Applying the Chernoff bound for binomial distributions yields for anyδ > 0

Pr[X > (1 + δ)nmp] <

(
eδ

(1 + δ)δ+1

)nmp

.

By choosingδ = 1, the result follows. 2

Note that a similar result can be achieved for the Poisson distribution. It is also
possible to use the more general assumption that each processi admits a new event
to the system with probabilitypi. If

µ =
n∑

i=1

pi

a buffer size of length2µm guarantees safe delivery of an event with a probability
strictly greater than1−( e

4 )µm. In the experimental study, described in the following
sections, we use the simpler formula as described in Theorem 4.3.1 in order to
distinguish between safe and critical buffer sizes.

Theorem 4.3.1 provides an easy way to relate safe buffer sizes to local obser-
vations by a process, as stated in Corollary 4.3.1.

Corollary 4.3.1 Let D denote any dissemination system with parametersm, n,
andp, denoting the number of rounds an event needs to stay inD, the number of
processes, and the arrival rate of new events respectively. The size of the history
buffer is safe with safety-parameter(e/4)nmp if the size of the buffer is chosen
greater than or equal to2nmp.

55



BUFFER MANAGEMENT

4.4 Dissemination in relation to multiple deliveries

In the following we examine the impact of the dissemination system on buffer sizes.
Towards that we first introduce a general framework for dissemination of multiple
events, possible ways to implement dissemination systems, and study the impact of
event termination on the multiple delivery problem.

4.4.1 A general framework for dissemination of multiple events

In order to disseminate multiple events and manage processes joining and leaving a
group gossiping protocols have to use a framework which allows to combine group
management with the dissemination of events. The evaluation of buffer manage-
ment in this paper uses a general framework, which can be combined with existing
ways of group management for lightweight approaches. Let a group, denoted byG,
consist of a set of processes, i.e.G = {p1, p2, . . . , pn}. In every round processes
of the group exchange gossip messages. A gossip message contains information on
members which joined or left the group and events to be delivered to the applica-
tion. In order to select communication partners a process manages a viewV ⊂ G
from which it can choose processes of the whole group uniform at random. In
every round a process evaluates the gossip messages it receives from other group
members. A process may also receive a new event from the application which
must be propagated. Based on the information which a process obtains in a round
from other communication partners and the application, a process creates a new
gossip message with respect to the dissemination scheme and propagates it toK
neighbours chosen uniformly at random from its view. The framework used for all
protocols introduced in the paper is illustrated in Figure 4.1.

4.4.2 Dissemination systems in gossiping

Let r denote the number of rounds until a predictable reliability is given. A possible
way to obtainr is based on an approximation of the results presented in [Pittel
1987]. The analysis uses a simplified model in which during the life time of an
event processes never loose interest in propagating this event. Letn denote the
group size and assume that a process which has received an event informs only
one other process in a round. The number of rounds needed to inform all group
members with high probability is bounded by

r = log n + log10 n + O(1).

However, the analysis does not match exactly the requirements of gossiping proto-
cols in the spirit of pbcast [Birman et al. 1999] because the analysis assumes that
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Basic Framework:

for all rounds in whichpi ∈ G do
evaluate received gossip messages by processing joining and leaving members
and events
create a new gossip messageM
for l = 1 to K do

choosej ∈ Vi uniformly at random
sendM to pj

end for
end for

Figure 4.1: A general framework for dealing with membership and communication
of multiple events.

every process keeps its interest in propagating an event until everybody is informed
with high probability. This means a processes has to propagate all events which it
has noticed and which have travelled less thanr rounds in the system. Although a
process communicates only to one neighbour in a round, many events will increase
the message sizes and the dissemination scheme will not scale to many events in
the system.

In the study of buffer management we will consider two different methods of
event dissemination:

1. Approaches like pbcast [Birman et al. 1999] and lpbcast [Eugster et al.
2001a] suggest that a process propagates only new events, otherwise it ig-
nores them. The reduced number of rounds in which a single process com-
municates about the same event is partially compensated by sending every
message to multiple neighbours. If the fan-out is chosen such thatK ≥ 2, the
propagation of a single event is expected to terminate afterO(log n) steps.
UnlessK = Ω(log n) the dissemination scheme does not provide the guar-
antee as discussed above, however it succeeds to inform a high percentage of
processes.

2. A way to increase reliability is to propagate events whenever they are re-
ceived by a process. An analysis of this model, based on a balls-and-bins
approach [Koldehofe 2002], shows that such a dissemination system can
inform all group members about an event with high probability ifK =
O(ln n/ ln ln n) and r = O(log n). In order to deal with the problem of
many events being collected in a round, a process will propagate a maximum
number of events with each gossip message. If the number of events is mod-

57



BUFFER MANAGEMENT

erate and events will not conflict with others duringr rounds, the scheme
provides high reliability.

4.4.3 Termination of the dissemination

In this section, it is shown why dissemination systems should provide an explicit
termination for disseminating an event by adding atag to the gossip message. A tag
provides the dissemination system with information to decide when to terminate
the dissemination of an event. A simple mechanism is to count the number of
hops: a process will not propagate information based on a message that exceeded a
predefined number of hops.

Protocols without tag values and under ideal conditions, i.e. with unlimited
buffer size, can provide termination. For example, lpbcast only propagates events
which are not found in the history buffer. This way, every process sends at most
once a gossip message about the same event to their neighbours.

In Figure 4.2 the behaviour of lpbcast under three different buffer sizes is il-
lustrated: safe with safety-parameter0.05 (c.f. Figure 4.2(a)), critical (c.f. Fig-
ure 4.2(b), 4.2(c)), and almost safe (c.f. Figure 4.2(e), 4.2(d)). Figure 4.2(c) cor-
responds to a more detailed representation of Figure 4.2(b), and Figure 4.2(e) to a
more detailed representation of Figure 4.2(d), respectively. The simulation used a
system with100 processes and a fan-out of5. The probability that a process admit-
ted a new event to the system during a round was0.01. The results are based on the
evaluation of approximately250000 events in the system.

From Figure 4.2(a) one can observe that in99.7% of all casesm can be bounded
by 8. Applying the analysis from Section 4.3, a buffer size of16 should suffice to
guarantee at least95% of events to be safe. In the simulation the number of safe
events was significantly higher with99.98%.

On the contrary, if the buffer size is chosen to be only8 (critical), the number
of multiple deliveries and the time for events to terminate increases significantly
(c.f. Figure 4.2(b), 4.2(c)). The amount of events encountering multiple deliveries
is around57%. Also the number of multiple deliveries for each event is remark-
ably high, given by3130 multiple deliveries in the average. Further, it should be
noted that32% of all events terminate after the second round. These events do
not suffer from multiple deliveries, but they are delivered only by a low number
of processes, decreasing the reliability. Although some events terminate early, the
termination times for events are distributed over a large time interval (up to1900
rounds). The time interval shown in Figure 4.2(b) covers72% of all events, while
the time interval shown in Figure 4.2(c) covers25% of all events.

Finally, in Figure 4.2(d) and Figure 4.2(e), the behaviour of the system is illus-
trated if the buffer size was chosen almost safe initially, i.e. a size equal to14. The
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Figure 4.2:This data shows the distribution determined by the time interval events were
delivered to the application in a simulation of lpbcast. Three different settings are shown,
where 4.2(c) corresponds to a more detailed view of 4.2(b), and 4.2(d) to a more detailed
view of 4.2(e) respectively. The group consisted of100 processes and each simulation
disseminated approximately250000 events. The buffer sizes varied from16 in 4.2(a),8
in 4.2(b), 4.2(c) and14 in 4.2(d), 4.2(e). The view of each process was limited to50
processes.
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behaviour reveals the problem we obtain from not choosing any termination tags.
Although the number of multiple deliveries is not high initially, the occurrence of
multiple deliveries changes the response timem of the system, and the increase in
m also increases the vulnerability of the system to multiple deliveries. The system
converges to an unstable state where the termination times are similarly distributed
as if the buffer size was chosen critical initially.

Conclusion. The avoidance of multiple deliveries requires that gossip messages
carry information which determine when to terminate the dissemination. This can
be done by either adapting the size of the buffer according to the response of the
system, or by terminating the message by using a computation based on tag values.

4.5 Management of buffer space and selection of tag
values

In this section we discuss approaches to manage the history buffer of the dissem-
ination systems in Section 4.4.2 with the goal to increase reliability and reduce
multiple deliveries. The approaches provide a method for choosing tag values for
events in order to guarantee the termination of dissemination and to avoid the prob-
lems discussed in Section 4.4.3.

In order to facilitate the description of the approaches we denote an event by
e and the respective tag value byt(e). Further,r denotes the number of rounds
the dissemination system needs to propagate an event in order to be reliable,σ an
offset increased by one in every round, andΦ(e) the potential of an event.

FIFO buffering with limited number of hops. A common way to manage buffer
space is to use a FIFO queue. New events (or its identifiers) will be added to the tail
of the queue while old events will be removed from the head such that the length
of the queue always respects the specified length of the buffer.

The termination of the dissemination is specified by assigning to each event a
tag value. Ife is a new event, thent(e) = 0. Whenevere is propagated with a
gossip message,t(e) is increased by one. Ift(e) > r, e will not be propagated by
the dissemination system.

A criticism towards the FIFO strategy is that fresh events may be deleted earlier
from the buffer at one process because these events have been received in different
order than older events. If a fresh event is deleted in an early stage, it will take
significantly more time to reach everybody in the group. At the same time in terms
of the multiple delivery problem, an event which is disseminated longer than other
events is more likely to cause multiple deliveries.
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Priority-queue based approaches. In the following we present a priority-queue
based approach. Within the queue events are associated with apriority which is
determined by thepotentialof an event to infect other processes. New events are
inserted with high priority while the priority of old events decreases over time. If
the insertion of new events causes the buffer size to exceed its limit, the events with
lowest priority are removed.

The use of priorities can help to prevent fresh events from being removed. We
examine two different ways of assigning a potential to events.

1. Estimated time to terminate (ETT).This approach is based on the estimation
of rounds an event needs to reach all participants and counting the number
of hops an event has performed. In the round an evente is created we set
t(e) = 0 and calculate its potentialΦ(e) = σ + r. In the case a process
receivese for the first time it calculates the potentialΦ(e) = σ + r − t(e).
When propagating an event the processes increasest(e) by one.

We ensure that the values forσ are finite by considering the case when the
value ofσ exceeds a predefined maximum value. In this case the potential
for each evente of the buffer is recalculated byΦ(e) = Φ(e) − σ andσ is
reinitialised to zero.

2. Estimated potential approach (EP).This approach is based on the fact that
for a constantc > 1, placingcn log n balls uniformly at random inton bins
is sufficient for every bin to receive at least one ball with high probability. A
new event initially starts witht = [2n/K log n]−1 balls. The potential in the
history buffer is calculated byΦ(e) = [log t(e)]+1+σ assuming that for the
fan-outK ≥ 2 holds (in this case the number of rounds to terminate the epi-
demic of an event is logarithmic in the initial tag value). Lett1(e), . . . , tl(e)
denote the tag values a process received for an event in a round. When prop-
agatinge it calculatest(e) = [1/K

∑j
i=1 ti] − 1. If e was received for the

first time the potential in the history buffer is calculated in the same way, i.e.
Φ(e) = [log(t)] + 1 + σ. The problem to ensure finite values forσ can be
solved in the same way as discussed for the ETT-approach.

The local cost of the priority-queue based approaches is determined by inserting
every new event into the queue and removing it from the queue at some time. If no
multiple deliveries occur, FIFO and Priority-queue based approaches use the same
amount of insertions and deletions. The local cost for inserting an event is higher
for the priority based queue, but still small to allow an efficient implementation.
Further, the priority-queue based approaches have at certain times to recycle the
offset values and therefore to decrease the priority of every element in the buffer.
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In the next section we combine the presented schemes to manage buffer space
with the formerly introduced dissemination systems and the general framework
for dissemination of multiple events (see Section 4.4). We investigate whether the
slightly more complex and costly way of implementing a buffer locally helps to
reduce the number of multiple deliveries and increases reliability.

4.6 Evaluation of buffer management based on FIFO,
ETT and EP

The focus of the presented evaluation is to investigate reliability together with mul-
tiple deliveries of the schemes for buffer management of Section 4.5 when the
buffer size is chosen critical. We combine these approaches with the schemes for
dissemination systems of Section 4.4.2 by introducing four protocols. The proto-
cols use a common framework to propagate multiple events at the same time and
organise the membership of the group which allows processes to join and leave the
group dynamically (see also Section 4.4.1, Figure 4.1).

4.6.1 Protocol description

All protocols require that events are associated with a tag value. Their reliability
depends on the estimated number of rounds the protocol allows events to stay in the
system. If the number of rounds denoted byr is chosen too small, the number of
informed processes will decrease. Ifr is chosen too large, the system might suffer
from multiple deliveries.

FIFOgossip. The FIFOgossip protocol combines the FIFO buffering strategy with
the dissemination strategy of lpbcast [Eugster et al. 2001a], i.e. it only propagates
events which cannot be found in the history buffer. Termination is guaranteed by
aborting the dissemination of events whose tag value is greater thanr. Since the
dissemination is expected to terminate inO(log n) rounds by itself the dissemina-
tion should be aborted latest afterr = O(log n), assuming the buffer size is safe
andK ≥ 2.

ETTgossip. The ETTgossip protocol uses the same dissemination strategy and
the same termination strategy as FIFOgossip. However, the buffer management
uses the ETT approach instead.

ETTBgossip. The ETTBgossip protocol applies the dissemination strategy based
on the balls and bins analysis [Koldehofe 2002], i.e. whenever an event is received
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it will be propagated unless its tag value exceedsr. The buffer management uses
the ETT approach. If many events are propagated with the protocol, a process may
receive in a round more events than it can disseminate with one gossip message. In
this case, a process gives preference to events with smallest tag values.

EPgossip. The EPgossip protocol estimates the potential of events by the number
of balls associated with an event. The dissemination is similar to the ETTBgossip
approach. However, the dissemination terminates when the protocol receives mes-
sages with tag values which are smaller or equal to zero. In case the protocol
receives too many events in a round, it gives preference to events whose tag value
is largest. The initial choice of the number of balls, when creating a new event,
determines the number of rounds the event stays in the dissemination system.

4.6.2 Evaluation

The evaluation compares the stated protocols with respect to reliability and multiple
deliveries. For reliability we examine two different measures:

1. counting the average number of processes which are informed about an event,

2. counting the number of events which succeeded to inform all processes.

We combine reliability with multiple deliveries by requiring for all events transmit-
ted with the protocol that the number of events which encounter multiple deliveries
is small. In our setting less than0.05% of all events were allowed to encounter
multiple deliveries. The comparison of the approaches is based on adjusting the tag
value of the respective protocol to achieve best reliability, and respecting the limit
for multiple deliveries at the same time.

Figure 4.3 illustrates the differences of the presented approaches for varying
buffer sizes regarding the introduced reliability measure. The data is based on a
simulation with a system consisting of100 processes and using a fan-out of5. The
probability that a process admitted a new event to the system during a round was
0.01. Each execution involved approximately100000 events.

The data set shows that even for a critical buffer size it is possible to inform a
high percentage of processes in contrast to the approach using no tag values of Sec-
tion 4.4. In the same setting as used for this evaluation, lpbcast encounters many
multiple deliveries if the buffer size is chosen smaller than16. On the contrary,
FIFOgossip can inform, by respecting at the same time the constraint on the occur-
rence of multiple deliveries, a high percentage of processes (larger than75%) for
buffer sizes greater than or equal to8. The large differences in reliability between
two consecutive buffer sizes, e.g. the difference in reliability for FIFOgossip for
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Figure 4.3:Reliability of the different approaches with respect to different buffer sizes by
requiring that less than 0.05% of events encounter multiple deliveries. For part 4.3(a) reli-
ability was measured by counting the average number of processes informed by the events,
while part 4.3(b) measured the amount of events which were received by all processes.
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a buffer size of 7 and a buffer size of 8, happen because the increased buffer size
allows a longer dissemination of an event without violating the multiple delivery
requirement.

The experimental data taken for ETTgossip shows the improvement achieved
by managing buffer space with a priority-queue. ETTgossip succeeds to inform
significantly more processes than FIFOgossip for buffer sizes smaller than16. It
also succeeds to inform a high percentage of processes for buffer sizes which are
greater than or equal to5. For large buffer sizes FIFOgossip and ETTgossip show
the same behaviour.

The best overall reliability, as also expected from the analytical results pre-
sented in [Koldehofe 2002], is provided by EPgossip and ETTBgossip, whose dis-
semination scheme allows a process to propagate an event multiple times. EPgossip
succeeds for most instances, and ETTBgossip for all instances to inform a higher
percentage of processes than ETTgossip and FIFOgossip. The difference between
the two dissemination systems is best illustrated in Figure 4.3(b), showing the per-
centage of events which were propagated to all processes of the system. EPgossip
and ETTBgossip succeed with increasing buffer size for almost all events to inform
all processes while ETTgossip and FIFOgossip succeed for less than half of all
events, even if the buffer size grows very large. The dissemination system used in
FIFOgossip and ETTgossip is only suited to inform a high percentage of processes.
On the contrary, for ETTBgossip and EPgossip every event has a high probability
to inform every group member.

Compared to ETTBgossip, the reliability for EPgossip is lower when the buffer
size is small. In EPgossip a process may be informed by multiple processes in the
same round which causes a process to increase the tag value of the respective event.
This way the dissemination of an event takes slightly longer time and increases the
vulnerability of the protocol to multiple deliveries.

4.7 Conclusions

This work has proposed a model suitable to analyse the buffer size in lightweight
probabilistic dissemination protocols to avoid multiple deliveries to the application.
A bound is proposed that gives a guarantee for a given buffer size that an event will
be delivered at a destination multiple times. It is also shown that events should carry
information which allows to terminate the dissemination in time since the size of
groups can vary over time. The evaluation of dissemination systems shows that ap-
proaches may encounter a high amount of multiple deliveries and events may stay
very long in the system if the termination of the dissemination relies on the history
buffer only. This holds even if the buffer size is chosen almost safe initially. More-
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over, buffer management based on priority-queues, in which events are associated
with their potential to inform other processes, improve reliability and resistance
to multiple deliveries compared to approaches which rely on FIFO buffering. The
choice of the dissemination system also influences the reliability. Among the in-
troduced approaches ETTBgossip, based on an analytical evaluation of a balls and
bins model [Koldehofe 2002], has shown the highest overall reliability, especially
if it is required that almost every event should reach all destinations.

The current analysis provides a general bound for multiple deliveries with re-
spect to a given buffer size. A way to improve the understanding of the relation
between reliability and multiple deliveries is to integrate the proposed analysis into
the epidemic model [Bailey 1975]. The analysis could support gossiping proto-
cols to adapt the buffer sizes of processes and the dissemination system to improve
reliability and avoid multiple deliveries at the same time.
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Abstract

Within an effort for providing a layered architecture of services for mid-
dleware supporting multi-peer collaborative applications, this paper proposes
a type of consistency management calledcausal cluster consistencywhich is
aimed for applications where a large number of processes share a large set
of replicated objects. Many such applications, like peer-to-peer collaborative
environments for educational, training or entertaining purposes, platforms for
distributed monitoring and tuning of networks, rely on a fast propagation of
updates on objects, however they also require a notion of consistent state up-
date. To cope with these requirements and also ensure scalability, we propose
the cluster consistency model. In a cluster consistency protocol a privileged
dynamic set of processes, called coordinators, may concurrently propose up-
dates to a subset of objects which form a cluster. The updates are applied in
some order of interest by the coordinators of the cluster. Moreover, any in-
terested process can receive update messages referring to replicated objects,
with an option for the updates to be delivered unordered or in the same order
as to the coordinators.

This work also describes a protocol implementing causal cluster consis-
tency, which provides a fault tolerant and dynamic membership algorithm to
manage the cluster members. The membership algorithm also coordinates
the dynamic assignment of process identifiers to vector clock entries. Hence,
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this protocol provides optimistic causal order in combination with any group
communication protocol. We evaluate the performance of causal cluster con-
sistency running on top of decentralised probabilistic protocols on support
for group communication. These protocols scale well, impose an even load
on the system, and provide high-probability reliability guarantees for events
to be delivered to every process in the group.

Keywords: large-scale group communication, consistency, collaborative environments,
middleware, peer-to-peer communication

5.1 Introduction

Many applications like collaborative environments allow a possibly large set of
concurrently joining and leaving processes to share and interact on a set of com-
mon replicated objects. Processes deal with state changes of objects by sending
update messages. Providing the infrastructure and middleware to support such sys-
tems places demands for multi-peer communication, with reliability, time, con-
sistency and scalability guarantees, even in the presence of failures and variable
connectivity of the peers in the system. Towards designing a set of service lay-
ers and lightweight distributed protocols to provide appropriate dissemination and
coordination/consistency services for multi-peer collaborative systems to use, we
introduce a consistency model which builds on scalable information dissemination
schemes that provide probabilistic reliability guarantees. The required methods for
communication and consistency must deal with users (processes) who may join
and leave the system in several ways and also form groups which vary in size and
behaviour; the interests and needs of these users may also vary with time.

Lightweight non-hierarchical solutions, which have good scalability potential
at the cost of probabilistic guarantees on reliability have not been in the focus of
earlier research in distributed computing, where the emphasis has been in proving
feasible, robust solutions, rather than considering the aforementioned variations in
needs and behaviour.

