
Ioannis Sourdis

Designs & Algorithms

for

Packet and Content Inspection

D
esig

n
s &
 A
lg
o
r
it
h
m
s fo

r
 Pa
c
k
et
 a
n
d
 C
o
n
t
en
t
 In
spec

t
io
n
             Io

a
n
n
is So

u
r
d
is



Stellingen behorende bij het proefschrift /
Propositions to the Ph.D. thesis

Designs & Algorithms for
Packet and Content Inspection

van / by

Ioannis Sourdis

Delft, October 2007.



1. Information is most valuable when safely circulated.

2. Reconfigurable hardware is an efficient implementation platform for network
security tasks that need to be frequently updated.

3. It is rare for a single packet to partially match more than a few tens of attack
descriptions.

4. There are two ways to alleviate the tremendous needs of parallelism in network
security: by either exploiting similarities among the descriptions or by filtering
out the majority of them per piece of data.

5. Regular expressions are more efficient when implemented as NFAs in hard-
ware and as DFAs in software than vice versa.

6. The difference between reconfigurable and reprogrammable is that the first
can implement an arbitrary number of functions directly in hardware, while
the second supports only a predefined -during fabrication- finite number of
functions. An ALU is reprogrammable and not reconfigurable.

– Stamatis Vassiliadis

7. Those that are able to spend more than 50% of their time doing research are
most likely to be students.

8. People obey the gas law: they occupy as much space as they are given, and put
pressure for more (– Dionisis Pnevmatikatos). Often, they behave similarly
to gases in the opposite process: the more external pressure they get the more
they resist and get high-“temp”.

9. [Part of a conversation between me and Stamatis Vassiliadis]
Me: “. . . it’s not a shame not to know something.”
Stamatis Vassiliadis: “It is a shame not trying to learn it!”

10. No matter how many times you read your thesis, on re-reading there is always
another typo to correct or something else to change.

11. There is no other meal more delicious than bread, tomato, and cheese, af-
ter hiking up a summer day at the top of Profitis Ilias (mountain) in Samos,
Greece.

These propositions are considered defendable and as such have been approved by
the promotor Prof. dr. K.G.W. Goossens.

1. Informatie is het meest waardevol wanneer deze veilig in omloop wordt ge-
bracht.

2. Herconfigureerbare hardware is een efficiënt implementatieplatform voor
netwerkbeveiligingstaken die frequent vernieuwd moeten worden.

3. Het is voor een enkel pakket uitzonderlijk om gedeeltelijk overeen te komen
met meer dan enkele tientallen beschrijvingen van aanvallen.

4. Er zijn twee oplossingen voor het verlichten van de enorme behoefte aan par-
allellisme in netwerk beveiliging: enerzijds door middel van uitnutten van ge-
lijkheden in de beschrijvingen, anderzijds door uitfilteren van de meerderheid
van de beschrijvingen per dataonderdeel.

5. Reguliere expressies zijn efficiënter wanneer geı̈mplementeerd als NFA’s in
hardware en als DFA’s in software dan vice versa.

6. Het verschil tussen herconfigureerbaar en herprogrammeerbaar is dat de eerste
een arbitrair aantal functies direct in hardware kan implementeren, terwijl de
tweede slechts een vooraf gedefinieerd - tijdens productie - eindig aantal func-
ties ondersteund. Een ALU is herprogrammeerbaar en niet herconfigureerbaar.

– Stamatis Vassiliadis

7. Degenen die de mogelijkheid hebben om meer dan 50 procent van hun tijd aan
onderzoek te besteden zijn met hoge waarschijnlijkheid studenten.

8. Mensen opereren gelijkend aan de natuurwet voor gassen: ze bezetten de
ruimte die ze gegeven is en dringen aan op meer (– Dionisis Pnevmatikatos).
Meestal gedragen ze zich ook gelijk aan gassen in het tegengestelde proces:
hoe meer externe druk, hoe meer weerstand en hoe meer hun temperatuur
oploopt.

9. [Deel van een gesprek tussen mij en Stamatis Vassiliadis]
Ik: “. . . het is geen schande iets niet te weten.”
Stamatis Vassiliadis: “het is een schande het niet te proberen te leren!”

10. Ongeacht hoe vaak je het proefschrift leest, bij elke keer is er altijd wel een
schrijffout te corrigeren of iets anders te veranderen.

11. Er is geen heerlijker maaltijd dan brood, tomaten en kaas na het beklimmen
van de top van Profitis Ilias - berg in Samos, Griekenland - op een zomerdag.

Deze stellingen worden verdedigbaar geacht en zijn als zodanig goedgekeurd door
de promotor Prof. dr. K.G.W. Goossens.



Designs & Algorithms for

Packet and Content Inspection

Ioannis Sourdis





Designs & Algorithms for

Packet and Content Inspection

PROEFSCHRIFT

ter verkrijging van de graad van doctor

aan de Technische Universiteit Delft,

op gezag van de Rector Magnificus prof.dr.ir. J.T. Fokkema,

voorzitter van het College voor Promoties,

in het openbaar te verdedigen

op dinsdag 18 december 2007 om 15:00 uur

door

Ioannis SOURDIS

electronic and computer engineer

Technical University of Crete

geboren te Corfu, Griekenland



Dit proefschrift is goedgekeurd door de promotors:

Prof. dr. S. Vassiliadis†

Prof. dr. K.G.W. Goossens

Samenstelling promotiecommissie:

Rector Magnificus, voorzitter Technische Universiteit Delft

Prof. dr. S. Vassiliadis†, promotor Technische Universiteit Delft

Prof. dr. K.G.W. Goossens, promotor Technische Universiteit Delft

Prof. dr. D.N. Pnevmatikatos Technical University of Crete

Prof. dr. J. Takala Tampere University of Technology

Prof. dr. M. Valero Technical University of Catalonia

Prof. dr.-Ing. J. Becker Universität Karlsruhe

Prof. dr. ir. P.M. Dewilde Technische Universiteit Delft

Dr. K.L.M. Bertels Technische Universiteit Delft

Prof. dr. J.R. Long, reservelid Technische Universiteit Delft

CIP-DATA KONINKLIJKE BIBLIOTHEEK, DEN HAAG

Sourdis, Ioannis

Designs & Algorithms for Packet and Content Inspection

Ioannis Sourdis. –

Delft: TU Delft, Faculty of Elektrotechniek, Wiskunde en Informatica – Ill.

Thesis Technische Universiteit Delft. – With ref. –

Met samenvatting in het Nederlands.Perilamb�netai sÔnoyh sta Ellhnik�.
ISBN 978-90-807957-8-5

Cover page: “The Packet Inspector”, by Ioannis Sourdis, © 2007.

Subject headings: Network Security, Intrusion Detection, Reconfigurable

Packet Inspection, Pattern Matching, Perfect Hashing, Regular Expressions.

Copyright © 2007 Ioannis SOURDIS

All rights reserved. No part of this publication may be reproduced, stored in

a retrieval system, or transmitted, in any form or by any means, electronic,

mechanical, photocopying, recording, or otherwise, without permission of the

author.

Printed in The Netherlands



To my mentor Stamatis.Sto d�skalì mou Stam�th.





Designs & Algorithms for
Packet and Content Inspection

Ioannis Sourdis

Abstract

T
his dissertation deals with essential issues pertaining to high perfor-

mance processing for network security and deep packet inspection.

The proposed solutions keep pace with the increasing number and

complexity of known attack descriptions providing multi-Gbps processing

rates. We advocate the use of reconfigurable hardware to provide flexibil-

ity, hardware speed, and parallelism in challenging packet and content inspec-

tion functions. This thesis is divided in two parts, firstly content inspection

and secondly packet inspection. The first part considers high speed scanning

and analyzing packet payloads to detect hazardous contents. Such contents

are described in either static patterns or regular expression format and need

to be matched against incoming data. The proposed static pattern matching

approach introduces pre-decoding to share matching characters in CAM-like

comparators and a new perfect hashing algorithm to predict a matching pat-

tern. The FPGA-designs match over 2,000 static patterns, provide 2-8 Gbps

operating throughput and require 10-30% area of a large reconfigurable device;

that is half the performance of an ASIC and approximately 30% more efficient

compared to previous FPGA-based solutions. The regular expression design

is performed following a Non-Deterministic Finite Automata (NFA) approach

and introducing new basic building blocks for complex regular expressions

features. Theoretical grounds in support of the new blocks are established

to prove their correctness. In doing so, approximately four times less Finite

Automata states need to be stored. The designs achieve 1.6-3.2 Gbps through-

put using 10-30% area of a large FPGA for matching over 1,500 regular ex-

pressions; that is 10-20× more efficient than previous FPGA-based works and

comparable to ASICs. The second part of the thesis concerns offloading the

overall processing of a packet inspection engine. Packet pre-filtering is intro-

duced as a means to resolve or at least alleviate the processing requirements

of matching incoming traffic against large datasets of known attacks. Partially

matching descriptions of malicious traffic avoids further processing of over

98% of the attack descriptions per packet. Packet pre-filtering is implemented

in reconfigurable technology and sustains 2.5 to 10 Gbps processing rates in a

Xilinx Virtex2 device.

i





Acknowledgements

I would not have reached the point to complete my PhD if it was not for all

my teachers I had since now; from the first, my parents as elementary-school

teachers, to the most recent, my PhD advisor the late Prof.dr. Stamatis Vassil-

iadis. They taught me everything I know, or the way to learn it. I would like

first and foremost to gratefully acknowledge them all.

Normally, I would have dedicated my thesis to my family, my parents and my

sister for their love and support, and to my girlfriend who I am so lucky I have

met, for all her care and love. However, things sometimes (actually usually)

do not go as planned. That is why only these lines are for them, to tell them

how grateful I feel they are in my life. In Greek, so that my parents can read

it: Sa e�mai eugn¸mwn gia thn st rixh kai thn ag�ph sa.
The one my thesis is dedicated to was supposed to be physically present at

my defense, to strangle me a bit with his questions so that “arriving to Ithaca”

would get sweeter. Now, I can only say I miss him very much, especially

today! I feel privileged I had the chance to meet Stamatis Vassiliadis and spend

three years under his mentorship. I am grateful for all the time he shared with

me at work and also in personal life, for everything he taught me, for working

all these late hours together, and for having all these wonderful dinners with us

(his students). I have changed and I see some things differently after the past

three years; that is mostly because of Stamatis. I am very proud I have been

his student and more complete as a person I got to know his personal side.

Although it is so obvious, without the help of the Rector Magnificus Prof.dr.ir.

J.T. Fokkema and Dr. Georgi Gaydadjiev it would not be possible to officially

have Prof.dr. Stamatis Vassiliadis as my promotor. I am grateful to both of

them.

Prof. Dionisis Pnevmatikatos was my MSc advisor, but he continues helping

and advising me until now at every chance he has. His comments and sugges-

tions have been always more than helpful, I deeply thank him for that and also

iii



because, after all, the topic of this thesis was his initial suggestion. I would

like to thank also Dr. Georgi Gaydadjiev and Dr. Koen Bertels for their help,

support and encouragement the difficult past year and for putting all this effort

and keep CE group together. Many thanks go to Prof.dr. Kees Goossens who

significantly helped the last months of my PhD with his valuable comments

that improved the quality of my thesis. Prof. Jarmo Takala helped very much

by carefully reading my thesis and providing very detailed comments. Prof.dr.

Mateo Valero also put significant amount of time -spare time he does not have-

to provide comments on my thesis, I therefore would like to acknowledge him

too.

My life in Delft would have been less fun without my friends and col-

leagues. Roel and Maria have a special part of it, I thank them very much

for their friendship, support and advice. I would also like to thank Barbara,

Carlo, Christos, Christoforos, Daniele, Dimitris, Lotfi, Niki, Pepijn, Sebastian,

Thodoris and the rest of the Greeks, Mediterraneans and others for all the fun

we had during the past few years. It is always a pleasure to gather and have

dinners together, like the old days with Stamatis. Roel and Christos get an

extra acknowledgement for been “victimized” to proofread parts of my thesis.

I am certainly fully responsible for any typos left. I also thank Pepijn for all

the interesting discussions we had and for his help on translating my abstract

and propositions in Dutch.

Finally, I am thankful to Bert and Lidwina for their technical and administra-

tive support, they definitely made my life simpler these years in the CE group.

Ioannis Sourdis Delft, The Netherlands, 2007

iv



Contents

Abstract i

Acknowledgments iii

List of Tables ix

List of Figures xi

List of Acronyms xiv

1 Introduction 1

1.1 Deep Packet Inspection . . . . . . . . . . . . . . . . . . . . . 3

1.2 Problem Framework . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Dissertation Objectives and Main Contributions . . . . . . . . 6

1.4 Dissertation overview . . . . . . . . . . . . . . . . . . . . . . 9

2 Intrusion Detection Systems 11

2.1 IDS Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 IDS Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Implementation Platforms . . . . . . . . . . . . . . . . . . . 19

2.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 Static Pattern Matching 23

3.1 HW-based Pattern Matching . . . . . . . . . . . . . . . . . . 25

v



3.1.1 CAM and Discrete Comparators . . . . . . . . . . . . 27

3.1.2 Regular Expressions . . . . . . . . . . . . . . . . . . 28

3.1.3 Hashing . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.1.4 Other Algorithms . . . . . . . . . . . . . . . . . . . . 32

3.1.5 ASICs . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2 Pre-decoded CAM . . . . . . . . . . . . . . . . . . . . . . . 33

3.2.1 Performance Optimization . . . . . . . . . . . . . . . 36

3.2.2 Area Optimization . . . . . . . . . . . . . . . . . . . 39

3.3 Perfect Hashing Memory . . . . . . . . . . . . . . . . . . . . 39

3.3.1 Perfect Hashing Tree . . . . . . . . . . . . . . . . . . 40

3.3.2 PHmem Basic Building Function . . . . . . . . . . . 44

3.3.3 Proof of PHmem Correctness . . . . . . . . . . . . . 47

3.3.4 Theoretical Analysis of the PHmem Algorithm . . . . 49

3.3.5 Pattern Pre-processing & Implementation Issues . . . 54

3.3.6 PHmem Implementation in ASIC . . . . . . . . . . . 57

3.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.4.1 DCAM Evaluation . . . . . . . . . . . . . . . . . . . 58

3.4.2 PHmem Evaluation . . . . . . . . . . . . . . . . . . . 61

3.4.3 Memory-Logic Tradeoff . . . . . . . . . . . . . . . . 62

3.4.4 Scalability . . . . . . . . . . . . . . . . . . . . . . . 63

3.5 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4 Regular Expression Matching 69

4.1 Regular Expressions in IDS . . . . . . . . . . . . . . . . . . . 72

4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.3 Regular Expressions Engine . . . . . . . . . . . . . . . . . . 77

4.3.1 Basic NFA blocks . . . . . . . . . . . . . . . . . . . 77

4.3.2 Area Optimizations . . . . . . . . . . . . . . . . . . . 85

4.3.3 Performance Optmizations . . . . . . . . . . . . . . . 86

4.4 Synthesis Methodology . . . . . . . . . . . . . . . . . . . . . 86

vi



4.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.6 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5 Packet Prefiltering 101

5.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.2 Packet Prefiltering . . . . . . . . . . . . . . . . . . . . . . . . 105

5.3 Integrating Packet Pre-filtering . . . . . . . . . . . . . . . . . 112

5.4 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . 121

5.5.1 Simulation Results . . . . . . . . . . . . . . . . . . . 121

5.5.2 Implementation Results . . . . . . . . . . . . . . . . 130

5.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

6 Conclusions 135

6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

6.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 138

6.3 Proposed Research Directions . . . . . . . . . . . . . . . . . 140

Bibliography 143

List of Publications 157

Samenvatting 161SÔnoyh (Synopsis in Greek) 163

Curriculum Vitae 165

vii





List of Tables

1.1 Worldwide Economic Impact of Network Attacks 1997-2006

(in billion U.S. $) [1, 2]. . . . . . . . . . . . . . . . . . . . . . 2

2.1 Snort-PCRE basic syntax. . . . . . . . . . . . . . . . . . . . . 15

2.2 Current SNORT syntax features which make IDS tasks more

computationally intensive. . . . . . . . . . . . . . . . . . . . 16

2.3 Profiling Snort IDS [3–6]. . . . . . . . . . . . . . . . . . . . . 17

2.4 Characteristics of various Snort rulesets, number of rules,

number of unique static patterns and number of unique regular

expressions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1 Perfect Hash Tree algorithm - main process. . . . . . . . . . . 42

3.2 Basic Building function of the Perfect Hashing algorithm. . . . 45

3.3 Hash trees evaluation. . . . . . . . . . . . . . . . . . . . . . . 61

3.4 Comparison of FPGA-based pattern matching approaches. . . 66

4.1 Regular expressions characteristics used in Snort and Bleeding

Edge rulesets. . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.2 The basic building blocks of our Regular Expression Engine. . 78

4.3 Generation and Implementation times for Snort and Bleeding

rulesets of Oct.’06. . . . . . . . . . . . . . . . . . . . . . . . 89

4.4 Comparison between our RegExp Engines and other HW reg-

ular expression approaches. . . . . . . . . . . . . . . . . . . . 99

5.1 Most frequent characters in normal traffic traces. . . . . . . . 119

5.2 Packet Pre-filtering Area Cost. . . . . . . . . . . . . . . . . . 130

ix





List of Figures

1.1 Wide area and Last mile network bandwidth growth vs. com-

puting power of single chip processors. . . . . . . . . . . . . . 3

1.2 A Network Intrusion Detection System consists of several pre-

processors and the detection engine. . . . . . . . . . . . . . . 5

2.1 NIDS decomposition and IDS rule example. . . . . . . . . . . 13

2.2 Performance-Flexibility tradeoff between different IDS imple-

mentation solutions. . . . . . . . . . . . . . . . . . . . . . . . 19

3.1 Abstract illustration of performance and area efficiency for

various static pattern matching approaches. . . . . . . . . . . 26

3.2 Basic CAM discrete comparator structure and optimization. . . 34

3.3 Pre-decoded CAM (DCAM). . . . . . . . . . . . . . . . . . . 35

3.4 DCAM processing two characters per cycle. . . . . . . . . . . 36

3.5 The DCAM structure of an N -search pattern module with par-

allelism P = 4. . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.6 DCAM with Multiple Clock Domains. . . . . . . . . . . . . . 38

