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Abstract. The potential of multiprocessor systems is often not fully re-
alized by their system services. Certain synchronization methods, such
as lock-based ones, may limit the parallelism. It is significant to see
the impact of wait/lock-free synchronization design in key services for
multiprocessor systems, such as the memory allocation service. Efficient,
scalable memory allocators for multithreaded applications on multipro-
cessors is a significant goal of recent research projects.

We propose a lock-free memory allocator, to enhance the parallelism
in the system. Its architecture is inspired by Hoard, a successful concur-
rent memory allocator, with a modular, scalable design that preserves
scalability and helps avoiding false-sharing and heap blowup. Within
our effort on designing appropriate lock-free algorithms to construct this
system, we propose a new non-blocking data structure called flat-sets,
supporting conventional “internal” operations as well as “inter-object”
operations, for moving items between flat-sets.

We implemented the memory allocator in a set of multiprocessor sys-
tems (UMA Sun Enterprise 450 and ccNUMA Origin 3800) and studied
its behaviour. The results show that the good properties of Hoard w.r.t.
false-sharing and heap-blowup are preserved, while the scalability proper-
ties are enhanced even further with the help of lock-free synchronization.

1 Introduction

Some form of dynamic memory management is used in most computer programs
for multiprogrammed computers. It comes in a variety of flavors, from the tradi-
tional manual general purpose allocate/free type memory allocator to advanced
automatic garbage collectors.

In this paper we focus on conventional general purpose memory alloca-
tors (such as the “libc” malloc) where the application can request (allocate)
arbitrarily-sized blocks of memory and free them in any order. Essentially a
memory allocator is an online algorithm that manages a pool of memory (heap),
e.g. a contiguous range of addresses or a set of such ranges, keeping track of
which parts of that memory are currently given to the application and which
parts are unused and can be used to meet future allocation requests from the
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application. The memory allocator is not allowed to move or otherwise disturb
memory blocks that are currently owned by the application.

A good allocator should aim at minimizing fragmentation, i.e. minimizing the
amount of free memory that cannot be used (allocated) by the application. Inter-
nal fragmentation is free memory wasted when the application is given a larger
memory block than it requested; and external fragmentation is free memory that
has been split into too small, non-contiguous blocks to be useful to satisfy the
requests from the application. Multi-threaded programs add some more compli-
cations to the memory allocator. Obviously some kind of synchronization has to
be added to protect the heap during concurrent requests. There are also other
issues outlined below, which have significant impact on application performance
when the application is run on a multiprocessor [1]. Summarizing the goals, a
good concurrent memory allocator should (i) avoid false sharing, which is when
different parts of the same cache-line end up being used by threads running
on different processors; (ii) avoid heap blowup, which is an overconsumption of
memory that may occur if the memory allocator fails to make memory deallo-
cated by threads running on one processor available to threads running on other
processors; (iii) ensure efficiency and scalability, i.e. the concurrent memory al-
locator should be as fast as a good sequential one when executed on a single
processor and its performance should scale with the load in the system.

The Hoard [2] concurrent memory allocator is designed to meet the above
goals. The allocation is done on the basis of per-processor heaps, which avoids
false sharing and reduces the synchronization overhead in many cases, improving
both performance and scalability. Memory requests are mapped to the closest
matching size in a fixed set of size-classes, which bounds internal fragmentation.
The heaps are sets of superblocks, where each superblock handles blocks of one
size class, which helps in coping with external fragmentation. To avoid heap
blowup freed blocks are returned to the heap they were allocated from and
empty superblocks may be reused in other heaps.

Regarding efficiency and scalability, it is known that the use of locks in syn-
chronization is a limiting factor, especially in multiprocessor systems, since it
reduces parallelism. Constructions which guarantee that concurrent access to
shared objects is free from locking are of particular interest, as they help to
increase the amount of parallelism and to provide fault-tolerance. This type of
synchronization is called lock-/wait-free, non-blocking or optimistic synchroniza-
tion [3,4,5,6]. The potential of this type of synchronization in the performance of
system-services and data structures has also been pointed out earlier, in [7,4,8].