In this paper we look at a delivery service for updates which provides delivery
in optimistic causal order. This guarantees that an event will only be delivered if
it does not causally precede an already delivered event. Events which are about to
become obsolete do not need to be delivered and may be dropped. Nevertheless,
optimistic causal orderalgorithms aim at minimising the number of lost events. In
order to detect which events that are missing many algorithms rely on the use of
vector clocks. These, however, grow linearly with the group size which implies a
limitation on the size of process groups with respect to scalability.

This work addresses this issue by proposing a consistency management denoted
by causal cluster consistency, providing optimistic causal delivery of update mes-

68



Background

sages to a large set of processes. Causal Cluster Consistency takes into account
that for many applications the number of processes which is interested in perform-
ing updates can be low compared to the overall number of processes which are
interested in receiving updates and maintaining replicas of the respective objects.
Therefore, the number of processes which are entitled to perform updates at the
same time is restricted ton, which corresponds to the maximum size of the vector
clocks used. However, the set of processes entitled to perform updates may change
dynamically.

We present a dynamic and fault tolerant cluster membership algorithm which
can be used to implement causal cluster consistency on top of any group communi-
cation protocol, which does not need to offer strict reliability guarantees. We have
implemented the causal cluster consistency algorithm and we present an experi-
mental evaluation of its potential with respect to scalability, by building on recently
evolved large scale and lightweight probabilistic group communication protocols.
Our implementation and evaluation have been carried out in a real network, and
also in competition with concurrent network traffic by other users.

The proposed cluster membership algorithm allows several extensions which
go beyond causal cluster consistency. It is also possible to use the stated algo-
rithm to distribute ownership of replicated objects and achieve types of consisten-
cies which guarantee that all updates with respect to an object are observed in the
same order by all group members.

Structure of the paper. In Section 5.2 we present background information and
related work on causal ordering and lightweight probabilistic group communica-
tion. In Section 5.3 notation and definitions are given. Section 5.4 introduces and
evaluates a layered architecture for achieving causal delivery. The dynamic cluster
management is described and analysed in Section 5.5.

5.2 Background

Many systems like collaborative environments (e.g. [Miller and Thorpe 1995;
Greenhalgh and Benford 1997; Carlsson and Hagsand 1993]) allow multiple pro-
cesses to perform updates on shared replicated objects. In order to perform well
for many processes, such systems rely on a middleware which provides scalable
group communication, supports maintenance of membership information as well
as fast dissemination of updates (events) in the system. Applications building on
such systems would benefit from an event delivery service that satisfies the causal
order relation, i.e. satisfies the “happened before” relation as described in [Lamport
1978]. A lot of work has been carried out achieving reliable causal delivery in the
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occurrence of faults [Birman and Joseph 1987b; Birman et al. 1991; Raynal et al.
1991; Kshemkalyani and Singhal 1998]. However, the schemes to recover lost
messages can lead to long latencies for events, while often short delivery latencies
are needed. In particular the latency in large groups can become large since, in the
worst case, a causal reliable delivery service needs to add timestamp information
to every event, whose size grows quadratically with the size of the group.

Relaxed requirements, such as optimistic causal ordering as in [Baldoni et al.
1998; Rodrigues et al. 2000] can be suitable for systems where events are associ-
ated with deadlines. While the causal order semantics require that an event is only
delivered after all causally preceeding events have been delivered, optimistic causal
order only ensures that no events are delivered which causally precede an already
delivered event. However, optimistic causal delivery algorithms aim at minimising
the number of lost messages.

Recent approaches for information dissemination use lightweight probabilis-
tic group communication protocols [Birman et al. 1999; Eugster et al. 2001a;
Ganesh et al. 2001; Koldehofe 2003; Pereira et al. 2003; Baehni et al. 2004].
These protocols allow groups to scale to many processes by providing reliability
expressed with high probability. In [Pereira et al. 2003] it is shown that prob-
abilistic group communication protocols can perform well also in the context of
collaborative environments. However, per se these approaches do not provide any
ordering guarantees.

Vector clocks [Mattern 1989] allow processes to determine the precise causal
relation between pairs of events in the system. Further, one can detect missing
events and their origin. Since the size of the timestamps grow linearly with the
number of processes, to ensure scalability, one may need to introduce some bound
on the growing parameter.

Also of relevance and inspiration to this work is the recent research on peer-to-
peer systems and in particular the methods of such structures to share information
in the system (cf. e.g. [Stoica et al. 2001; Alima et al. 2003; Ratnasamy et al.
2001; Rowstron and Druschel 2001; Zhao et al. 2004]), as well as a recent position
paper for atomic data access on CAN-based data management [Lynch et al. 2002].

5.3 Notation and problem statement

LetG = {p1, p2, . . .} denote a group of processes with ongoing joining and leaving
of processes and a set of replicated objectsB = {b1, b2, . . .}. Processes maintain
replicas of objects they are interested in. LetB be partitioned into disjoint clusters
C1, C2, . . . with ∪iCi ⊆ B. Further, letC denote a cluster andp a process in
G, then we write alsop ∈ C if p is interested in objects ofC. Causal Cluster
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Consistencyallows any processes inC to maintain the state of replicated objects in
C by applying updates in optimistic causal order. However, at mostn processes (n
is assumed to be known to all processes inC) may propose updates to objects in
C at the same time. Processes which may propose updates are calledcoordinators
of C. Let CoreC denote the set of coordinators ofC. The set of coordinators can
change dynamically over time. Throughout the paper we will use the termevents
when referring to update messages sent or received by processes in a cluster.

The propagation of events is done by multicast communication. It is not as-
sumed that all processes of a cluster will receive an event which was multicast, nor
does the multicast need to provide any ordering by itself. Any lightweight proba-
bilistic group communication protocol as appears in the literature [Eugster et al.
2001a; Ganesh et al. 2001; Koldehofe 2003] would be suitable. We refer to such
protocols asPrCast. PrCast is assumed to provide following properties:

• An event is delivered to all destinations with high probability.

• Decentralised and lightweight group membership, i.e. a process can join and
leave a multicast group in a decentralised way and processes do not need to
know all members of the group.

Within each cluster we apply vector timestamps of the type used in [Ahamad
et al. 1995]. Let the coordinator processes inCoreC be assigned to unique iden-
tifiers in {1, . . . , n} (a process which is assigned to an identifier is also said to
own this identifier). Then, a time stampt is a vector whose entryt[j] corresponds
to the t[j]th event send by a process thatowns index j or a process that owned
index j before (this is because processes may leave and new processes may join
CoreC). A vector time stampt1 is said to be smaller than vector time stampt2
if ∀i ∈ {1, . . . , n} t1[i] ≤ t2[i] and∃i ∈ {1, . . . , n} such thatt1[i] < t2[i]. In
this case we writet1 < t2. For any multicast evente, we write te for the corre-
sponding timestamp ofe. Let e1 ande2 denote two multicast events inC, thene1

causally precedese2 if te1 < te2 , whilee1 ande2 are said to be concurrent if neither
te1 < te2 nor te2 < te1 .

Throughout the paper it is assumed that each processp maintains for each clus-
terC a logical vector clock denoted byclockCp . A vector clock is defined to consist
of a vector time stamp and a sequence number. We writeTC

p when referring to
the timestamp andseqCp when referring to sequence number ofclockCp . TC

p is the
timestamp of the latest delivered event whileseqCp is the sequence number of the
last multicast event performed byp. In Section 5.4 when describing the implemen-
tation of causal cluster consistency, we explain how these values are used. Note,
whenever we look at a single clusterC at a time, we write for simplicityclockp, Tp,
andseqp instead ofclockCp , TC

p , andseqCp respectively.
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5.4 Layered architecture for optimistic causal delivery

This section proposes and studies a layered protocol for achieving optimistic causal
delivery which can be combined with the dynamic cluster management algorithm
presented in Section 5.5. In this section we assume that coordinators of a cluster
are statically assigned to vector entries. Further, all coordinators of a cluster are
assumed to know each other. Section 5.4.1 introduces the two layers of the protocol
while Section 5.4.2 presents an empirical study which evaluates i) the effect of
clustering with respect to scalability, ii) the gain in term of message loss and the
overhead induced by providing optimistic causal order delivery.

5.4.1 Protocol description

The first of the two layers usesPrCastin order to multicast events inside the cluster.
The second layer implements the optimistic causal delivery service. The protocol
(cf. pseudocode description of Algorithm 1), is an adaptation of the causal con-
sistency protocol by Ahamad et. al. [Ahamad et al. 1995] and is described here:
Each process in a cluster interested in observing events in causal delivery (which is
always true for a coordinator), maintains a queue of events denoted byHp. For any
arriving evente one can determine fromTC

p and the corresponding timestampte
whether there exist any events which (i) causally preceede, (ii) have not been deliv-
ered, and (iii) are still deliverable according to the optimistic causal order property.
If there exist any such events,e will be enqueued toHp for a time interval until
e may become obsolete. The time beforee becomes obsolete, depends on the de-
lay of e, i.e the amount of time passed since the start of the dissemination, and is
assumed to be larger than the duration of a PrCast and the time it takes sending a
recovery message and receiving an acknowledgement. If an event inHp has a delay
larger than the maximum length of a PrCast (which is estimated by the number of
hops that an event needs before it has reached all destinations with w.h.p. using
PrCast),p tries to recover all optimistic deliverable events using reliable point to
point communication, i.e. for each event which still needs to be recovered it con-
tacts the source of the PrCast. Beforee ∈ Hp becomes obsolete,p deliverse,
all causally preceeding events inHp, and causally preceeding recovered events by
respecting their causal relation.

When a processp delivers an evente referring to clusterC, the logical vector
clock clockCp is updated by settingTC

p = te. Processp also checks whether any
events inHp or recovered events can be dequeued and delivered.

When a coordinatorp in CoreC which owns thejth vector entry, multicasts an
event it will updateclockCp and incrementseqCp by one. Then,p creates a vector
timestampt with t[i] = T p

C [i] for i 6= j and t[j] = seqCp . Since PrCast delivers
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Algorithm 1: Two-Layer protocol

VAR
prede: set of causally preceeding and deliverable events which

were not requested to be recovered
R: set of deliverable recovered events

On p createse
Create timestampte
Prcast〈e, te〉
Buffer e until no more recoveries expected

On p receives〈e, te〉
if e can be deliveredthen

deliver(e)
deliver(e′ ∈ Hp) for e′ that can be delivered

else
delay(e, time_to_terminate)

end if
On timeout(e, time_to_terminate)

∀e′prede send〈RECOVER, source(e′), eid〉
delay(e, time_to_recover)

On timeout(e, time_to_recover)
deliver(e′ ∈ prede ∩ (Hp ∪ R)) with e′ can be delivered
deliver(e)
deliver(e′ ∈ Hp) with e′ can be delivered

On p receives〈RECOVER, source(e′), eid〉
if p hase with identifier eid in its bufferthen

respond(〈ACKRECOVER, e, et〉 )
end if

On p receives〈ACKRECOVER, e, et〉
if e can be deliveredthen

deliver(e)
deliver(e′ ∈ R ∪ Hp) with e′ can be delivered

else
R = R ∪ {e}

end if

73



5. LIGHTWEIGHT CAUSAL CLUSTER CONSISTENCY

events with high probabilityp, there may be processes which will request to recover
e from the sender. For this purposep maintains a recovery buffer in which it stores
e until no more recovery messages are expected (this is for example the case if
∀i te[i] < TC

p [i]).

Properties of the protocol. The PrCast protocol provides a delivery service which
guarantees that an event will reach all its destinations with high probability, i.e.
PrCast can achieve high message stability. However, if recovery of events needs to
be performed, the number of processes which did not receive the event is expected
to be low. This means that a process is only expected to receive a low number
of recovery message when it multicasts an event. If processes do not encounter
process failures and link failures, reliable point to point communication succeeds
in recovering all causally preceding missing events, and thus provide causal order
without any message loss. The following lemma is straightforward, following the
analysis in [Ahamad et al. 1995].

Lemma 5.4.1 An execution using the two-layer protocol guarantees causal deliv-
ery of all events disseminated to a cluster if neither processes nor links fail.

Increasing throughput and fault tolerance. The throughput and fault tolerance
of the scheme can be increased by adding more redundancy. In this case processes
are required to keep a history of some of the observed updates for a bounded time
interval of lengthI. A process sending aRECOVERmessage needs only to contact
a fixed number of processes in order to receive the respective update . Further, the
recovery of failing processes could make use of such redundancy. Analysis similar
to the one in [Koldehofe 2003] can give a buffer size and bound the length of the
time intervalI for which PrCast can guarantee the availability with high probability.

5.4.2 Experimental evaluation

The experiments described in this section study the effect of clustering with respect
to scalability. Moreover, we evaluate the effect of using the causality layer by
comparing the gain in message loss and overhead induced by the causality layer.
Hereby we consider a message lost if it was not received or could not been delivered
without violating the optimistic causal order.

The evaluation of the two-layer protocol is based on data received from a net-
work experiment on up to 125 computers at Chalmers University of Technology.
The computers were running the Linux or Solaris 9 operating systems. The hard-
ware varied among the machines (Sun Ultra10 and Sun Blade workstations, PC’s
with Pentium4 processors, multiprocessor PC’s, all with memory ranging from
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128MB up to 4048MB). The computers were distributed over a few different sub-
networks of the university network. Depending on the network load a IP-ping mes-
sage of 4KB size had an average round-trip-time between1ms and5ms. As we did
not have exclusive access to the computers and the network, the experiment had to
coexist with other users concurrently running applications which potentially might
have made intensive use of the network.

We have implemented the layered architecture in an object oriented, modular
manner in C++. The implementation of the causality layer follows the descrip-
tion in Section 5.4.1 and can be used with several group communication objects
within our framework. The PrCast implementation we use follows the outline of
the ETTB-dissemination algorithm described in [Koldehofe 2003] together with
the membership algorithm of lpbcast [Eugster et al. 2001a]. The message trans-
port can use either TCP or UDP. For connection oriented communication a timeout
can be specified to ensure that a communication round has approximately the same
duration for all processes.

Our first experiment evaluates how the number of group coordinators effect
throughput, latency and message sizes. The results are based on a test application
which can act either as a coordinator or as an ordinary group member. The test
application runs in rounds of the same duration as the PrCast protocol does. When

76



Layered architecture for optimistic causal delivery

 0

 200

 400

 600

 800

 1000

 0.1  0.15  0.2  0.25  0.3  0.35  0.4  0.45  0.5  0.55

D
el

ay
 in

 m
s

Probability to create a new event

Latency

Caual delivery with recovery
Causal delivery without recovery

No Causal layer

 0

 1

 2

 3

 4

 5

 0.1  0.15  0.2  0.25  0.3  0.35  0.4  0.45  0.5  0.55

Pe
rc

en
ta

ge
 o

f 
lo

st
 m

es
sa

ge
s

Probability to create a new event

Message loss

Caual delivery with recovery
Causal delivery without recovery

No Causal layer

Figure 5.3:Overhead and gain in message loss by using the causality layer

77



5. LIGHTWEIGHT CAUSAL CLUSTER CONSISTENCY

the process acts as an updater it produces a new event with probabilityp. In our
experiments the product of updaters andp was kept constant (at6). The configura-
tion parameters of PrCast were set to satisfy the goal of each event reaching up to
250 processes with high probability. The fanout was4, while the termination time
for an event was5 hops. PrCast was allowed to keep track of all members to avoid
side effects of the membership scheme in this experimental study. The maximum
number of events which can be transported in one gossip message was limited to
20 events, while the number of group members transported was limited to10. The
size of the history buffer was set to40 events, which is according to [Koldehofe
2003] high enough to prevent with high probability the same event from being de-
livered to the causality layer multiple times. The gossip messages was sent using
connection oriented communication. This allowed us to tune the duration of each
gossip round so that all experiments had approximately the same rate of failures for
communication links. We did not experience a significant improvement by using
UDP as the transport layer protocol. In each round a process sends its gossip mes-
sages concurrently by using multithreading, so the round time could be adapted to
be 10ms longer than the expected maximum message delay.

Figure 5.1 and Figure 5.2 compare three instances of the two-layer protocol.
In the full-updater experiment all processes acted as coordinators, while in the5-
updater and the25-updater experiments the number of coordinators was restricted
to 5 and25 respectively. The protocols were tuned by adjusting the connection
timeout such that the average message loss rate did not exceed0.2%. The data
shows the impact of the size of the vector clock on the overall message size. For
the protocols using a constant number of coordinators message sizes even decreased
slightly with growing group size since the dissemination distributes the load of
forwarding events better for large group sizes, i.e. for large groups a smaller per-
centage of processes performs work on an event during the initial gossip rounds.
However, for the full updater protocol messages grow larger with the number of
coordinators. This behaviour directly influences the observed results with respect
to latency and throughput. For growing group size the protocols using a constant
set of coordinators experience only a logarithmic increase in message delay and
throughput remains constant. The message delay for the full updater protocol in-
creases linearly while throughput decreases.

The second experiment studies the effects induced by the causality layer and
the recovery scheme used in the two-layer protocol. Figure 5.3 compares the gossip
protocol, the two-layer protocol with and without recovery. The protocol parame-
ters were the same as for our first experiment, however the connection timeout was
fixed using 190ms. Instead we evaluated the system for varying values ofp. The
range of values forp shown in Figure 5.3 corresponds to a behaviour of the gossip
protocol where a multicast is expected to reach a large set of processes. By using
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larger values forp message buffer will overflow, causing the gossip protocol and
the causality layer protocols experience a high message loss.

The measurements in Figure 5.3 show that the causality layer reduces the amount
of lost messages, especially if the number of events disseminated in the system is
high. By using the recovery scheme almost all events could be delivered in opti-
mistic causal order. With increasing event probability latency grows only slowly.
The causality layer adds a small overhead by delaying events in preference to re-
spect the optimistic causal order. The recovery scheme does not add any overhead
with respect to latency, however it significantly reduces the number of lost mes-
sages. For some instances it was even possible to observe a slightly faster message
delivery when using the recovery scheme. One possible reason is that recovery of
multiple events at a time help to dequeue events faster fromHp and thus allow a
faster event delivery.

5.5 Dynamic cluster management

Recall that in the previous section the set of coordinatorsCoreC was predefined and
static. In dynamic environments the interest of processes may change over time.
Therefor it is crucial that processes are able to join and leave the cluster. Compared
to ordinary group communication membership management we will distinguish
between two different ways of joining and leaving a cluster.

Ordinary joining/leaving a cluster. Any ordinary process inG can perform a
join or leave operation onC corresponding to the ordinary join and leave operation
of the underlying multicast primitive. With respect to cluster management we will
also call these operationjoin and leave. An ordinarily joined process will be able
to observe events in optimistic causal order, but will not be able to send events to
the cluster.

Coordinator is joining or leaving. In order to become a coordinator in a cluster
C, i.e. to become member ofCoreC and be able to send events, a process performs
an operation calledcjoin. If processp performs acjoin operation,p becomes as-
signed to coordinate a unique identifier corresponding to the vector clock entry of
clockCp . Whenp performs acleaveoperation it release its coordinated vector clock
entry and cannot send any more events to the cluster after that. The vector clock
entry released byp may then be reused by any other process performing acjoin
operation.
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For correct cluster management it is essential that there are never two or more
coordinators that own the same vector clock entry within the cluster at the same
time. The Vector clock entry of a process that performed acleaveor has failed
should eventually be reusable for other processes. Moreover, the cluster manage-
ment should perform well even if a large number of processes concurrently perform
join operations.

Using a single process for cluster management is the simplest solution. How-
ever, if the cluster manager fails, then no processes can performcjoin or cleave.
Finding a new coordinator reduces to the agreement problem.

In Section 5.5.1 we show how to achieve decentralised cluster management
and outline a method where every coordinator of the cluster manages a subset of
vector clock entries. We present two protocols: the protocol of Section 5.5.2 which
works in the absence of failures and illustrates the basic idea, while Section 5.5.3
describes and proves a fault-tolerant membership protocol.

5.5.1 Decentralised cluster management

In the following we present a method that allows interleavedcjoin andcleaveop-
erations. The main idea of our approach is to make every process of the cluster the
coordinator of a subset of the vector clock entries{0 . . . n − 1}. We will ensure
that there are never two processes that simultaneously own and coordinate the same
vector clock entry. Once a process is detected as faulty and there exists sufficiently
many non-faulty processes, another process will eventually become coordinator for
the set of vector clock entries previously managed by the faulty process.

Let i be processp’s own vector clock entry. A processq which owns vector
clock entryj is defined to be the successor ofp if ∃k s.t. j = i − k modn and∀l
with 1 ≤ l < k thelth vector clock entry is not owned by any process. Accordingly,
q is called the predecessor ofp if ∃k s.t. j = i + k modn and∀l with 1 ≤ l < k
the lth entry is not owned by any process. Further, a process is called thedth
closest successor (predecessor) ofp, if the process is reachable ind steps fromp by
following the chain of successors (predecessors) starting atp.