3.7 Partial Matching of long patterns in DCAM. . . . . . . . . . . 39

3.8 Perfect Hashing memory block diagram. . . . . . . . . . . . . 41

3.9 Perfect Hash trees: the select of each multiplexer is a function

generated by the SUB HASH. . . . . . . . . . . . . . . . . . . 43

3.10 An example of using SUB HASH to split a Set in two subsets

which require one bit less to be encoded compared to the set. . 47

3.11 Worst case number of operations required to generate a Perfect

Hash Tree for various sets of patterns. . . . . . . . . . . . . . 52

xi



3.12 Perfect Hash Tree Cost in 4-input gates of various pattern sets. 55

3.13 An example of storing patterns in the PHmem pattern memory. 56

3.14 Comparison between the Discrete Comparator CAM and the

DCAM architectures. . . . . . . . . . . . . . . . . . . . . . . 59

3.15 PHmem and DCAM performance, area cost, and efficiency. . . 60

3.16 PHmem and DCAM scalability. . . . . . . . . . . . . . . . . 63

3.17 Normalized Performance Efficiency Metric of PHmem,

DCAM and related work. . . . . . . . . . . . . . . . . . . . . 65

4.1 NFA and DFA representations of the regular expressions

(x|y) ∗ x{2} and (x|y) ∗ y(x|y){n} (for n=2). The second

example illustrates the DFA state explosion. . . . . . . . . . . 71

4.2 Characteristics of Snort rulesets regarding the regular expres-

sions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.3 Distribution of two of the most commonly used constrained

repetitions in Snort IDS, type Exactly and AtLeast. Results

are for the Snort v2.4 Oct. 2006 version. . . . . . . . . . . . . 74

4.4 Block diagram of our Regular Expression Engines. . . . . . . 76

4.5 The Exactly block: a{N}. . . . . . . . . . . . . . . . . . . . 79

4.6 The AtLeast block: a{N, }. . . . . . . . . . . . . . . . . . . . 80

4.7 The Between block: a{N,M} = a{N}a{0,M − N}. . . . . 82

4.8 An implementation for the regular expression b+[∧\n]{2}. . . 84

4.9 Proposed methodology for generating regular expressions pat-

tern matching designs. . . . . . . . . . . . . . . . . . . . . . 87

4.10 Hierarchical decomposition or the regular expression

“∧CEL \ s[∧\n]{100, }”. . . . . . . . . . . . . . . . . . . . 89

4.11 Area cost of the constrained repetitions blocks. . . . . . . . . 91

4.12 Area and performance improvements when applying a step-

by-step optimization for three different IDS rulesets. . . . . . 93

5.1 The effect of packet pre-filtering in a sequential and a parallel

IDS processing model. . . . . . . . . . . . . . . . . . . . . . 102

5.2 The Packet Pre-filtering block diagram. Packet pre-filtering is

customized based on the IDS ruleset at hand. . . . . . . . . . 107

xii



5.3 Pipelined priority encoder implementation details. . . . . . . . 109

5.4 An example of the pipelined priority encoder. . . . . . . . . . 110

5.5 Packet pre-filtering alternatives. . . . . . . . . . . . . . . . . 111

5.6 PINE: Packet INspection Engine. A Reconfigurable Intrusion

Detection Engine utilizing packet pre-filtering. . . . . . . . . . 115

5.7 Probability for a packet to activate more than 32 or 64 rules

considering random traffic, c = 1
256 . . . . . . . . . . . . . . . 117

5.8 Probability for a packet to activate more than 32 or 64 rules

considering that all prefix characters used in prefiltering have

10% or 6% probability to be found. The payload size is be-

tween 512 bytes to 1 Mbyte. . . . . . . . . . . . . . . . . . . 118

5.9 Probability for a packet to activate more than 32 or 64 rules

considering that all prefix characters used in prefiltering have

c = 10% probability to be found and the payload size is very

long (1-256 Mbytes). . . . . . . . . . . . . . . . . . . . . . . 120

5.10 Packet trace statistics: number of packets that include payload

and header-only packets in Defcon11 traces. . . . . . . . . . . 122

5.11 Cumulative distribution of payload pattern length in the

SNORT rules. . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.12 Average number of candidate rules per packet after the pre-

filtering step as a function of the pre-filtering length. . . . . . 123

5.13 Maximum number of candidate rules per single incoming

packet after the pre-filtering step as a function of the pre-

filtering length (length 2 was omitted for clarity due to exceed-

ingly large values). . . . . . . . . . . . . . . . . . . . . . . . 124

5.14 The average number of activated rules per packet when match-

ing different portions of the rules in the pre-filtering stage. . . 126

5.15 The maximum number of activated rules per packet when

matching different portions of the rules in the pre-filtering stage. 127

5.16 Comparison of the average number of activated rules per in-

coming packet when choosing different prefix lengths and dif-

ferent parts of the rules to be included in the prefiltering . . . . 128

5.17 Comparison of the maximum number of activated rules per

incoming packet when choosing different prefix lengths and

different parts of the rules to be included in the prefiltering . . 128

xiii



List of Acronyms

ALU Arithmetic Logic Unit

ASIC Application-Specific Integrated Circuit

bps bits per second

CAM Content Addressable Memory

CPU Central Processing Unit

DCAM Decoded CAM

DFA Deterministic Finite Automaton

DPI Deep Packet Inspection

DoS Denial of Service

ELC Equivalent Logic Cells

FA Finite Automaton

FF Flip-Flop

FLOPS Floating point Operations Per Second

FPGA Field Programmable Gate Array

FSM Finite State Machine

FTP File Transfer Protocol

GPP General Purpose Processor

HDL Hardware Description Language

HTTP Hyper Text Transfer Protocol

ICMP Internet Control Message Protocol

IP Internet Protocol

LUT Look Up Table

NFA Non-deterministic Finite Automaton

NIDS Network Intrusion Detection System

NIPS Network Intrusion Prevention System

NP Network Processor

PCRE Perl-Compatible Regular Expressions

PEM Performance Efficiency Metric

PHmem Perfect-Hashing Memory

PLA Programmable Logic Array

RPC Remote Procedure Call

RegExpr Regular Expression

SMTP Simple Mail Transfer Protocol

TCAM Ternary Content Addressable Memory

TCP Transmission Control Protocol

UDP User Datagram Protocol

WAN Wide Area Network

xiv



Chapter 1

Introduction

Digital information is most valuable

when safely circulated

T
he proliferation of Internet and networking applications, coupled with

the wide-spread availability of system hacks and viruses, urges the

need for network security. The security of digital information systems

has an increasing impact on modern societies and economies. Information is

most valuable when (safely) circulated and hence, network security is a criti-

cal issue with great financial impact and significant effect on society. Private

industries in finance, trade, services, transportation, manufacturing, and public

sectors such as medical, vital services, national economy, defense and intel-

ligence depend on computing systems. Consequently, any information and

network security failure of these systems may often result in significant eco-

nomic damage or disasters. Recent analyses show the economic impact of

network security. It is estimated that worldwide digital attacks cost billions of

US dollars every year [1, 2]. As depicted in Table 1.1, Computer Economics

Inc. estimates that approximately 13-17 billion dollars are lost every year due

to network attacks [1]. Another analysis by the British company Mi2g indi-

cates that the annual economic cost is up to hundreds of billion dollars [2]. In

either case, sophisticated network security systems are necessary for modern

societies and economic prosperity.

The growing gap between network bandwidth requirements and available com-

puting power [7] imposes severe limitations to existing network security sys-

tems. Gilder identified a gap between network bandwidth and computing

power [7]. On one hand, technological advances (still) allow transistor count

to (presumably) double every eighteen months [8]. On the other hand, it has

been postulated that network bandwidth doubles every six months. Assum-

ing that increase in transistor count indicates computing power improvement,

1



2 CHAPTER 1. INTRODUCTION

Table 1.1: Worldwide Economic Impact of Network Attacks 1997-2006 (in billion

U.S. $) [1, 2].

Year Computer Economics [1] Mi2g [2]

2006 13.3 NA

2005 14.2 NA

2004 17.5 NA

2003 13.0 185-226

2002 11.1 110-130

2001 13.2 33-40

2000 17.1 25-30

1999 13.0 19-23

1998 6.1 3.8-4.7

1997 3.3 1.7-2.9

Sources: Computer Economics [1] and Mi2g [2]

network bandwidth grows three times faster than computing power. Under

the conjectures stated above it can be indicated that network processing gets

more computationally intensive. Increasingly higher network processing per-

formance is required than the computing systems may provide.

The graph of Figure 1.1 shows the above point in practice. Network line rates

rapidly grow by a factor of 2-4× per year, while computing power has a con-

stant improvement of no more than 1.6× per year. In the last twenty years,

wide area network (WAN) bandwidth has increased from a few hundreds Kbits

per second to tens of Gbps. WAN bandwidth quadruples every year verifying

Gilder’s claim. The “last mile” network bandwidth follows WAN growth with

a delay of a few years. Although, until recently, last mile network bandwidth

was increasing about 1.5× per year, recent advances in fiber optics technol-

ogy allow a 2-4× growth in the coming years. On the contrary, computing

power increases up to 1.6× per year. Figure 1.1 depicts the computing power

of single-chip processors over the past two decades measured in million float-

ing point operations per second (MFLOPS). An Intel 80486 in the early 90’s

could perform 3.48 MFLOPS, a Pentium III in 1999 145 MFLOPS, while a

Core 2 Duo of 2006 can execute 508 MFLOPS. After the year 2000 there is an

increasing gap between network bandwidth and computing power, small but

already evident for the “last mile” networks and substantially larger for WAN.

In summary, the economic and social impact of information security coupled



1.1. DEEP PACKET INSPECTION 3

100

101

102

103

104

105

106

1990 1995 2000 2005 2010

50-100 
Mbps

22 Mbps

4 Mbps
1.55 Mbps

Core 2 Duo 
1CP
 508 

MFlops

P4
P4

80486
3.48 MFlops 56 Kbps28.8 Kbps

40 Gbps

10 Gbps

2.5 Gbps
622Mbps

310 Mbps
155 Mbps

20 Mbps
P3

P3 Tualatin
248 MFlops

12 Mbps

4 Mbps

256 Kbps Pent M
392 

MFlops

Last Mile
1.5-4x/year

Computing
1.4-1.6x/yearPent

33.7 
MFlops
2 Mbps

WAN 4x/year

1.5 Mbps

Single chip computing 
power FLOPS

Last Mile bandwidth 
bits/sec

Wide Area Network 
bandwidth bits/sec

384 Kbps14.4 Kbps

PentPro
41.5 

MFlops
P2

Pent

Figure 1.1: Wide area and Last mile network bandwidth growth vs. computing power

of single chip processors. All values in the graph have been normalized to their initial

value of 1990.

with the increasing network processing requirements impose the need for effi-

cient and effective network security solutions. These solutions should provide

high performance at reasonable cost, flexibility, and scalability in order to

keep up with current and future network security needs. The above sketch the

challenges addressed in this thesis.

The remaining of this introductory chapter is organized in four sections. Sec-

tion 1.1 provides a brief description of Deep Packet Inspection, an efficient so-

lution for network security. Section 1.2 draws the problem framework of this

dissertation. Section 1.3 presents the thesis objectives outlining the disserta-

tion scope and describes the main contributions. Finally, Section 1.4 overviews

the remaining contents of the dissertation.

1.1 Deep Packet Inspection

High speed and always-on network access is commonplace around the world

creating a demand for more sophisticated packet processing and increased

network security. The answer to this sophisticated network processing and

network security can be provided by Deep Packet Inspection (DPI) [9]. In

essence, deep packet inspection is able to accurately classify and control traf-



4 CHAPTER 1. INTRODUCTION

fic in terms of content and applications. In other words, it analyzes packets

content and provides a content-aware processing. The most challenging task

in DPI is content inspection, since the body (payload) of each packet needs to

be scanned [3, 4]. In general, DPI systems should provide the following:

• high processing throughput,

• low implementation cost,

• flexibility in modifying and updating the content descriptions, and

• scalability as the number of the content descriptions increases.

The above goals become more difficult to achieve due to two reasons. First, the

gap between network bandwidth and computing power is growing [7]. Second,

the database of known attack patterns becomes larger and more complex.

Currently, several network functions need a more efficient analysis and infor-

mation about the content and the application data of the processing packets.

DPI is used in network applications such as:

• Network Intrusion Detection/Prevention Systems: As opposed to

traditional firewalls, NIDS/NIPS scan the entire packet payload for pat-

terns that indicate hazardous content. A combination of packet clas-

sification (header matching) and content inspection is used to identify

known attack descriptions. Previous techniques such as stateful inspec-

tion are still required to provide efficient security.

• Layer 7 Switches1: authentication, load balancing, content-based filter-

ing, and monitoring are some of the features that layer 7 switches sup-

port. For example application aware web switches provide transparent

and scalable load balancing in data centers.

• Traffic Management and Routing: Content-based routing and traffic

management may differentiate traffic classes based on the application

data.

This dissertation addresses the above Deep Packet Inspection challenges fo-

cussing on DPI for Network Security (NIDS/NIPS). Although, the principles

1A network device that integrates routing and switching by forwarding traffic at layer 2 speed

using layer 7 (application layer) information. Also known as content-switches, content-service

switches, web-switches or application-switches.



1.2. PROBLEM FRAMEWORK 5

Network Intrusion Detection System

Reassembly 
& Reorder
Stateful 
Inspection
Decoding

Packet Classification/
Header matching
Content Inspection/
pattern matching

Search 
for 

known 
attack 

patterns

Detection EnginePre-
Processors

Figure 1.2: A Network Intrusion Detection System consists of several preprocessors

and the detection engine. Preprocessors are related to packet reassembly and reorder-

ing, stateful inspection and several decoding schemes. The detection engine is the

NIDS core which scans each packet against various attack patterns. This thesis aims

at improving and accelerating the most computationally intensive NIDS part, the de-

tection engine.

followed in all DPI network applications remain unchanged, we can note that

in NIDS2 the content descriptions may be more complex and more in num-

ber, creating significant performance limitations and implementation difficul-

ties compared to other network applications such as content-aware traffic man-

agement and switching.

1.2 Problem Framework

Like most networking systems, a network intrusion detection system requires

complex interfaces and functions to handle network protocols and keep track of

multiple flows. Some of these functions may be of significant research interest

while others are just implementation details. Building a complete NIDS is

not within this thesis scope. We provide a NIDS decomposition and describe

below the framework of the problem addressed in the thesis.

Figure 1.2 illustrates an abstract block diagram of a network intrusion detec-

tion system. A NIDS consists of two main parts, the preprocessors and the

detection engine. There are several preprocessors that perform reassembly and

2For the rest of the dissertation by NIDS we mean both NIDS and NIPS



6 CHAPTER 1. INTRODUCTION

reordering of TCP packets, stateful inspection functions, and various packet

decodings. After the preprocessing phase comes the main detection engine

which examines incoming traffic against known attack patterns. The NIDS

detection engine is the core of the system. It performs packet classification

(header matching) and content inspection (payload pattern matching) using

multiple packet header and the payload descriptions of malicious traffic. Cur-

rently NIDS databases, denoted also as rulesets in the rest of the thesis, contain

thousands of attack descriptions each one possibly using complex and/or long

payload patterns. It is worth noting that the NIDS detection engine requires

up to 85% of the total execution time when running in a GPP, while pattern

matching alone takes about 30-80% of the total processing (Chapter 2). Exist-

ing systems support moderate performance limited to a few hundred Mbits per

second (Mbps) and often compromise accuracy.

Abstracting the NIDS implementation details and the preprocessors tasks, the

focus of this dissertation turns to the NIDS detection engine. The basic aim is

to accelerate the content inspection and reduce the overall required processing

of the NIDS detection engine. The proposed solutions should further provide

flexibility and scalability in order to satisfy the increasing needs of network

security.

1.3 Dissertation Objectives and Main Contributions

In this dissertation, we focus on deep packet inspection with emphasis on im-

proving the efficiency of the required content inspection and minimizing the

packet processing load. We are particularly interested in Network Intrusion

Detection Systems due to the complex and computationally demanding con-

tent descriptions used to identify hazardous packets. To solve the performance

problems regarding the execution of NIDS on GPPs and other existing plat-

forms, we propose reconfigurable computing supporting the specific computa-

tional requirements of the NIDS. As identified in Section 1.2, current proposals

suffer from a number of drawbacks, which have been resolved or substantially

alleviated by the techniques presented here3. We discuss below the objectives

that determine the scope of this dissertation, and the main thesis contributions:

• Augment the benefits of reconfigurable hardware for DPI: As men-

tioned earlier, Intrusion Detection Systems (NIDS) should sustain high

3A detailed discussion on how such drawbacks are resolved is presented in Chapters 3, 4,

and 5.



1.3. DISSERTATION OBJECTIVES AND MAIN CONTRIBUTIONS 7

processing throughput and provide the flexibility of updating mecha-

nisms in order to renew and improve their rulesets. It is a well known

fact that, NIDS running in GPP cannot support a throughput higher than

a few hundreds of Mbps [10]. In this dissertation we advocate the use

of reconfigurable hardware as the implementation platform of a NIDS.

Reconfigurable technology is able to provide the required flexibility to

modify the system when needed, while the fast (hardware) processing

rates can be achieved exploiting specialized circuitry and parallelism.