The contribution of the present paper is a new memory allocator based on
lock-free, fine-grained synchronization, to enhance parallelism, fault-tolerance
and scalability. The architecture of our allocation system is inspired by Hoard,
due to its well-justified design decisions, which we roughly outlined above. In
the process of designing appropriate data structures and lock-free synchroniza-
tion algorithms for our system, we introduced a new data structure, which we
call flat-set, which supports a subset of operations of common sets, as well as
“inter-object” operations, for moving an item from one flat-set to another in a
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lock-free manner. The lock-free algorithms we introduce make use of standard
synchronization primitives provided by multiprocessor systems, namely single-
word Compare-And-Swap, or its equivalent Load-Linked/Store-Conditional .

We have implemented and evaluated the allocator proposed here on common
multiprocessor platforms, namely an UMA Sun Enterprise 450 running Solaris
9 and a ccNUMA Origin 3800 running IRIX 6.5. We compare our allocator
with the standard “libc” allocator of each platform and with Hoard (on the
Sun system, where we had the original Hoard allocator availableusing standard
benchmark applications to test the efficiency, scalability, cache behaviour and
memory consumption behaviour. The results show that our system preserves
the good properties of Hoard, while it offers a higher scalability potential, as
justified by its lock-free nature.

In the next section we provide background information on lock- and wait-free
synchronization (throughout the paper we use the terms non-blocking and lock-
free interchangeably). Earlier and recent related work is discussed in section 7,
after the presentation of our method and implementation, as some detail is
needed to relate these contributions.

2 Background: Non-blocking Synchronization

Non-blocking implementations of shared data objects are an alternative to the
traditional solution for maintaining the consistency of a shared data object (i.e.
for ensuring linearizability [9]) by enforcing mutual exclusion. Non-blocking syn-
chronization allows multiple tasks to access a shared object at the same time,
but without enforcing mutual exclusion [3,4,5,6,10]. Non-blocking synchroniza-
tion can be lock-free or wait-free. Lock-free algorithms guarantee that regardless
of the contention caused by concurrent operations and the interleaving of their
steps, at each point in time there is at least one operation which is able to
make progress. However, the progress of other operations might cause one spe-
cific operation to take unbounded time to finish. In a wait-free algorithm, every
operation is guaranteed to finish in a bounded number of its own steps, re-
gardless of the actions of concurrent operations. Non-blocking algorithms have
been shown to have significant impact in applications [11,12], and there is also
a library, NOBLE [13], containing many implementations of non-blocking data
structures.

One of the most common synchronization primitives used in lock-free syn-
chronization is the Compare-And-Swap instruction (also denoted CAS), which
atomically executes the steps described in Fig. 1. CAS is available in e.g. SPARC
processors. Another primitive which is equivalent with CAS in synchronization
power is the Load-Linked/Store-Conditional (also denoted LL/SC) pair of instruc-
tions, available in, e.g. MIPS processors. LL/SC is used as follows: (i) LL loads
a word from memory. (ii) A short sequence of instructions may modify the value
read. (iii) SC stores the new value into the memory word, unless the word has
been modified by other process(es) after LL was invoked. In the latter case the
SC fails, otherwise the SC succeeds. Another useful primitive is Fetch-And-Add
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atomic CAS(mem : pointer to integer;
new, old : integer) return integer

tmp := *mem;
if tmp == old then

*mem := new; /* CAS succeeded */
return tmp;

atomic FAA(mem : pointer to integer;
increment : integer) return integer

tmp := *mem;
*mem := tmp + increment;
return tmp;

Fig. 1. Compare-And-Swap (denoted CAS) and Fetch-And-Add (denoted FAA)

(also denoted FAA), described in Fig. 1. FAA can be simulated in software using
CAS or LL/SC when it is not available in hardware.