We define the set of vector clock entries which is coordinated by a process
in terms of successor and predecessor. Letp andq denote two processes owning
vector clock entriesi andj respectively and letq be the successor ofp. Further, let
Sp denote the set of vector clock entries coordinated byp. We define

Sp = { l | l = i − k modn, 0 ≤ k < min{m | j = i − m modn, m > 0}}.
Figure 5.4 gives an example of how processes maintain and coordinate vector clock
entries, e.g.p2 owns entry4 and coordinates the vector clock entries{2, 3}.
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Figure 5.4: Illustration on how processes maintain and coordinate vector clock entries.
An arrow from processpi to a vector element indicates thatpi is the respective coordinator.

Lemma 5.5.1 LetC denote a non-empty cluster ensuring that no two processes in
the cluster coordinate the same clock entry, then

1. for any pair of processesp, q ∈ CoreC with p 6= q Sp ∩ Sq = ∅,

2. every entry of the cluster’s vector clock is either coordinated or owned.

Proof. The lemma follows immediately from the definition of coordinated set by a
process. 2
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5.5.2 A protocol working in the absence of failures

Let us consider the case where all processes are non-faulty and there exist no link
failures. A processp performing acjoin operation contacts an arbitrary coordinator
of CoreC . This coordinator will decide on a suitable coordinatorq with successor
r, to which it forwards thecjoin operation. Determiningq can be achieved by
selecting the coordinator of an available uniformly at random chosen vector entry.
Whenq receives the forwardedcjoin request ofp, q will first serve all previouscjoin
andcleaveoperations it received by other processes.q will reject cjoin of p if either
q itself has started acleaveoperation before receivingcjoin of p or q coordinates
only the vector entry it owns. Ifq decides to serve thecjoin request ofp, it assigns
an entryi ∈ Sq to p (possibly reflecting the random choice when determiningq
as a suitable coordinator).q selectsp as its new successor, whilep selectsq as its
predecessor andr as its new successor.p also informsr about the state change.
Processr will acknowledge if it did not perform acleaveoperation. Processesp
andq may not perform acleaveoperation or servecjoin operations until receiving
an acknowledgement or acleaverequest byr. Processp also PrCasts that it became
a coordinator inCoreC and that it owns entryi. Note that the PrCast operation is
only of relevance to inform other processes aboutp being a coordinator, but it is
not necessary to prevent any pair of distinct processes from maintaining the same
vector clock entry.

Any processp with successorr performing acleaveoperation will contact its
predecessorq to leave.q will reject acleaveif it announced itself acleaveoperation
before. Otherwise,q processes first all previouscjoin andcleaveoperations. If by
then q knows p as its successor it will acknowledgep leaving. Further, it will
inform r about the state change.q only proceeds servingcjoin after it receives an
acknowledgement ofr. p PrCasts to leavei and leaves the cluster after receiving
acknowledgements fromq andr .

In order to verify correctness of the protocol as stated in Theorem 5.5.1, recall
that according to Lemma 5.5.1 correctly preserving the relation among successors
and predecessors, given by Lemma 5.5.2, suffices to guarantee unique assignment
of processes to vector clock entries.

Lemma 5.5.2 Let q be a coordinator inCoreC with successorr, serving acjoin
operation ofp. Then

1. any interleavingcjoin operation will take effect earliest after processesp and
q successfully updated their successors and predecessors,

2. an interleavingcleaveoperation ofr will successfully be managed atp and
therefore preserve correctly the predecessor successor relation ofCoreC .
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Theorem 5.5.1 LetΣ := σ1, . . . , σm denote a sequence of potentially interleaved
operations on a clusterC whereσi corresponds to acleaveand cjoin operation.
If Σ maintainsCoreC to include at least one process the algorithm guarantees for
anyp, q ∈ CoreC

1. unlessp = q, Sp ∩ Sq = ∅;

2. unlessp = q, p and q maintain different vector clock entries.

5.5.3 Dealing with link and process failures

In the following we present an algorithm which extends the previous framework
of Section 5.5.2 to deal with link and process failures. It is assumed that processes
fail by stopping, we do not consider Byzantine faults. Links may be slow or failing.
Communication between pairs of processes is connection oriented. Letδ denote the
maximum tolerated message delay and letp andq denote processes. Connection
oriented communication guarantees: ifp sends a message, sayM , toq andM is not
received in timeδ then both processes will act as ifM was never send. Moreover,
we say thatp weakly detectsq as faulty. Since the algorithm works in rounds, we
also assume that processes have clocks which maintain approximately the same
speed. LetT denote a time period larger than the maximum tolerated message
delay. If m processes periodically with periodT send messages top , thenp will
receivem− ε < m′ < m + ε messages during any time interval of lengthT which
starts afterp has received the first messages from allm sources.

The proposed algorithm performs in rounds where the time between two con-
secutive rounds is assumed to be long enough to host a PrCast, i.e. to inform
members of the clusterC about a successfulcjoin operation. The algorithm is
described in pseudocode (cf. Algorithm 2, Algorithm 3 and Algorithm 4), and be-
low we present the ideas informally. During a round the algorithm maintains the
following two invariants:

1. Any non-faulty processp in CoreC which does not perform acleaveopera-
tion remains inCoreC as long asp knows about at leastk + 1 of its 2k + 1
closest predecessors which have not experienced any process or link failures.

2. Failing processes will eventually be excluded fromCoreC and processes
which performcjoin subsequently may reuse the respective vector clock en-
tries.

The first invariant is achieved by the processes inCoreC sendingALIVE mes-
sages to their2k + 1 successors in each round. A process which receives less than
k + 1 ALIVE messages during a round considers itself to have failed and immedi-
ately leavesCoreC .
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Algorithm 2: Decentralised and fault tolerant cluster management: Data Structure and
Initialisation

VAR
Lp: set consisting of2k + 1 predecessorsp received from its immediate
predecessor
Rp: set consisting ofp and2k predecessors successfully sent to its imme-
diate successor
ALIVE p: set of processes which sent anALIVE message during a round
Cviewp: vector of processes
ImmedSuccp: immediate successor ofp
ImmedPredp: immediate predecessor ofp
TempRoundsp: indicates the number of rounds for which a process is not sending
UPDATEmessages
Pexclude: probability to start exclusion algorithm after weakly detecting a faulty
successor

Message types:
CJOIN, ALIVE, UPDATE, ACKJOIN, EXCLUDE, REQCOORD, ACKEXCLUDE

Init p:
Send〈CJOIN, p〉 to a known coordinator inCoreC .

Initialisation of variables when cjoin succeeds
On p receives〈ACKCJOIN, L, i, j, Cview〉 from q

Cviewp = Cview
Lp = L
Rp = ∅
p becomes the coordinator for all entries Cview[i] until Cview[j − 1]
ImmedSuccp = Cview[j]
ImmedPredp = q
TempRoundsp = 0
Send〈ALIVE , p〉 to 2k + 1 closest successors in Cviewp.
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Algorithm 3: Decentralised and fault tolerant cluster management: Main Loop

Main loop of the coordinator algorithm
Do in every round (duration longer than PrCast)

if |ALIVE p ∩ Lp| < 2k + 1 then
ThinkIamDisconnected= true
exit loop

end if
Send〈ALIVE , p〉 to 2k + 1 closest successors inCview.
if TempRoundsp = 0 then

R = {r ∈ Lp | r is among the2k closest predecessors ofp} ∪ p
STATUS = Send〈UPDATE, R〉 to q
if STATUS is OKthen

Rp = R
else

Run exclusion algorithm with probabilityPexclude
end if

else
TempRoundsp = TempRoundsp − 1

end if

Handling of UPDATE messages
On receiving〈UPDATE, R〉

Lp = R

In order to manage the exclusion scheme, a processp maintains two sets de-
noted byLp andRp. The setLp is used to storep’s “knowledge” on its2k + 1
predecessors (this information is received from its immediate predecessor), while
Rp contains the information onp’s last successful transmission top’s immediate
successor consisting of the2k closest predecessors ofp andp itself. Both sets are
needed to determine whether a range of coordinators can be excluded. Whenp joins
CoreC Lp is initialised by the coordinator performing thecjoin operation forp. The
setRp is initially empty. Each process also maintains an array denoted byCviewp

which is p’s local view on the set of coordinatorsCoreC , i.e. if Cviewp[i] = q
holds, thenp assumesq to be a coordinator owning vector clock entryi .

In each roundp proceeds if it has received during a round at leastk + 1 ALIVE
messages from processes inLp, otherwisep considers itself to have failed. Ifp also
received a successfully transmittedUPDATEmessage from its direct predecessor
proposing a new setL′

p, which includes2k + 1 predecessors ofp, then p sets
Lp = L′

p.
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Algorithm 4: Exclusion Algorithm

Do
STATUS = FALSE
while (p 6= succ(ImmedSucc))∧ (STATUS is FALSE)do

ImmedSucc = succ(ImmedSucc) {Finds the next possible successor fromCview}
STATUS = Send〈EXCLUDE, p〉 to ImmedSucc

end while
if (STATUS is True)∧ (p receives〈ACKEXCLUDE, Lq〉 from q) then

Send〈REQCOORD, Epq〉 to all processes inLq ∩ Rp

Wait for time2δ for replies of typeACKCOORD
if p receives≥ k + 1 replies of typeACKCOORDthen

{Do not sendUPDATEmessages while some excluded processes may still be alive}
TempRoundsp = dist(p, q) − 1

else
ThinkIamDisconnected = true
exit loop

end if
else

ThinkIamDisconnected = true
exit loop

end if

On q receives〈EXCLUDE, p〉
Reply〈ACKEXCLUDE, Lq〉

On r receives< REQCOORD, Epq >
if r 6∈ Epq then

Send〈ACKCOORD〉 to p
end if
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If p may proceed, it creates2k + 1 ALIVE messages and sends them to the
2k + 1 closest successors known fromCview. Moreover, it sends to its direct
successor anUPDATEmessage consisting of a set denotedR′

p. R′
p contains the2k

closest predecessors inLp andp itself. If p succeeds in sendingUPDATE(R′
p) to

its direct successor, thenp will set Rp = R′
p.

Assume a process weakly detects its successorr to be faulty, for instance be-
cause it could not establish a connection tor for some time. In order to release
the vector clock entries owned and coordinated byr, which is potentially faulty,p
will try to contact the next closest successor inCviewreachable, i.e. not detected
weakly faulty. Letq be the next closest successor reachable byp thenq will reply
by sendingLq. Processp will request from all processes inRp ∩ Lq to be the new
coordinator of all entries preceedingq and succeedingp denoted byEpq. Only if p
receivesk + 1 messages from destinations inRp ∩ Lq acknowledging the request,
p becomes thetemporary coordinator, otherwise it considers itself to have failed.

While being temporary coordinator,p behaves like an ordinary coordinator,
however it does not attempt to changeLq by sending anUPDATEmessage and it
does not serve acjoin request. All processes inEpq which neither have failed nor
considered themselves to have failed are said to bealive. Once, there does not exist
any alive processes inEpq, p behaves like an ordinary coordinator again. Note that
the time for a process remaining a temporary coordinator is bounded to at most the
distance fromp’s to q’s vector clock entry since in every round the closest alive
process inEpq is guaranteed to consider itself to have failed at the end of the round.

Processes which are requested to acknowledge an exclusion intervalEpq only
acknowledge if their vector clock entry is not contained inEpq. Processes which
acknowledged the exclusion of a process will remove processes inEpq from Cview
and prevent any updates of entries corresponding toEpq for dist(p, q) rounds.

5.5.4 Correctness and analysis of the membership protocol

In order to prove correctness of the membership algorithm of Section 5.5.3, we
need to show that even in the occurrence of failures i) two processes will never
create conflicting events and ii) the algorithm invariants are maintained.

In Lemma 5.5.3 we first consider the behaviour of the algorithm when no fail-
ures occur.

Lemma 5.5.3 Let neither process failures, link failures, or slow links occur and
processes always receive sufficiently manyALIVE messages. For any sequence of
interleavingcjoin operations the membership scheme is equivalent to the member-
ship protocol of Section 5.5.2.

Proof. Both algorithms show only different behaviour ifp executing Algorithm 3
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weakly detects its immediate successorr to be faulty. Since neither processes, nor
links do fail p must have detectedr as faulty becauser has considered itself to be
faulty. This implies thatr did not receive sufficiently manyALIVE messages or
decided to leave the cluster, which is a contradiction to our assumption. 2

The critical case to analyse is after processp initiated the exclusion ofEpq.
Lemma 5.5.4 states that during a round the closest successor inEpq will fail.

Lemma 5.5.4 Let Epq denote the set of processes to be excluded wherep coordi-
nates the exclusion andq is the new successor ofp. Further, letA denote the set of
processes which received sufficiently manyALIVE messages in the current round.
Let r denote the closest process inEpq which is still alive. Then

A ∩ (Lr − Epq − Rp) = ∅.
Proof. We can associate the passing of anUPDATEmessage with a token. We
say processq received a token fromp if there is a chain of consecutiveUPDATE
messages originating inp and ending inq. We define a relation≺ wherep ≺ q if
q has received a token fromp when it was created (i.e. the time it performed the
cjoin operation), whilep 6≺ q if q did not receive a token fromp at the time it was
created.

Consider casep ≺ r: In this caseLr − Epq − Rp is either empty or it contains
destinations which where in a previousCviewof p. However, whenp successfully
updatedRp, the respective destinations were guaranteed to be excluded by the pre-
decessors ofp. Hence, this case yieldsA ∩ (Lr − Epq − Rp) = ∅
Let p 6≺ r: Any token originated byp and received byq must have been received
by r. In particular if Cviewof q was influenced byp, alsor must have received
influence byp. Then we can reason the same as before.

The difficult case remains whereq did not receive any influence fromp. We define
for two processesp′ andq′, p′ to be the parent ofq′ if p′ coordinatedq′ to enter the
cluster. Further, we define ancestor by the transitive closure of the parent relation.
If q did not receive any token fromp, but share a common influence, thenq must
have received a token from an ancestor ofp. Let s denote the ancestor ofp which
succeeded last in sending a token toq.

Caser received the respective token:If r received the respective token, then it
shares the same influence asq. Every consecutive token which origins from set
Epq, has no impact onA ∩ (Lr − Epq − Rp). However, every token originating
outsideEpq by transitivity will effectLp oncep has joined the cluster. Hence, all
vertices inLr − Epq − Rp are not alive afterp determined its setRp.

Caser did not receive the respective token:There must be an ancestor which re-
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ceived the respective token. If there was not we would concludeEpq = ∅. Then
againp on its creation would share all influence bys on the ancestor ofr and by
transitivity tor itself. Hence, again all tokens which did not influencep originate
from the setEpq. Therefore all processes inLr − Epq − Rp are not alive, oncep
has updatedRp. 2

Lemma 5.5.4 immediately implies Corollary 5.5.1 which states how long a pro-
cessp needs to be temporary coordinator until at leasti alive processes inEpq have
failed.

Corollary 5.5.1 Theith successor ofp in Epq will fail latest i rounds afterp was
acknowledged.

Proof. The immediate successor ofp clearly fails because allALIVE messagesr
can expect according to Lemma 5.5.4 are insideRp (supposep maintains a copy
of sendLp) and at mostk messages did not acknowledgep. Assume now that
until roundi − 1 the closesti − 1 successors have failed. Then in roundi the only
candidates for sendingALIVE messages are inL. However, there are at mostk
candidates which did not acknowledge the exclusion of theith successor. 2

Theorem 5.5.2 Algorithm 3 guarantees that two processes never have common
vector entries they either own or coordinate.

Proof. Lemma 5.5.3 shows that only exclusion could cause any such conflicts.
Assume that during an execution two alive processesr ands, are two processes co-
ordinating common vector entries. This implies that one process, sayr was failed
to be excluded, whiles was inserted. Letp be the process which failed to exclude
r and inserteds.

After p initiated the exclusion ofEpq with r, s ∈ Epq, p switches state to become
temporary coordinator for dist(p, q) rounds. During this timep could not have in-
serteds. However, whenp switches state to become active coordinator and inserts
s, Corollary 5.5.1 guarantees thatr must have considered itself to have failed, con-
tradicting that bothr, ands were active. 2

5.6 Discussion and future work

We have proposed lightweight causal cluster consistency, a hierarchical layer-based
middleware structure for multi-peer collaborative applications. Causal cluster con-
sistency provides a dynamic interest management for processes on replicated ob-
jects. Processes can observe updates which correspond to their interest in optimistic
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causal order. Moreover, a dynamic set of processes may concurrently propose up-
dates to the state of the replicated objects. We have shown an implementation based
on scalable group communication protocols. The protocol uses a fault tolerant and
decentralised membership algorithm which has been proven to correctly provide
optimistic causal ordering and succeeds in excluding faulty processes.

The proposed cluster membership algorithm allows several extensions which
go beyond causal cluster consistency. It is also possible to use the stated algorithm
to distribute ownership of replicated objects and achieve types of consistency which
guarantee that all updates with respect to an object are observed in the same order
by all group members.

Further work includes complementing this service architecture with other con-
sistency models such as total order delivery with respect to objects.
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Abstract

Research on probabilistic reliable peer-to-peer communication has shown
how to provide lightweight scalable and decentralised membership which
is highly resilient to failures. For topic-based publish/subscribe several so-
lutions building on structured and unstructured peer-to-peer networks have
been proposed. A problem in existing solutions is to provide a fair balance
of the load during the dissemination of events which considers the interest
of processes. In this work we address this issue by proposing a role-based
DHT which supports dynamic subscriptions and unsubscriptions to topics in
a space efficient manner. A role-based DHT allows one to separate subscrip-
tion management and dissemination, and it supports a dissemination algo-
rithm in achieving a fair balance in forwarding events. Moreover, the role-
based subscription management can eliminate the use of parasite messages,
i.e. messages propagated by a process which does not share an interest in
the content of the message. We present an algorithm implementing a role-
based DHT, which can be easily combined with existing DHT algorithms,
and present an evaluation in combination with two fundamental dissemina-
tion schemes: application-level multicast trees and gossiping. The results
show that a role-based DHT can support a well balanced application-level
multicast trees as well as support gossip-based dissemination algorithms in
efficiently managing data structures.
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Keywords: publish-subscribe, structured and unstructured peer-to-peer dissemination,
group communication

6.1 Introduction

Large-scale event dissemination supporting many-to-many communication is a fun-
damental service needed in many distributed applications to support coordination
among processes. With increasing number of processes the amount of concurrent
events increases. A needed feature in providing scalability and reducing the number
of events delivered per process is to supportselective event disseminationconsider-
ing the interest of processes. Processes in the network are divided into two possibly
overlapping camps:publishersandsubscribers. The publish/subscribe paradigm
allows a process to express interest by performing a subscription. After a suc-
cessful subscription, a process will be asynchronously notified about all published
events corresponding to its interest. Publish/subscribe has been implemented using
various ideas structuring the dissemination process including different paradigms
like topic-based, content-based and type-based publish/subscribe.

For recent decentralised peer-to-peer applications it is important to distribute
the load of the dissemination of events well among all peers in the system. For
peer-to-peer based publish/subscribe systems a measure offairnesstakes into ac-
count the load of the work in disseminating events dependent on the expressed
interest. Ideally, processes which are rarely notified about events should be al-
lowed to perform less work, while a peer which receives many notification should
perform more work for receiving the service supported by many other peers. Since
in general it is difficult to predict when publishers create events there is not a di-
rect relation between the interest expressed by a subscription and the amount of
events received. Therefore a fair dissemination of an event should avoid involving
processes which are not interested in the event. Messages carrying such events are
also calledparasitemessages.

Recent work on building scalable publish/subscribe systems uses lightweight
decentralised peer-to-peer multicast dissemination to implement topic-based pub-
lish/subscribe. Processes express their interest by subscribing to a set of top-
ics. Two common ways of implementing topic-based publish/subscribe are us-
ing application-level multicast trees in combination with structured peer-to-peer
dissemination [Rowstron et al. 2001; Zhuang et al. 2001] and gossiping in un-
structured peer-to-peer systems [Baehni et al. 2004]. In difference to unstructured
peer-to-peer systems, structured peer-to-peer systems offer a lookup service which
allows one to route efficiently for a given key to its closest location. By using for
example uniform hashing it is ensured that each location is maintained by a unique
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process. Structured peer-to-peer systems are also called adistributed hash table
(DHT).

Application-level multicast trees in structured peer-to-peer systems allow an
efficient handling of subscriptions and unsubscriptions to topics. Performing a
lookup to the name of the topic determines the root of the application-level mul-
ticast tree. A drawback, however, is that the process performing as a root is not
necessarily interested in the topic, but carries the highest load. Currently proposed
solutions for implementing application-level multicast trees lead either to badly
balanced trees or involve frequently high level processes close to the root in the
application-level multicast tree to enforce a good balance.

On the other hand gossiping in unstructured peer-to-peer systems support fair
event dissemination by associating each topic with a gossip group. However, sub-
scriptions to topics are more difficult to achieve, and require to implement an addi-
tional structure that allows a process knowing about one process of the peer-to-peer
system to subscribe to any topic maintained by the peer-to-peer system. Moreover,
associating with each topic a group requires to allocate more space for maintaining
for each group a view of group members. Although topic hierarchies can reduce the
number of topics a process needs to subscribe, it is desirable to reduce the overall
cost of space maintained at a peer depending on the number of topics a process has
subscribed.