The proposed solutions are designed and implemented for reconfig-

urable technologies. In addition, we follow a methodology of automati-

cally generating the HDL description of the designs for a given ruleset in

order to improve flexibility and speed up the system update. Chapters

3, 4, and 5 provide implementation results in reconfigurable hardware

for every proposed design.

• Address the problem of static\explicit pattern matching for NIDS:

Content inspection is the most computationally intensive task in NIDS.

Matching static payload strings, in other words the literal meaning of

patterns, is one of the two content inspection tasks4. Pattern matching

should be performed in high-speed at the lowest possible implemen-

tation cost. We address the above issue presenting two static pattern

matching techniques. The first one is Decoded CAM (DCAM) and uses

logic to match the search patterns and exploits pattern similarities. The

second approach Perfect Hashing Memory (PHmem) utilizes a new per-

fect hashing technique to hash the incoming data and determine the lo-

cation of a single pattern that may match. The proposed designs match

thousands of IDS patterns and support 2-8 Gbps throughput. Chapter 3

presents the two methods in detail.

• Address the problem of regular expression pattern matching for

NIDS: Regular expressions is a more advanced way to describe haz-

ardous contents in NIDS and more challenging to implement. Regular

expression matching should also support high processing throughput at

the lowest possible implementation cost. There are several significant

issues in regular expression pattern matching that make their implemen-

tation difficult in both software and hardware. On the one hand, De-

terministic Finite Automata (DFA) implementations suffer from state

explosion, on the other hand, Non-deterministic Finite Automata (NFA)

have limited performance, while complicated syntax features such as

4The other content inspection task is regular expression matching.



8 CHAPTER 1. INTRODUCTION

constrained repetitions require significant amount of resources. We ad-

dress the above providing a solution in Chapter 4. The proposed NFA

approach achieves 1.6-3.2 Gbps throughput and saves three quarters of

the required NFA states.

• Compare the proposed content inspection techniques against exist-

ing related work: It is essential to compare the proposed content in-

spection techniques against related work. It is also important to have a

metric that measures the efficiency of each solution. We evaluate ev-

ery content inspection design in terms of performance (throughput) and

area cost. A Performance Efficiency Metric (PEM) is utilized to mea-

sure the efficiency of the designs. It is actually the achieved throughput

of a design over its implementation cost. At the end of Chapters 3 and

4 we present a detailed comparison between related works and the pro-

posed content inspection designs. Our static pattern matching approach

achieves half the performance of an Application-Specific Integrated Cir-

cuit (ASIC) and is about 30% more efficient than previous FPGA-based

solutions. Our regular expression designs are 10-20× more efficient than

previous FPGA works and comparable to ASIC DFA implementations.

• Solve Deep Packet Inspection computational complexity problems:

As discussed earlier, the network bandwidth requirements increase faster

than the offered computing capabilities. Currently, NIDS require multi-

Gigabit/sec throughput while their rulesets grow rapidly. The first dis-

sertation objective aims at reducing the NIDS computational require-

ments. In addition, performance should be maintained, despite the fact

that NIDS rulesets become larger and more complex. As a means to

resolve, or at least alleviate, the increasing computational needs of high

speed intrusion detection systems, a technique called packet pre-filtering

is introduced. Packet pre-filtering is able to exclude from further pro-

cessing the majority of the rules per incoming packet and thus reduce

the required overall NIDS processing. In our experiments, packet pre-

filtering leaves only a few tens of IDS rules per packet (out of thousands)

to be entirely matched. The FPGA implementation of the algorithm sus-

tains 2.5-10 Gbps throughput. Packet pre-filtering is extensively covered

in Chapter 5.

• Address Scalability Issues of the NIDS tasks: NIDS rulesets become

increasingly larger as they are constantly updated with new attack de-

scriptions. In addition, their rule syntax becomes more complex in order

to express hazardous contents more efficiently. As a consequence, any



1.4. DISSERTATION OVERVIEW 9

proposed solution for content inspection or a complete packet inspec-

tion engine should be able to scale well in terms of performance and

implementation cost as the NIDS ruleset grows and becomes more com-

plicated. All the content inspection solutions of Chapters 3 and 4 are

evaluated as the content descriptions increase and show that their perfor-

mance and implementation cost scale well as the ruleset becomes larger.

In addition, the proposed packet pre-filtering technique in Chapter 5

aims, among others, at improving the scalability of the packet inspec-

tion engine.

An overview of how the research objectives have been attained and how they

are presented in this dissertation follows.

1.4 Dissertation overview

The thesis consists of three parts: The first part offers a background analysis of

Intrusion Detection Systems, covered in Chapter 2. The second part, covered

in Chapters 3 and 4, deals with the most computationally intensive NIDS task,

content inspection. Chapters 3 and 4 present pattern matching and regular ex-

pression matching techniques, respectively, for NIDS. The third part is Chapter

5, and describes a general solution for the computational complexity and scal-

ability of DPI. More precisely, the remainder of the dissertation is organized

as follows:

Chapter 2 provides some background information and a concise description of

network intrusion detection systems. We describe the structure of the NIDS

rules and explain the main NIDS tasks. Furthermore, we identify the most

challenging and computationally intensive IDS tasks that substantially dimin-

ish performance. Finally, we discuss the alternative NIDS implementation

platforms analyzing their tradeoffs.

As mentioned earlier the most computational intensive NIDS task is content

inspection. NIDS rules use widely static patterns and regular expressions to

describe hazardous payload contents. Consequently, static pattern matching

is one of the two major content inspection functions. Chapter 3 describes

two new static pattern matching techniques to examine incoming packets

against the intrusion detection search patterns. The first approach, DCAM,

pre-decodes incoming characters, aligns the decoded data and performs a log-

ical AND to produce the match signal for each pattern. The second approach,

PHmem, introduces a new perfect hashing technique to access a memory that



10 CHAPTER 1. INTRODUCTION

contains the search patterns and a simple comparison between incoming data

and memory output determines the match. It is proven, that PHmem guaran-

tees a perfect hash generation for any given set of patterns. Additionally, a

theoretical analysis shows the PHmem generation complexity and the worst

case implementation cost of the perfect hash function. Both approaches are

implemented in reconfigurable hardware. We evaluate them in terms of per-

formance and area cost, compare them with related works and analyze their

efficiency, scalability and tradeoffs.

The second content inspection function, regular expression matching, is dis-

cussed in Chapter 4. A Nondeterministic Finite Automata (NFA) approach

is introduced for reconfigurable hardware. The proposed solution introduces

three new basic building blocks to support more complex regular expression

descriptions than the previous approaches. Theoretical grounds supporting the

new blocks are established to prove their correctness. The suggested method-

ology is supported by a tool that automatically generates the circuitry for the

given regular expressions. The proposed technique is implemented and eval-

uated in reconfigurable technology, while the generated designs are compared

against related works.

Chapter 5 presents a new technique called packet pre-filtering to address the

increasing processing needs of current and future intrusion detection systems.

Packet pre-filtering lends itself to both software and hardware implementa-

tions. It selects a small portion from each IDS rule to be matched. The result

of this partial match is only a small number of rules per packet that are acti-

vated for further processing. This way, we reduce the overall required NIDS

processing. A theoretical analysis and a real traffic trace-driven evaluation

show the effectiveness of packet pre-filtering. Moreover, the technique has

been designed for reconfigurable hardware and implementation results are re-

ported.

Finally, concluding remarks are presented in Chapter 6. The chapter summa-

rizes the dissertation, outlines its contributions and suggests future research

directions.



Chapter 2

Intrusion Detection Systems

F
irewalls have been used extensively to prevent access to systems from

all but a few, well defined access points (ports), but they cannot elimi-

nate all security threats nor can they detect attacks when they happen.

Stateful inspection firewalls are able to understand details of the protocol that

are inspecting by tracking the state of a connection. They actually establish

and monitor connections until they are terminated. However, current network

security needs, require a much more efficient analysis and understanding of the

application data [9]. Content-based security threats and problems occur more

frequently, in an every day basis. Virus and worm inflections, SPAMs (unso-

licited e-mails), email spoofing, and dangerous or undesirable data, get more

and more annoying and cause innumerable problems. Therefore, next gener-

ation firewalls should support Deep Packet Inspection properties, in order to

provide protection from these attacks. Network Intrusion Detection Systems

(NIDS) are able to support DPI processing and protect an internal network

from external attacks1. NIDS check the packet header, rely on pattern match-

ing techniques to analyze packet payload, and make decisions on the signifi-

cance of the packet body, based on the content of the payload.

This Chapter provides some background information regarding Intrusion De-

tection Systems. The remaining of the Chapter is organized as follows: Sec-

tion 2.1 gives an overview of NIDS tasks focusing on the features of the NIDS

rules. Section 2.2 analyzes the profile of the widely used open source NIDS

Snort [11, 12] and points out the most challenging NIDS parts. Finally, in

Section 2.3 we discuss alternative implementation platforms for NIDS.

1Depending on the NIDS placement, a NIDS may monitor also internal traffic detecting

intrusions that might have already affected parts of the protected network.

11



12 CHAPTER 2. INTRUSION DETECTION SYSTEMS

2.1 IDS Tasks

As briefly described in Chapter 1.2, Intrusion Detection Systems (IDS) use

several preprocessors and a ruleset-based detection engine which performs

packet classification and content inspection. Figure 2.1 illustrates a break-

down of an intrusion detection system. It is worth noting that the described

IDS generates per packet alerts and subsequently correlations between multi-

ple alerts may indicate a complete attack plan [13–15]. An IDS rule such as

the ones of Snort [12] and Bleeding [16] open source IDS, consists of a header

matching part and a payload matching part. The first one checks the header

of each incoming packet using packet classification techniques. The second

examines the payload of each packet performing content inspection. Content

Inspection involves matching packet payload against predefined patterns either

described as static patterns or regular expressions. Additional restrictions con-

cerning the placement of the above patterns introduce further complexity to

the processing of the IDS tasks. Below, each IDS task is discussed in detail.

Preprocessors: The IDS preprocessors implement the necessary functions that

allow the subsequent detection engine to correctly examine incoming traffic

against predefined attack descriptions. Preprocessors are responsible for three

kinds of tasks. First, they reassemble and reorder TCP packets into larger ones.

This is necessary in order to detect attacks that span across multiple packets.

Second, they perform stateful inspection functions such as flow tracking or

portscan detection; that is, functions related to the protocol level that keep

track of different connections/flows. Stateful inspection can also be seen as a

module which has an overview of the traffic -at a higher level than the content

inspection- checking for abnormal events such as buffer overflows or Denial

of Service (DoS) attacks. Third, preprocessors perform specialized inspection

functions, mostly decoding of various kinds of traffic, e.g., Telnet, FTP, RPC,

HTTP, SMTP, packets with malicious encodings, etc.

After the preprocessors comes the detection engine which uses a rule database

(ruleset) to describe malicious packets. Each rule has a packet classification

and a content inspection part. Furthermore, content inspection includes static

pattern matching, regular expression matching and pattern placement restric-

tions.

Packet Classification: The header part of each NIDS rule describes the header

of a potentially dangerous packet. As depicted in Figure 2.1, the header de-

scription may consist of some or all the following: Protocol, Destination IP

and Port and Source IP and Port. The IP and Port fields of a rule may spec-



2.1. IDS TASKS 13

PreProcessors
Stateful 

Inspection
Reassembly 
& Reorder Decoding

Detection Engine

rule1
rule2
rule3
rule4

ruleN

ruleset

Example of IDS rule:
alert tcp $EXTERNAL_NET any -> $HOME_NET 80 
(content:"ATTACK"; pcre:"/^PASS\s*\n/smi";
within:10;)

Header Matching part

Payload part

alert Protocol Dest IP/Port -> Src IP/Port 
(content:"Static Pattern"; 
pcre:"/Regural Expression/i";
within:10;)

Figure 2.1: NIDS decomposition. Incoming traffic is scanned first by a series of

preprocessors that perform packet reordering and reassembly, stateful inspection and

decoding of specific kinds of traffic. Subsequently, packets are examined against rules

that describe malicious activity. Each rule has a packet header and payload descrip-

tion. An example of IDS rule is depicted at the right bottom part of the Figure.

ify ranges of values instead of a specific address or port. This makes packet

classification more challenging than a simple comparison of numerical values.

Many researchers in the past have proposed different techniques for packet

classification and IP lookup such as [17–19], while some of them also use re-

configurable hardware [20–22]. In this thesis and particularly in Chapter 5 we

use the method proposed in [23] and implement simple comparators to match

the specified addresses or ranges of addresses and ports. This method achieves

high performance and fits well within the proposed reconfigurable designs.

Static Pattern Matching: Matching the literal meaning of predefined (static)

patterns is certainly the most significant IDS task. Static patterns are used to

describe malicious payload contents and provide an insight of the packet appli-

cation data. An IDS rule may contain one or more static patterns of a few bytes

up to several hundreds of bytes long. Figure 2.1 illustrates an IDS-rule exam-

ple which contains a static pattern. The static pattern ATTACK is indicated

as a malicious payload pattern using the statement: content:"ATTACK".

Matching thousands of payload patterns in parallel per incoming packet creates

fundamental difficulties in IDS performance. Initially, IDS systems described



14 CHAPTER 2. INTRUSION DETECTION SYSTEMS

malicious contents only with static patterns, however, recently they started us-

ing both static patterns and regular expressions.

Regular Expression Matching: We next discuss the regular expressions

used in IDS packet payload scanning. More precisely, we describe the

features of the regular expressions included in Snort and Bleeding Edge

IDS. Snort and Bleeding Edge open source IDS [12, 16], used in the re-

mainder of this thesis, adopted the Perl-compatible regular expression syn-

tax (PCRE) [24]. The IDS rule example of Figure 2.1 uses the statement

pcre:"/∧PASS\s*\n/smi"; to describe malicious content in regular ex-

pression format. Besides the remaining part of the rule, in order to identify a

dangerous packet based on this rule, a string that matches the regular expres-

sion “/∧PASS\s*\n/smi” needs to be included in the payload. Apart from

the well known features of a strict definition of regular expressions, PCRE is

extended with new operations such as flags and constrained repetitions. Ta-

ble 2.1 describes the PCRE basic syntax supported by our regular expression

pattern matching engines. Matching regular expressions is considered substan-

tially more efficient and, at the same time, more complex and computationally

intensive. Even if malicious contents are described in regular expression for-

mats alone, some parts of them usually contain static patterns which are more

efficient to match separately (Chapter 4).

Pattern Placement and Other Payload Restrictions: Restrictions regarding

packet payloads and payload pattern placement are features that create addi-

tional difficulties in IDS implementation. Table 2.2 depicts some of the Snort

syntax features which make the IDS rules more complex. The above com-

mands change the original meaning of the payload content rule parts (either

static patterns or regular expressions) adding extra constraints regarding the

placement of the matching patterns in the packet payload. Consequently, rules

might specify the packet payload part where a pattern should be matched, rel-

ative either to the beginning or the end of a packet or relative to a previously

matched pattern. In addition, commands such as byte test select and test

a byte payload field using several numerical or logical operators. Each IDS

rule might specify different payload constraints to describe a suspicious packet

using the above syntaxes. For example, the IDS rule of Figure 2.1 uses the

statement within:10; to state that the second payload pattern (the regular

expression /∧PASS\s*\n/smi) needs to be matched within 10 bytes after

matching the first pattern (ATTACK). The above restrictions create significant

implementation difficulties, making each rule to possibly require a separate

module (engine, thread, etc.) to keep track of the satisfied conditions, specify

the parts of the payload which are valid for each pattern to match, and store



2.1. IDS TASKS 15

Table 2.1: Snort-PCRE basic syntax.
Feature Description

a All ASCII characters, excluding meta-characters, match
a single instance of themselves

[\∧$.—?*+() Meta-characters. Each one has a special meaning
. Matches any character except “new line”
\? Backslash escapes meta-characters, returning them to

their literal meaning
[abc] Character class. Matches one character inside the brack-

ets. In this case, equivalent to (a|b|c)
[a-fA-F0-9] Character class with range.
[∧abc] Negated character class. Matches every character except

each non-Meta character inside breackets.
RegExp* Kleene Star. Matches zero or more times the RegExpr.
RegExp+ Plus. Matches one or more times the RegExpr.
RegExp? Question. Matches zero or one times the RegExpr.
RegExp{N} Exactly. Matches N times the RegExpr.
RegExp{N, } AtLeast. Matches N times or more the RegExpr.
RegExp{N,M} Between. Matches N to M times the RegExpr.
\xFF Matches the ASCII character with the numerical value

indicated by the hexadecimal number FF.
\000 Matches the ASCII character with the numerical value

indicated by the octal number 000.
\d, \w and \s Shorthand character classes matching digits 0-9, word

chars and whitespace, respectively.
\n, \r and \t Match an LF char, CR char and a tab char, respectively.
(RegExp) Groups RegExprs, so operators can be applied.
RegExp1RegExp2 Concatenation. RegExpr 1, followed by RegExpr 2.
RegExp1 | Reg-
Exp2

Union. RegExpr 1 or RegExpr 2.

∧RegExp Matches RegExpr only if at the beginning of the string.
RegExp$ Dollar. Matches RegExpr only if at the end of the string.
(?=RegExp),
(?!RegExp),
(?<=text),
(?<!text)

Lookaround. Without consuming chars, stops the match-
ing if the RegExp inside does not match.

(?(?=RegExp) then
|else)

Conditional. If the lookahead succeeds, continues the
matching with the “then” RegExp. If not, with the “else”
RegExp.

\1, \2. . .\N Backreferences. Have the same value as the text matched
by the corresponding pair of capturing parenthesis, from
1st through Nth.

Flags Description

i Regular Expression becomes case insensitive.
s Dot matches all characters, including newline.
m ∧ and $ match after and before newlines.



16 CHAPTER 2. INTRUSION DETECTION SYSTEMS

Table 2.2: Current SNORT syntax features which make IDS tasks more computation-

ally intensive.