An issue that sometimes arises in connection with the use of CAS, is the
so-called ABA problem. It can happen if a thread reads a value A from a shared
variable, and then invokes a CAS operation to try to modify it. The CAS will (un-
desirably) succeed if between the read and the CAS other threads have changed
the value of the shared variable from A to B and back to A. A common way to
cope with the problem is to use version numbers of b bits as part of the shared
variables [14]. An alternative method to cope with the ABA problem is to in-
troduce special NULL values. This method is proposed and used in a lock-free
queue implementation in [15]. An appropriate garbage-collection mechanism,
such as [16], can also solve the problem.

3 The New Lock-Free Memory Allocator: Architecture

The architecture of our lock-free memory allocator is inspired by Hoard[2], which
is a well-known and practical concurrent memory allocator for multiprocessors.

The memory allocator provides allocatable memory of a fixed set of sizes,
called size-classes. The size of memory requests from the application are rounded
upwards to the closest size-class. To reduce false-sharing and contention, the
memory allocator distributes the memory into per-processor heaps. The man-
aged memory is handled internally in units called superblocks. Each superblock
contains allocatable blocks of one size-class. Initially all superblocks belong to the
global heap. During an execution superblocks are moved to per-processor heaps
as needed. When a superblock in a per-processor heap becomes almost empty
(i.e. few of its blocks are allocated) it is moved back to the global heap. The
superblocks in a per-processor heap are stored and handled separately, based on
their size-class. Within each size-class the superblocks are kept sorted into bins
based on fullness(cf. Fig. 2(a)). As the fullness of a particular superblock changes
it is moved between the groups. A memory request (malloc call) first searches
for a superblock with a free block among the superblocks in the “almost full”
fullness-group of the requested size-class in the appropriate per-processor heap.
If no suitable superblock is found there, it will proceed to search in the lower
fullness-groups, and, if that, too, is unsuccessful, it will request a new superblock
from the global heap. Searching the almost full superblocks first reduces external
fragmentation. When freed (by a call to free) an allocated block is returned to
the superblock it was allocated from and, if the new fullness requires so, the
superblock is moved to another fullness-group.
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Fig. 2. The architecture of the memory allocator

4 Managing Superblocks: The Bounded Non-blocking
Flat-Sets

Since the number of superblocks in each fullness-group varies over time, a suit-
able collection-type data structure is needed to implement a fullness-group.
Hoard, which uses mutual-exclusion on the level of per-processor heaps, uses
linked-lists of superblocks for this purpose, but this issue becomes very different
in a lock-free allocator. While there exist several lock-free linked-list implemen-
tations, e.g. [17,18,14], we cannot apply those here, because not only do we want
the operations on the list to be lock-free, but we also need to be able to move
a superblock from one set to another without making it inaccessible to other
threads during the move. To address this, we propose a new data structure we
call a bounded non-blocking flat-set, supporting conventional “internal” opera-
tions (Get Any and Insert item) as well as “inter-object” operations, for moving
an item from one flat-set to another.

To support “inter”-flat-set operations it is crucial to be able to move su-
perblocks from one set to another in a lock-free fashion. The requirements that
make this difficult are: (i) the superblock should be reachable for other threads
even while it is being moved between flat-sets, i.e. a non-atomic first-remove-
then-insert sequence is not acceptable; (ii) the number of shared references to
the superblock should be the same after a move (or set of concurrent move
operations) finish.

Below we present the operations of the lock-free flat-set data structure and
the lock-free algorithm, move, which is used to implement the “inter-object” op-
eration for moving a reference to a superblock from one shared variable (pointer)
to another satisfying the above requirements.