While dissemination and subscription management commonly are treated in a
single structure, this work proposes arole-basedDHT for subscription manage-
ment which can support fair and space efficient event dissemination independent of
the used dissemination scheme. While the subscription management is responsible
in achieving fairness and space efficiency, the dissemination determines the relia-
bility provided for event delivery. We present an algorithm for a role-based DHT
which can be implemented in combination with existing DHT algorithms in the lit-
erature. The impact of the role-based DHT algorithm is evaluated with application-
level multicast trees and gossip-based dissemination. The results show that in com-
bination with a role-based DHT it is easy to achieve well balanced application-level
multicast trees by loading all processes evenly. For gossip-based dissemination the
role-based DHT is shown to be useful in maintaining random dynamic views for
processes.

6.2 Background

The publish/subscribe paradigm allows processes to express their interest in events
by performing an operation subscribe. After subscription, a process will receive
events which correspond to the expressed interest. Publish/subscribe systems may
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differ in the way they express interest such as topic-based, content-based, and type-
based publish/subscribe schemes (cf. [Eugster et al. 2003]). Large-scale pub-
lish/subscribe systems like [Baehni et al. 2004; Rowstron et al. 2001; Zhuang
et al. 2001] usually use topic-based publish/subscribe systems. In topic-based
publish/subscribe each process subscribes to a list of topics. Any published event
is associated with a topic and needs to be delivered to all processes interested in
the respective topic. Often publish/subscribe systems consider hierarchies of topics
and subtopics, i.e. a process subscribing to a topic will receive all events corre-
sponding to the topic and all subtopics.

The implementation of scalable decentralised topic-based publish/subscribe sys-
tems commonly uses group communication to handle interest management in form
of group membership and uses the underlying multicast primitive to disseminate
events to all group members. While in early research the focus was on reliable
fault-tolerant approaches, recent peer-to-peer based solutions trade the strong re-
liability guarantee with reliability expressed with probabilistic guarantee in order
to scale to a large number of processes and provide a highly dynamic membership
scheme.

One can distinguish among peer-to-peer solutions for large-scale event dis-
semination between structured and unstructured peer-to-peer-systems. Structured
peer-to-peer systems like [Stoica et al. 2001; Ratnasamy et al. 2001; Rowstron
and Druschel 2001; Alima et al. 2003] handle dynamic membership and provide
a lookup service which efficiently routes for a given key to its closest location.
Such a structure is also referred to as adistributed hash table(DHT). Unstructured
peer-to-peer solutions providing probabilistic reliability use the gossiping paradigm
(cf. [Demers et al. 1987; Birman et al. 1999; Eugster et al. 2001a; Ganesh et al.
2001; Koldehofe 2003; Pereira et al. 2003]). In distributed computing, gossip-
ing was introduced in the context of data replication, whereas with pbcast [Birman
et al. 1999] gossiping became an attractive communication paradigm for large-
scale event dissemination. In gossiping protocols, a process is assumed to maintain
a set of processes forming its view. When disseminating an event processes which
have received this event forward the event to a subset of their neighbours. Simi-
lar to an infectious disease under certain conditions one can guarantee with high
probability that every process of the system receives the respective event.

In publish/subscribe, structured and unstructured peer-to-peer solutions have
been proposed. In structured networks, approaches like [Rowstron et al. 2001]
form an application-level multicast tree. With help of the peer-to-peer system the
application-level multicast tree can be maintained in as self-stabilising way. How-
ever, there is a difference in the involvement of processes depending on whether
they are leaf or a forwarder in the tree. Moreover, the root of the tree is not neces-
sarily interested in the topic. When building topic hierarchies the root of multicast
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tree has to perform the largest amount of work. Distributing the load among the
peers fairly is an issue in SplitStream [Castro et al. 2003] and Bullet [Kostić et al.
2003] where the data is divided into smaller items and distributed using several
streams. For SplitStream a peer may depending on its interest, subscribe to a num-
ber of streams corresponding to its inbound requirement. Efficient ways of splitting
data streams by providing fairness and a low amount of overall work has been anal-
ysed in [Bickson et al. 2004].

Splitting data in smaller streams is an attractive property in the context of mul-
timedia streams. In the context of publish/subscribe systems, the events are often
too small, so that splitting data may be used only to provide redundancy.

Data aware multicast [Baehni et al. 2004] is based on the gossiping paradigm
and involves processes corresponding to the topics they have subscribed. More-
over, it considers the use of topic hierarchies. In the dissemination of events only
processes are involved which have subscribed to the topic.

Application-level multicast trees involve significantly fewer messages com-
pared to gossiping. However, both schemes also address different reliability prop-
erties. For gossiping the issue is to inform all processes with high probability in
the presence of failures, while for application-level multicast trees a large set of
processes may be temporarily disconnected.

6.3 Notation and problem description

A topic-based publish/subscribe system consists of a dynamic set of topics de-
noted byT = {t1, . . . , tm} and a dynamic group of a possibly large number of
processes denoted byG = {p1, . . . , pn}. Topic names as well as processes iden-
tifier are assumed to be associated with unique names. For processp we writepid

when referring to its identifier. The topics of the publish/subscribe system may
form a hierarchical containment relation. Atopic hierarchyis a partial order re-
lation H(T ) ⊂ T × T where(ti, tj) ∈ T if all published events corresponding
to tj correspond also toti. The topic hierarchy can be represented by a directed
acyclic graphD(T,E(T )) where(ti, tj) ∈ E(T ) if and only if (ti, tj) ∈ H(T )
and∀(tl, tj) ∈ H(T ) ⇒ (tl, ti) ∈ H(T ).

Let p be a process inG, thenTp denotes the set of topics,p is interested in. In
a publish/subscribe systemp can perform the following operations:

• publish(ti, e): all processesq ∈ G with ∃tj ∈ Tq s.t. (tj , ti) ∈ H(T ) will be
notified about the evente.

• subscribe(t1 , . . . , tl): after having performed this operation,p will be noti-
fied about events corresponding to topicst1, . . . , tl.
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• unsubscribe(t1 , . . . , tl): after having performed this operation,p will not
receive any events corresponding to topicst1, . . . , tl.

The publish operation requires from a publish/subscribe system to offer an
event dissemination algorithm. In addition to providing delivery guarantees to the
subscribers, an important issue in a decentralised system is to distribute the load in
forwarding events fairly among all subscribers of the publish/subscribe system. In
a publish/subscribe system processes should perform work according their interest,
i.e. the more services a process consumes the more it should be involved in provid-
ing services to other processes. We can measurefairnessin a publish/subscribe sys-
tem by considering for each processp in G the ratio denoted byφp over the number
of notifications and the number of forwarded events. Letµ =

∑
p∈G φp/|G|, then

one dissemination scheme is fairer than another ifΦ :=
∑

p∈G |φp − µ| becomes
smaller.

Another important measure is the amount ofspaceallocated at each process
for forwarding events. For every topic, a processp performs work in disseminating
events,p needs to maintain an additional structure, for instance a routing table,
which helps to determine the next locations for forwarding an event.

The role-based DHT, introduced in Section 6.4, provides a subscriptions man-
agement scheme which can be used to adjust fairness and space efficiency in com-
bination with decentralised dissemination algorithms. A DHT allows one to map
processes to locations and provides a lookup service which returns for a key the
closest process maintaining the location. The number of locations in a DHT we
denote byN . We assume that a DHT uses uniform hashing in order to determine
the location of processes. LetΣ, I be alphabets and lethash ∈ Σ∗ → I l be a
function known to all processes mapping a key of arbitrary length (e.g. a group or
process identifier) to a domain of fixed length in a way that for two different keys a
collision is unlikely to happen and the values appear uniformly distributed among
the domain. Lethash1(x) = m1 ∈ I l1 andhash2(y) = m2 ∈ I l2 . We define
hash1(x) ◦ hash2(y) to be the concatenation of the stringsm1 andm2 ∈ I l1+l2 .

In a role-based DHT, a process can use several roles in order to support services
regarding a role. In a topic-based publish/subscribe system a role corresponds to
a topic. A process can be forwarder or child with respect to a role. For each role
a process acts as a forwarder it needs to perform work during the dissemination of
events and maintain a location inside the role based DHT. The dissemination with
respect to a role only involves those processes which have joined the DHT using
the same role.

96



Topic-aware subscription management

6.4 Topic-aware subscription management

In this section we introduce a structure, we call arole-based DHT, which can
be used for management of dynamic subscriptions and unsubscriptions in a pub-
lish/subscribe system in order to support fairness and space efficient management
of resources. A role-based DHT provides

• interest management: a process can join the DHT using multiple roles deter-
mining its interest,

• interest-based lookup: a process can perform a lookup of a location regarding
a role, and if the location is maintained by a process using the same role, then
the lookup will involve only processes which have joined the DHT using the
same role,

• role-based random lookup: a process can perform a random lookup with
respect to a role which returns a process chosen uniformly at random among
all processes which joined the DHT using the same role,

• load balance: when performing a join operation a process can join either
as a forwarder or as a child. A process which joins as a forwarder needs
to maintain space for a role-based lookup table. A child only maintains the
information on the parent and receives from its parent all events.

A role-based DHT can be achieved in combination with various routing schemes
for DHTs mentioned in the literature, however we need to extendjoin and lookup
operations to take into account the role aspect. Letr be a role thenjoinp(r, v)
allows processp to join the DHT using roler wherev decides whetherp acts as
forwarder or child. The operationlookupp(r, value) performs a lookup using role
r. If value is maintained by a process using roler the the lookup will not involve
any processes sharing roler.

In a topic-based publish/subscribe system a role corresponds to a topic. The
role-based lookup provides us with a notion oftopic-awarenesswhich guarantees
that a process interested in a topic can route efficiently to any other process inter-
ested in the same topic by using no parasite messages.

In the following, we will explain the ideas behind implementing the role-based
lookup operations and propose an algorithm which can be used to implement topic-
based publish/subscribe considering fairness and space requirements.

97



6. A ROLE-BASED DISTRIBUTED HASH TABLE

6.4.1 A role-based lookup supporting topic-awareness

A lookup service requires to map processes uniquely to locations, for instance
by using a consistent hash function. Letp denote a process andpid its identifier then
hash(pid) would determine the location inside the DHT. A generalisation which
allows processes to determine a location with respect to a role is to usehash(pid, r),
wherer denotes the role. This way a process can join a DHT multiple times using
different roles and use different virtual addresses. Any lookup ofhash(pid, r) is
guaranteed to end inp. If q forwards a lookup operation top, q will add to its
request the virtual locationhash(pid, r). p will serve the lookup by using a routing
table corresponding tor. For maintenance of its rolesp uses a setLp, called the
location viewof p. Lp is defined by

Lp := {hash(pid, r) | p joined the DHT using roler}.
For eachv ∈ Lp, p maintains a routing tableRp(v). The implementation ofRp(v)
can be done using existing DHT protocols of the literature. We assumeRp(v) pro-
vides a set of neighboursQp(v) which have the closest common prefix for values
x > v as well as forx < v. After performing a lookup ofw usingRp(v), Rp(v)
will point to a forwarder with valueu whose common prefix is larger or equal to
the common prefix ofw andv.

A role-based lookup can be used to achieve a subscription management algo-
rithm for topic-based publish/subscribe which provides topic-awareness and main-
tains only a small location view. As a first step we propose a hash function which
can be used to implement topic-awareness. From Lemma 6.4.1 we can obtain
hash(pid, t) such that for any pair of processesq and r with hash(qid, t) ∈ Lq

andhash(rid, t) ∈ Lr, q andr can route to each other without using any parasite
messages.

Lemma 6.4.1 Assume that for any pair of topicst, t′ ∈ T hashis collision free,
i.e. hash(t) 6= hash(t′). Let p denote a process inG interested int ∈ T . If
hash(pid, t) := hash(t) ◦ hash(pid) and hash(pid, t) ∈ Lp thenp can lookup any
other processq with hash(qid, t) ∈ Lq without using any parasite messages.

Corollary 6.4.1 A DHT which guarantees that∀p ∈ G, ∀t ∈ Tp hash(pid, t) ∈ Lp

provides topic-awareness.

Corollary 6.4.1 follows immediately from Lemma 6.4.1 and gives a first imple-
mentation to achieve topic-awareness: for every subscription to topict, p keeps an
entry in its location view, i.e.hash(pid, t) exists inLp.
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Figure 6.1:Forwarders and children in a role-based DHT allowing a maximum of four
topics and four processes.

We show in the following how to reduce the average size of the location view,
i.e. a process uses in its location view only a subsetSp ⊂ Tp such thatLp =
{hash(pid, t) | t ∈ Sp}. We achieve this by making a distinction between for-
warders and children (cf. Figure 6.1). In this case case the average size of a location
view is expected to be reduced proportional to the number of children accepted by
a forwarder.

A process is called aforwarderwith respect to a topict ∈ Tp if hash(pid, t) ∈
Lp, otherwise it is said to be achild. For each valuev = hash(pid, t) ∈ Lp a
forwarderp maintains a set of at mostk childrenCp(v) interested int. For any
child in Cp(v), p is also called theparent.
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If q is a child with q ∈ Cp(hash(pid, t)), thenp is the closest forwarder to
hash(qid, t). This means any routing request to a child will reach its parent, which
then can forward the routing request. A childq maintains a set of forwarders de-
noted byFq(v) which also includes its parent.Fq(v) is typically initialised by its
parent. Processq can useFq(v) to route to any process interested.

6.4.2 An algorithm for a role-based DHT

In the following, we present an topic-aware algorithm which manages subscrip-
tions and unsubscriptions and balances the cost in forwarding events, i.e. the al-
gorithm maintains the forwarder/child relation between processes interested in the
same topic. We show how processes, based on subscriptions and unsubscriptions,
manage their location view and introduce the following operations needed when
performing a subscription or unsubscription to a topic:

• join(p, q, t): Assumesq is the closest forwarder tovp = hash(pid, t). Af-
ter performing this operation,p will be a child of q, i.e. p ∈ Cq(vq :=
hash(qid, t) andFp(vp) containsq and neighbours ofq in Rq(vq).

• leave(p, t): Assumesp is a forwarder ofhash(pid, t) and there exists at least
one neighbour interested int. After performing this operation,p is neither
forwarder nor child with respect oft. The children ofp become children of
the closest forwarder.

• split(p, q, r, t): Assumesq or r is a forwarder tohash(pid, t) with q being the
closest forwarder tohash(pid, t) with hash(qid, t) < hash(pid, t) andr being
the closest forwarder withhash(rid, t) > hash(pid, t). After performing this
operationp, q and r are forwarders, and the children ofq and r become
children at their closest forwarders.

• split(p, q, t): Assumesq is the closest forwarder tohash(pid, t).
If hash(qid, t) < hash(pid) then q finds r which is closest forwarder to
hash(pid, t) > hash(pid, t) and performssplit(p, q, r, t). Otherwiseq findsr
which is the closest forwarder tohash(pid, t) with hash(pid, t) < hash(pid, t)
and performssplit(p, r, q, t).

• replace(p, q, t): Assumesq is a forwarder tohash(pid, t) with its closest
neighboursx, y. After performing this operation,q is neither forwarder nor
child with respect oft, while p joins as a new forwarder. All children of
q, x, y become children at their respective closest forwarder.
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Figure 6.2:Algorithm’s operations when performing subscriptions and unsubscriptions
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• makechild(p, q, t): Assumesp andq are forwarders fort whereq is the clos-
est forwarder top. After performing this operationp becomes a child ofq
and all children ofp are reassigned to their respective closest forwarders.

• reassign(p, q, t): Assumesq is the closest forwarder tohash(pid, t). After
performing this operation,p will be a forwarder with respect to topict by per-
forming firstsplit(p, q, t). Thereafter alsoq becomes a childmakechild(q, p, t).

Subscriptions. Let p be a process subscribing to topicst1, . . . tl. Initially routes
to vpi := hash(pid, ti). Let q1, . . . , ql be processes where processqi maintains
vqi := hash(pid, ti). For any topicti which is maintained byqi, but qi is not
interested in topicti, p becomes a forwarder by addinghash(pid, ti) to Lp. If Lp

is still empty,p choosesqi with hash(pid, ti) of qi with maximum setCqi(vqi) and
initiates operationsplit(p, qi, ti). After p operates as forwarder for at least one topic
it may initiate operationreplace(p, qi, t) for forwardersqi with

|Lqi | − 1
|Tqi |

>
|Lp| + 1
|Tp| .

Besides considering the size of the location view one may consider other metrics
such as the forwarded and received traffic of a process. Finally,p initiates for alli
with vpi 6∈ Lp operationjoin(p, qi, ti).

Unsubscriptions. If processp unsubscribes from topicst1, . . . tl, it contacts all
processesqi which function as a forwarder forp to removep from its set of known
children. For all topicsti for which p functions as a forwarder and maintains any
children, p checks whether there exists another forwarder interested in the same
topic. In this casep initiates operationleave(p, ti). Otherwisep selects a suitable
processqi in Cp(hash(p, ti)) and initiates operationreplace(qi, p, ti). If p is for-
warder for topicti, but does not maintain any children forti, p simply removes
hash(p, ti) from its view.

Maintaining at most k children. Subscription and unsubscription may overload
certain processes, i.e. forwarderp of t may become responsible for more than
k children. In this casep selects a suitable child, sayq, and initiates operation
split(q, p, t).

6.4.3 Correctness in the absence of failures

A correct execution of a topic-ware subscription management scheme needs to en-
sure that i) a process will be forwarder or child for topict if and only if it is inter-
ested in topict, ii) for every childp there exists a parent and the parent is closest
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to hash(pid, t) in spite of interleaving subscriptions and unsubscriptions. At first
let us consider the case where operations do not interleave, i.e. every process is
involved in at most one operation at a time.

Lemma 6.4.2 If all operations during unsubscription and subscription perform
correctly and do not interleave, the subscription and unsubscription algorithm
guarantees correctness.

Proof. Since initially a process is interested in no topics, we need to show that after
p performs subscriptions or unsubscriptions,Tp changes accordingly and for any
processq, Tq remains unaffected by the operations ofp. Moreover, when inserting
or removing a forwarder, all children need to be relocated to the closest parent.
When performing subscribe,p becomes the forwarder for all topics where there
is no other process. In this case there are no possible conflicts. If a subscribing
process performs asplit(p, q, t) operation, children ofq become either children
of q or of p. Otherwise,p joins as a child to the closest forwarder and no other
processes are affected.
When unsubscribing, we distinguish between the case wherep unsubscribes as a
child or as a forwarder. For topics for whichp is a child an unsubscription by
contacting the parent does not affect any other processes. Ifp is a forwarder and has
no childrenp can leave the DHT with respect to the topic safely without affecting
any children. Otherwise,replaceandleaveensure that all children ofp and ofp’s
closest neighbours are relocated to the closest forwarders.
Hence, if operations do not interfere, neither subscriptions and unsubscriptions af-
fect any other processes and correctly maintain the forwarder/child relationship.

2

In order to deal with interleaving operations we introduce the possibility to
abort operations which then need to be retried by the initiator. Every operation
is of the formop(p, q, t) wherep initiates the operation whereasq can abort the
operation.q serves an operation once all previous operations initiated or requested
have been completed. However, there are two exceptions: first whenq detects that
the assumption for an operation is not satisfied any longer then it will abort the
operation immediately; second whenever it receives a join operation then it will
either accepts or aborts it immediately.

Lemma 6.4.3 Every join operation succeeds after a finite number of retries.

Proof. join(p, q, t) will only be aborted afterq has left the DHT, i.e. by performing
operations leave or replace. In this case the number of forwarders which can be
found in a DHT is strictly decreasing. After rerouting a finite number of steps,p
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will either be routed to a forwarderq′ accepting join or to a forwarder which is not
interested in the topic. In this casep performsjoin(p,⊥, t) and will be a forwarder
with respect to the topic. 2

Lemma 6.4.4 After initiation, a leave operation will succeed in a finite number of
steps.

Proof. When performing leave, a processp first leaves the DHT. Afterwards there
will be no further operations which can interleave withp. p requests from all
children to perform a join operation. Note that these children are not involved
in any other operation and thus perform join immediately. Since according to
Lemma 6.4.3 join operations are guaranteed to finish in a finite number of steps,p
will receive from all children acknowledgements after a finite time. 2

Lemma 6.4.5 Any sequence of interleaving operations maintains subscriptions
and unsubscriptions correctly.

Similar to the proofs of Lemma 6.4.4 and Lemma 6.4.3 we can show for the re-
maining illustrated operations that they can succeed in finite number of steps once
initiated. Since each process serves only one operation at a time the execution
of interleaving operations corresponds to sequential execution of non-interleaving
operations.

6.4.4 Providing failure resilience

In the situation of link or process failures it becomes costly to establish cor-
rectness as illustrated in the case of no failures. Instead we assume that in the non
faulty case the execution behaves equivalent as described in the previous section.
However, when failures occur we allow communication to timeout. In this case a
process can still locally complete the operation. As a consequence, some children
may not be connected to a forwarder, or they are connected to a forwarder which
is not closest to them. Therfore, every child performs a little protocol periodically
which self-stabilises to a correct state.