Feature Description

depth specifies how far into a packet Snort should search for the spec-
ified pattern.

offset specifies where to start searching for a pattern within a packet.
distance specifies how far into a packet Snort should ignore before start-

ing to search for the specified pattern relative to the end of a
previous pattern match.

within makes sure that at most N bytes are between pattern matches.
isdataat verifies that the payload has data at a specific location, optionally

looking if data relative to the end of the previous content match.
byte test tests a byte field against a specific value (with opera-

tor i.e. less than (<), greater than (>), equal (=), not
(!), bitwise AND (&), bitwise OR (ˆ ) and various op-
tions such as value, offset, relative, endian,
string, and number type). Capable of testing binary
values or converting representative byte strings to their binary
equivalent and testing them.

byte jump allows rules to be written for length encoded protocols. By
having an option that reads the length of the portion of data,
then skips that far forward in the packet, rules can be written
that skip over specific portions of length-encoded protocols
and perform detection in very specific locations. Several op-
tions are supported such as byte to convert, offset,
relative, multiplier <value>, big/little
endian, string, HEX/DEC/OCT, align and
from beginning

dsize tests the packet payload size.

payload byte fields to be tested using the byte test and byte jump com-

mands. The above features introduce significant cost and limit performance

both in software and hardware NIDS implementations.

In the previous discussion, we described the main IDS tasks. This disserta-

tion aims at accelerating the main IDS execution loop, which is the detection

engine, and improve the content inspection parts. The next section shows the

reasons why these are the most challenging IDS tasks providing some analysis

in IDS performance and ruleset characteristics.

2.2 IDS Analysis

This section analyzes Snort [11, 12], which is a widely used open source IDS,

and identifies the most challenging IDS tasks. We show that all Snort profil-

ing attempts found in literature conclude that pattern matching and in general



2.2. IDS ANALYSIS 17

Table 2.3: Profiling Snort IDS [3–6].

IDS tasks
Fisk et al. Yusuf et al. YingYu Schuff et al.
2002 [3] 2006 [5] 2006 [6] 2007 [4]

Content
String matching 31%-80% 51% 25%-35% 46%

Inspection
Regular Expr. 15%

Other matching 5.8% 4% 16-32.5%
Total 36.8%- 80+% 55% 41%-67.5% 61%

Packet
6.7%

4%
7%-15%

15%
Classification

8.5% 10-12.5%
Total 15.2% 4% 17%-27.5% 15%

Preprocessing

Decode
25%

2%
Reassembly 13%

Other 8%
Total 33% 5-20% 15%

Other 8% 6%-14% 9%

content inspection is the most computationally intensive IDS task. We further

show that Snort IDS rulesets grow rapidly, containing increasingly more rules

and content descriptions.

Several researchers in the past performed profiling of an IDS system in or-

der to identify performance bottlenecks. Table 2.3 illustrates the profile of

Snort IDS as analyzed in [3–6]. In 2002, Fisk and Varghese used network traf-

fic traces of 8.7 million packets and showed that string matching needs about

30% and for web traffic up to 80% of the total Snort processing [3]. The

second and third most demanding IDS functions are related to packet classifi-

cation. More recently, in 2006, Yusuf et al. analyzed Snort functions showing

that payload matching needs over 50% of processing, while packet decod-

ing and preprocessing need 25% and 8%, respectively [5]. Ying Yu reported

that string matching required 25-35% of the total Snort processing for various

packet traces [6]. Other content inspection functions need another 16-32.5%,

packet classification about 17-27.5%, and preprocessing 5-20%. Finally, in

2007 the Snort analysis of Schuff et al. resulted in 61% of processing for

content inspection, 15% for packet classification and another 15% for decod-

ing and other preprocessing functions [4]. All the above agree that content

inspection is the most computationally intensive task requiring 40% to over

80% of the IDS time, while packet classification and preprocessing come next

spending combined about 15-35%. Focusing on the IDS detection engine, as

indicated in Section 1.2, targets over 65-85% of the total IDS processing. It

is also worth noting that all the above analyses showed that IDS systems may

support a few tens or hundreds of Mbps throughput when running in General

Purpose Processors.



18 CHAPTER 2. INTRUSION DETECTION SYSTEMS

Table 2.4: Characteristics of various Snort rulesets, number of rules, number of unique

static patterns and number of unique regular expressions.

Snort
# Rules

# Static # Chars of # Regular # Chars of
Rulesets Patterns St. Patterns Expressions RegExprs

v2.6 July 2007 8,145 2,927 63,953 1,687 86,024
v2.4 Oct. 2006 7,000 2,558 52,841 1,504 69,127
v2.4 Apr. 2006 4,392 1,537 24,258 509 19,580
v2.3 Mar. 2005 3,107 2,188 33,618 301 9,638
v2.2 July 2004 2,384 1,631 20,911 157 2,269
v2.1 Feb. 2004 2,162 942 11,199 104 1,562
v1.9 May 2003 2,062 909 10,692 65 544

The second challenging IDS issue besides content inspection is the continuous

growth of IDS rulesets and particularly the payload pattern descriptions. The

above is pointed out in Table 2.4 which depicts the Snort IDS ruleset rapid

growth over the past few years. In the past five years, the Snort ruleset has

quadrupled; in 2003 there were about 2,000 rules and currently Snort includes

more than 8,000 IDS rules. Furthermore, unique payload static patterns be-

came 3× more and the number of their characters increased 6×. In 2003,

there were less than 1,000 unique patterns, which accounted for more than

10,000 characters. Within a year the number of patterns increased by about

60% and the number of total characters doubled. Since then, the number of

patterns doubled again and the number of characters tripled resulting in about

3,000 unique payload static patterns and 64,000 characters. Until 2005, regular

expressions were not used widely to describe malicious payload contents. In

that period, IDS rules contained only a few tens of regular expressions. Since

2006, regular expressions have been widely used and have even replaced some

static patterns. This can be observed in the Apr. 2006 ruleset where the num-

ber of static patterns decreased and regular expressions increased over 60%

compared to the previous ruleset. In less than two years, regular expressions

tripled and their number of (Non-Meta) characters2 quadrupled. Over the past

five years, the number of regular expressions and their number of characters

increased 25× and 160×, respectively. The rapid increase of payload content

descriptions in IDS rulesets indicates the increasing processing requirements

of such systems and the prominent need for scalable IDS processing.

In summary, the rapid growth of IDS rulesets and the increasing processing

requirements of IDS content inspection and detection engine create the need

for more efficient and scalable IDS solutions.

2Non Meta characters are explained in Chapter 4.



2.3. IMPLEMENTATION PLATFORMS 19

Flexibility
Time to market 
Reduced risk

Performance 
Power Consumption
Cost

DedicatedGeneric

General 
Purpose 

Processors
Network 

Processors
Application 

Specific Fixed 
Funtion ASIC

Reconfigrable 
HW (+GPP)

Figure 2.2: Performance-Flexibility tradeoff between different IDS implementation

solutions.

2.3 Implementation Platforms

There are several different implementation platforms for IDS, each having

advantages and disadvantages. The first IDSs were built in GPPs, while

other commercial products implement mostly only parts of an IDS in fixed-

function/dedicated ASICs. Network processors can also be used for IDS of-

fering some dedicated modules for network functions, while reconfigurable

hardware may provide the increased flexibility that such systems require.

There is a tradeoff between performance and flexibility in these solutions.

General-purpose microprocessors are very flexible, but do not have adequate

performance. Network processors are less flexible but have slightly better per-

formance. Reconfigurable hardware provides some flexibility and better per-

formance. Finally, dedicated ASICs are not flexible but can process packets

at wire rates. This tradeoff is shown in Figure 2.2. Next we discuss each

alternative in more detail.

General purpose processors (GPPs) are used for their flexibility to adapt to

IDS ruleset changes and their short time to complete the software development.

An IDS implemented for GPPs does not require running the code of every IDS

rule for each packet. Based on packet classification a specific subset of rules

may apply and can be called. This “on the fly” flexibility is another significant

GPP advantage. On the other hand, GPPs fall short in performance and cannot

process data at wire rates. As shown in the examples of Section 2.2 [3–6],

performance is limited to a few tens or hundreds of Mbps.

On the contrary, dedicated ASICs are designed to process packets at wire rates,

however are not flexible3. Hardwired (custom) chips are difficult and expen-

3In this thesis the term ASIC is used to refer to fixed-function ASICs as opposed to recon-

figurable hardware. Related IDS ASIC approaches use fixed-function, dedicated hardware.



20 CHAPTER 2. INTRUSION DETECTION SYSTEMS

sive to modify, to add features, fix bugs or adapt to the rapidly changing IDS

features. Moreover, ASICs require massive product volumes to amortize their

high NRE cost (non-recurring expenses). In order to provide the required IDS

flexibility and update IDS ruleset, ASICs are forced to follow memory-based

designs where the contents of an IDS rule are compiled into memory con-

tents that may indicate payload patterns or states of an FSM-like engine. This

memory-based architecture restricts the design alternatives and limits perfor-

mance. Systems’ performance is restricted by the memory which, at best, may

require a single access per operation and in other cases multiple accesses. Al-

though ASICs are currently the fastest implementation platform for IDS, their

performance is not as high as it could be expected compared to e.g., reconfig-

urable hardware. It can be presumed that reconfigurable platforms are about 5-

10× slower than ASICs in absolute operating frequency, since current FPGAs

can operate at the order of 400-500 MHz, while ASICs at 2-4 GHz. However,

as shown in Chapter 3 and 4, IDS functions implemented in ASICs are at best

2-3× faster than reconfigurable hardware.

Network processors (NP) combine the GPP flexibility including one or mul-

tiple microprocessors and employ dedicated blocks for network functions such

as packet classification and memory management in order to improve perfor-

mance. The NP architectures can be also viewed as powerful GPPs or pro-

grammable engines combined with application-specific, fixed-function copro-

cessors. Current NPs are not prepared for IDS processing and in particular

content inspection. Such functions need to be processed in the NP micropro-

cessor(s) and, therefore, inherit the GPP performance limitations. As a con-

sequence, new content inspection coprocessors/modules need to be designed.

They need to somehow provide flexibility in order to update the IDS rules.

This can be achieved by either using fixed-function, memory-based modules

(as in ASICs) or seek the required flexibility in a different technology and/or

implementation platform.

Reconfigurable Technology may be the answer to the above flexibility. In

this thesis, reconfigurable hardware is proposed as a solution for both IDS

flexibility and performance. However, this does not imply that an intrusion de-

tection system should be entirely built with reconfigurable logic. Several parts

of the system can be fixed-function or reprogrammable (e.g., microprocessor,

GPP, ALU) instead of reconfigurable. To explain the difference between repro-

grammable and reconfigurable, a reconfigurable device can support directly

in hardware arbitrary functions on demand, while a reprogrammable device

can choose only between its predefined (and committed at fabrication), finite

number of functions. Reconfigurable hardware has the flexibility to update its



2.3. IMPLEMENTATION PLATFORMS 21

functionality on demand and can support high performance. It achieves worse

performance than an ASIC, yet not as much as expected. Furthermore, it is

less flexible than GPPs (software), but still flexible enough to update the IDS

rulesets.

The difference in flexibility between software and reconfigurable hardware lies

in the speed of changing the functionality; not considering the time to develop

the software program or hardware design. Currently, software can change its

functionality substantially faster than hardware can be reconfigured. This per-

mits to dynamically call in software a different function per packet, while in

reconfigurable hardware we can only change functionality per IDS ruleset.

That is, in software, based on the packet classification each packet may need

only a (different) subset of rules to be checked, changing the executed rou-

tine (functionality) from packet to packet. Obviously the routines of all IDS

rules need to be available in the memory hierarchy, however, only the neces-

sary ones are executed. On the contrary, current reconfiguration times do not

allow something similar in FPGAs. The hardware of every IDS rule needs to

be “installed” in the device and process every packet. The available recon-

figurable devices cannot be reconfigured for each incoming packet, they can

however update (statically, before the IDS execution) the implemented rules

whenever a new ruleset is released. In order to allow the software properties

described above, reconfigurable technologies would require finer-grain recon-

figuration area and higher reconfiguration speeds. FPGA technologies such as

Xilinx allow partial (dynamic) reconfiguration of areas which may span the en-

tire length of a device and a fraction of one column requiring a few msecs [25].

This is prohibitive for per-packet reconfiguration.

It may be sufficient to update the reconfigurable parts of an IDS system (con-

tent inspection part, packet classification part, etc.) each time a new ruleset is

released, however, this would require a fast design and implementation flow.

A new ruleset is released every few weeks and needs to be installed relatively

fast. Consequently, it is inefficient to implement a new design manually each

time. Automatic design generators would be more efficient to output a new

design ready to be implemented and downloaded in the FPGA device. The

designs proposed in the coming Chapters (Chapters 3, 4, and 5) are all (in

parts or in whole) automatically generated for the given ruleset at hand. This

speeds up the process of having a new design for every new ruleset and leaves

the implementation of the design (Synthesis, Place & Route) being the main

bottleneck of the process. Several solutions can be envisioned to speed up the

implementation phase of a design, such as patches of additional rules installed

via dynamic partial reconfiguration, incremental implementation flow, and im-



22 CHAPTER 2. INTRUSION DETECTION SYSTEMS

plementation guidefiles. Currently, the implementation phase of a complete

design takes a few hours. More details regarding the design and implementa-

tion times can be found in Section 4.4.

It is worth noting that a first attempt to design a complete reconfigurable IDS

is SIFT, proposed in [26]. However, the system is used to process only parts

of incoming traffic requiring a subsequent GPP to run Snort IDS and possi-

bly being vulnerable to DoS attacks. SIFT puts together in a bruteforce way

string matching and header matching without any attempt to reduce the overall

processing load and optimize at the rule-level such as the one proposed here

in Chapter 5. Therefore, each packet needs to be processed against every IDS

rule.

2.4 Conclusions

It has been indicated that IDS is currently the most efficient solution for net-

work security providing content-aware processing. In this chapter, we de-

scribed the IDS tasks and discussed the most challenging issues in IDS per-

formance and implementation. The core of an IDS is the detection engine

which uses a large ruleset of attack descriptions. The main functions are header

matching and payload matching (content inspection). Profiling the popular

open source Snort IDS shows that payload matching is the most computation-

ally intensive IDS task requiring 40-80% of the total execution time. The entire

detection engine, which is the focus of this thesis, runs for more than 65-80%

of the total time in software-based IDS (in GPP). The rapid growth of IDS

rulesets and especially their payload content descriptions indicate the increase

of IDS processing requirements and reveal the need for scalable IDS solutions

in terms of performance and implementation cost. We discussed alternative

IDS implementation platforms, analyzing their advantages and disadvantages

and presenting their flexibility-performance tradeoff. We advocate the use of

reconfigurable hardware for the solutions provided in this thesis regarding the

IDS detection engine and content inspection tasks. We explained that recon-

figurable technology can provide high (hardware) performance close to that of

an ASIC and sufficient flexibility to allow the update of the IDS rulesets. We

further pointed out the need for automatic design generation in order to speed

up the IDS update process.



Chapter 3

Static Pattern Matching

M
atching large sets of patterns against an incoming stream of data is a

fundamental task in several fields such as network security [27–38]

or computational biology (i.e., biosequence similarity search, DNA

search) [39, 40]. High-speed network Intrusion Detection Systems (IDS) rely

on efficient pattern matching techniques to analyze the packet payload and

make decisions on the significance of the packet body. However, matching the

streaming payload bytes against thousands of patterns at multi-gigabit rates is

a challenging task. As shown in Chapter 2.2, pattern matching takes 40-80%

of the total IDS execution, while the overall throughput is limited to a few

hundred Mbps [3, 10]. On the other hand, hardware-based solutions can sig-

nificantly increase performance and achieve substantially higher throughput.

In this chapter we address a single challenge regarding IDS systems, and

present efficient static pattern matching techniques to analyze packets pay-

load in multi-gigabit rates and detect hazardous contents. We denote as static

pattern matching the search of an incoming stream of data for the literal/exact

meaning of character strings. This does not include performing more advanced

computations such as regular expressions pattern matching which is covered

in the next Chapter 4. Current IDSs require both static and regular expres-

sions pattern matching. As we show in the next chapter, efficient static pattern

matching would be required even if IDSs were using only regular expressions

to describe hazardous payload contents. That is due to the fact that IDS regular

expressions contain a significant amount of static patterns that is more efficient

to be matched separately. Consequently, static pattern matching remains a sig-

nificant functionality for intrusion detection and deep packet inspection.

We present three static pattern matching techniques for reconfigurable tech-

23



24 CHAPTER 3. STATIC PATTERN MATCHING

nologies. The first one is a simple bruteforce approach using discrete compara-

tors [30,41] and therefore is only briefly described in the beginning of Section

3.2 (Figure 3.2). Exploiting fine grain pipeline and parallelism, discrete com-

parators show the performance potential of pattern matching in reconfigurable

hardware [30, 41]. Subsequently, we present pre-Decoded CAM (DCAM)

which pre-decodes incoming data maintaining high processing throughput and

substantially reducing area requirements [34]. In order to exploit pattern sim-

ilarities and reduce the area cost of the designs, DCAM shares character com-

parators in centralized decoders. We improve DCAM and further decrease the

required logic resources by partially matching long patterns. The third and

more efficient approach Perfect Hashing memory (PHmem) combines logic

and memory for the matching [42]. PHmem utilizes a new perfect hashing

technique to hash the incoming data and determine the location of a single

pattern that may match. Subsequently, we read this pattern from memory and

compare it against the incoming data. The contributions of this chapter regard-

ing IDS static pattern matching are the following:

• Bruteforce discrete comparators, when implemented in reconfigurable

hardware, can achieve 2.5-10 Gbps pattern matching (for 8 to 32 bits

datapath width) exploiting fine-grain pipelining and parallelism.