4.1 Operations on Bounded Non-blocking Flat-Sets

A bounded non-blocking flat-set provides the following operations: (i) Get Any ,
which returns any item in the flat-set; and (ii) Insert, which inserts an item into
the flat-set. An item can only reside inside one flat-set at the time; when an item
is inserted into a flat-set it is also removed from its old location. The flat-set data
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structure consists of an array of M shared locations set.set[i], each capable of
holding a reference to a superblock, and a shared index variable set.current. The
data structure and operations are shown in Fig. 3 and are briefly described below.

The index variable set.current is used as a marker to speed up flat-set oper-
ations. It contains a bit used as an empty flag for the flat-set and a index field
that is used as the starting point for searches, both for items and for free slots.
The empty flag is set by a Get Any operation that discovers that the flat-set is
empty, so that subsequent Get Any operations know this; the Insert operation
and successful Get Any operations clear the flag. The empty flag is not always set
when the flat-set is empty as superblocks can be moved away from the flat-set at
any time, but it is always cleared when the flat-set is nonempty. The Insert op-
eration scans the array set.set[i] forward from the position marked by set.current
until it finds an empty slot. It will then attempt to move the superblock refer-
ence to be inserted into this slot using the Move operation (described in detail
below). The Get Any operation first reads set.current to check the empty flag. If
the empty flag is set, Get Any returns immediately, otherwise it starts to scan
the array set.set[i] backwards from the position marked by set.current, until it
finds a location that contains a superblock reference. If a Get Any operation has
scanned the whole set.set[i] array without finding a reference it will try to set the
empty flag for the flat-set. This is done at line G13 using CAS and will succeed
if and only if set.current has not been changed since it was read at line G2. This
indicates that the flat-set is empty so Get Any sets the empty flag and returns
failure. If, on the other hand, set.current has changed between line G2 and G13,
then either an Insert is in progress or has finished during the scan (line I6 and
I9) or some other Get Any has successfully found a superblock during this time
(line G10), so Get Any should redo the scan. To facilitate moving of superblocks
between flat-sets via Insert Get Any returns both a superblock reference and a
reference to the shared location containing it.

4.2 How to Move a Shared Reference: Moving Items Between
Flat-Sets

The algorithm supporting the operation Move moves a superblock reference sb
from a shared location from to a shared location to. The target location (i.e.
to) is known via the Insert operation. The algorithm requires the superblock to
contain an auxiliary variable mv info with the fields op id, new pos and old pos
and all superblock references to have a version field (cf. Fig 3).

A move operation may succeed by returning SB MOVED OK or fail (abort)
by returning SB MOVED (if the block has been moved by another overlapping
move) or SB NOT MOVED (if the to location is occupied). It will succeed if it
is completed successfully by the thread that initiated it or by a helping thread.
To ensure the lock-free property, the move operation is divided into a number
of atomic suboperations. A move operation that encounters an unfinished move
of the same superblock will help the old operation to finish before it attempts
to perform its own move. The helping procedure is identical to steps 2 - 4 of the
move operation described below.
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type superblock ref {// fits in one machine word
ptr : integer 16; version : integer 16;};

/* superblock ref utility functions. */
function pointer(ref : superblock ref)
return pointer to superblock
function version(ref : superblock ref)
return integer 16
function make sb ref(sb : pointer to superblock,

op id : integer 16) return superblock ref
type flat-set info {// fits in one machine word
index : integer; empty : boolean; version : integer;};
function Get Any(set : in out flat-set,

sb : in out superblock ref,
loc : in out pointer to superblock ref)

return status
i, j : integer; old current : flat-set info;

begin
G1 loop
G2 old current := set.current;
G3 if old current.empty then
G4 return FAILURE;
G5 i := old current.index;
G6 for j := 1 .. set.size do
G7 sb := set.set[i];
G8 if pointer(sb) /= null then
G9 loc := &set.set[i];
G10 set.current := (i, false);// Clear empty flag
G11 return SUCCESS;
G12 if i == 0 then i := set.size - 1 else i–;
G13 if CAS(&set.current, old current,
G14 (old current.index, true)) == old current
G15 then
G16 return FAILURE;
function Insert(set : in out flat-set,