Algorithm 5 illustrates how children become reassigned to their closest par-
ent. Every childp routes tohash(pid, t) and its parent by contacting a node in
Fp(hash(pid, t)) which forwards the routing request. Letq be the process closest
to hash(pid, t) receiving the routing request ofp. If p is not a child ofq, q addsp
to its set of children. In any case,q acknowledges to be the parent and forwards
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Algorithm 5: Self-Stabilising Protocol finding for a child the closest parent

VAR
Cp: the parent knownp
Fp: Alternative forwarders known top
Rp: Routing table ofp
Qp: Neighbour set of the routing table ofp
parentp: Parent ofp
recupdate: Truth value to check whetherp received an update
l: maximum number of alternative forwarders

Repeat periodically
if recupdate= true then

Chooseq ∈ Fp(hash(pid, t))
Send toq 〈ROUTEPARENT, pid, t〉

else
UsingRp(hash(pid), t′) find q = lookup(hash(pid, t))
Send toq 〈ISPARENT, pid, t〉

end if
On q receives〈ROUTEPARENT, pid, t〉

UsingRq(hash(qid), t) find r = lookup(hash(pid, t))
Send tor 〈ISPARENT, pid, t〉

On q receives〈ISPARENT, pid, t〉
Cq(hash(qid, t)) = Cq(hash(qid, t)) ∪ pid

for i = 1 to l do
Chooserid ∈ Qq(hash(qid, t)) uniformly at random
F ′

p(hash(qid, t)) = F ′
p(hash(qid, t)) ∪ rid

end for
Send top 〈ISCHILD, qid, t, F

′
p(hash(qid, t))〉

On p receives〈ISCHILD, qid, t, F
′
p(hash(qid, t))〉

recupdate = true
parentp(hash(pid, t)) = qid

Fp(hash(pid, t)) = F ′
p(hash(qid, t)) ∪ qid
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a recent view of its neighbours top. If p does not receive an acknowledgement, it
can retry using an arbitrary role for routing.

Lemma 6.4.6 If no failures occur after a finite number of steps any child will be
located to the closest forwarder.

6.4.5 Topic hierarchies

In order to establish topic hierarchies, we assume that a process which subscribes
to a topicti ∈ T knows about all topicstj with (ti, tj) ∈ H(T ). Using the prop-
erty of role-based DHT which provides processes with the possibility to perform a
random lookup, a process can find a process chosen uniformly at random which is
interested in a lower level topic. Lemma 6.4.7 shows that the algorithm introduced
Section 6.4.1 provides this property.

Lemma 6.4.7 Let Gt = {p1, . . . , pl} denote a non-empty set of processes that
subscribed to topic t. The role-based DHT algorithm of Section 6.4.1 allows one to
route to a process inGt chosen uniformly at random.

Proof. A process selects a random valuerandand requests to route tohash(rand, t).
SinceGt is non empty, the topic-aware algorithm guarantees that there exists at
least one process being forwarder oft. The routing of the DHT guarantees to
find the forwarder closest tohash(rand, t). Since each forwarder maintains in its
view the closest processes inGt, a route will locate the process inGt closest to
hash(rand, t). By the uniformness ofhashthis corresponds to selecting uniformly
at random a process inGt. 2

A forwarder of topicti will forward all corresponding events to a process in-
terested intj with (ti, tj) ∈ E(T ) by performing a random lookup as illustrated in
Lemma 6.4.7.

6.5 Dissemination using topic-awareness

Section 6.4 has shown how to achieve topic-awareness in a DHT. This section fo-
cuses on dissemination schemes which remove parasite messages and aim to pro-
vide fair load sharing. We focus on two ways of achieving dissemination, gossiping
and application-level multicast. Gossiping is commonly used by unstructured peer-
to-peer systems, however we show that one can maintain at low cost a suitable
membership to implement gossiping by exploiting the uniform structure of DHTs.
Application-level multicast is the common way to achieve dissemination and can
easily be constructed using the routing table of the DHT. Differences between
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gossip-based and application-level multicast dissemination are based on reliability
and message load given by the schemes. Gossip-based dissemination aims at reli-
ability expressed with high probability in the occurrence of failures. Application-
level multicast in structured peer-to-peer systems, ensures self-maintenance of the
multicast tree, i.e. a failure of a process will cause restructuring of the application-
level multicast. Reliability achieved by gossip-based dissemination use high redun-
dancy. Therefore, the message complexity, i.e.O(n log n) push-based unstructured
protocols compared toΘ(n log log n) using combined push and pull is higher than
by using application-level multicast, which can be achieved by sendingΘ(n) mes-
sages.

6.5.1 Gossip-based dissemination

Gossip-based protocols maintain a view of communication partners which may
change over time. We consider a framework of gossiping in the spirit of pbcast. In
every round a process communicates withk partners (k denotes the fanout) from
its view, chosen uniformly at random, and informs them about recently informed
events. Reliability depends on the way how the dissemination scheme terminates
(cf. [Koldehofe 2003]), the fanout, and the size of the local view. Ideally the mem-
bership scheme allows processes to choose communication partners uniformly at
random among all group members. Lpbcast addresses this issue by maintaining
partial views and exchanging randomly selected communication partners, such that
a random choice of a process from the local view, appears as choosing the destina-
tion uniformly at random among all processes. In Scamp, randomness is used to
initialise the view of a process. The view size needs to be in theO(log n + C), and
processes have to gossip in every round with approximatelyO(log n) communica-
tion partners in order to achieve reliability with high probability.

In the following, we show that DHTs can be used to efficiently maintain partial
views before proposing how to combine gossiping in a fair manner with struc-
tured DHT of section 6.4. Algorithm 6 outlines a generic lightweight membership
algorithm. A process maintains a view containing a maximum ofl other group
members. Depending on the fanout and the frequency the membership algorithm
refreshes the view of a process. Refreshing the view happens by each process
sending with probabilityf its own address toK processes of the system. The des-
tinations of the processes are determined by routing toK values chosen uniformly
at random within the domain of the DHT’s hash function.
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Algorithm 6: Generic Lightweight Membership Protocol

VAR
Vp: known group members ofp
K: fanout
f : frequency the view gets updated
l: maximum size of a view

Initialisation
for i = 1 to l do

r = random value∈ hash(Σ∗)
route〈REQUEST, pid〉 to r.

end for
Do in every round with probabilityf

for i = 1 to K do
r = random value∈ hash(Σ∗)
route〈REQUEST, pid〉 to r.

end for
On p receives〈MYADDRESS, qid〉

Vp = Vp ∪ qid

if |Vp| > l then
remove oldest identifier s.t.|Vp| = l

end if
On p receives〈REQUEST, qid〉

Send toq 〈MYADDRESS, pid〉

Lemma 6.5.1 Assume hash provides a uniform mapping of process identifiers to
their locations in a DHT. An algorithm using the membership of Algorithm 1 forl =
K andf = 1 corresponds to selecting neighbours uniformly at random from a full
view. The membership algorithm provides an overhead ofO(K log n) additional
routing messages performed by each process.

Remark 6.5.1 pbcast implemented in an unstructured peer-to-peer network re-
quires to maintain a full view. Lemma 6.5.1 shows that in a structured peer-to-peer
network one can reduce the view size tok by using an overhead ofO(k log n) addi-
tional routing messages performed by each process. Algorithm 6 can also initialise
the membership provided used in the dissemination scheme of Scamp. However,
here we do not experience any overhead since the local view remains static.

Remark 6.5.2 Algorithm 6 can also implement lightweight gossiping by exploiting
proximity of the membership information.
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Topic-aware gossiping. In order to combine the role-based DHT providing topic-
awareness of Section 6.4 with Algorithm 6, every processp needs to maintain for
every topict ∈ Tp corresponding data structures e.g. gossip view, update fre-
quency, etc. According to Lemma 6.4.7, routing tor = hash(rand, t) finds group
members chosen uniformly at random among the processes which subscribed to
topic t. Hence, we can generalise Algorithm 6 to maintain for each topic a gos-
sip view. Dissemination of events with respect to topict happens by using the
corresponding view tot.

6.5.2 Application-level multicast forest

Using a role-based DHT allows a space efficient construction of a forest of applica-
tion-level multicast trees which can be used to achieve a fair and efficient distri-
bution of the work without using any parasite messages. Achieving a fair data
distribution is coupled to all processes, interested in the same topic, performing
equal amount of work when forwarding a message. We ensure this by constructing
a forest in which every forwarder/process is a root of an application-level multicast
tree. By using the random routing technique, introduced in Section 6.4.5, the load
of performing a multicast becomes evenly balanced, and according to Lemma 6.4.7
only processes interested in the topic become involved. In the following, we outline
the construction and maintenance of the forest. In our description for simplicity we
consider only forwarders. However, note that it is straight-forward to generalise
this scheme to include all processes interested in the topic.

Let us consider a topict ∈ T . Each forwarder oft is required to maintain
O(log Nt) links. Similar to [Bickson et al. 2004] we distinguish between level
0, . . . , dlog Nte − 1 links. During the dissemination of an event the root of the tree
will use level0 links to forward the event. Accordingly, a process will forward an
event, once it has received the event via a leveli link, to its leveli + 1 links.

Let p be a forwarder and letm = |hash(Σ∗)|. We propose a construction of
an application-level multicast where a leveli link corresponds to the forwarders
reachable when routing to

hash(t) ◦ (hash(pid) + m/2i modm)

and
hash(t) ◦ (hash(pid) − m/2i modm).

In this construction the highest level links are the closest neighbours inQp. Hence,
a process can determine the number of levels needed locally by using its neigh-
bourhood set. The maintenance of level links can happen in two ways: i) bounded
to incoming links, i.e. from time to time a process reinitialises its outgoing leveli
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links, or ii) bounded to outgoing links, i.e. processes route to their leveli incoming
links (using the same function).

Maintenance bounded to outgoing links is of advantage for quickly adapting
to changes in the structure. For example, in a construction which is bounded to
incoming links a new process subscribing may need to wait some time before re-
ceiving disseminated events, while a construction which is bounded to outgoing
links ensures that processes receive events immediately after a successful update of
all incoming links.

In order to deal with failing processes the root of a multicast tree needs to send
heartbeat messages periodically. Processes which did not receive any heartbeat
messages via a leveli link perform a lookup of the respective incoming link.

Further redundancy can be achieved by disseminating via multiple application-
level multicast tress. This ensures that in spite of a fixed number of failures a
disseminated event reaches all interested and failure-free processes. Redundancy
can also be used to save on heartbeat messages. When disseminating an event
the identifiers of all root processes of used application-level multicast trees are
attached to the event. A process which received the event only from a subset of
these processes can determine which multicast tree did not perform correctly and
fix the respective leveli link.

6.5.3 Dissemination using topic hierarchies

Both dissemination schemes of Section 6.5.1 and Section 6.5.2 can be used to con-
sider topic hierarchies. The gossiping schemes of Section 6.5.1 can be combined
with data-aware multicast [Baehni et al. 2004]. By modification of Algorithm 6
we can maintain a set of random vertices of the closest higher-level topic for which
there is at least one interested process. When gossiping, a part of a process’s gossip
message will go to higher-level processes.

When using application-level multicast the root of the tree is also responsible
to forward the published event to a process of the next level. Again one can modify
Algorithm 6 for processes to maintain a set of higher level processes which can be
used to initiate a redundant application-level multicast of the next higher level.

6.6 Evaluation and analysis

We evaluate the dissemination schemes of Section 6.5 with respect to fair sharing,
space complexity, time complexity, and reliability. We distinguish between four
protocols:
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• FullGossip: The dissemination scheme uses gossiping and makes no distinc-
tion between forwarders and children.

• ForwardGossip: Only forwarders are used in a gossip view. A forwarder
receiving an event for the first time forwards the event its set of children.

• FullTreeCast: Every process is part of an application-level multicast for all
topics subscribed.

• ForwardTreeCast: Only forwarders are used to built a forest of application-
level multicast trees. A forwarder also propagates an event to its children
when receiving the event for the first time.

Fair sharing. In a gossip-based protocol a process communicates with destina-
tions chosen uniformly at random from its view. In a dynamic view initialised by
Algorithm 6 every process/forwarder has the same probability of receiving an event
and being involved in gossiping about an event in the next round. Hence, every pro-
cess/forwarder is expected to perform the same amount of work with respect to a
topic. For theFullGossipprotocol this implies that every process performs fairly.
In the ForwardGossipprotocol fairness depends on the distribution of forwarders
and children. A process being forwarder of a hot topic has potentially to do more
work than a forwarder of a low-interest topic. If the distribution of traffic with re-
spect to topics is known in advance we can use this information during subscription
to achieve fairness (cf. Section 6.4.1). Otherwise the use of heuristics can give a
fair distribution of the load among the processes.

The construction of application-level multicast trees in Section 6.5.2 ensures
that every process interested in a topict is root of exactly one application-level
multicast tree. Choosing the root for disseminating uniformly at random guarantees
that every process is expected to perform2i/Nt messages via a leveli link. e.g. in
half of the cases a process is expected to propagate messages while in the other half
a process is a leave node in an application-level multicast tree. Similar to gossip-
based protocolsFullGossipprovides full fairness, whileForwardGossiprequires
also a fair assignment of forwarders and children.

Space complexity. In combination with the role-based DHT the main space cost
is the maintenance of routing tables. For each valuev = hash(p, t) ∈ Lp a process
keeps a routing table of size ofO(log N). Note that the size of a view or the num-
ber of links is bounded byO(log Nt). Hence, the full view dissemination schemes
needsO(|Tp| log N) while forwarder-based dissemination schemes require space
O(|Lp| log N). Assuming a fair distribution of children and forwarders, the av-
erage space by a process depends on the overall number of topics maintained in
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a publish/subscribe system and how densely each topic is populated. Each active
topic needs at least one forwarder. Letk be the maximum number of children a for-
warder accepts before performing a split operation. If for everyt ∈ T there exists at
leastk processes sharing an interest then|Lp| can be bounded by1 + |Tp|/(k + 1),
i.e. achieving a space reduction assumes the topic space is densely populated.

A more significant space reduction can be achieved for densely populated top-
ics if one associates with children a tree-like structure. Each vertex of the tree
corresponds to a DHT usingO(log Nt) vertices. Hence, the depth of the tree is
in the order ofO(log Nt/ log log Nt) and each child’s routing table is bounded
to O(log log Nt). For determining the correct position we take a hash function
which mapspid similar to CAN [Ratnasamy et al. 2001] to a Cartesian product of
O(log Nt/ log log Nt) dimensions and additional a level which equalsi with prob-
ability (log Nt)i/Nt. In this case the value of each dimension determines the path
to follow while the level determines at which level of tree to join a DHT. Within
a DHT a process always routes to the process closest tohash(pid). By using this
scheme in a densely-populated topic space, a process needs only to be forwarder of
O(log |Tp|) topics and maintain a routing table of sizeO(log N) whereas for the
remaining topics a process maintains a routing table of sizeO(log log N), resulting
in an overall space complexity ofO(log |Tp| log N + |Tp| log log N). Although the
scheme is more space efficient when topics are densely populated and one could
use a similar protocol like Algorithm 5 to self-stabilise children to be closest to
their forwarder, the maintenance cost and overhead are significantly higher.

Time complexity. For a topict gossip-based dissemination and application-level
multicast terminate inO(log Nt) rounds. When using topic hierarchies, in each
round a topic will reduce the distance to processes which have subscribed to higher
level topics. In this case the worst-case time complexity isO(log Nt log |T |). Dis-
tinguishing between forwarders and children adds only a constant cost.

Reliability. Application-level multicasts protocol can tolerate up tof failures
when usingf + 1 different root vertices. When distinguishing between forwarders
and children then a failure of a forwarder affects at mostk children. Hence,f
failures will affectkf processes not receiving the message.

Gossip-based dissemination informs w.h.p., i.e. for a constantc with probabil-
ity O(1−n−c) all processes assuming for a constant1 > ε > 0, there exists at least
(1 − ε) non-faulty processes. In the case when distinguishing between forwarders
and children every failing process will affectk children.
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6.7 Conclusion

This work has proposed a role-based subscription management algorithm suitable
for large-scale topic-based publish/subscribe systems. In combination with funda-
mental dissemination schemes, topic-awareness ensures a fair and efficient distri-
bution of events by maintaining also the benefits of recent structured peer-to-peer
membership schemes in providing a failure resilient maintenance of membership.
Topic-awareness allows one to deploy the technique of random lookups which find
for a given topic a process chosen uniformly at random which has subscribed to the
topic. This technique gives benefits when establishing topic hierarchies, but also
supports failure redundant event dissemination.

The results of this work suggest that the distinction between structured and
unstructured peer-to-peer dissemination systems is not a matter of which dissemi-
nation system is used, but rather the structure of the peer-to-peer system matters in
how to bootstrap data structures used for disseminating events.

In the context of gossiping, this work has shown that one can use a structured
peer-to-peer system in order to establish in a space efficient way a dynamic set
of randomly chosen communication partners. The cost isO(log N) routing mes-
sages per round compared toO(1) when maintaining a static membership. This
corresponds to the higher space complexity of dynamic views over static views in
unstructured networks.

113





Part II

Collaborative Learning of
Distributed Algorithms
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Seven

Collaborative Learning Using
Simulation and Visualisation

This part considers the use of interaction and collaboration in order to support stu-
dents in learning distributed algorithms. The goal is to provide students with tools
that help in following the execution of an algorithm, support the discovery of criti-
cal instances of the algorithm, as well as to allow students to interact and cooperate
with each other on the same problem.

Distributed algorithmsrun concurrently on many interconnected processing el-
ements called processors or processes. Such algorithms need to work correctly
independent from the speed of the communication links and the structure of the
network. Understanding distributed algorithms, including their performance anal-
ysis and their correctness, is important in courses related to distributed systems,
operating systems and computer networks. While for many algorithms the execu-
tion follows a sequential thread of control, for distributed algorithms one needs to
consider complex interaction among processes. Tracing the execution of distributed
algorithms gives a huge amount of data describing local state and interaction among
processes. Moreover, the variation in speed of communication links may end in a
different flow of control, even for the same input.

In this thesis, simulation and visualisation are examined as a method in pro-
viding interactivity and collaboration to users. Visualisation can help to obtain an
overview of the global state and important events in a distributed system’s exe-
cution. Combining visualisation and simulation can also help to identify critical
properties of algorithms. Such critical properties may occur only sporadically in
a real system’s execution and may be difficult to find using real traces. However,
identifying critical properties is important in order to achieve an understanding of
the correctness of algorithms.
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Structure of this chapter. Besides providing background information on collab-
orative and interactive learning in Section 7.1, this chapter identifies several levels
of interactivity which can be supported when providing general computer-based
simulation and visualisation components (cf. Section 7.2). The different levels of
interactivity are related to educational scenarios as well as algorithmic solutions
discussed in Part I. Section 7.3 discusses the design of simulation components to
allow real-time interactions while the execution of a distributed algorithm evolves.
Moreover, collaborative situations are considered in which users control the be-
haviour of an algorithm by introducing a decentralised simulation framework. Sec-
tion 7.4 gives an overview of the contributions of the papers in the subsequent
chapters.

7.1 Background: collaborative and interactive learning

Collaborative and interactive learning has been suggested to be used in several edu-
cational levels as a way of improving the understanding of a concept. While in col-
laborative learning the focus is on supporting social interactions between the partic-
ipants in a learning situation, interactive learning is about interactions withlearn-
ing objects. A learning object as introduced in web-based learning is a reusable
instructional component (cf. [Wiley 2000]), for instance a simulation/visualisation
environment.

Educational research has conducted work examining the effectiveness of col-
laborative learning (see [Dillenbourg et al. 1996] for an overview). Results pre-
sented in [Slavin 1995] suggest that in many scenarios collaboration among stu-
dents can be more effective than students working alone. However, collaboration
by itself is not a guarantee for more effective learning as often assumed. The effec-
tiveness often depends on the interactions which are supported between collabora-
tors. In practice the outcome may depend on many more factors, for instance the
engagement of students and the introduction of the collaborative situation by the
instructor.

Several learning theories such as the socio-constructivist approach, socio-cul-
tural approach and shared recognition approach (cf. [Dillenbourg et al. 1996]) have
been proposed in order to explain how collaboration can support learning and what
conditions should be provided to make collaborative learning efficient. Typically,
learning theories deal with the effect of social interactions in collaborative situa-
tions, but they focus on face-to-face learning in specific circumstances, for instance
considering age differences among collaborators.

Computer-supported collaborative learning (CSCL)addresses the use of com-
puters to ease collaboration between students who may be physically not present at

118



Background: collaborative and interactive learning

the same location. CSCL has been suggested to support concept learning, problem
solving, and designing [Kumar 1996]. As pointed out in [Williams and Roberts
2002] CSCL can be helpful to support collaborative situations in large classes and
may serve as a way to reduce discrimination of and competition between students.
Since communication in CSCL typically uses the Internet, CSCL can be used in
distance education. In distance education courses, CSCL can help to enrich the
web based lecture material and provide services to the learners so they can ex-
change and discuss problems with the teacher and other course participants. CSCL
in distance education may also be used to prepare students to work in international
teams, as shown in a collaborative programming project by [Last et al. 2000].

Despite the previously mentioned positive effects, the possibility of social inter-
actions is limited by the use of technology and therefore a critical point when intro-
ducing CSCL related technology into the classroom [Kreijns and Kirschner 2001].
The problems in supporting natural interactions and presence when using modern
technology are also discussed in the context of virtual reality applications [Heldal
2004]. In fact, the combination of virtual reality with CSCL has lead to a variation
called computer-supported collaborative learning requiring immediate presence
(CSCLIP). An overview of CSCLIP related systems is presented in [Lucca et al.
2003].