• Pre-decoding and partial matching of long patterns (DCAM) can reduce

4-5× the area cost of discrete comparator designs while maintaining

high performance.

• Perfect Hashing reduces 2× further the area cost while supporting simi-

lar performance.

• The proposed Perfect Hashing algorithm is the first to provide all three

properties bellow:

Perfect hashing: the algorithm guarantees the generation of a perfect

hash function for any pattern set without collisions; that is, the

function outputs a unique key for each pattern of the set.

Minimal hashing: the number of required memory entries is equal to

the number of patterns.

Guaranteed Throughput: a single memory access obtains the possi-

bly matching pattern.

• In addition, PHmem introduces the following:



3.1. HW-BASED PATTERN MATCHING 25

Parallelism: processing multiple incoming bytes per cycle without in-

creasing the required memory resources.

Low generation complexity: requires the lowest complexity for gen-

erating a hash function compared to all previous perfect hashing

algorithms.

• We present a theoretical analysis of the proposed perfect hashing algo-

rithm. We prove its correctness and find the worst case area cost of the

perfect hash function. In addition, we guarantee the effectiveness of the

PHmem for any given input and analyze the worst-case complexity of

generating the perfect hash function.

• The combination of the proposed PHmem and DCAM provides the most

efficient IDS pattern matching designs compared to related work.

The rest of the chapter is organized as follows. In the next Section, we discuss

related work. In Section 3.2 we present DCAM as an improvement to the

discrete comparator designs. Subsequently, in Section 3.3 we describe our

perfect-hashing approach (PHmem) and analyze the proposed algorithm. In

Sections 3.4 and 3.5, we present the implementation results of both DCAM

and PHmem and compare them with related work. Finally, in Section 3.6 we

present our conclusions.

3.1 HW-based Pattern Matching

Matching multiple patterns in conventional CPUs cannot escape from the per-

formance limitations introduced by the narrow datapaths and the limited -if

any- parallelism. Several algorithms have been developed to improve pattern

matching performance, however, their GPP implementations result in modest

performance [43–47]. Alternatively, specialized hardwired pattern matching

modules can increase the processing throughput, exploiting specialized cir-

cuitry and parallelism. Two different implementation platforms are adopted

for hardware pattern matching, namely reconfigurable hardware and ASICs.

The related hardware pattern matching approaches, described next, are cate-

gorized here as follows: the CAM or discrete comparators structures, regular

expressions, hashing, and various other algorithms implemented in hardware.

Most of them can only be implemented in FPGAs since the designs do not offer

update mechanisms, while some of them are suitable for ASICs and changing



26 CHAPTER 3. STATIC PATTERN MATCHING

Pe
rfo

rm
an

ce

Area Efficiency

RegExp

TCAM
Shift-OR

Aho-Corasick
BDDs

CAM
with Predecoding

CAM
& discrete 

CMP

Perfect 
Hashing

ASIC

RegExp
with Predecoding

KMP

Bloom 
Filters

Figure 3.1: Abstract illustration of performance and area efficiency for various static

pattern matching approaches.

the contents of the embedded memory blocks is sufficient to modify the search

pattern set.

Figure 3.1 offers an abstract illustration of the performance and area efficiency

for hardware pattern matching approaches. Most related works use reconfig-

urable hardware to implement their pattern matching designs. One of the first

attempts in string matching using FPGAs dates back to 1993 and was pre-

sented by Pryor et al. [48], implemented in the Splash-2 platform [49]. CAM

and discrete comparators implemented in FPGAs can support high processing

throughput, at a high area cost unless some resource sharing techniques are

applied (e.g. predecoding [31, 32, 34, 50]). Regular expressions have similar

area cost, and slightly lower performance due to the difficulty of pipelining

the combinational logic that calculates the next state transition. Various algo-

rithms such as Aho-Corasick [44], Shift-OR [51], and KMP [52] have poor

performance unless they are modified for hardware (i.e., FPGA) implementa-

tions, while in general they require a significant amount of resources. Various

kinds of hashing techniques can achieve a satisfactory performance, at a low

area cost. For example Bloom filters require low area, however, need multiple

memory accesses to determine a match, limiting overall performance. On the



3.1. HW-BASED PATTERN MATCHING 27

contrary, perfect hashing can alleviate this drawback since a single memory ac-

cess and a subsequent comparison per cycle is sufficient to produce the match.

Finally, ASIC implementations offer a great performance potential, however,

their rigid nature and high fabrication cost constitute significant drawbacks.

In the rest of this section, we describe the above pattern matching approaches

providing some details of specific designs and analyzing their area and perfor-

mance tradeoffs.

3.1.1 CAM and Discrete Comparators

A bruteforce approach for pattern matching is to use Content Addressable

Memories (CAMs) or discrete comparators. These approaches may achieve

very high processing throughput since it is relatively straightforward to exploit

parallelism and fine-grain pipelining. On the other hand, their area cost can be

high, unless some specific techniques are applied for resource sharing.

In one of the first attempts for NIDS pattern matching, Gokhale et al. [29]

used CAM generated for FPGA devices to match Snort patterns. Their hard-

ware operates at 68MHz with 32-bit data every clock cycle, giving a through-

put of 2.2 Gbps and a 25-fold improvement on a GPP. Closer to our first work

of [30, 41] is the work by Cho et al. [28]. Their pattern matching design used

4 parallel comparators for every pattern so that the system advances 4 bytes of

input packet every clock cycle. The design implemented in an Altera EP20K

device runs at 90MHz, achieving 2.88 Gbps throughput. Our first static pat-

tern matching solution, briefly described in the beginning of Section 3.2, im-

proved upon the above introducing fine-grain pipelining, fan-out control, and

parallelism, showing that a processing throughput of 10Gbps is feasible for

pattern matching designs implemented in FPGA devices [30, 41]. More re-

cently, Yu et al. proposed the use of Ternary Content Addressable Memory

(TCAM) for payload pattern matching [53]. They partition long patterns in

order to fit them into the TCAM width and achieve 1-2 Gbps throughput. Fur-

thermore, Bu et al. improved CAM-like structures in [54, 55] achieving 2-3

Gbps and requiring 0.5-1 logic cells per matching character. Finally, Yusuf

and Luk described a tree-based CAM structure, representing multiple patterns

as a boolean expression in the form of a Binary Decision Diagram (BDD) [56].

Many researchers such as Cho et al. [33, 37] improved the resource sharing

of the basic discrete comparator structures. However, the most significant im-

provement for the CAM-like approaches was pre-decoding. It was first intro-

duced for regular expression optimization by Clark and Schimmel [50] and



28 CHAPTER 3. STATIC PATTERN MATCHING

later adapted in discrete comparator solutions by Baker et al. [31] and Sourdis

et al. [34] (Section 3.2). The main idea behind this technique is that incoming

characters are pre-decoded in a centralized decoder resulting in each unique

character being represented by a single wire. The incoming data are decoded,

subsequently properly delayed and the shifted, decoded characters are AND-ed

to produce the match signal of the pattern. Apart from the significant area sav-

ings (∼5×), pre-decoding may maintain discrete comparators performance (at

least in [34]), while it is relatively straightforward to be implemented. Baker

et al. further improved the efficiency of pre-decoding by sharing sub-patterns

longer than a single character in [35, 57, 58].

In summary, CAM and discrete comparators can achieve high processing

throughput exploiting parallelism and fine-grain pipelining. Their high re-

source requirements can be tackled by pre-decoding, a technique which shares

their character comparators among all pattern matching blocks. In general,

a throughput of 2.5-10 Gbps can be achieved in technologies such as Xilinx

Virtex2.

3.1.2 Regular Expressions

An alternative solution for static pattern matching is the use of regular expres-

sions. There are two main options for regular expression implementations. The

first one is using Non-deterministic Finite Automata (NFAs), having multiple

active states at a single cycle, while the second is Deterministic Finite automata

(DFAs) which allow one active state at a time and result in a potentially larger

number of states compared to NFAs.

Sidhu and Prassanna [59] used Regular Expressions and NFAs for finding

matches to a given regular expression1 . Hutchings, Franklin, and Carver [27]

also used NFAs to describe Snort static patterns. Lockwood used the Field Pro-

grammable Port Extender (FPX) platform [60], to implement DFAs for pattern

matching [61, 62]. The cost of the above designs is similar or slightly better

than the bruteforce CAM designs, while the performance is relatively lower.

Clark et al. proposed pre-decoding for regular expressions in [32,50] substan-

tially reducing the implementation cost of their designs. Sutton attempted to

extend this technique by changing the width of predecoding [63]. Pre-decoded

Regular expressions have similar area cost with pre-decoded CAMs, however,

they fall short in terms of performance.

1More details on this technique are provided in Chapter 4.



3.1. HW-BASED PATTERN MATCHING 29

Although different implementations may have different characteristics, a gen-

eral conclusion is that regular expressions have similar area requirements to

the CAM-like ones and achieve lower performance due to the fact that their

designs are difficult to pipeline.

3.1.3 Hashing

Another pattern matching technique known for decades, yet only recently used

for NIDS pattern matching, is hashing. Hashing an incoming stream of data

may select only one or a few search patterns out of a set which will possibly

match (excluding all the rest). In most cases the hash function provides an

address to retrieve the possibly matching pattern(s) from a memory, and sub-

sequently, a comparison between the incoming data and the search pattern(s)

will determine the output.

Before describing different hashing algorithms for pattern matching we first

present some of the prominent characteristics of a hash algorithm as identified

by Brain and Tharp in [64]. A hash function is characterized by the following:

1. The sensitivity of the algorithm and function to pattern collisions.

2. The ability of the algorithm to form minimal perfect hash function. That

is, the patterns are arranged continuously by the function.

3. The memory requirements of the algorithm at retrieval time.

4. The complexity of the generated hash function. (not mentioned by Brain

and Tharp in [64], however possibly implied in point 3.).

5. The number of memory accesses required to the pattern memory to re-

trieve/distiguish a key, in other words, to resolve possible pattern colli-

sions.

6. The complexity and time of building the perfect hash function for a set

of arbitrary patterns.

7. The ability of the algorithm to form an ordered perfect hash function.

That is, the hash output orders the elements in a predefined way.

The most important characteristics of a hash function used for pattern matching

are the first two described above, namely the function should be collision-free

and minimal. The guarantee of collision-free hashing (perfect hashing) makes



30 CHAPTER 3. STATIC PATTERN MATCHING

sure that a single memory access can retrieve the possibly matching pattern and

therefore offers a guaranteed throughput. Moreover, having a minimal perfect

hash function guarantees a minimal pattern memory size because the address

space needed by the function is equal to the number of search patterns. The

complexity of the generated hash function is also significant since it may de-

termine the overall performance and area requirements of the system. In case

a hash function is not perfect, the maximum number of memory accesses to

resolve possible pattern collisions is critical for the performance of the system.

When a hash algorithm requires additional memory to produce a result (apart

from the pattern memory), the size of this memory is also important. Further-

more, the generation of the hash function should be done within acceptable

time limits in order to be able to update/modify the pattern set and regener-

ate the function fast. Finally, whether a perfect hashing algorithm creates an

ordered set may be of interest, since it may determine the placement of the

patterns in the pattern memory. On the other hand, the order of the hash func-

tion output and consequently the placement of the patterns in the memory can

change using an indirection memory [65].

In 1982, Burkowski proposed to match unique prefixes of the search patterns

and use the result to derive the remaining pattern from a memory [66]. Cho

and Mangione-Smith utilized the same technique for intrusion detection pat-

tern matching [33,37,67,68]. They implemented their designs targeting FPGA

devices and ASIC. Their memory requirements are similar to the size of the

pattern set, the logic overhead in reconfigurable devices is about 0.26 Logic

Cells/character (LC/char) and the performance is about 2 Gbps (Virtex4). In

ASIC 0.18µm technology their approach supports 7 Gbps throughput while

their memory requirements is about 5× the size of the pattern set. The most

significant drawback of the above designs, especially when implemented in

ASIC where the hash functions cannot be updated, is that the prefix match-

ing may result in collisions. The above designs perform a complete match

of the pattern prefixes instead of using a hash function, yet matching prefixes

could be considered as a primitive form of hashing. In any case, these designs

are closely related to hashing approaches since replacing the prefix matching

module with hashing would result in the same functionality.

Some more efficient hashing algorithms were proposed in [42, 64, 65, 69, 70]

( [42] is described in detail in Section 3.3). Brain and Tharp used compressed

tries to implement a perfect hash function, however, their algorithm requires

multiple memory accesses to generate the unique address [64]. In [65, 69]

there was proposed a CRC-polynomial implementation to hash incoming data

and determine the possible match pattern [65]. These designs require min-



3.1. HW-BASED PATTERN MATCHING 31

imum logic and support 2-3.7 Gbps (in Virtex2Pro), however, the memory

requirements are about 2.5-8× the size of the pattern set. Additionally, using

CRC-polynomials for hashing does not guarantee collision avoidance and is

not minimal. Botwicz et al. proposed another hashing technique using the

Karp-Rabin algorithm for the hash generation [71] and a secondary module to

resolve collisions [70]. Their designs require memory of 1.5-3.2× the size of

the pattern set and their performance is 2-3 Gbps in Altera Stratix2 devices.

A slightly different hashing approach for IDS pattern matching is the use of

Bloom Filters [72]. Lockwood et al. proposed several variations of designs

that use bloom filters to determine whether the incoming data can match any of

the search IDS patterns [36,73–78]. Bloom Filters use multiple hash functions

on the incoming stream of data and their outputs are addresses to a single-bit

width memory location. In case all the hash functions agree and indicate a

“hit” then incoming data may match one of the IDS search patterns. Bloom

filters may produce a false-positive match. In order to resolve false positives,

Lockwood et al. proposed a secondary hash module which accesses (possibly

multiple times) an external memory. This decision however may limit the

overall pattern matching performance. In case of successive accesses to the

external memory, due to multiple true or false positive matches, the overall

performance is determined by the throughput of the secondary hash module.

In summary, apart from the prefix matching technique, the area cost of the hash

functions used above is low requiring only a few gates for their implementa-

tion. However, in most cases the hash function is not perfect and therefore

needs additional logic or memory to resolve collisions. Furthermore, reconfig-

urable hardware is often preferred for its flexibility to modify the hash func-

tions based on the pattern set at hand. Most designs process a single incoming

character per cycle, showing that introducing parallelism to increase through-

put is not a straightforward option for hashing approaches.

The proposed Perfect Hashing algorithm of Section 3.3 is the first hashing

technique that combines the following characteristics:

• Guarantee of generating a collision-free perfect hash function for any

given set of patterns.

• Minimal pattern memory requirements.

• A single memory access is sufficient to retrieve a unique key (without

any collisions).

• The worst case complexity of the perfect hash function generation is



32 CHAPTER 3. STATIC PATTERN MATCHING

the lowest compared to related works. PHmem generation requires

O(n log n), where n is the number of patterns, and the second best re-

quires O(n2) [64].

• Propose a technique to exploit parallelism and process multiple incom-

ing bytes per cycle.

3.1.4 Other Algorithms

Besides the approaches described above mostly created for hardware imple-

mentation, several algorithms have been used for (IDS) pattern matching, such

as the Boyer-Moore [43], Knuth-Morris-Pratt (KMP) [52], Aho-Corasick [44]

and others [45–47, 51], originally meant for software implementations. How-

ever, their performance in General Purpose Processors (GPPs) is rather limited

to a few hundreds Mbps.

There have been several attempts to adapt for and implement such algorithms

in hardware. Baker et al. implemented the KMP algorithm [52] in reconfig-

urable hardware [79–81]. Compared to discrete comparator approaches, their

designs are more area efficient while maintaining about 60-70% of the perfor-

mance. The original KMP algorithm requires in some cases (in mismatches)

two state transitions “consuming” a single incoming character. To address this

limitation Baker et al. modified the KMP algorithm supporting two compar-

isons per cycle to guarantee processing of one character per cycle. Several

variations/modifications of the Aho-Corasick algorithm have been proposed

for hardware-based IDS pattern matching [82–85]. The performance of these

designs is not high (about 1 Gbps), however, their major drawback is the high

memory requirements; between a few tens of bytes and 1 KByte per matching

character, as indicated in [86]. Dimopoulos et al. modified the Aho-Corasick

algorithm to reduce the memory requirements to 8-20 bytes per matching char-

acter. Another algorithm used for IDS pattern matching both in software [87]

and hardware [88] is the Shift-Or algorithm introduced in [51]. Similarly to

the previous cases, the Shift-Or algorithm has limited performance and signif-

icant memory requirements, while the memory size increases exponentially in

the number of processing bytes per cycle. Finally, another FSM-like algorithm

which shares common characteristics with Aho-Corasick was proposed by van

Lunteren in [86]. In this case the memory requirements are reduced to 4-8

bytes per matching character while the processing throughput is in the order of

0.8-1 Gbps in a Xilinx Virtex4.



3.2. PRE-DECODED CAM 33

3.1.5 ASICs

There are several pattern matching solutions designed for ASIC instead of re-

configurable hardware. In order to support pattern set modifications, ASIC

designs need to narrow their design alternatives down to only memory-based

solutions. Hence, generic processing engines are exploited (e.g. FSMs) which

base their functionality on the contents of a memory; for example, the memory

may store the required state transitions to match a specific pattern. It could

be expected that an ASIC pattern matching approach would be up to an order

of magnitude faster than reconfigurable hardware designs, however this does

not hold true. The memory latency severely degrades ASIC pattern matching

performance.

Tan and Sherwood proposed a pattern matching approach designed for ASIC

[38,89,90]. Instead of having a single FSM which would have a single incom-

ing ASCII-character as input, they constructed 8 parallel binary FSMs. Their

designs can support up to 10 Gbps throughput in 130 nm technology. Further-

more, Brodie et al. proposed a generic FSM design to support DFA matching

in ASIC [91] and achieved 16 Gbps in 65 nm technology. Both approaches

have significant memory requirements and are rather rigid in accommodating

patterns with extreme characteristics e.g. patterns that require a larger number

of states than the allocated on-chip memory per FSM.