sb : in superblock ref,
loc : in out pointer to superblock ref)

return status
i, j : integer;

begin
I1 loop
I2 i := (set.current.index + 1) mod set.size;
I3 for j := 1 .. set.size do
I4 while pointer(set.set[i]) == null do
I6 set.current := (i, false);
I7 case Move(sb, loc, &set.set[i]) is
I8 when SB MOVED OK:
I9 set.current := (i, false);
I10 loc := &set.set[i];
I11 return SB MOVED OK;
I12 when SB MOVED:
I13 return SB MOVED;
I14 when others:
I15 end case;
I16 i := (i + 1) mod set.size;
I17 if set.set not changed since prev. iter. then
I18 return FAILURE; /* The flat-set is full. */
function Get Block(sb : in superblock ref)
return block ref

nb, nh : block ref;
begin
GB1nb := sb.freelist head;
GB2while nb /= null do
GB3 nh := CAS(&sb.freelist head,
GB4 nb, nb.next);
GB5 if nh == nb.next then
GB6 FAA(&sb.free block cnt, -1);
GB7 break;
GB8 nb := sb.freelist head;
GB9 return nb;

structure flat-set {
size : constant integer; current : flat-set info;
set[size] : array of superblock ref;};

structure superblock {
mv info : move info;
freelist head : pointer to block;
free block cnt : integer;};

structure move info {
op id : integer 16;
new pos : pointer to superblock ref;
old pos : pointer to superblock ref;};

type block ref { // fits in one machine word
offset : integer 16; version : integer 16;};

procedure Put Block(sb : in superblock ref,
bl : in block ref)

oh : block ref;
begin
PB1 loop
PB2 bl.next := sb.freelist head;
PB3 oh := CAS(&sb.freelist head, bl.next, bl)
PB4 if oh == bl.next then break;
PB5 FAA(&sb.free block cnt, 1);
function Move(sb : in superblock ref,

from : in pointer to superblock ref,
to : in pointer to superblock ref)

return status
new op, old op : move info;
cur from : superblock ref;

begin
M1 /* Step 1: Initiate move. */
M2 loop
M3 old op := Load Linked(&sb.mv info);
M4 cur from := *from;
M5 if pointer(cur from) /= pointer(sb) then
M6 return SB MOVED;
M7 if old op.from == null then // No cur. operation.
M8 new op := (version(cur from), to, from);
M9 if Store Conditional(&sb.mv info, new op)
M10 then break;
M11 else
M12 Move Help(make sb ref(pointer(sb), old op.op id),
M13 old op.old pos,
M14 old op.new pos);
M15 return Move Help(cur from, from, to);
function Move Help(sb : in superblock ref,

from : in pointer to superblock ref,
to : in pointer to superblock ref)

return status
old, new, res : superblock ref; mi : move info;

begin
H1 /* Step 2: Update ”TO”. */
H2 old := *to;
H3 new := make sb ref(sb, version(old) + 1);
H4 res := CAS(to, make sb ref(null, version(old)), new)
H5 if pointer(res) /= pointer(sb) then
H6 /* To is occupied, abandon this operation. */
H7 mi := Load Linked(&sb.mv info);
H8 if mi == (version(sb), to, from) then
H9 mi := (0, from, null);
H10 Store Conditional(&sb.mv info, mi);
H11 return SB NOT MOVED;
H12 /* Step 3: Clear ”FROM”. */
H13 CAS(from, sb, make sb ref(null, version(sb) + 1));
H14 /* Step 4: Remove operation information.*/
H15 mi := Load Linked(&sb.mv info);
H16 if mi == (version(sb), to, from) then
H17 mi := (0, to, null);
H18 Store Conditional(&sb.mv info, mi);
H19 return SB MOVED OK;

Fig. 3. The flat-set data structures and operations Get Any and Insert, the superblock

data structures and operations Get block and Put Block and the superblock Move op-

eration.