So far collaboration has been discussed in the context of inter-human interac-
tions. In computer-supported interactive learning environments, as is the case for a
simulation/visualisation environment, an important factor deals with interaction be-
tween the learning object and human beings. Depending on the level of interactivity
one may say the learner collaborates with the learning object if the interactions help
the learner to develop a new insight.

Different levels of interactivity with learning objects has been discussed in the
literature. For example, a graphical user interface provides a user with a basic way
of interaction such as to start, to run, or to stop a learning task. Beyond this it
is desirable for a learning environment to provide interactions which allow users
to influence the state of a learning object. In order to identify fundamental differ-
ences, an effort in categorising interactivity in computer-based environments has
been made. [Schulmeister 2003] distinguishes among the following levels of inter-
activity:

1. Viewing objects and receiving

2. Watching and receiving multiple representations

3. Varying the form of representations

4. Manipulating the content
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5. Constructing the object or representation contents

6. Receiving intelligent feedback from the system through manipulative action

Many algorithm visualisations are restricted to observing one or multiple rep-
resentations of the same algorithm execution. Often the only form of interactions
provided are changing the view of the visualisation, and the algorithm’s input
data. This limited form of interactivity may be an explanation for mixed results
in examining the effectiveness of algorithm animations in computer science educa-
tion [Hundhausen et al. 2002].

However, in many cases algorithms consider more aspects which can be used to
provide better interactivity. Especially distributed algorithms cannot be explained
by following a sequential thread of control. The behaviour of the execution depends
on the underlying network and the parameters defining timing of links between pro-
cesses. A simulation/visualisation environment, as discussed in Chapter 8, allows
users to

• change the input of the algorithm,

• model own networks,

• change the properties of links in the system,

• modify the algorithm,

• define a failure model.

The simulated and visualised execution gives feedback of the behaviour of the al-
gorithm under the user-defined properties. This can help to identify and understand
properties of the formal algorithm description.

Nevertheless, simulation/visualisation environments also differ in the level of
interactivity they can support. In the following we identify levels of interactiv-
ity in a simulation/visualisation environment and discuss the possible solutions of
implementations based on the algorithmic ideas discussed in Part I.

7.2 Levels of interactivity in a simulation/visualisation
environment

A design criteria for simulation/visualisation environments is to decouple simu-
lation and visualisation in autonomous system components. Typical benefits to a
learning environment are exchangeability and flexible use of components. One
can easily replace the simulation by using real system traces or use a visualisation
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to monitor the execution of a real system. Moreover, one can support the moni-
toring of the execution from multiple places at the same time, e.g. in the setting
of a labroom where students can follow the execution of a discussed algorithm,
however individually controlling the speed of the animation. The same is true for
replacing/adding new visualisation components. One may provide alternative visu-
alisations illustrating a concept from a different perspective or simply provide an
improved representation. Especially, differences in the perceptions among students
as well as teachers make it desirable to have multiple representations available.

However, having components separated gives challenges in order to provide
interactivity during the execution of a simulation. For example, considering failures
in a distributed system execution leads to questions as to how the system would
behave if a specific link or process fails. Although in a simulation the simulator
may be configured to let processes fail, a more intuitive way for a learner is to take
the decision online in order to construct certain algorithm scenarios. We distinguish
among the following levels of interactions in a simulation:

• offline interactions.All decisions influencing the execution of a simulation
happen before starting the simulation. Once started the simulator has control
on how the execution evolves. The user can only interact with the visuali-
sation by determining the speed of the visualisation or deciding the view on
the execution, but the user’s interactions do not change the behaviour of the
algorithm’s execution.

• real-time interactions.Single or multiple users can influence the execution
as the algorithm evolves. From an educational perspective it makes a dif-
ference whether multiple users interact at the same time or only a single
user. Therefore, we distinguish betweensingle-user real-time interactions
andmulti-user real time interactions. Each interaction of a user may change
the behaviour of the algorithm’s system execution. For example, a user can
decide that a link or a process will fail. For multiple users the interactions
may also be a meaningful way to collaborate among each other. However,
the simulator is in charge of validating interactions and evaluating the out-
come. If no interactions occur the simulator shows the behaviour as in the
offline scenario.

• collaborative interactions.While offline and real-time interactions assume a
central simulation component, collaborative interactions reflect a distributed
form of simulation where the system is split in several components, each
maintained by single simulation component. Collaborative interactions al-
low one user to decide the steps of a simulation component. The multiple
simulation components need to collaborate in order for the system to per-
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form correctly. Collaborative interactions can be combined with multi-user
interactions. Each user may subscribe to a set of components and choose the
level of detail of the whole simulation to be observed.

Single and multi-user interactions are helpful for interfering with the execution
of a distributed algorithm as it evolves and also offer the possibility of a basic form
of collaboration. Collaborative interactions are motivated by the results in [Ben-
Ari 2001] presenting an interactive animation. In the animation a user needs to
maintain the decision for a process of the distributed system while the simulator
is responsible for maintaining the state of the remaining processes. This technique
can also be generalised to support multi-user collaboration in a group of users by
each user taking control over a process. By supporting interactions between users
we can achieve collaboration where users share the goal of maintaining a well-
functioning distributed system.

7.3 Design of educational simulation components on
supporting interactivity

A simulator for distributed algorithms allows one to run the execution of an al-
gorithm in a user-defined environment and produces according to the given con-
figuration parameters an execution which appears to have been executed on a real
system. Examples of typical configuration parameters are, among others, the topol-
ogy of the network and the speed and design of communication channels. A basic
simulation environment facilitates:

• the design of one’s own algorithm by providing a high level programming
language,

• the design of network topologies,

• the execution under different failure models,

• creation of traces of the system execution.

There are two common approaches to the design of a simulation environments:
Transport-centred simulationsupports simulation of protocols by providing a re-
alistic model of the protocols transport (cf. [Bajaj et al. 1999]). The creation of
algorithms is often close to network programming. The simulation allows one to
draw conclusions from the execution of an algorithm such that a user can receive
realistic feedback on the performance.Event-driven simulationas introduced in
Chapter 8 does not assume a specific transport protocol. In the context of message
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Figure 7.1: Multi user real-time interaction in an simulation/visualisation environ-
ment.

passing one distinguishes among send, receive and internal events. The occurrence
of corresponding send and receive events depends on the topology description. This
way protocols can often be implemented according to a typical textbook descrip-
tion.

In an educational scenario a transport-centred simulation is of interest if the pur-
pose is to familiarise learners with the characteristic of particular transport protocol
or with issues involved in network programming. If the focus is on understanding
fundamental algorithmic ideas and learning to analyse algorithms based on time
and space complexity an event-driven simulation may be the more suitable choice.

Most commonly the interactions supported by a simulation are offline interac-
tions. A user defines properties of the topology before executing a protocol. In
many cases it is desirable to receive feedback and change the behaviour of proto-
cols, e.g. by failing links or processes as the execution evolves. This requires that
a simulator supports feedback.

A simulator supporting feedbackis a simulator with an input and an output
channel. The simulation performs in rounds where each round consists of two
phases. In the first phase, at the beginning of each round, the simulator reads in-
teractions from its input channel. Depending on the underlying interaction model,
the simulator first validates the interactions, and for all allowed interactions the
simulation is updated. In the second phase, at the end of the round, the simulation
continues with the execution of the algorithm by creating a sequence of events cor-
responding to the changes of successfully executed interactions and the next steps
of the algorithm execution. The sequence of events is written to the output chanel
of the simulator. In an event-based simulation an interaction typically is valid if it
does not collide with any concurrent interactions and if the interaction is based on
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the events created by the simulator in the previous round.
Simulation supporting feedback allows the implementation of single-user as

well as multi-user real-time interactions as proposed in Section 7.2. The simula-
tion/visualisation consists of one simulation process and an arbitrary number of
user-steeredinterfaces(cf. Figure 7.1). An interface serves as a communication
layer for a visualisation component. In terms of event-based dissemination inter-
faces and simulator form a group. The simulator multicasts all events written to
an output chanel. Each event is associated with a sequence number and a round
number. When performing an interaction the interface forwards the interaction us-
ing point-to-point communication to the simulator. Each interaction message also
carries information on the round in which events have been observed. This allows
the simulator to verify the validity of an interaction.

Having a single simulation component facilitates the implementation of inter-
actions since all event ordering is coordinated by the simulator. The simulator
determines the speed at which events are created. In order to perform valid interac-
tions the interfaces must follow the speed of the simulator.

The design of collaborative interactions requires a different notion of simu-
lation. So far only one process controlled the simulation while other processes
performed real-time interactions via interfaces. In order to support collaborative
interactions we propose to use adistributed simulationwhere the system is split
into components. Acomponentconsists of a set of processes and each component
is controlled by a different simulation process. Not necessarily all components use
the same simulation. For instance, a simulation may be computer-controlled or
user-controlled. Components are said to be adjacent if in the underlying network
topology there is a link connecting a process of each component. If, in a simula-
tion, a process sends a message to an adjacent component than the component of
the sender is responsible for creating the send event while the component of the
receiver is responsible for creating the corresponding receive event.

An interface may subscribe to several components and perform real-time inter-
actions. The simulation process of each component is in charge of validating the
interactions. If each component consists of only a single process, than the simula-
tion corresponds to a real system execution supporting user interactions.

Collaborative interactions are suitable for a simulation of protocols using an
asynchronous communication paradigm. While messages inside a component de-
pend on the simulation parameters, a message sent between two adjacent compo-
nents depends also on the communication delay between the corresponding simu-
lation processes. However, for interfaces subscribing to multiple components it is
important to respect the causal relations among components.

The simulation of protocols using a synchronous communication paradigm re-
quires a synchronisation between all components to proceed at the same speed.
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This restricts the overall number of components which can be supported.
The implementation of collaborative interactions using a large number of com-

ponents and asynchronous communication can be implemented using the pub-
lish/subscribe paradigm. In a large system with continuous joining and leaving of
peers, a component may consist of multiple replicated simulation processes where
only the most significant simulation decides the next sequence of events. We can
use, for instance, lightweight causal cluster management of Chapter 5 and topic
awareness of Chapter 6 to determine the simulation process responsible for per-
forming the next simulation step and obtain a causal order relation for interfaces
which have subscribed to multiple components. Each simulation process, before
publishing a sequence of events, performs a lookup of the hashed component name.
The lookup returns the closest process to the hashed component name in the topic
aware DHT. This process may proceed and publish its events. Note, however, that
in the occurrence of failures there may temporarily be multiple processes which
publish simulation events, and the state of interfaces may temporarily be different.

7.4 Contributions

In Chapter 8 and Chapter 9 we propose and examine two forms of visualisation/
simulation environments:

• LYDIAN, a computer-based visualisation/simulation environment,

• dramatisation using human actors.

Besides presenting the ideas behind the approaches, an evaluation of the two forms
has been undertaken in two course studies.

LYDIAN is a simulation/visualisation environment, which has been developed
as part of this thesis. It supports the functionality described for simulation/ visuali-
sation using offline interactions. LYDIAN allows one to:

• simulate existing protocols,

• modify existing or create new protocols,

• create one’s own network structures,

• view an animation following the execution of a simulated protocol,

• create new animations.

In particular we have examined general meaningful visual representations for con-
cepts in distributed systems.
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While LYDIAN is a general-purpose environment for distributed systems, we
have also explored dramatisation for a specific distributed concept. By using human
actors we could achieve multi-user real-time interactions while a simulation of a
self-stabilising algorithm was proceeding. The idea of dramatisation has also been
transfered to a computer-based environment using some of the techniques discussed
in this chapter.
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LYDIAN

Boris Koldehofe
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Philippas Tsigas

Abstract

LYDIAN is an environment to support the teaching and learning of dis-
tributed algorithms. It provides a collection of distributed algorithms as well
as continuous animations. Users can combine algorithms and animations
with arbitrary network structures defining the interconnection and behaviour
of the distributed algorithm. Further, it facilitates the creation of own algo-
rithm descriptions as well as the creation of own network structures. This
makes LYDIAN a flexible tool to be used with students of different skills and
backgrounds.

This article gives an overview about various ideas and concepts behind
LYDIAN (which have been discussed before separately in several publica-
tions [Papatriantafilou and Tsigas 1998; Koldehofe et al. 1998; Koldehofe
et al. 1999; Koldehofe et al. 2000; Holdfeldt et al. 2002; Koldehofe et al.
2003]) by describing in detail the framework for an educational visualisation
and simulation environment for learning/teaching distributed algorithms as
well as discussing possible extensions which may improve possibilities for
user interaction. Moreover, in our effort to understand better what visual-
isation and simulation environments such as LYDIAN need to provide we
show results taken from a case study integrating LYDIAN in an undergradute
distributed systems course.
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8.1 Introduction

Distributed algorithms are algorithms that run concurrently on many interconnected
processing elements called processors or processes. The algorithms are supposed
to work correctly independent from the speed of the communication links and the
structure of the network. Understanding such algorithms including their perfor-
mance analysis and their correctness plays an important role in courses related to
distributed systems, operating systems and computer networks. Mostly, students try
to achieve an understanding of the algorithms control flow and its performance by
following the explanations on the board and the pseudo-code description presented
in a technical book or paper. This approach often suffers from the large amount of
data describing local state and complex interaction between processes. Simulation
and animation of distributed algorithms give students the possibility to experience
how the distributed algorithms evolves over time and test the algorithm under differ-
ent system behaviour. Compared to executing the algorithms on a real system, the
animation and simulation allows the student to interact with the system state, pause
the animation and execute an instance of an algorithm multiple times. A simulator
also enables students to trace behaviour which under real circumstances rarely oc-
curs, but is important to understand the correctness or asymptotic behaviour of the
algorithm.

In this article we present LYDIAN an environment to support the learning of
distributed algorithms. LYDIAN provides a database of distributed algorithms and
respective continuous animations. Students can write their own algorithm imple-
mentation in a high level language and test it with any arbitrary interconnection of
processes. The provided animation framework allows interactive demonstrations of
distributed algorithms. The animations do not use a fixed interconnection of pro-
cesses, but allow the students to create their own networks descriptions in a visual
way and apply them to the respective algorithm and animation. This way teachers
can use LYDIAN in various ways depending on the level and background of their
students.

Related Work. Compared to advanced system simulation tools like [Khanvilkar
and Shatz 2001] LYDIAN focuses on the educational aspects of algorithm visu-
alisation which are mainly to support the student in reasoning on the analysis
of the distributed algorithm. At the time we introduced the concepts behind LY-
DIAN [Papatriantafilou and Tsigas 1998] and our work on building an animation
framework [Koldehofe et al. 1999],[Koldehofe 1999] for distributed algorithms
there was only one known attempt towards a a set of animations of distributed
protocols for educational purposes, ZADA [Mester et al. 1995], based on the an-
imation package Zeus, a Modula-3 based system for specialised platforms. The
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effort resulted in a small archive of protocols, for each of which the set of views
is fixed and the implementation is the same program as the animation (this implies
essentially fixed timing, workload, etc).

Of relevance was also the interesting work by Ben-Ari in [Ben-Ari 1997] and
[Ben-Ari 2001]. There, the focus is on providing a framework for writing dis-
tributed algorithms (in a portable language) that allows students to interact with
the states of a process and this way understand state changes and data structures
of the algorithm. Subsequently, more tools with emphasis on different educational
aspects evolved.

VADE [Moses et al. 1998] is a system that supports algorithms to be executed
as Java processes on a server, and providing the client with a consistent view on
algorithm events that happens on the server. The visualisation is based on WEB
approach where users can view on a web page the visualisation of a selected algo-
rithm by downloading the respective Java client. The animations supports multiple
views, but makes no distinction between views for special educational purposes.
The approach is mainly designed to make students view a prepared protocol, but
not to implement protocols on their own. It seems that it was even thought to pre-
vent an observer from viewing the code behind an algorithm. To the best of our
knowledge, there is no recent development of this tool.

In the contrary ViSiDiA [ViSiDiA 2000] supports, like LYDIAN, an integrated
approach of simulation and animation of algorithms and in this respect covers
closest the aspects addressed by LYDIAN. The interconnection of processes is ab-
stracted by a communication graph model, which can be created interactively by
the user. The provided algorithms implemented in Java can be run on top of the
selected network. Hereby, the code for processes is simulated with Java threads.
Users can also create own protocols by using the provided library functions. How-
ever, the user has no influence on defining timing behaviour for communication
links of the network. The animations show the graph model visualising events
and states by displaying labels attached to links and processes. The visualisation
mainly addresses to visualise the current states, but does not provide the user with
information on other issues, such as causal relations and message complexity.

The work presented in [Schreiner 2002] provides a nice object oriented frame-
work which allows a simple specification of protocols in Java. The specification
protocols reflect the automaton model presented in textbooks on distributed algo-
rithms such as [Lynch 1996]. The animation, because of its non-continuous nature,
cannot give the user a picture about actions that happen concurrently and it does
not address other aspects in educational visualisation. Moreover, the network is
specified with the definition of a process, i.e. the code for each process identifies
the respective neighbours of processes.
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Organisation of this article. This article is organised to give first a general over-
view of LYDIANs components. In the following sections we present in detail the
framework used for the provided animations of LYDIAN, where we give special
attention to the educational aspects of the animations (see Section 8.3). Further,
in Section 8.4 we introduce how LYDIAN supports the creation of own protocols
with LYDIANs simulator. The concepts behind are illuminated on a simple exam-
ple, presenting how to implement a broadcast algorithm with LYDIAN. Section 8.5
describes a case study intgrating LYDIAN in a basic distributed systems course.
We evaluate a distributed system assignment in which students used LYDIAN to
implement their algorithms. In our study neither the teachers nor the students had
earlier class experience with LYDIAN. Section 8.6 we discuss an extension of the
visualisation framework based on Virtual Reality technology to increase possibil-
ties for user interactivity. Finally, in Section 8.7 we present our conclusions and
future work.

8.2 An overview on LYDIAN

LYDIAN is intended to serve a wide range of educational purposes. For instance,
one can use LYDIAN (i) to give a demonstration of prepared animations, (ii) to let
students create their own network structures, which can be linked to the respective
animations, or (iii) to let students create own protocols, which can be executed
on LYDIANs simulator. The interaction with LYDIAN is based on a graphical
user interface (GUI) written in TCL/TK [Ousterhout 1994] which allows to access
LYDIANs archive of created created resources as well as to create own resources.

Since in the execution of a protocol there are many components involved, LY-
DIAN introduced the concept ofexperimentsin which the user can describe the
properties for relevant components. An experiment contains information about

• the protocol the user wants to execute,

• the underlying network structuredescribing how processes are intercon-
nected and the characteristics of the timing behaviour,

• a trace filein which during the execution of the algorithm significant events
are stored which can be traced by the user,

• and ananimationwhich can give a graphical representation of the events in
the trace file.

The experiment is abstracted by a single window containing all experiment specific
information. The user interacts with the experiment by pressing buttons represent-
ing different actions or modification choices. There are two actions a user can
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Figure 8.1:An overview on LYDIANs functionality from a users perspective.

perform on an experiment. It is possible to “run” the experiment, i.e. the respective
protocol will be executed as specified in the experiment, or one can “animate” an
experiment, i.e. an animation also with respect to the specification in the experi-
ment will be shown.

When a user selects to “run” the experiment, the simulator of LYDIAN will
be started and in the protocol defined events written into a trace file. The user can
specify in its experiment further data evaluating the protocol. It is even possible
to add own events by adding debug lines to the protocol. In order to view the data
the user can choose between graphical or text output for the animation. The text
output is useful if users added own events and wish to see all information created
by the simulator. However, most users will prefer the graphical visualisation which
provides an animation with respect to the components selected within the experi-
ments. We will describe the framework used in LYDIAN to show animations in
more detail in Section 8.3.

The GUI of LYDIAN is designed such that the user can view all relevant in-
formation in one window and can change components of a selected experiment on
the fly. For instance, in order to change the network, a user simply selects another
network description file in the experiment and can run the experiment and view the
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Figure 8.2:The experiment dialog and the graphwin drawing tool.

animation as before, but with respect to the new network structure.
It is important for students to experiment with different network structures. LY-

DIAN provides an easy visual way to create their own network descriptions. This
component is based on LEDA [Mehlhorn and Näher 1999], a library for efficient
data structures and algorithms, providing many algorithms to manipulate graphs
and draw them efficiently. In LYDIAN the user simply draws a network based on
a graph in which vertices represent processes and edges links between processes.
Besides moving the vertices in order to achieve a pleasant layout, the user can ap-
ply a wide range of layout algorithms. For specifying the timing behaviour of the
network, it is possible to choose among many different distributions valid for all
processes, but also define a specific behaviour for a link or process. When saving
the graph the files will be available for the simulator as well as for the animator.
This way the user can see the same network in the animation as it was drawn in the
graph editor.
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8.3 The animation framework of LYDIAN

This section is on our work in building animations of distributed algorithms to
demonstrate(i) the “key ideas” of the functionality of the algorithms,(ii) their be-
haviour under different timing and workload of the system,(iii) their communica-
tion and time complexities. The visualisation takes as input any possible execution
trace of the respective algorithm, so that students (users) can view it in any possible
execution that they can select. We propose the use of a set of views, which also
take into account two inherent difficulties in understanding distributed algorithms
executions. These difficulties stem from the absence ofglobal timein the system,
which implies

• that processes need to rely on their knowledge ofcausal relationsamong
events in the system,

• and that in order to measure the length of an execution in time, we need
to employ some mechanism related to thedependenciesinduced by each
algorithm.