In summary, an ASIC approach for pattern matching may offer higher perfor-

mance than a reconfigurable one, at the cost however of limited flexibility and

higher fabrication cost.

3.2 Pre-decoded CAM

Simple CAM or discrete comparator designs may provide high performance

[28–30], however, they are not scalable due to their high area cost. In [30,

41], we assumed the simple organization depicted in Figure 3.2(a). The input

stream is inserted in a shift register (8-bit width), and the individual entries

are fanned out to the pattern comparators. Therefore, we have one comparator

for each pattern, fed from the shift register. This implementation is simple

and regular, and with proper use of pipelining the circuit can be very fast. Its

drawback, however, is the high area cost. To remedy this cost, in [34] we had

suggested sharing the character comparators exploiting similarities between

patterns (Figure 3.2(b)).

The Pre-Decoded CAM architecture (DCAM), presented in [34], builds on



34 CHAPTER 3. STATIC PATTERN MATCHING

A1

A0

B1

B0 R
e
g
i
s
t
e
r
s

4

4

4

4

4

4

4

4

C1

C0

A1

A0 R
e
g
i
s
t
e
r
s

Match 
“AB”

Match 
“AC”

4

4

4

4

C1

C0

A1

A0 R
e
g
i
s
t
e
r
s

Match 
“AB”

Match 
“AC”

(a) (b)

A1

A0

B1

B0 R
e
g
i
s
t
e
r
s

4

4

4

4

8 8

Figure 3.2: Basic CAM Comparator structure and optimization. Part (a) depicts the

straightforward implementation where a shift register holds the last N characters of

the input stream. Each character is compared against the desired value (in two nibbles

to fit in FPGA LUTs) and all the partial matches are combined with an AND gate to

produce the final match result. Part (b) depicts an optimization where the match “A”

signals are shared across the two search strings “AB” and “AC” to save area.

this idea extending it further by the following observation: instead of keeping

a window of input characters in the shift register each of which is compared

against search patterns, we can first test for equality of the input for the desired

characters, and then delay the partial matching signals. Figure 3.3 depicts how

we can first test for equality of the distinct characters of interest and then delay

the matching of pattern characters to obtain the complete match of a pattern.

This approach achieves not only the sharing of the equality logic for character

comparators (each ASCII character is matched only once), but also replaces

the 8-bit wide shift registers used in our initial approach with possibly multiple

single bit shift registers for the equality result(s). Hence, if we can exploit this

advantage, the potential for area savings is significant.

One of the possible shortfalls of the DCAM architecture is that the number of

the single bit shift registers is proportional to the length of search patterns. Fig-

ure 3.3 illustrates this point: to match a string of length four characters, we (i)

need to test equality for these four characters (in the dashed “decoder” block),

and to delay the matching of the first character by three cycles, the matching

of the second character by two cycles, and so on, for the width of the search



3.2. PRE-DECODED CAM 35

Decoder

=C

=B

=A

Match 
“ABCA”

SRL16

8

8

8

8

Incoming 
Packets

Figure 3.3: Details of Pre-decoded CAM matching: four comparators provide the

equality signals for characters A, B, and C. To match the string “ABCA” we have to

remember the matching of character A 3 cycles earlier, the matching of B two cycles

earlier, etc, until the final character is matched in the current cycle. This is achieved

with the shift registers of length 3, 2, ... at the proper match lines.

pattern. In total, the number of storage elements required in this approach is

L ∗ (L − 1)/2 for a string of length L. For many, long search patterns, this

number can exceed the number of bits in the character shift register used in the

original CAM design. To our advantage, however, is the fact that these shift

registers are true FIFOs with one input and one output, as opposed to the shift

registers in the simple design (Figure 3.2(a)) in which each entry in the shift

register is fan-out to comparators.

To tackle this possible obstacle, we use two techniques. First, we reduce the

number of shift registers by sharing their outputs whenever the same character

is used in the same position in multiple search patterns. Second, we use the

SRL16 optimized implementation of shift register that is available in recent

Xilinx devices and uses a single logic cell for a shift register of any width up

to 17 [92]. Together these two optimizations lead to significant area savings.

More precisely, we use one SRL16 cell at the output of each equality test (i.e.

for each distinct character) and for each location (offset) where this character

appears in a search pattern. However, we share the output of the SRL16 cells

for search pattern characters that appear in the same position in multiple search

strings. To avoid fan-out problems we replicate SRL16 cells so that the fanout

does not exceed 16. This is based on an experimental evaluation we performed

on Xilinx devices which showed that when the fanout exceeds 16 the operating

frequency drops significantly.

In the following subsections we describe the techniques used to achieve an

efficient implementation of the DCAM approach.



36 CHAPTER 3. STATIC PATTERN MATCHING

DEC0
=A

=ABC+0

=ABC+1

=C
=B

DEC1 =A

=C
=B8

8

16

SRL16

Incoming 
Packets

Figure 3.4: DCAM processing two characters per cycle: Two sets of comparators

provide matching information for the two character positions. Their results have to be

properly delayed to ensure matching of the string ABC starting at an offset of either 0

or 1 within the 16-bit input word.

3.2.1 Performance Optimization

In order to achieve better performance we use the following techniques to im-

prove the operating speed, as well as the throughput of our DCAM implemen-

tation: fine-grain pipelining, fan-out control, parallelism, design partitioning.

Fine-grain pipelining and fan-out control: To achieve high operating fre-

quency, we use extensive fine grain pipeline. In fact, each of our pipeline

stages consists of a single processing LUT and a pipeline register in its output.

In this way the operating frequency is limited by the latency of a single logic

cell and the interconnection wires. To keep interconnection wires short, we

addressed the long data distribution wires that usually have large fan-out by

providing a pipelined fan-out tree. More details on these two techniques can

be found in [30].

Parallelism: As alluded earlier, to increase the processing throughput of a

DCAM we can use parallelism. We can widen the distribution paths by a

factor of P providing P copies of comparators(decoders) and the correspond-

ing matching gates. Figure 3.4 illustrates this point for P = 2. The single

string ABC is searched for starting at offset 0 or 1 within the 2-byte wide input

stream, and the two partial results are OR-ed to provide the final match signal.

This technique can be used for any value of P , not restricted to powers of two.

Note also that the decoders provide the equality signals only for the distinct

characters in the N search patterns. Therefore we can reduce the required area

(and the fanout of the input lines) if the patterns are “similar”. In the next

subsection we exploit this behavior to further reduce the area cost of DCAMs.



3.2. PRE-DECODED CAM 37

E
n
c
o
d
e
r

32

DEC0
8

DEC1
8

DEC2
8

8 CDEC3

C

C

C

SRL16 
Shift 

Registers

Pattern 0

+3

+2

+0

+1

Pattern N

+3

+2

+0

+1

Figure 3.5: The structure of an N -search pattern module with parallelism P = 4.

Each of the P copies of the decoder generates the equality signals for C characters,

where C is the number of distinct characters that appear in the N search strings. A

shared network of SRL16 shift registers provides the results in the desired timing, and

P AND gates provide the match signals for each search pattern.

Search Pattern Partitioning: In the DCAM implementation we use partition-

ing to achieve better performance and area density. In terms of performance, a

limiting factor to the scaling of an implementation to a large number of search

patterns is the fanout and the length of the interconnections. For example, if we

consider a set of search patterns with 10,000 uniformly distributed characters,

we have an average fanout of 40 for each of the decoders outputs. Further-

more, the distance between all the decoders outputs and the equality checking

AND gates will be significant.

If we partition the entire set of search patterns in smaller groups, we can imple-

ment the entire fanout-decode-match logic for each of these groups in a much

smaller area, reducing the average length of the wires. This reduction in the

wire length though comes at the cost of multiple decoders. With grouping, we

need to decode a character for each of the group in which they appear, increas-

ing the area cost. On the other hand, the smaller groups may require smaller

decoders, if the number of distinct characters in the group is small. Hence, if

we group together search patterns with more similarities we can reclaim some

of the multi-decoder overhead.

In the partitioned design, each of the partitions will have a structure similar to

the one depicted in Figure 3.5 (when P = 4). In each partition, incoming data

are decoded, shifted properly, compared in the AND gates, and then encoded

in a priority encoder. The multiple partitions are fed data through a fanout tree,



38 CHAPTER 3. STATIC PATTERN MATCHING

E
n
c
o
d
e
r

GROUP 0
Slow 

to 
Fast

Slow 
to 

Fast

Packets

GROUP 1

GROUP N

Fast 
to 

Slow

Slow 
to 

Fast

Slow 
to 

Fast

Fast 
to 

Slow

Fast 
to 

Slow

CLK_F/S CLK_F CLK_FCLK_F/S

Figure 3.6: DCAM with Multiple Clock Domains. Long, wide but slower busses

(depicted with thick lines) distribute input data over large distances to the multiple

search matching groups. These groups operate at higher clock rates to produce results

faster.

and all the individual matching results will be combined to produce the final

matching output.

Each of the partitions will be relatively small, and hence can operate at a high

frequency. However, for large designs, the fanout of the input stream must

traverse long distances. In our designs we have found that these long wires

limit the frequency for the entire design. As depicted in Figure 3.6, to tackle

this bottleneck we used multiple clocks: one slow clock to distribute the data

across long distances over wide busses, and a fast clock for the smaller and

faster partitioned matching function.

Experimenting with various partition sizes and slow-to-fast clock speed ratios

we found that reasonable sizes for groups is between 64 and 256 search pat-

terns, while a slow clock of twice the period is slow enough for our designs.

To identify which search patterns should be included in a group we have to

determine the relative cost of the various different possible groupings. The

goal of the partitioning algorithm is (i) to minimize the total number of distinct

characters that need to be decoded for each group, and (ii) to maximize the

number of characters that appear in the same position in multiple of search

patterns of the group (in order to share the shift registers). For this work we

have implemented a simple, greedy algorithm to partition iteratively the set of

search strings [34], alternatively the heuristic proposed by Kernighan and Lin

(1970) for the mincut problem can be used [93].



3.3. PERFECT HASHING MEMORY 39

D
E
C
O
D
E
R

8 C SRL16 
Shift 

Registers

SRL16

Delay
16

15
AND-tree

AND-tree

match

Figure 3.7: Partial Matching of long patterns. In this example a 31-byte pattern is

matched. The first 16 bytes are partially matched and the result is properly delayed to

feed the second substring comparator. Both substring comparators are feed from the

same pool of shifted decoded characters (SRL16s) and therefore sharing of decoded

characters is higher.

3.2.2 Area Optimization

To reduce DCAM area cost, we split long patterns in smaller substrings and

match each substring sequentially. In doing so, we do not need to delay de-

coded data for a large number of cycles. Instead, only the partial match signal

should be delayed.

Figure 3.7 depicts the block diagram of matching patterns longer than 16 char-

acters. Long patterns are partially matched in substrings of maximally 16 char-

acters long. That is because the AND-tree of a 16 character substring requires

only 5 LUTs, while only a single SRL16 shift register is required to delay each

decoded input character. Consequently, a pattern longer than 16 characters is

partitioned in smaller substrings which are matched sequentially. The partial

match of each substring is properly delayed and provides input to the AND-

tree of the next substring. This way all the substring comparators need decoded

characters delayed no more than 15 cycles.

3.3 Perfect Hashing Memory

The alternative pattern matching approach that we propose in this chapter is

the Perfect Hashing Memory (PHmem). Instead of matching each pattern sep-

arately, it is more efficient to utilize a hash module to determine which pattern

is a possible match, read this pattern from a memory and compare it against the

incoming data. Hardware hashing for pattern matching is a technique known

for decades. We use a perfect hashing mechanism and extend previous hard-



40 CHAPTER 3. STATIC PATTERN MATCHING

ware hashing solutions for pattern matching based on two approaches proposed

in the early 80’s. The first one used unique pattern prefixes matching to access

a memory and retrieve the remaining search patterns [66] (also later used by

Cho et al. in [33, 37]), while the second showed that a hash function for a set

of items can be composed by several sub-hashes of its subsets [94]. Fig. 3.8

depicts our Perfect Hashing Memory (PHmem) scheme. The incoming packet

data are shifted into a serial-in parallel-out shift register. The parallel-out lines

of the shift register provide input to the comparator which is also fed by the

memory that stores the patterns. Selected bit positions of the shifted incom-

ing data are used as input to a hash module (hash tree), which outputs the ID

of the “possible match” pattern. For memory utilization reasons (see Section

3.3.5), we do not use this pattern ID to directly read the search pattern from

the pattern memory. We utilize instead an indirection memory, similar to [65].

The indirection memory outputs the actual location of the pattern in the pat-

tern memory and its length that is used to determine which bytes of the pattern

memory and the incoming data are needed to be compared. In our case the

indirection memory performs a 1-to-1 instead of the N-to-1 mapping in [65],

since the output address has the same width (# of bits) as the pattern ID. The

implementation of the hash tree and the memories are pipelined. Consequently,

the incoming bitstream must be buffered by the same amount of pipeline stages

in order to correctly align it for comparison with the chosen pattern from the

pattern memory. This alignment is implicitly performed by the shift register

and in this manner we can perform one comparison in each cycle.

3.3.1 Perfect Hashing Tree

The proposed scheme requires the hash function to generate a different address

for each pattern, in other words, requires a perfect hash function which has no

collisions for a given set of patterns. Furthermore, the address space would

preferably be minimal and equal to the number of patterns. Instead of match-

ing unique pattern prefixes as in [66], we hash unique substrings in order to

distinguish the patterns. To do so, we introduce a perfect hashing method to

guarantee that no collisions will occur for a given set.

Generating such a perfect hash function may be difficult and time consuming.

In our approach, instead of searching for a single hash function, we search

for multiple simpler sub-hashes that when put together in a tree-like structure

will construct a perfect hash function. The perfect hash tree, is created based

on the idea of “divide and conquer”. Let A be a set of unique substrings =
{a1, a2, .., an} and H(A) a perfect hash function of A, then the perfect hash



3.3. PERFECT HASHING MEMORY 41

ComparatorHash
Tree

Length

Incoming 
Data

Intermediate 
Pattern_ID

Indirection 
Memory Address Pattern Memory

Match
Pattern ID

Shift Register

Figure 3.8: Perfect Hashing memory block diagram.

tree is created according to the following equations:

H(A) = h0

(

H1(1st half of A), H2(2nd half of A)
)

(3.1)

H1(1st half of A) = h1

(

H1.1(1st quarter of A),

H1.2(2nd quarter of A)
)

(3.2)

and so on for the smaller subsets of the element file A (until each subset con-

tains a single element). The h0, h1, etc. are functions that combine subhashes.

The H1, H2, H1.1, H1.2, etc. are perfect hashes of subsets (subhashes).

Following the above methodology, we create a binary hash tree. For a given

set of n patterns that have unique substrings, we consider the set of substrings

as an n×m matrix A. Each row of the matrix A (m bits long) represents a

substring, which differs at least in one bit from all the other rows. Each column

of the matrix A (n bits long) represents a different bit position of the substrings.

The perfect hash tree should have log2(n) output bits in order to be minimal.

We construct the tree by recursively partitioning the given matrix as follows:

• Search for a function (e.g., h0) that separates the matrix A in two parts

(e.g., A0, A1), which can be encoded in log2(n)− 1 bits each (using the

SUB HASH described in Section 3.3.2).

• Recursively repeat the procedure for each part of the matrix, in order

to separate them again in smaller parts (performed by HASH TREE of

Table 3.1 described below).

• The process terminates when all parts contain one row.



42 CHAPTER 3. STATIC PATTERN MATCHING

Table 3.1: Perfect Hash Tree algorithm - main process.

H = HASH TREE (A){

SubsetSize={x ∈ N, |A| − 2⌈log2(
|A|
2

)⌉ ≤ x ≤ 2⌈log2(
|A|
2

)⌉}

h = SUB HASH (A, SubsetSize)

// h|A1
: A1 7→{1}({0, 1}

// h|A0
: A0 7→{0}({0, 1} where A1 ∪ A0 = A and A1 ∩ A0 = Ø

// |A0|, |A1| ∈ SubsetSize

IF(|A1| > 1)

H1=HASH TREE (A1)

IF(|A0| > 1)

H2=HASH TREE (A0)

RETURN(h ◦ (h ∗ H1 + h ∗ H2))

}

//Construct the binary perfect hash tree (BPHT) for a given set A,

//calling HASH TREE

BPHT = HASH TREE (A);

Table 3.1 depicts the formal description of the HASH TREE. In order to gen-

erate the hash tree, the HASH TREE process recursively splits the given set of

items in two subsets. The number of items that such two subsets may contain

is an integer value that belongs to SubsetSize. SubsetSize is calculated

by the HASH TREE so that each subset can be encoded in log2(n)− 1 bits. To

split a given set in two, a basic function hi is used, generated by the SUB HASH

as described in Section 3.3.2).

Fig. 3.9(a) depicts the hardware implementation of the binary hash tree us-

ing 2-to-1 multiplexers for each tree node. In general, a tree node splits a

given n-element set S in two parts and is represented by a 2-to-1 multiplexer

(log2(n) − 1 bits wide). The select bit of the multiplexer is the function hi

generated by SUB HASH and selects one of the two encoded parts of the set

H1(S1), H2(S0). The node output H(S) (log2(n) bits wide) consists of the

multiplexer output, and the select bit of the multiplexer (MSbit). A leaf node

of the hash tree separates 3 or 4 elements and consists of a 1-bit 2-to-1 mul-

tiplexer and its select bit. Each input of a leaf multiplexer is a single bit that

separates 2 elements. To exemplify the hardware representation of the algo-

rithm consider the following: the hash function H(A) of Eq. 3.1 is the output



3.3. PERFECT HASHING MEMORY 43

k-1

k

k-2 k-1

k-2 k-1

2

2 h0

hx

hy

h2

h1

h0, h1, h2, .., hx, .., hy: single bit 
functions generated by SUB_HASH
(a) Binary Hash Tree.

k-m
kk-m

h0

hx

hy

h2

h1

h0, h1, h2, .., hx, .., hy: multiple-bit 
functions generated by SUB_HASH

m

k-mk-m-t

k-m-y

t

yg
w

g-w

ji
j-i

(b) Optimized Hash Tree.