336 A. Gidenstam, M. Papatriantafilou, and P. Tsigas

1. A Move(sb, from, to) is initiated by atomically registering the operation. This
is done by Load-Linked/Store-Conditional operations which sets sb.mv info to
(version(sb), to, from) iff the read value of sb.mv info.from was null, which
indicates that there are no ongoing move of this superblock. If the read value
of sb.mv info.op id was nonzero, then there is an ongoing move that needs to
be helped before this one can proceed. If the reference to the superblock dis-
appears from from before this move has been registered, this move operation
is abandoned and returns SB MOVED.

2. If the current value of to is null then to is set to point to the superblock while
simultaneously increasing its version. Otherwise this move is abandoned since
the destination is occupied and the information about the move is removed
from the superblock (as in step 4) and SB NOT MOVED is returned.

3. If from still contains the expected superblock reference (i.e. if no one else
has helped this move) from is set to null while increasing its version.

4. If the move information is still in the superblock (i.e. if no one else has
helped the move to complete) it is removed and the move operation returns
SB MOVED OK.

In the presentation here and in the pseudo-code in Fig. 3 we use the atomic
primitive CAS to update shared variables that fit in a single memory word,
but other atomic synchronization primitives, such as LL/SC could be used as
well. The auxiliary mv info variable in a superblock might need to be larger
than one word. To handle that we use the lock-free software implementation
of Load-Linked/Store-Conditional for large words by Michael [19] which can
be implemented efficiently from the common single-word CAS. Some hardware
platforms provide a CAS primitive for words twice as wide as the standard word
size, which may also be used for this.

The correctness proof of the algorithm is omitted due to space constraints;
it can be found in [20].

5 Managing the Blocks Within a Superblock

The allocatable memory blocks within each superblock are kept in a lock-free
IBM free-list [21]. The IBM free-list is essentially a lock-free stack implemented
from a single-linked-list where the push and pop operations are done by a CAS
operation on the head-pointer. To avoid ABA-problems the head-pointer con-
tains a version field. Each block has a header containing a pointer to the su-
perblock it belongs to and a next pointer for the free-list. The two free-list op-
erations Get Block and Put Block are shown in Fig. 3. The free blocks counter,
sb.free block cnt, is used to estimate the fullness of a superblock.

6 Performance Evaluation

Systems. The performance of the new lock-free allocator has been measured on
a two multiprocessor systems: (i) an UMA Sun Enterprise 450 with 4 400MHz
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UltraSPARC II (4MB L2 cache) processors running Solaris 9; (ii) a ccNUMA
SGI Origin 3800 with 128 (only 32 could be reserved) 500Mhz MIPS R14000
(8MB L2 cache) processors running IRIX 6.5.

Benchmarks. We used three common benchmarks to evaluate our memory
allocator: The Larson [2,1,22] benchmark simulates a multi-threaded server ap-
plication which makes heavy use of dynamic memory. Each thread allocates and
deallocates objects of random sizes (between 5 to 500 bytes) and also transfers
some of the objects to other threads to be deallocated there. The benchmark
result is throughput in terms of the number of allocations and deallocations per
second which reflects the allocator’s behaviour with respect to false-sharing and
scalability, and the resulting memory footprint of the process which should re-
flect any tendencies for heap blowup. We measured the throughput during 60
(30 on the Origin 3800 due to job duration limits) second runs for each number
threads.