In the following we describe the set views that we provide for each animation
and also motivate our decisions, by explaining the role each one plays in assisting
the understanding of the algorithms. The code for all but one (“special”) view is
modularly used by all algorithms, as they are to assist in understanding issues which
are common in all distributed algorithms. The idea behind the “special” view is to
illustrate the special conceptsfor each algorithm (therefore the view needs to be
different for each algorithm).

For our animation programs we use the Polka library [Stasko 1995], which
is highly portable, friendly to use and has very good features for visualisation,
including possibility for multiple views, speed tuning, step-by-step execution and
callback events to assist interactive animation.

Animation Views

It should be noted that all views evolve continuously as the execution of the al-
gorithm evolves (continuous motion). The user can decide which views should
be shown. The views can be selected by a menu window. Also a further control
window enables the user in changing the speed or even halt animations in order
to watch interesting parts or skip uninteresting parts of the algorithms execution.
Moreover, the user has the possibility in zooming into interesting parts of the an-
imations as he/she can move to any area of a view. This is important since by
nature some animations will not be able to take place in a bounded window frame
because the animator has not any previous knowledge of further executions of the
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algorithm. With exception of the basic view, in which an individual animation for
each algorithm was developed, the offered views were designed such that they are
transferable for any distributed algorithm for a message passing system although
they allow some specifications. Thus further development will have to concentrate
only on the main ideas of algorithms.

The accompanying figures1 illustrate a snapshot of the animation of an execu-
tion of the ECHO algorithm (broadcast with acknowledgements) [Tel 1994]. The
problem and the algorithm are as follows: One process(or) needs to broadcast a
message to all the others and to also know when all have received it. It can only
communicate with its neighbours in the network, so it sends the message to them.
Each process, upon receiving the broadcast message for the first time, propagates
the message to its other neighbours and waits to receive acknowledgements from
all of them. Once, a process received all acknowledgements, it starts sending its
own acknowledgement to the one process from which it received the message for
the first time. Any process receiving the broadcast message again acknowledges
immediately to that sender and does not propagate it again.

Basic View (c.f. Figure 8.3). It illustrates the basic idea of the algorithm, hence
Basic Views of different algorithms most likely look different. However, for many
algorithms it is of interest to see the state of processes and messages which are
sent along links. This can be achieved by showing the communication network, by
colouring its nodes (processes) according to their state, and by showing moving ar-
rows which are coloured according to the kind of message sent along an edge (link).
In the particular algorithm the Basic View shows the communication network, the
propagation of the broadcast and the acknowledgement messages (arrows in green
and blue respectively) and colours (green or blue) the nodes (processes) that have
received the broadcast message and/or the acknowledgements, accordingly (ini-
tially all nodes are yellow, except from the one that initiates the broadcast, which
is always shown in red). As the algorithm execution evolves,waiting chainsare
formed among processes. Each process in the chain waits for an acknowledgement
from its next one in the chain. These chains also determine thetime complexity
of the algorithm. The edges between two consecutive processes in the chains are
marked in red. In this particular algorithm they also form a spanning tree of the
network at the end of the algorithm.

Communication View (c.f. Figure 8.4). This view assists in measuring the com-
munication complexity of the algorithm and is often helpful in finding relationships
between communication complexity and the structure of the communication graph.

1they are in colour, hence the reader may find them more explanatory if the file is printed in colour
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Figure 8.3:Basic view of the broadcast-with-acknowledgements algorithm animation.

It shows the contribution of each process(or) in the traffic (messages) induced by
the algorithms execution and it also shows the average number of messages per pro-
cess(or) during the execution. The number of messages are displayed in a bar chart
where bars grow online with the number of messages sent by a process(or). In this
example it is easy to observe that the amount of traffic induced by each process(or)
is proportional to its degree in the communication graph (shown in figure 8.3).

For some algorithm it is also of interest to have a measure of the bit complexity
of messages. The actual known maximum size of a message (represented in bits)
is displayed below every processes bar. The size of a message is represented by
a circle of which its area content is proportional to its message size. As the mes-
sage size increases online the user is able to observe how fast message sizes are
increasing.

In our example algorithm the bit complexity of a message was constant so that
the bit complexity is not of any interest and thus not shown in Figure 8.4.

Causality View (c.f. Figure 8.4). It illustrates the causal relation between events
in the system execution (arrows represent message transmission). It also shows how
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Figure 8.4:Views showing (a) the communication induced by each process(or) the average
and (b) the causality and logical times (e.g. as would be seen by a monitoring process.

Figure 8.5:Process step view and process occupation view.

the processes logical clocks are incremented during the execution. Even though
logical clocks are not used in all algorithms, the view is always available. Its pur-
pose is to show how would a monitoring process view the execution, based on
traces as would be given by each process separately. This is important, as the pro-
cesses in a distributed system do not have global knowledge of time. Besides, as
consecutive causally related events change colour, overlapping arrows with differ-
ent colours visualise the degree of asynchrony in the execution. It should be noted
that showing the maximum directed path in the resulting graph shows the length of
the execution in units of message transmission times.

Naturally, only a part of the whole view can be shown in the window, but the
user is able to go back and return (as well as to zoom in and out), as it is possible
in all other views.
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Process Step View (c.f. Figure 8.5). This gives the user the possibility to click
on any node in the basic view window, to receive information about its status (state,
last event processed, last message received/sent, etc.) at any point during the ani-
mation (or even after it has completed). It is also possible to viewinteractivelythe
whole execution of the selected process. This can be done for any process in the
system.

Process Occupation View (c.f. Figure 8.5). It shows in actual times, i.e. as given
by the simulation trace, the period that each process is kept busy by the algorithm
during the animated execution. If it is required by the algorithm it is also possible
to distinguish how long a process was kept busy in a certain state. Therefore, a user
may come to a better understanding of the algorithms time complexity by retracing,
for instance with the Process Step View, why a specific process was kept busy for a
long time. In this example, it can be easily observed that the initiator of the broad-
cast is the first to start and the last to finish. By receiving the acknowledgements
from its neighbours, i.e. its children in the induced spanning tree, it knows that the
broadcast message reached everybody, hence it terminates.

8.4 Writing own protocols

In courses assignments often require to write own protocols since the implemen-
tation helps the student to reflect in more detail on the main concepts behind an
algorithm. However, writing own protocols on “real systems”, i.e. based on li-
braries as MPI [Gropp et al. 1996] can become a complex task requiring a lot of
time for the students to understand the respective library. LYDIAN offers a simula-
tor including a simple language and data structures that allow to implement quickly
own protocols. Although the language is based on C syntax, it requires the user to
know only about the most elementary commands, e.g. needed for loops and case
analysis. The simulator helps the students to implement their ideas closely to the
way they are represented in ordinary textbooks and avoids much of the overhead
needed when learning a real system. The simulation also gives the possibility to test
the program under user defined behaviour, needed to test cases which rarely occur,
while in a real system a user may be unlikely to encounter the same situation. After
the execution the user can trace significant information about the execution of the
algorithm within the user experiment.

LYDIANs simulator calledDIASis based on the work forDSS[Spirakis et al.
1992]. The simulator is implemented by using the concept of Communicating Fi-
nite State Machines which allows to model the distributed system as a collection of
processes communicating via communication links with messages. The simulation
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is event driven, i.e. when an event takes place the process performs a computation
depending on its state.

As a first crucial step a programmer has to consider the states, messages and
events of the algorithm and understand how the algorithm is supposed to behave on
the occurrence of an event. Therefore the programmer creates a table of transitions
which associate with each pair, consisting out of a state and an event, the appropri-
ate function call to be executed. The defined code associated with a function call is
valid for all processes of the network observing the same event in the same state.
This way it is not required to create special code for a process, and the programmer
is supported to create code valid for any interconnection of processes.

The table of events is created interactively when a user chooses to create a new
protocol within LYDIAN. Depending on the states and messages of the protocol,
LYDIAN will ask for each possible transition the respective function call. Finally,
the user is asked to specify a file which contains the function calls for the defined
transitions. LYDIAN links all this information together and creates a protocol,
which a user can select within an experiment and run it with different network
structures.

In the following we will illustrate the concept behind the simulator of LYDIAN
by outlining how to implement a simple broadcast algorithm. The main idea behind
the algorithm is to send a piece of information from one source to all processes of
the network. The process starting the algorithm sends a message containing this
information to all its neighbours. A process receiving the information for the first
time, sends this message to all its neighbours, while a process that received the
information before ignores the message.

Recall that the first step to implement an algorithm is to identify the states and
messages needed. In order to distinguish between the state where a process has not
received a message yet and the state where a process can ignore the information, we
introduce two states:sleepingand received. For propagation of the information
only one message denoted bybroadcastis needed.

From this information LYDIAN creates the following transitions, where on the
right hand side of the arrow we have to specify corresponding actions inform of a
function call:

sleeping × INITPROTOCOL → start()
sleeping × RECMES(BROADCAST)→ forward()
received × init → illegal()
received × RECMES(BROADCAST→ ignore()

Sinceignore()and illegal() are just place holders for doing nothing or throw-
ing an exception because the algorithm entered an illegal state, the only functions
which remain to be implemented arestart() and forward() (c.f. Figure 8.6).

The function start() is called when the protocol is initialised. We assume that
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start()
{

MESSAGE∗ mess;
int i;

debug(DEBUG,”START %d %d”,me,get_time());
for (i=0; i< PCB[me].adjacents; i++) {

mess = create_message();
mess→kind = BROADCAST;
send_to(mess, i);
debug(DEBUG,”SEND_BROADCAST %d %d %d”,me,

PCB[me].adjust[i].id, get_time());
}
new_state = RECEIVED;

}

forward()
{

MESSAGE∗ mess;
int i;

debug(DEBUG,”REC_BROADCAST %d %d %d”, me,
CURMESS→from, get_time());

for (i=0; i< PCB[me].adjacents; i++) {
if (CURMESS→port 6= i) {

mess = create_message();
mess→kind = BROADCAST;
send_to(mess, i);
debug(DEBUG,”SEND_BROADCAST %d %d %d”, me,

PCB[me].adjust[i].id, get_time());
}

}
new_state = RECEIVED;

}

Figure 8.6:The code implementing the simple broadcast algorithm.

the protocol is executed on a network such that only one single process is woken
up by receiving the eventINITPROTOCOL. To create such a network with the re-
spective properties we can use LYDIANs graph drawing tool (see also section 8.2).
The process receiving the eventINITPROTOCOLis the initiator of the broadcast
algorithm. It creates a new message and sends it to all adjacent vertices. Creat-
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ing and sending a message is done by using the commandscreate_message()and
send_message()from the simulators library. The function calls require to use the
data structureMessage, which allows us to define the type of the message, but also
to send information with the message. In order to communicate with its neighbours
a process must be able to know about the link information. Therefore, the simulator
provides a data structure calledPCBfrom which a process can extract information
which must be known locally to a process, for instance the number of adjacent pro-
cesses. Finally, the process changes its state by setting the variablenew_stateto
the new valid state of the process.

The function forward() behaves similar to the function start(), however it oc-
curs when a process receives a message. In our description the message will not be
forwarded to the sender. The contents of the received message is available in the
variable CURMESS.

For evaluation of the protocol in both functions we defined debug messages.
After running the protocol the user can view within the trace file of the respective
experience the global order of events as they were executed within the simulator.

The example demonstrates only the most elementary functionality of the simu-
lator, sufficient for most introductory assignments though. However, the simulator
of LYDIAN provides a wide range of functions as timeout events and the possibil-
ity to specify parameters with the protocol which also makes LYDIAN usable in
graduate education and could even assist researchers to implement and test ideas of
their own.

8.5 Course integration

In this section we present a case study of integrating a simulation-visualisation
environment into a distributed system course. We present the evaluation of a dis-
tributed system assignment in which students used LYDIAN to implement their
algorithms. In our study neither the teachers nor the students had earlier class ex-
perience with LYDIAN. The feedback received gives valuable information on what
simulation-visualisation environments for distributed algorithms need to provide in
order to be successfully used in class. We are not aware of any similar study in the
area of distributed computing. However, the feedback we have received shows the
significance of such evaluations to help users improve their performance and help
them to acknowledge the wealth of tools they are provided.

The study is based on results taken from a compulsory basic undergraduate
course in computer science and engineering -distributed systems-, at our university.
The teachers taking part in this study have not used LYDIAN in class before, but
were positive in using it from what they heard and read about it. The feedback re-
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ceived shows that students succeeded well in the implementation of an algorithm.
Many students experienced some behaviour of the algorithm they did not expect
before, and this helped them in better understanding the algorithm. The feedback
also shows that students should be asked to test their implementations by exploit-
ing various parameters inherent in network topologies to improve their knowledge.
Naturally, good simulation-visualisation environments should provide such possi-
bilities. One should also remark that animation, as expected, is of good help. For
students being able to successfully exploit features of these environments, places
also high demands on the documentation of the respective tool.

8.5.1 Description of study

The evaluation is based on results taken from a basic undergraduate compulsory
distributed system course at our university. We received answers from 50 students
of the course. The questionnaire was anonymous. The main subject of most stu-
dents was computer science and engineering, however there were also some stu-
dents with other major subjects. Most students were in their final year of studies,
but all of them had studied for at least two years in a program at our university.
Hence, most of the students were experienced in programming. The percentage of
female students participating in the study was around 10%. The age of students
varied from 21 to 40, where most of the students were younger than 25.

For our study it is important to mention that neither the students nor the teachers
had earlier class experience with LYDIAN. The teachers had to work out their own
assignment, which would correspond to approximately one week of work for each
student. The idea was to use LYDIAN for a programming assignment in which stu-
dents had to implement some distributed algorithm based on elementary algorithms
introduced in the course, i.e. the echo broadcast algorithm, logical clocks and vot-
ing. The students could choose to implement one of the following algorithms:

• leader election, based on an echo-broadcast approach,

• leader election, based on a voting approach,

• resource allocation, based on logical clocks.

The outline of the algorithms was given with the assignments, so the students es-
sentially had to understand the algorithm and try to implement it. Parts of the
algorithms, as the echo broadcast, were also available together with an animation,
but needed to be changed to be usable within the algorithm. Most students decided
to implement the algorithm based on the echo broadcast approach. This is proba-
bly because this concept seemed easier to realize. The algorithms were supposed
to work on any arbitrary network structure.
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For our study and evaluation our interest was focused on the following aspects:

• the students’ performance in implementing an algorithm,

• how students test and reason about their implementation,

• whether/how much can LYDIAN help the students get an insight into dis-
tributed algorithms and their behaviour,

• whether students consider LYDIAN to be helpful,

• general feedback on the tools administration and maintenance.

8.5.2 Outcome and observations

The questions of this study and the answers received are summarised in Table 8.1
and Table 8.2. In Table 8.3, we examine the correlation between answers of stu-
dents, in order to examine the relation between:

• the factors that helped the students most in getting a better insight into dis-
tributed algorithms,

• the help that the students got from using LYDIAN and their performance in
carrying out the assignment,

• and the students performance in the assignment and their appreciation of
LYDIAN.

Because of the anonymity of the answered questionnaire, we cannot associate
the success of the students in their assignment with the answers that they gave to
our questions. We simply trust their answers regarding their understanding of the
assignment material. Below we discuss the results of our study.

• About 60% of the students were done with understanding how to use LY-
DIAN and with implementing and testing their solution in 1.5 working-
days2, while 80% of them were done in 2.5 to 3 working days. It should
be mentioned here that the whole assignment was intended to take a maxi-
mum of 5 working days.

• Nearly half of the students tried the animation part —although it was not
required in the assignment. As expected, animation stimulates the students’
interest in studying.

2measured with 8 hours per working day
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1. Approximately how long have you used LYDIAN?
hours 0-4 5-8 9-12 13-16 17-20 21-40

students 2 11 17 7 9 4

2. Which algorithm did you select to implement?
Election Election Resource

with Echo with Voting Allocation
41 5 4

3. Approximately how long did it take you to understand LYDIAN’s interface?
hours 0-4 5-8 9-12 13-16 ∞

students 30 8 7 2 4

4. Approximately how long time did you spend on studying the algorithm that
you had to implement?

hours 1 2 3 4 15
students 31 11 4 3 1

5. Approximately how long did it take you to implement and test the same al-
gorithm in LYDIAN?

hours 0-4 5-8 9-12 13-16 17-20 21-30
students 13 17 9 5 2 4

6. Did you try to use the animation part of LYDIAN?
yes no
24 26

Table 8.1: Questions and Answers

• Every third student experienced some behaviour/property of the algorithm
they implemented, which they had not thought about before. Of those stu-
dents the majority thought that this experience helped them to understand the
algorithm better. The animation part of LYDIAN can be even more benefi-
cial in this aspect, since the same execution can be seen multiple times, and
difficult scenario can be "scrutinised" and digested better by the students’
minds.

• Approximately 60% of the students tested their implementations on more
than one network structures.

• Although some students experienced some difficulties with using specific
parts of the tool –mainly where documentation was not sufficiently detailed–
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7. When or after you implemented the distributed algorithm in LYDIAN, did
you experience any behaviour of the algorithm that you did not think about
before?

yes no
17 33

8. If yes, did this help you understand better the algorithm or other material
discussed in the course?

yes no
12 5

9. How many different network topologies did you use when testing your im-
plementation?

number 0-1 2-5 15
students 21 28 1

10. LYDIAN is useful for understanding algorithm in distributed computing.
Strongly Disagree Neutral Agree Strongly
disagree agree

4 10 14 21 1

11. LYDIAN is easy to use.
Strongly Disagree Neutral Agree Strongly
disagree agree

17 22 7 4 0

12. Which parts of LYDIAN do you think need to be improved?
Documentation Example Interface

in general implementations
39 17 27

Stability Documentation on No
network creation comment

14 21 5

13. What is your year of study?
year 3 4 5 6 ?

students 9 30 1 1 9

14. Age.
age 21-23 24-26 older

students 27 13 5

Table 8.2: Questons and Answers
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Students who experienced some behaviour of their algorithm they did not expect
before, gave the following answers to these questions:

1. Did you try to use the animation part of LYDIAN?
yes no
10 7

2. Approximately how long did it take you to implement and test the same al-
gorithm in LYDIAN?

hours 0-4 5-8 9-12 13-16 17-20 22
students 4 8 2 2 0 1

3. How many different network topologies did you use when testing your im-
plementation?

number 0-1 2-5 15
students 7 10 1

4. LYDIAN is useful for understanding algorithm in distributed computing.
Strongly Disagree Neutral Agree Strongly
disagree agree

1 1 3 12 0

The following groups of students thought as follows about LYDIAN being helpful:

1. Students tested their algorithm only with one network topology or were not
aware of them.

Strongly Disagree Neutral Agree Strongly
disagree agree

2 2 9 8 0

2. Students tested their algorithm with multiple network topologies.
Strongly Disagree Neutral Agree Strongly
disagree agree

2 8 5 13 1

3. Students who tested the animation part of LYDIAN.
Strongly Disagree Neutral Agree Strongly
disagree agree

0 7 4 13 0

4. Students who experienced behaviour they did not expect before.
Strongly Disagree Neutral Agree Strongly
disagree agree

1 1 3 12 0

Table 8.3: Correlation between answers
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the overall impression is that the class found the tool to be useful or relatively
useful for understanding distributed algorithms.

• The majority of students who got better insight into their algorithm also tried
the animation part. Maybe these students were more interested in the subject.
However, the use of animations does not show any relation to the number of
network topologies students used for testing purposes.

• Conforming to our expectation, the students who got more insight into the
algorithm they implemented, tried more network structures in their testing. It
seems worth the effort to try to stimulate students to test more and experiment
more with their implementations. It is also good that LYDIAN’s supported
simulator provides this possibility.

• One main observation is that students who experienced unexpected behaviour
of their algorithm mainly thought LYDIAN to be helpful.

• Students who used many network topologies did not think that LYDIAN is
more helpful than those who did not use this feature. However the opinion is
more biased, i.e. students who experienced with this feature have a stronger
attitude whether they like or dislike LYDIAN in a course, while students who
did not use it tended to be more neutral.

• A similar observation can be made for people who used the animation feature
of LYDIAN.

An analysis of these results, from the perspective of seeing what such simulation-
visualisation tools need to provide in order to be successfully used in class and how
users (teachers, students) can be helped to improve the performance of the learning
process, leads to the following lessons:

Tools. Since the “bottleneck" in understanding distributed algorithms is the ac-
tual concurrency and the parameters that can affect the step interleaving in each
execution, it is very important for a tool which aims at facilitating the learning pro-
cess in this area, to provide:

• means for the user to experiment by varying all parameters (this helps in
revealing a scenario that the user had not thought about before),

• a good way to visualise concurrency,

• the possibility for a user to observe the same execution multiple times,

• a good documentation and good user guides.
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Users. Since more experimentation is shown to be effective, it is important that
instructors are explicit –e.g. as part of an assignment– in asking the students to use
the visualisation/animation possibilities, as well as to experiment by changing the
parameters of the system and by coming up with “special", unusual constellations.

8.5.3 Conclusion

Teaching is improved by pointing out unexpected properties/instances of the taught
material. This is especially important in teaching distributed algorithms and sys-
tems, where there is a large number of parameters that affect the sequence of steps
that a process will follow in each execution. LYDIAN was shown to be of good
value in this respect, since it helped students to observe such instances, in an effi-
cient manner.