Figure 3.9: Perfect Hash trees: the select of each multiplexer is a function generated

by the SUB HASH.

of the entire binary tree of Fig. 3.9(a) (k-bits) created by the concatenation

of h0 and the output of the root multiplexer. The h0 is also used to choose

between the inputs of the root multiplexer (H1, H2) which encode the two

halves of A. Similarly, we can associate Eq. 3.2 with the second node of the

binary tree, and so on.

The binary perfect hash tree can separate a set of patterns; however, we can

optimize it and further reduce its area. In a single search for a select bit, we

can find more than one select bits (in practice 2-5 bits) that can be used together

to divide the set into more than two parts (4 to 32). The block diagram of our

optimized hash tree is illustrated in Fig. 3.9(b). Each node of the tree can

have more than two branches and therefore the tree is more compact and area

efficient.



44 CHAPTER 3. STATIC PATTERN MATCHING

To prove that our method generates perfect hash functions, we need to prove

the following:

1. For any given set A of n items that can be encoded in ⌈log2(n)⌉ bits,

our method generates a function h : A → {0, 1} to split the set in two

subsets that can be encoded in ⌈log2(n/2)⌉ bits (that is log2(n)−1 bits).

2. Based one the first proof, the proposed scheme outputs a perfect hash

function for the initial set of patterns.

Below we provide some background information regarding the basic building

function h : A → {0, 1} required for the PHmem. Then, we describe our

method to generate such a function for any given set A. Subsequently, we

prove that the proposed perfect hash trees construct perfect hash functions.

3.3.2 PHmem Basic Building Function

Before describing the proposed method to divide a given set in two parts, we

discuss the following. We show that there is a broad range of suitable functions

which contain a large number of “don’t care” terms. Then, we explain the

reason why existing algorithms that minimize logic functions are not suitable

for our case. Subsequently, we describe our method and show that guarantees

to find a solution for any given input set.

There is more than one function h : A → {0, 1} that can split a given set

A of n items (m bits long) in two parts A0 and A1 which can be encoded in

⌈log2(
n
2 )⌉ bits (where A1 ∪ A0 = A, A1 ∩ A0 = Ø). The number of such

functions is equal to the combination

(

n

t

)

of selecting t items out of n, where

n is the number of items and t ∈ SubsetSize. That is due to the fact that

any function f : A → {0, 1} which selects any t items out of the n satisfies

the above condition2. For instance, when the number of items n is a power

of two, there exist

(

n
n
2

)

=nCn
2

= n!
n
2
! n
2
! functions (e.g. 128C64 ≃ 2.4 × 1037).

Moreover, all the possible input values (m bits long) that do not belong to the

set A are “don’t care” terms since they do not change the effectiveness of the

function. This wide range of functions suitable for our algorithm and the large

number of “don’t care” terms leave room to find a simple function that meets

our requirements.

There are several algorithms to minimize the cost of a logic function. Two of

them are the well famous methods of Karnaugh [95] and Quine-Mcluskey [96].



3.3. PERFECT HASHING MEMORY 45

Table 3.2: Basic Building function of the Perfect Hashing algorithm.

constant Threshold ∈ [1, m]

h = SUB HASH (A, SubsetSize){
distance=|A|

FOR k= 1 to Threshold {
Find any k-input XOR function f of the bit columns {1,..,m},

of A, such that f : A → {0, 1}, where f|A1
: A1 7→ {1} ( {0, 1},

f|A0
: A0 7→ {0} ( {0, 1}, with A1 ∪ A0 = A, A1 ∩ A0 = Ø

IF(|A1| ∈SubsetSize){
F = f

break

// Instead of break-ing, the algorithm can be modified to find any suitable function

// and then choose the one of the lower implementation cost.

}
ELSE IF(∀x ∈ SubsetSize, min(|x − |A1||) ≤ distance){

distance = min(|x − |A1||)
F = f

}
}

IF(|A1| ∈ SubsetSize){
RETURN(F )

}
ELSE IF(|A1| ≥ max(SubsetSize)){
new A=A1, where F|A1

: A1 7→{1}({0, 1}
RETURN(F∗SUB HASH (new A,SubsetSize))

}
ELSE IF(|A1| ≤ min(SubsetSize)){
new A=A0, where F|A0

: A0 7→{0}({0, 1}
newSubsetSize= {y ∈ N, ∀x ∈SubsetSize, y = x − |A1|}
where A1 is F|A1

: A1 7→{1}({0, 1}
RETURN(F+SUB HASH (new A,newSubsetSize))

}
}

Others use Exclusive-Or Sum of Products (ESOP) [97] representations [98,

99], and are especially effective in incompletely specified functions (having

“don’t care” terms). Although these algorithms can be used in our case, they

require to explicitly specify the output of the function for the input terms of

interest, limiting the alternative solutions to only a single function out of nCt.

In our case it is required to split the given set of items using any of the nCt

functions rather than specifying a single one.



46 CHAPTER 3. STATIC PATTERN MATCHING

We propose a new method (SUB HASH) described in Table 3.2, to find a func-

tion h : A →{0, 1} to separate a given set of items A (n×m matrix, |A| = n)

into two subsets A1 and A0 which can be encoded in ⌈log2(n/2)⌉ bits each.

For simplicity, we assume for any function f : A → {0, 1} that |A1| ≥ |A0|,
where f|A1

: A1 7→ {1} ({0, 1} and f|A0
: A0 7→ {0} ( {0, 1}. Otherwise

we can use the inverted f , f̄ .

Starting from a given set A and the SubsetSize specified by HASH TREE,

the SUB HASH exhaustively searches whether any k-input XOR function sat-

isfies the condition2 . Variable k is assigned values between ‘1’ and Thresh-

old, where Threshold can be a value between ‘1’ and the length of the

items m (bits). The greater the Threshold, the more computationally inten-

sive the for-loop and on the other hand the more XOR functions are checked.

In case a function satisfies the condition then the process is terminated and the

identified function is returned. Otherwise, the function that produces subsets

closer to the SubsetSize is picked and a new SUB HASH iteration starts. In

case the found function F outputs ‘1’ for more than SubsetSize items of

the specified set, then the following is performed: the new set is the subset of

items for which the F outputs ‘1’, the SubsetSize remains the same and

the returned function is the product of F and the result of the new SUB HASH

call. When F outputs ‘1’ for less than SubsetSize items, the new set is the

subset for which F outputs ‘0’, while the new SubsetSize consists of the

elements in SubsetSize each one subtracted by |A1|
3. In this case, the re-

turned value is the sum of F and the function returned by the new SUB HASH

call. Fig. 3.10 depicts an example of a set split in two using SUB HASH. The

process requires four iterations before it meets the condition, while the last

intermediate function needs to be inverted in order to meet the condition.

In summary, when the condition is not met then the same process is repeated

to a subset of the set as specified above. The subset is smaller than the set

of the previous iteration by at least one item. That is due to the definition

that every item differs in at least one bit position compared to any other item,

and consequently, there exists a single-bit input function which outputs for

at least one item of the set a different value (v̄) compared to the rest of the

items (v). This way it is guaranteed that the recursive process will terminate

with a solution in a finite (n − 2⌈log2(
n
2
)⌉) number of steps. In practice, all the

results obtained in this paper required a single iteration of SUB HASH having

a Threshold=4.

2The condition for a basic building function is the number of items of each subset to belong

to the SubsetSize, |A0|,|A1| ∈SubsetSize.
3|A1| is the number of A items for which F outputs ‘1’.



3.3. PERFECT HASHING MEMORY 47

0
1
1

2log
2
n

2log
2
n/2

0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1

SubsetSize

F1

Set2

Set

0
0
0
0
0
0
1
1
1
1
1
1

F2

Set3

0
0
0
1
1
1

F3

0
0
1

Set4

F4 F4

n2 n3

n4

h = F1(F2+F3F4)

SubsetSize1 = 2log
2
n/2

SubsetSize2 = SubsetSize1
SubsetSize3 = SubsetSize2-(n2-n3)
SubsetSize4 = SubsetSize3

m

Figure 3.10: An example of using SUB HASH to split a Set in two subsets which

require one bit less to be encoded compared to the set. Note that each Fi function is

the result of a SUB HASH call and consists of either a single column selection or a

XOR of multiple columns. For presentation reasons, the items of the set are sorted

so that Fi outputs ‘0’ for the upper items of the set and ‘1’ for the rest, however, any

function that outputs equal number of ‘0s’ (and ‘1s’) with the Fi of the example would

have the same functionality.

3.3.3 Proof of PHmem Correctness

Considering the perfect hash trees of Figure 3.9, we proved above that our al-

gorithm can always generate the functions h which are the select bits of the

tree multiplexers. In addition, each element of a matrix A differs to any other

element at least in one bit position. Therefore, it is given that there always ex-

ist single bit inputs for the leaf multiplexers to separate pairs of elements. The

above indicate that our method can generate all the inputs of the proposed per-

fect hash trees (MUX selects, leaf MUX inputs). It remains to prove that given

these inputs the perfect hash tree structure generates a perfect hash function

for any given set A.

Theorem 3.1. When every node of a tree has the following properties:

• The node multiplexes n perfect hash functions HA1,HA2 , . . . ,HAn of

the subsets A1, A2, . . . , An, respectively, where A1∩A2∩· · ·∩An = Ø,

S = A1 ∪A2 ∪ · · · ∪An, and the set S is denoted as the set of the node.

• A function h : S → {1, 2, . . . , n} is used to multiplex the

HA1 ,HA2, . . . ,HAn so that ∀ x ∈ Ai and y ∈ Aj , where i, j ∈
{1, 2, . . . , n} and i 6= j, then h|x 6= h|y.



48 CHAPTER 3. STATIC PATTERN MATCHING

• The node output Hnode is the concatenation of the h and the output of

the multiplexer.

Then the tree constructs a perfect hash function for the set T = S1∪S2∪· · ·∪
Sm, where S1, S2, . . . , Sm are the sets of the leaf nodes4.

Proof. By definition, a hash function H : A → {1, 2, . . . , x} of set

A={a1, a2, .., ax} that outputs a different value for each element ai is perfect:

∀ i, j ∈ {1, 2, . . . , x}, where i 6= j, then H|ai
6= H|aj

(3.3)

Also if h|S , where S = A1 ∪ A2 ∪ · · · ∪ An and A1 ∩ A2 ∩ · · · ∩ An = Ø, is

a hash function that separates the n subsets A1, A2, . . . , An having a different

output for elements of different subsets is also perfect, that is:

∀ x ∈ Ai, y ∈ Aj , where i, j ∈ {1, .., n} and i 6= j, then h|x 6= h|y (3.4)

We construct our hash trees based on the fact that the inputs of the leaf

nodes and the “selects” of the multiplexers are perfect hash functions, since

they separate without collisions entries within a subset and different subsets,

respectively. Consequently, remains to prove that a node which combines

the outputs of perfect hash functions HA1 ,HA2 , ..,HAn of the subsets

A1, A2, .., An using a perfect hash function h|S which separates these subsets,

outputs also a perfect hash function Hnode for the entire set S5.

The output Hnode of the node is the following:

Hnode= h|S ◦6IF(h|S = h|A1
) THEN HA1 ELSE

IF(h|S = h|A2
) THEN HA2 ELSE

. . .
IF(h|S = h|An

) THEN HAn

4T can also be considered as the set Sroot of the root node or the union of the disjoint sets

of all the nodes of a single tree level.
5Assuming n subsets A1, A2, . . . , An of x elements each, then HA1

,HA2
, .., HAn

output

⌈log2(x)⌉ bits each, h|S outputs ⌈log2(n)⌉ bits, and Hnode outputs ⌈log2(n)⌉ + ⌈log2(x)⌉
bits.

6Where “◦” is the concatenation operator.



3.3. PERFECT HASHING MEMORY 49

The Hnode outputs different values for either two entries of the same subset

Hnode|ai
6= Hnode|aj

(∀ ai, aj ∈ Ak, where i 6= j) based on Eq. 3.3, or

for two entries of different subsets Hnode|x 6= Hnode|y (∀ x ∈ Ai, y ∈ Aj ,

where i 6= j) based on Eq. 3.4. Consequently, each tree node outputs a perfect

hash function for its set S.

Given the above, we prove that the entire tree outputs a perfect hash function

as follows:

• The root node outputs a perfect hash function iff its multiplexer’s inputs

are perfect hash functions. (It is given that the h can be generated by

SUB HASH)

• Then the nodes of the next tree level output perfect hash functions un-

der the same assumption, iff their multiplexers’ inputs are perfect hash

functions.

• We consider the same for each coming tree level until the leaf nodes.

• Then we only need to prove that the inputs of the leaf nodes are perfect

hash functions. This is given since each element of the entire set differs

to any other element and consequently there exists a single bit (perfect

hash function) that separates any pair of elements in the set.

Consequently, the initial assumption holds true and the root node output perfect

hash function for the entire set.

3.3.4 Theoretical Analysis of the PHmem Algorithm

Next, we present a theoretical analysis of the PHmem algorithm. We first

analyze the worst case complexity of generating a perfect hash tree using the

algorithm described above. Subsequently, we find the bounds of the generated

perfect hash trees area cost.

PHmem Generation Complexity: To analyze the worst case complexity of

the PHmem algorithm, we first calculate the complexity of the inner for-loop

of the recursive basic function SUB HASH, then we find its worst case number

of iterations, and finally estimate the number of SUB HASH calls needed for

an entire perfect hash tree.



50 CHAPTER 3. STATIC PATTERN MATCHING

The For-loop of the SUB HASH checks for k-input XOR functions where k=1

to Threshold (Threshold is denoted in this paragraph as T ). When m
is the length of each item (number of bit-columns), then the complexity for a

given value of k is:

K compl(m,k) =

(

m
k

)

=m Ck =
m!

k!(m − k)!
=

k
∏

t=0

(m − t)

k!
(3.5)

The 3.5 is O(mk

k
).

Since k gets values from 1 to T , the complexity of the For-loop is:

FOR LOOP compl(m,T ) =

T
∑

k=1

(

K compl(m,k)
)

=

T
∑

k=1

(

k
∏

t=0

(m − t)

k!

)

(3.6)

The 3.6 is O(TmT ).

The maximum number of iterations before the SUB HASH splits a given set of

n items in two halves (which can be encoded in ⌈log2(n/2)⌉ bits) is:

MAX iter(n) = n − 2⌈log2(
n
2
)⌉ (3.7)

The 3.7 is O(n).

That is the number of SUB HASH iterations needed when each iteration re-

duces the initial set by only one item (worst case scenario). Consequently,

based on Eq. 3.6 and 3.7 the complexity of SUB HASH that splits a set of n
items of length m is:

SUB HASH compl(n,m, T ) =

FOR LOOP compl(m,T ) ∗ MAX iters(n) =

T
∑

k=1

(

k
∏

t=0

(m − t)

k!

)

(n − 2⌈log2(n
2
)⌉) (3.8)



3.3. PERFECT HASHING MEMORY 51

Therefore, the SUB HASH complexity is O(TmTn), and for T=1, that is

O(mn). The threshold T determines the order of the SUB HASH complexity.

Based on the values of m and n, T can be chosen so that the overall processing

is completed within reasonable time.

The SUB HASH is called by HASH TREE until the set is split in subsets of a

single item. The complexity of the entire perfect hash tree generation, when

the initial set contains n items (when n is a power of 2) is:

PHmem compl(n,m, T ) =

⌈log2 (n)⌉−1
∑

L=0

(

SUB HASH compl(
n

2L
,m, T ) ∗ 2L

)

(3.9)

The complexity of the entire perfect hash tree generation is O(TmT n log2 n).

Based in equation 3.9 we estimate the worst case number of operations needed

for the generations of perfect hash trees given different sets of patterns. It is

worth noting that the above equations do not intend to give the exact number

of operations rather than their order of magnitude.

Figure 3.11 depicts the number of operations needed when generating perfect

hash trees for different sizes of pattern sets. Figure 3.11(a) shows the worst

case complexity of PHmem algorithm when generating a perfect hash tree

for 1024 patterns of length 16 to 512 bits and thresholds 1, 2, and 4. When

Threshold is 1 or 2 then in all cases the worst case complexity is relatively

low (below 1012). For Threshold 4 the generations of the perfect hash tree

becomes computationally intensive for patterns longer than 128 bits. We can

notice that the higher the threshold the faster the complexity grows as the pat-

tern length increases; this is also verified by the complexity of equation 3.9

which is O(TmT n log2 n).

Figure 3.11(b) depicts the worst case number of operations needed for 32 bit

long patterns -note that this is after deleting all bit columns unnecessary to

distinguish the patterns- for thresholds 1, 2, and 4 and number of patterns n
between 28 to 220. As the number of patterns n increases the number of re-

quired operations grows O(n log2 n). Again, for thresholds 1 and 2 the com-

plexity is acceptable while for threshold 4 as the number of patterns increases

the generation of the perfect hash function becomes significantly complex.

Finally, Figure 3.11(c) shows the worst case complexity when generating a

perfect hash tree for 1024 patterns of lengths 16, 32 and 64 bits and thresholds



52 CHAPTER 3. STATIC PATTERN MATCHING

0 1632 64 128 256 512
10

6

10
8

10
10

10
12

10
14

10
16

o
p
e
ra

ti
o
n
s

length of patterns (bits)

#patterns=1024, Threshold=1

#patterns=1024, Threshold=2

#patterns=1024, Threshold=4

(a) Varying the pattern length.