The Active-false and passive-false [2,1] benchmarks measure how the allo-
cator handles active (i.e. directly caused by the allocator) respective passive (i.e.
caused by application behaviour) false-sharing. In the benchmarks each thread
repeatedly allocates an object of a certain size (1 byte) and read and write to
that object a large number of times (1000) before deallocating it again. If the
allocator does not take care to avoid false-sharing several threads might get ob-
jects located in the same cache-line which will slow down the reads and writes
to the objects considerably. In the passive-false benchmark all initial objects are
allocated by one thread and then transfered to the others to introduce the risk of
passive false-sharing when those objects are later freed for reuse by the threads.
The benchmark result is the total wall-clock time for performing a fixed number
(106) of allocate-read/write-deallocate cycles among all threads.

Implementation. 1 In our memory allocator we use the CAS primitive (im-
plemented from the hardware synchronization instructions available on the re-
spective system) for our lock-free operations. To avoid ABA problems we use
the version number solution ([14], cf. section 2). We use 16-bit version numbers
for the superblock references in the flat-sets, since for a bad event (i.e. that a
CAS of a superblock reference succeeds when it should not) to happen not only
must the version numbers be equal but also that same superblock must have
been moved back to the same location in the flat-set, which contains thousands
of locations. We use superblocks of 64KB to have space for version numbers in
superblock pointers. We also use size-classes that are powers of two, starting
from 8 bytes. This is not a decision forced by the algorithm; a more tightly
spaced set of size-classes can also be used, which would further reduce internal
fragmentation at the cost of a larger fixed space overhead due to the preallo-
cated flat-sets for each size-class. Blocks larger than 32KB are allocated directly
from the operating system instead of being handled in superblocks. Our imple-
mentation uses four fullness-groups and a fullness-change-threshold of 1

4 , i.e. a

1 Our implementation is available at http://www.cs.chalmers.se/∼dcs/nbmalloc.html.
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superblock is not moved to a new group until its fullness is more than 1
4 outside

its current group. This prevents superblocks from rapidly oscillating between
fullness-groups. Further, we set the maximum size for the flat-sets used in the
global heap and for those in per-processor heaps to 4093 superblocks each (these
values can be adjusted separately).

Results. In the evaluation we compare our allocator with the standard “libc”
allocator of the respective platform using the above standard benchmark appli-
cations. On the Sun platform, for which we had the original Hoard allocator
available, we also compare with Hoard (version 3.0.2). To the best of our knowl-
edge, Hoard is not available for ccNUMA SGI IRIX platform.

The benchmarks are intended to test scalability, fragmentation and false-
sharing, which are the evaluation criteria of a good concurrent allocator, as
explained in the introduction. When performing these experiments our main
goal was not to optimize the performance of the lock-free allocator, but rather
to examine the benefits of the lock-free design itself. There is plenty of room for
optimization of the implementation.

The results from the two false-sharing benchmarks, shown in Fig. 4, show
that our memory allocator, and Hoard, induce very little false-sharing. The stan-
dard “libc” allocator, on the other hand, suffers significantly from false-sharing
as shown by its longer and irregular runtimes. Our allocator shows consistent
behaviour as the number of processors and memory architecture changes.

The throughput results from the Larson benchmark, shown in Fig. 4, show
that our lock-free memory allocator has good scalability, not only in the case
of full concurrency (where Hoard also shows extremely good scalability), but
also when the number of threads increases beyond the number of processors. In
that region, Hoard’s performance quickly drops from its peak at full concurrency
(cf. Fig. 4(e)). We can actually observe more clearly the scalability properties of
the lock-free allocator in the performance diagrams on the SGI Origin platform
(Fig. 4(f)). There is a linear-style of throughput increase when the number of
processors increases (when studying the diagrams recall we have up to 32 proces-
sors available on the Origin 3800). Furthermore, when the load on each processor
increases beyond 1, the throughput of the lock-free allocator stays high. In terms
of absolute throughput, Hoard is superior to our lock-free allocator, at least on
the Sun platform where we had the possibility to compare them. This is not
surprising, considering that it is very well designed and has been around enough
time to be well tuned. An interesting conclusion is that the scalability of Hoard’s
architecture is further enhanced by lock-free synchronization.