Furthermore, teachers can help and get helped by using such tools in class
to provide special case studies, to test cases, and to stimulate students to do own
experimentation. Simulation and animation environments such as LYDIAN are
shown to be useful in this respect, as well. Animation helps in understanding and
also stimulates students.

LYDIAN helped in providing insight into the taught material, even though it
had not been used in class by the teachers before and even though there were parts
of the documentation which were not complete. The effort to improve on the sup-
porting material –improved manuals, more examples– is expected to be appreciated
and further increase the tools use-basis.

8.6 EnViDiA: a Virtual Reality extension

In this section we describe an extension of LYDIANs visualisation framework,
which is intended to improve the interaction with the users. In difference to the
approach described in Section 8.3 EnViDiA represents the communication struc-
ture in a 3D-model in which users are immersed. This way a natural interaction
based on real world behaviour is possible. As it it is the case for the 2D-animations
of LYDIAN, the algorithms are required to work correctly using any arbitrary in-
terconnection of processes represented by a communication graph. However, in
contrast to ordinary 2D-worlds, complex non-planar graph models can be nicely
represented in three dimensions with the perspective adapting to the movements of
the user. Further, within such a world the orientation is facilitated providing spatial
sound. It assists the user becoming aware of the important system events.

Students working within such an environment can be more active since they
walk or fly through the distributed system world in a game like scenario. EnViDiA
has been developed by undergraduate students within the CAVE, an immerse VR
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Figure 8.7:This screenshot shows the EnViDiA interface on a desktop computer executing
an algorithm based on resource allocation.

Figure 8.8:An animation based on a student project allowing multiple users to collaborate
on the concept of self-stabilisation.
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environment. The animation framework is based on the problems the students ex-
perienced themselves when studying the distributed algorithms for the first time.
Although EnViDiA is intended to be used in immerse VR environments, the tool
can also be used in a simpler version on ordinary desktop computers supporting
3D-graphics. At its current state EnViDiA supports three distributed algorithms
namely simple broadcast, broadcast with acknowledgement and resource alloca-
tion based on the algorithm by Ricart and Agrawala. These algorithms are taught
in a basic distributed system course at Chalmers University of Technology. Besides
adding more algorithms and evaluating the tool at its current state, the main focus is
on providing features to support multiple user collaboration, which are tested at the
distributed concept of self-stabilisation [Koldehofe and Tsigas 2001]. The focus
here is on removing the constraints of the traditional communication model in or-
der to allow more user interaction with the distributed concept and among multiple
users themselves (c.f. Figure 8.8).

8.7 Conclusion

Although simulation and animations cannot be a replacement for students to study
carefully material presented in textbooks or classes, it can well assist the student
in perceiving a better understanding on the functionality of the algorithm as well
as to reflect on its performance behaviour and correctness. LYDIAN provides an
extensible framework which includes a wide range of material sufficient to cover a
big part taught in a distributed system course. It is freely available for Linux and
Unix platforms, while a Win32 version is currently under development. LYDIAN
has been successfully tested at various universities in courses on distributed systems
for students of various backgrounds.

Besides improving the availability for LYDIAN to various platforms, our focus
is to provide more teaching material based on the feedback we received from the
students using LYDIAN. Further, we are working on several projects which on the
one make it easier to develop own animations, but on the other hand also support
collaborative work among students to learn distributed concepts.
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Nine

Using Actors to Teach
Self-Stabilisation

Boris Koldehofe
and

Philippas Tsigas

Abstract

This paper1 describes an animation which uses dramatisation in order to
teach a concept of distributed computing called self-stabilisation. Dramati-
sation is a technique which allows the audience to interact with the concept
to be taught in class by representing the concept as a play. The animation
of this paper uses human actors to play the role of processes in a distributed
system. We present an evaluation of the method based on feedback we re-
ceived from a graduate course on distributed systems. The feedback shows
that the animation and the method have been well perceived by the students
participating.

9.1 Introduction

We describe and evaluate an experiment where actors were used to simulate the
behaviour of processes in a distributed system in order to explain the concept of
self-stabilisation in a graduate course on distributed systems.

1A version of this paper is published in the proceedings of the 6th Annual SIGCSE/SIGCUE Con-
ference of the ACM on Innovation and Technology in Computer Science Education (ITiCSE’2001).
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A self-stabilising system is one that ensures that the systems behaviour even-
tually stabilises to a safe subset of states regardless of the initial state. Protocols
satisfying this elegant property, which enables a system to recover from transient
failures that can alter the state of the system, are often hard to understand, espe-
cially for students that have not studied distributed computing and systems before.

The experiment was part of an introductory course on distributed computing
and systems for graduates in October 2000. The purpose of this interactive ani-
mation was to introduce to the students the basic concepts behind self-stabilisation
(eligible states, transient faults, execution convergence) before their formal intro-
duction.

All of the students had a degree either in mathematics or computing science
and had taken a course on algorithms before. However, most of the students did
not have a background in distributed systems or distributed algorithms. The latter
was not only the motivation for preparing this method of presentation but also what
made this a challenging effort.

The feedback from the class was that the concept and this teaching method
were very well received. We could observe that their understanding evolved to
the point that they were able to successfully come up with ideas for solutions and
argue for/prove their correctness. As suggested in [Ben-Ari and Kolikant 1999],
dramatisation of executions can help the students to understand new issues and
complications. This work shows that this is true even for graduate level courses.
In our experiment we could conclude that dramatisation can be almost as powerful
as a programming exercise in the teaching process; sometimes even more efficient,
especially when we need to teach new concepts to an audience with diverse educa-
tional backgrounds. In analysing the results of our method we make a combination
of the qualitative and quantitative approaches [Kolikant et al. 2000].

9.2 Self-stabilisation

The self-stabilisation paradigm, first introduced by Dijkstra [Dijkstra 1974], defines
a system as a self-stabilising one if it can recover following the occurrence of a fault
that puts the system in an arbitrary state. The self-stabilising system will stabilise
to a legal system state within finite amount of steps when faults stop. Hence, even
though the system might be negatively affected by a failure, e.g. a power failure or
a malicious process, once the failure ceases the system will start functioning again
as desired after a finite number of system steps. This property is of big importance
for systems like the Mars Polar Lander; for these systems it is desirable that they
have the capability to fulfil their mission, in a timely manner, in the presence of
failures, or accidents with no need for human interaction.
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Formally, we define self-stabilisation, for a systemS, as a property with respect
to a predicateP over its set of configurations. The predicateP depends on the task
that the system is executing. For instance, when the task is mutual exclusion, the
predicateP is: there is at most one processor in the critical section. A system
is self-stabilising with respect to a predicateP if starting in any configuration of
S, the system is guaranteed to reach a configuration satisfyingP within a finite
number of state transitions andP is a stable property (closed) under the execution
of S [Dolev 2000; Schneider 1993].

Although self-stabilisation was introduced in 1973 its importance was not re-
alised until 1983 when Lesley Lamport emphasised in [Kolikant et al. 2000] the
importance of this work by Dijkstra. Since then self-stabilisation has evolved to one
of the most active research fields in distributed computing and became an important
concept to theoreticians and practitioners.

Traditionally, students dealing with distributed protocols and in particular self-
stabilising protocols as introduced in this paper, have problems understanding the
representation of the algorithms because of state explosion and the lack of a real-
life metaphor.

9.3 Dijkstra’s self-stabilising token-passing algorithm

The algorithm that was presented to the students, first presented in [Dijkstra 1974],
assumes that processes are interconnected in a ring and each one of them can access
only information that is local or shared with its direct neighbours (left, right). The
algorithm has to ensure mutual exclusion among the processes, i.e. that only one
process at a time can perform a special computation.

The solution uses the token passing method; there is one special entity, called
token, that processes can circulate among themselves. A process has the privilege
to perform this special computation whenever it holds the token. After finishing,
it passes the token to one of its neighbours. There is a consistent direction of flow
of the token (say, anticlockwise), to guarantee fairness among the way that the
processes receive the token.

In an arbitrary state, the system may contain no tokens or more than one tokens.
A self-stabilising solution guarantees convergence to the behaviour described in the
previous paragraph, with only one token in the system that flows anticlockwise. The
solution is illustrated in Figure 9.1.

The token is realised by the shared memory variablesx1, . . . , xn. The pro-
cesses whose if-condition is true is the process holding the token. The algorithm
assumes the existence of a leader and that processes have consistent sense of orien-
tation that cannot be affected by failures. Inconsistency due to faults, i.e. more than

153



9. USING ACTORS TOTEACH SELF-STABILISATION

1. P1 : do forever

2. if x1 = xn then x1 := (x1 + 1) mod (n + 1)

3. Pi(i 6= 1) : do forever

4. if xi 6= xi−1 then xi = xi−1

Figure 9.1:Solution to Dijkstra’s self-stabilising token-passing algorithm

one processes are holding a token is resolved by all non-leader processesPi equal-
ising the two values shared with their respective neighbours. Hence, the algorithm
converges to a situation wherex1 = x2, . . . , xn−1 = xn meaning onlyP1 holds
the token, i.e. the system stabilises.

9.4 Dramatising Dijkstra’s algorithm

The idea of the experiment was inspired by a childrens game where children seated
in a cycle use apples to synchronise in order to ensure that only one child is speak-
ing at a time. The experiment consisted out of several acts. Each act used the same
representation of the distributed system: a table with three actors (processes), in
which apples by each actress2 could be placed between herself and the two neigh-
bouring actresses into two small baskets (variablesxi, xi−1).

Act 1
(Perfect system)

In this act the actresses aimed at: i) introducing the non-stabilising algorithm, ii)
explaining the token-passing idea and iii) motivate the problem. Initially, one apple
was placed between two actresses. The actress that found the apple in her left hand
side basket took the apple and started speaking (i.e. the actress holds the token).
While speaking the actress explained to the students why she was allowed to speak
and what were the next steps of the protocol that she was going to follow. Having
finished the actress put the apple to her right hand side, i.e. between herself and the
anticlockwise-next actress, thus forwarding the token. The next actress was then
enabled to act and repeated the same actions as the previous actress. The three
actresses continued this act for some time.

2We assume in this paper all our actors to be female.
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Dramatising Dijkstra’s algorithm

Figure 9.2:The table with actorsP1,P2 andP3 whereX1, X2 andX3 denote the number
of apples. ActressP1 is the leader.

Act 2
(Introducing transient failures into the system)

After a while the play moved on to the next act where one of the actresses - we
call her the evil actress - started maliciously either adding new apples or removing
apples thus bringing the system into arbitrary states. The purpose was to introduce
the problems that arise when transient faults occur. Finally, the lecturer discussed
with the students these problems that occurred because of the evil actress and the
inability of the previous algorithm to cope with them.

Act 3
(An attempt for stabilisation)

In the third act the actresses proposed a solution that could potentially guarantee
self-stabilisation (c.f. Figure 9.2). One (predefined) actress became the leader, a
property which could not be affected by the evil actress. Initially, between each
pair of actresses there were no apples while in the middle of the table there was a
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central basket with many apples (the latter is a technicality, in order to give to the
actresses an "unlimited" number of apples to apply their rules of the game, so that
they do not have to worry for an additional constraint in attempt to come up with
stabilising rules). Recall that each actress can only see the apples that are placed
between herself and her immediate neighbours. The leader first checked the number
of apples in each of her hand side baskets. If there were equally many apples in
both baskets (e.g. no apples at all, as it was initially the case in our experiment) the
leader could start speaking, i.e. she was holding the token (in our experiment every
actress was explaining to the class what she was doing, the new rules in the system,
etc). When the leader finished her story, she took an apple from the middle of the
table and put it into the basket to her right, thus forwarding the token to the right.
Each of the other actresses was allowed to speak only when the number of apples in
her right side basket was not equal to the number of apples in her left side basket.
The rest of the rules for them were, however, the same; after an actress finished
speaking (explained her acting), she had to add an apple (taken from the pile in the
middle) into the basket at her right hand side. The actresses continued for a while
with this behaviour in order to give the audience the possibility to understand the
algorithm so far.

Next, the evil actress started adding/removing apples to/from her left (evil ac-
tions), being able to speak at the same time while another actress was speaking.
However, the system could converge to a stable state, i.e. within some amount of
time after the evil actions stopped, only one actress at a time was able to speak.

Act 4
(Students find the “bug” and finalise the solution themselves)

In this act the students had the ability to interact with the system and introduce the
faults themselves. After a short discussion, the lecturer invited the students to place
apples in a way that the system would fail. However, the students could observe that
the system managed to recover apart from one critical scenario: a student placed
between the leader and her left neighbour apples such that the leader had more
apples to her left and the neighbour had more to her right (c.f. Figure 9.3). For the
system to stabilise, the left neighbour of the leader should equalise the number of
apples on her left and right side. However, at the beginning we used a simplified,
“buggy” version of the algorithm not working in this case. The students managed
to encounter the problem and fixed the “bug” by correcting the rule. Any non-
leader actress was now allowed to speak whenever the number of apples at her left
side was not equal to the number of apples at her right side, and then the actress
had to adjust the number of apples at her right side to be equal to the number of
apples at her left side. Having the possibility to interact directly with the system,
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Evaluation

Figure 9.3:Deadlock situation due to wrong algorithm used byP3.

the students were also able to argue about the stabilising properties of the algorithm
also in presence of concurrent actions.

9.5 Evaluation

In analysing the results of our method we make a combination of the qualitative
and quantitative approaches.

In the course we had13 students participating11 of them handed back the
questionnaire that was given to them. All of the students had a degree either in
mathematics or computing science and all of the students have had a course on
algorithms before. However, the majority of the students did not study distributed
systems or distributed algorithms before.

Our feedback from the class has been that the concept and the method were
very well received. We could observe that the students’ understanding evolved to
the point that they were able to successfully come up with ideas for solutions and
argue for/prove their correctness.
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(a)How much did the animation shown
in todays lecture help you in under-
standing the algorithm?

(b) During the animation you had the
ability to interact with the animation.
Did this help you to understand the al-
gorithm better?

(c) Did it help you that the animation
was run by human beings than comput-
ers?

(d) Did the fact that the animation was
presented as a childrens game help?

Figure 9.4:Some of the questions and results from the questionnaire handed out to the
students.

Knowing that many of the students were used to formal representations and
had a strong background on formal methods, at the beginning, we were wondering
whether our method could help or would be appreciated. Seven students answered
that the dramatisation helped them a lot to understand the new concept, while only
three answered that the dramatisation helped them fairly. None of them thought
that it did not help at all or only a little.
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Conclusion

As a next step, we were interested to know which methods used in the animation
were the significant ones that helped the students understanding. Before executing
the experiment, we were guessing that interactiveness would increase the effective-
ness of the animation. The students’ answers (eight said that the interactive part
helped, while two said it helped only a little) seem to confirm this hypothesis. One
student wrote that the bug, which is described in the previous section, leading to
the correct and final version of the algorithm helped the most.

Another aspect that we were interested in evaluating, was, how much more effi-
cient it was to have a dramatisation with human beings, compared to an interactive
computer animation like the ones presented in [Koldehofe et al. 2000; Moses et al.
1998; ViSiDiA 2000]. To be able to answer this question we also asked whether the
students have seen any computer animations before, which was true for seven and
six of them were also familiar with educational computer animations. The answers
(c.f. Figures 9.4), show that the majority was in favour of an animation with human
beings. Some of the comments indicate that the spontaneous and not predefined
reactions of human beings provide more information.

When designing the experiment, we thought that by representing the system
and the protocol as a childrens game we could enhance the effectiveness of the an-
imation. The students seem to disagree: seven students answered that the childrens
game representation did not increase the effectiveness of the dramatisation, while
only two answered that this representation actually helped them.

Since most of the students had a very positive attitude towards this dramatisa-
tion, it was not a surprise that all students answered that they believe that anima-
tions in general can be of big help in understanding the behaviour of algorithms or
distributed algorithms.

9.6 Conclusion

Analysing further our experiment and the way it was received by the students, we
can conclude that dramatisation can be almost as useful and powerful in the learning
process as a programming exercise even in graduate courses; sometimes even more
efficient, especially when we need to teach concepts to an audience with different
backgrounds. New ideas are transmitted faster, while the students, by being active
(and interactive) participants, have the possibility to point out the issues, which
they find confusing, and to obtain more viable knowledge.

Although students seemed to favour a human animation we cannot say for sure
that computer animations cannot be as powerful. We would like to continue this
project by implementing the dramatisation in a virtual environment in which stu-
dents can interact with virtual actors and apples.
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Ten

Conclusions and Future Work

The development of collaborative application requires a consideration of aspects
addressed by different research directions. The focus of this work has been on sup-
porting the development of collaborative applications by examining algorithmic
and educational aspects of collaborative environments. The presented algorithmic
solutions aim at providing a scalable, reliable and consistent communication media.
The educational aspects have been addressed by exploring interactivity of collabo-
rative environments to enhance the learning of distributed algorithms.

Peer-to-peer event dissemination and membership services offer interesting
properties which support the design of scalable collaborative applications. Pub-
lish/subscribe and group communication, which have both been identified as fun-
damental communication paradigms for collaborative environments, can be imple-
mented in unstructured and structured peer-to-peer systems. By relaxing the strong
reliability guarantees, peer-to-peer systems provide failure resilience and good per-
formance in spite of ongoing joining and leaving of peers. Moreover, peer-to-peer
systems can be used to balance the load of disseminating events fairly among all
peers.

In order to provide a notion of consistency to designers of collaborative appli-
cations, we have examined, analysed, and proposed resource-friendly peer-to-peer
solutions which can provide a probabilistic guarantee for the delivery of events as
well as support ordering of events. Important resources in peer-to-peer systems are
determined by membership information and buffer space maintained by a process.
We have shown that only a good configuration of these parameters can give a high
delivery guarantee.

A critical point for supporting real-time interactions and ordering of events is
the overhead in time to establish the order. We have proposed a model in which
objects are clustered and the number of processes which are allowed to perform
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concurrent updates per cluster can be controlled. Moreover, we have shown an
algorithm for processes to access a cluster in a dynamic, decentralised, and fault-
tolerant manner. In combination with causal ordering, the algorithm provides a low
overhead in message ordering.

While fair load distribution in peer-to-peer systems often means that every peer
performs the same amount of work, for publish/subscribe systems fair load dis-
tribution should ensure that each peer performs the amount of work proportional
to its interest. The proposed topic-aware subscription management facilitates the
balancing of work and can also be used as a bootstrapping procedure for member-
ship maintenance of dissemination algorithms. As a consequence, we may not any
longer distinguish between dissemination schemes for structured and unstructured
systems, but mention whether the membership was bootstrapped by a structured or
unstructured membership protocol.

The techniques introduced to control concurrent updates, to balance the load,
and to bootstrap membership serve as an indication for future work directions. Be-
sides supporting different ordering algorithms, cluster management can be explored
in a more general setting in order to restrict concurrent access to shared resources.
Restricting the access to resources may be combined with balancing techniques in
supporting fair data dissemination. Random routing has been explored to balance
the dissemination load and bootstrap the membership in publish/subscribe systems.
It is likely that this technique can be used in a more general fashion to initialise data
structures in structured peer-to-peer systems. Also for the configuration of gossip-
ing protocols there remain a couple interesting problems such as understanding the
relation between the size of the fanout, the size of the view, and the dynamics in
updating the view to guarantee delivery with high probability.

For many of the presented solutions it is not clear how they perform in a mobile
network. A common difficulty is typically the lack of point-to-point communi-
cation. Dynamic peer-to-peer solutions supporting locality may be interesting in
supporting mobile middleware services. Topic awareness and cluster consistency
management partially fulfil these requirements.

The presented algorithmic solutions for collaborative environments can sup-
port interactions in educational environments. In particular, we have studied levels
of interactions in simulation/visualisation environments to support the learning of
distributed systems. The visualisation and simulation framework of LYDIAN was
designed to allow users (students/researchers) to test the same protocol under dif-
ferent networks and timing behaviour without having to change the protocol or the
respective animation. The animations evolve continuously and provide the users
with information about several aspects, which are important for the understanding
of distributed algorithms. Some additional work was carried out on the represen-
tation of the communication graph. A 3D-environment such as Virtual Reality can
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allow a better representation of non-planar network structures. Users being im-
mersed in the animation can also improve the interaction with the concept.

As an alternative method to the traditional communication graph visualisation,
dramatisation was shown to be helpful in improving the interaction between users
and the concept. Dramatisation was especially successful in class using real ac-
tors, but also showed to be a good concept for creating collaborative animations in
3D-environments like the CAVE. In fact, applying the algorithmic ideas to support
multiple levels of interactivity does not apply only to the study of virtual actors;
it can also be integrated to support collaborative and real-time interactions in LY-
DIAN.

Besides focusing on the functionality, e.g. by increasing the level of interactiv-
ity to LYDIAN, future work directions should address reducing barriers for using
systems like LYDIAN in class. Indeed, many educational tools do not suffer from
their educational value, but from the effort needed to integrate them in courses.
Following some of the suggestions proposed in [Naps et al. 2003] better feedback
from users may be received and thus help to better satisfy the needs of the users.
Some of the recent efforts for LYDIAN actually dealt with improving lecture ma-
terial and facilitating the portability and installation of LYDIAN.
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