The results with respect to memory consumption, Fig. 4(g,h), show that
for the Larson benchmark the memory usage (and thus fragmentation) of the
non-blocking allocator stays at a similar level to Hoard and that the use of per-
processor heaps with thresholds, while having a larger overhead than the “libc”
allocator, still have almost as good scalability with respect to memory utilization
as a single heap allocator.

Moreover, that our lock-free allocator shows a very similar behaviour in
throughput on both the UMA and the ccNUMA systems is an indication that
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(b) Active-False: SGI MIPS 32(/128) CPUs
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(c) Passive-False: Sun SPARC 4 CPUs
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(e) Throughput: Sun SPARC 4 CPUs
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(g) Memory consumption: Sun SPARC 4 CPUs
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there are few contention hot-spots, as these tend to cause much larger perfor-
mance penalties on NUMA than on UMA architectures.

7 Other Related Work

Recently Michael presented a lock-free allocator [23] which, like our contribution,
is loosely based on the Hoard architecture. Our work and Michael’s have been
done concurrently and completely independently, an early version of our work is
in the technical report [20]. Despite both having started from the Hoard architec-
ture, we have used two different approaches to achieve lock-freeness. In Michael’s
allocator each per-processor heap contains one active (i.e. used by memory re-
quests) and at most one inactive partially filled superblock per size-class, plus an
unlimited number of full superblocks. All other partially filled superblocks are
stored globally in per-size-class FIFO queues. It is an elegant algorithmic con-
struction, and from the scalability and throughput performance point of view
it performs excellently, as is shown in [23], in the experiments carried out on a
16-way POWER3 platform. By further studying the allocators, it is relevant to
note that: Our allocator and Hoard keep all partially filled superblocks in their
respective per-processor heap while the allocator in [23] does not and this may
increase the potential for inducing false-sharing. Our allocator and Hoard also
keep the partially filled superblocks sorted by fullness and not doing so, like the
allocator in [23] does, may imply some increased risk of external fragmentation
since the fullness order is used to direct allocation requests to the more full su-
perblocks which makes it more likely that less full ones becomes empty and thus
eligible for reuse. The allocator in [23], unlike ours, uses the first-remove-then-
insert approach to move superblocks around, which in a concurrent environment
could affect the fault-tolerance of the allocator and cause unnecessary allocation
of superblocks since a superblock is invisible to other threads while it is being
moved. As this is work that has been carried out concurrently and indepen-
dently with our contribution, we do not have any measurements of the impact
of the above differences, however this is interesting to do as part of future work,
towards further optimization of these allocators.

Another allocator which reduces the use of locks is LFMalloc [7]. It uses a
method for almost lock-free synchronization, whose implementation requires the
ability to efficiently manage CPU-data and closely interact with the operating
system’s scheduler. To the best of our knowledge, this possibility is not directly
available on all systems. LFMalloc is also based on the Hoard design, with the
difference in that it limits each per-processor heap to at most one superblock of
each size-class; when this block is full, further memory requests are redirected to
the global heap where blocking synchronization is used and false-sharing is likely
to occur. However, a comparative study with that approach can be worthwhile,
when it becomes available for experimentation.

Earlier related work is the work on non-blocking operating systems by Mas-
salin and Pu [8,24] and Greenwald and Cheriton [4,25]. They, however, made
extensive use of the 2-Word-Compare-And-Swap primitive in their algorithms.
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This primitive can update two arbitrary memory locations in one atomic step
but is not available in current systems and expensive to do in software.

8 Discussion

The lock-free memory allocator proposed in this paper confirms our expectation
that fine-grain, lock-free synchronization is useful for scalability under increasing
load in the system. To the best of our knowledge, this, together with the allocator
which was independently presented in [23] are also the first lock-free general
allocators (based on single-word CAS) in the literature. We expect that this
contribution will have an interesting impact in the domain of memory allocators.
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