2^8 2^10 2^12 2^14 2^16 2^18 2^20
10

6

10
7

10
8

10
9

10
10

10
11

10
12

10
13

10
14

o
p
e
ra

ti
o
n
s

number of patterns

length=32, Threshold=1

length=32, Threshold=2

length=32, Threshold=4

(b) Varying the number of patterns.

0 5 10 15 20
10

6

10
8

10
10

10
12

10
14

10
16

10
18

10
20

10
22

o
p
e
ra

ti
o
n
s

Threshold

#patterns=1024, length=16

#patterns=1024, length=32

#patterns=1024, length=64

(c) Varying the Threshold.

Figure 3.11: Worst case number of operations required to generate a Perfect Hash Tree

for various sets of patterns.



3.3. PERFECT HASHING MEMORY 53

1 to 20. The number of operations needed grows significantly as the threshold

increases. for Thresholds greater than 4-5 the perfect hash generation becomes

substantially complex; that is more than 1012 operations are needed. On the

other hand, as can be observed there is an upper limit to the function (de-

pending on the value of m). That is due to the fact that when T > m the

complexity does not change, since it is impossible to select more columns (T )

than the available ones (m).

In practice, one iteration of SUB HASH (instead of n−2⌈log2(
n
2
)⌉) is enough to

generate a basic function and therefore the complexity becomes O(TmT n)

In summary, the value of Threshold is the most significant parameter that de-

termines the perfect hash tree generation complexity. In any case tough we

can choose the a suitable Threshold value to keep the complexity in acceptable

rates.

Perfect Hash Tree Area Cost: We estimate next the worst case area cost of

the Perfect hash tree in terms of 4-input gates. To do so we need to calculate

the cost of the select functions (generated by the SUB HASH) and also the

multiplexers cost.

In the worst case, the cost of a basic hash function generated by the SUB HASH

can have a number of inputs equal to Threshold T multiplied by the maximum

number of SUB HASH iterations MAX iters. We can estimate that such func-

tion can be mapped in tree like structure of 4-input gates (similar to FPGA

LUTs) assuming that the number of inputs N is a power of 2. For a binary tree

the number of nodes would be (N −1). For a 4-ary tree every three binary-tree

nodes can be combined in one 4-ary tree node. Consequently, the number of

4-ary tree nodes is N−1
3 and the cost of the select function in terms of 4-input

logic gates as a function of the number of inputs is:

Costbasic function(n) =
MAX iters ∗ T − 1

3
=

(n − 2⌈log2(
n
2
)⌉) ∗ T − 1

3
(3.10)

Assuming that each 2-to-1 single bit wide multiplexer and its select bit fits

in a 4-input LUT and that the perfect hash tree is complete (the number of

patterns n is power of 2), we can calculate the maximum cost of the Perfect

hash tree. Each level L of the perfect hash tree has 2L multiplexers of width

log2(
n

2L+1 ) (where level L = 0 to log2(n) − 1). Additionally, the select of



54 CHAPTER 3. STATIC PATTERN MATCHING

each multiplexer separates in two parts n
2L items. Consequently, the overall

maximum cost of the Perfect hash tree in terms of 4-input gates is:

CostPHmem =
log2(n)−1

∑

L=0

[

log2

( n

2L+1

)

+ Costbasic function(
n

2L
)

]

2L (3.11)

In practice the cost of the basic function Costbasic function(n) is about 1 (4-

input gate) and therefore the over all cost of the perfect hash tree

CostPHmempract =

log2(n)−1
∑

L=0

(

log2

( n

2L+1

)

+ 1

)

2L (3.12)

Figure 3.12 illustrates the worst case cost of various perfect hash trees based

on the equation 3.11. Figure 3.12(a) depicts the cost of perfect hash trees

which separate 1024 patterns if length 32 bits and use threshold 1 to 8 for their

generation. Additionally, the same figure shows the cost of the same perfect

hash trees when assuming that in practice the select function of each tree node

fits in a single 4-input LUT (Equation 3.12). In practice the cost of the tree

would be about 2 ∗ 103, while for Threshold up to 8 the worst case area cost

can be an order of magnitude higher. Finally, Figure 3.12(b) shows the worst

case area cost (Equation 3.11) of hash trees that separate 29 to 220 patterns,

and also the area cost in practice (Equation 3.12). The worst case area cost is

O(n log2 n) relative to the number of patterns n.

3.3.5 Pattern Pre-processing & Implementation Issues

This Section describes the preprocessing phase of the patterns before the per-

fect hashing generation, and also implementation issues regarding the pattern

memory, pipelining of the design and parallelism.

Pattern Pre-processing: To generate a PHmem design for a given set of

IDS patterns, we first extract the patterns from the Snort ruleset and group

them according to their length, such that patterns of each group have a unique

substring. We then reduce the length of the substrings, keeping only the bit-

positions that are necessary to distinguish the patterns (in practice 11-26 bits).



3.3. PERFECT HASHING MEMORY 55

1 2 3 4 5 6 7 8
10

3

10
4

10
5

#
 4

−
in

p
u

t 
g

a
te

s

Threshold

#patterns=1024 from eq 4.11

#patterns=1024 in practice

(a) Varying the Threshold

2^8 2^9 2^10 2^11 2^12 2^13 2^14 2^15 2^16 2^17 2^18 2^19 2^20
10

3

10
4

10
5

10
6

10
7

10
8

#
 4

−
in

p
u

t 
g

a
te

s

number of patterns

length=32, Threshold=1

length=32, Threshold=2

length=32, Threshold=4

in practice

(b) Varying the number of patterns.

Figure 3.12: Perfect Hash Tree Cost in 4-input gates of various pattern sets.

This step takes only a few seconds and substantially reduces the overall gener-

ation times at least 2-10×. Subsequently, we generate the hash trees for every

reduced substring file.

Pattern Memory: We store the search patterns in the widest Xilinx dual-port

block RAM configuration (512 entries × 36 bits), a choice that limits group

size to a maximum of 512 patterns. Patterns of the same group should have

unique substrings (for simplicity prefixes or suffixes) in order to distinguish

them using hashing. The grouping algorithm takes into account the length of



56 CHAPTER 3. STATIC PATTERN MATCHING

Figure 3.13: An example of storing patterns in the pattern memory. There are five

groups of patterns, distributed in the pattern memory such that each memory bank

(block RAM) contains patterns of one or two groups.

the patterns, so that longer patterns are grouped first. Patterns of all groups are

stored in the same memory, which is constructed by several memory banks.

Each bank is dual-ported, therefore, our grouping algorithm ensures that in

each bank are stored patterns (or parts of patterns) of maximally two differ-

ent groups. This restriction is necessary to guarantee that one pattern of each

group can be read at every clock cycle. Fig. 3.13 depicts an example of the

way patterns are stored in the pattern memory. In our designs the memory

utilization is about 60-70%. We use an indirection memory to decouple the

choice of a perfect hashing function from the actual placement of patterns in

the memory; this flexibility allows us to store patterns sorted by length and in-

crease memory utilization. We generated eight groups of patterns, each group

using a different hash tree and indirection memory port, while they all read

patterns for the centralized banked pattern memory.

Pipelining and Parallelism: In order to achieve better performance, we use

several techniques to improve the operating frequency and throughput of our

designs. We increase the operating frequency of the logic using extensively

fine-grain pipelining in the hash trees and the comparator. The memory blocks

are also limiting the operating frequency so we generate designs that duplicate

the memory and allow it to operate at half the frequency of the rest of the de-

sign. To increase the throughput of our designs we exploit parallelism. We

can widen the distribution paths by a factor of 2 by providing 2 copies of com-

parators and adapting the procedure of hash tree generation. More precisely, in

order to process two incoming bytes per cycle, we first replicate the compara-

tors such that each one of them compares memory patterns against incoming

data in two different offsets (0 and 1 byte offsets), and their match signals are

OR-ed. Furthermore, each substring file should contain two substrings of ev-

ery pattern in offsets 0 and 1 byte. These substrings can be identical, since they



3.4. EVALUATION 57

point out the same pattern, but they should be different compared to the rest of

the substrings that exist in the file. This restriction, however, makes grouping

patterns more difficult resulting in a potentially larger number of groups (in

practice 1-3 more groups). The main advantage of this approach is that using

parallelism does not increase the size of the pattern memory. Each pattern is

stored only once in the memory, and it is compared against incoming data in

two different offsets.

3.3.6 PHmem Implementation in ASIC

The above method is designed for reconfigurable hardware. We investigate

next the feasibility of implementing PHmem in ASIC. Although some parts

of PHmem need to remain reconfigurable in order to support patterns update,

other parts can be implemented in conventional hardware. The hash trees have

to be reconfigurable, otherwise, the search patterns could not be updated. On

the contrary, the remaining design can be in ASIC if we make a few small

changes. More precisely, the delay of the hash trees and/or the shift register

have to be calibrated, so that the delay between the time a pattern enters the

system and the time pattern memory is accessed is fixed. This is required

in order to correctly align the incoming data with the pattern read from the

pattern memory. The above is feasible and can be implemented with some

SRL16-like modules, which will add a variable delay on the shift register and

the hash output. Furthermore, the output of the indirection memory (pattern

address and length) should be used as follows. The patterns are stored one

after the other in the pattern memory without any fixed alignment. The pattern

memory should be as wide as the longest pattern and dual ported so that when a

pattern is stored in to consecutive memory lines can be entirely read in a single

cycle. Subsequently a barrel shifter is required to align the read pattern. It is

worth noting that a barrel shifter that shifts up to 256 positions would require

four levels of 4-to-1 multiplexers [100].

3.4 Evaluation

In this section, we first present the implementation results of DCAM and PH-

mem. We also present results of designs that use PHmem to match patterns

up to 50 bytes long and DCAM for longer patterns. Then, we evaluate the

efficiency of our designs and investigate the effectiveness of utilizing memory

blocks and/or DCAM for pattern matching.



58 CHAPTER 3. STATIC PATTERN MATCHING

We implemented both DCAM and PHmem using the rules of the SNORT

open-source intrusion detection system [12]. SNORT v2.3.2 has 2,188 unique

patterns of 1-122 characters long, and 33,618 characters in total. We imple-

mented our designs in Virtex2 devices with -6 speed grade, except DCAM

designs that process 4 bytes per cycle, which were implemented in a Virtex2-

8000-5 (the only available speed grade for the largest Virtex2 device). We mea-

sure our pattern matching designs performance in terms of operating through-

put (Gbps), and their area cost in terms of number of logic cells required for

each matching character (all post Place and Route results). For designs that re-

quire memory we measure the memory area cost based on the fact that 12 bytes

of memory occupy area similar to a logic cell [101]. In order to evaluate our

schemes and compare them with the related research, we also utilize a Perfor-

mance Efficiency Metric (PEM), which takes into account both performance

and area cost, described in the following equation:

PEM =
Performance

Area Cost
=

Throughput

Logic Cells + MEMbytes

12
Character

(3.13)

3.4.1 DCAM Evaluation

We evaluate next the improvement of designs that use predecoding compared

to the discrete comparators approach, and then show DCAM final implemen-

tation results.

DCAM vs. Discrete Comparators: To get a better feeling for the improve-

ment of the predecoding (DCAM) compared to our first discrete comparator

CAM design, we present a comparison between DCAM and Discrete compara-

tors designs in terms of area and performance in a Virtex2-6000-6. The designs

match 50 to 210 IDS patterns and process four bytes per cycle. Figure 3.14(a)

plots the operating frequency for the discrete comparators CAM designs (de-

noted as CAM) and the DCAM approach. The results show that while for the

smallest rule set both implementations operate at 340 MHz, when the rule set

size increases, the scalability of the DCAM approach is better, and for 210

rules achieves about 12% better frequency. Figure 3.14(b) plots the cost of the

designs again in terms of LC (logic cells) per search pattern character. It is

clear that the DCAM approach results in drastically smaller designs: for the

largest rule set, the DCAM area cost is about 4 logic cells per character, while

the cost of our earlier design is almost 20 logic cells per character. All in all,



3.4. EVALUATION 59

230
250
270
290
310
330
350

0 50 100 150 200 250
Number of patterns

Fr
eq

ue
nc

y (
MH

z) 

CAM DCAM

(a) Performance comparison measured in operating fre-

quency (MHz).

Number of patterns

LC
/c
ha

ra
ct
er

CAM DCAM

0
2
4
6
8
10
12
14
16
18
20

0 50 100 150 200 250

(b) Area cost comparison in logic cells (LC) per match-

ing character.

Figure 3.14: Comparison between the Discrete Comparator CAM and the DCAM

architectures.

and for these rule sets, DCAM offers 12% better performance at an area cost

of about 1
5 as compared to the discrete comparator CAM design.

DCAM results: We evaluate next the performance and cost of DCAMs. We

implemented designs that process 1,2 and 4 bytes per cycle (P=1,2 and 4) with

different partition sizes: partitions of 64, 128, 256, 512 patterns (G64, G128,

G256, G512) and designs without partitioning (NG). Figure 3.15(a) illustrates

DCAM performance in terms of processing throughput (Gbps). Designs that

process one byte per cycle achieve 1.4 to 3 Gbps throughput, while designs

that process 2 bytes per cycle can support 1.9 to 5.5 Gbps. Finally, designs

with 4 bytes datapaths have a processing throughput between 3.2 to 8.2, how-

ever, these designs were implemented in Virtex2-8000-5 (instead of -6 speed

grade design ) because there is not available Virtex2 device of -6 speed grade

large enough to fit them. From our results we can draw two general trends for



60 CHAPTER 3. STATIC PATTERN MATCHING

0
1
2
3
4
5
6
7
8
9

Th
ro

ug
hp

ut 
(G

bp
s)

G64 G128 G256 G512 NG PHDmPHm PHDmPHm

PHmemDpCAM PHmem
+

DpCAM
P=1
P=2
P=4

(a) DCAM and PHmem Performance.

G64 G128 G256 G512 NG0
0.5
1

1.5
2

2.5
3

Eq
. L

og
ic 

Ce
lls

 / c
ha

r

PHDmPHm

PHmemDpCAM

P=1
P=2
P=4

PHDmPHm

PHmem
+

DpCAM

(b) DCAM and PHmem Area Cost.

PE
M

G64 G128 G256 G512 NG PHDmPHm

P=1
P=2
P=4

0

1

2

3

4

5

6

7

PHDmPHm

PHmemDpCAM PHmem+DpCAM

(c) DCAM and PHmem Efficiency.

Figure 3.15: PHmem and DCAM performance, area cost, and efficiency. Memory area

is calculated based on the following equation: 12 × MEMbytes = Logic Cell.

group size. The first is that smaller group sizes can support higher through-

put. The second is that when the group size approaches 512 the performance

deteriorates, indicating that optimal group sizes will be in the 64-256 range.

We measured area cost and plot the number of logic cells needed for each

search pattern character in Figure 3.15(b). Unlike performance, the effect of

group size on the area cost is more pronounced. As expected, larger group

sizes result in smaller area cost due to the smaller replication of comparators



3.4. EVALUATION 61

Table 3.3: Hash trees evaluation.
Description LUTs FFs Freq. MHz LUT-levels

Binary Tree Combin. 399 31 143 8

Binary Tree Pipel. 502 514 449 8

Opt. Tree Combin. 231 31 144 6

Opt. Tree Pipel. 391 401 410 6

in the different groups. In all, the area cost for the entire SNORT rule set is

0.58 to 0.99, 1.1 to 1.6, and 1.8 to 2.7 logic cells per search pattern character

for designs that process 1,2, and 4 bytes per cycle respectively.

While smaller group sizes offer the best performance, it appears that if we also

take into account the area cost, the medium group sizes (128 or 256) become

also attractive. This conclusion is more clear in figure 3.15(c) where we eval-

uate the efficiency (PEM) of our designs (Performance / Area Cost). For

P = 1 the most efficient design is G256, for P = 2 is G64, G128, and G256
groupings have similar efficiency , while for P = 4 where the designs are

larger and thus more complicated the best performance/area tradeoff is in

G64.

3.4.2 PHmem Evaluation

In this paragraph, we first provide some implementation results of individual

Perfect hashing trees, then evaluate the complete PHmem designs when match-

ing complete IDS pattern sets, and finally investigate the benefits of using both

PHmem and DCAM.

Table 3.3 presents the results of four hash tree configurations that distinguish

a sample set of 494 patterns with unique substrings of 14 bytes length (22-

bits when minimized). For both the binary and optimized trees, we utilize two

different configurations, i.e., using only registered inputs and outputs or using

fine-grain pipelining. The designs were placed and routed in a Virtex2-500-6

device. The pipelined hash trees require more area and can operate at about 3

times higher frequency, while the optimized hash trees require about 20%-50%

less area.

Figures 3.15(a), 3.15(b), and 3.15(c) illustrate the performance, area cost and

efficiency of Perfect Hashing designs. We implemented designs that process 1

and 2 incoming bytes per cycle (P=1 and 2). Apart from the designs that oper-

ate in a single clock domain (denoted as PHm), there are designs with double



62 CHAPTER 3. STATIC PATTERN MATCHING

memory size (denoted as PHDm) that operates in half the operating frequency

in relation to the rest of the circuit. Our perfect hashing design that processes

one byte per clock cycle achieves 2 Gbps of throughput, using 35 block RAMs

(630 Kbits, including the indirection memories), and requiring 0.48 equiva-

lent logic cells (ELC) per matching character (counting also the area due to

the memory blocks). A design that utilizes double memory to increase the

overall performance of the pattern matching module achieves about 2.9 Gbps,

requiring 0.9 ELC (including the block RAMs area) per matching character.

The design that processes 2 bytes per clock cycle achieves 4 Gbps in, while

needing 0.69 ELC per character. Finally, when using double size of memory

and process 2 bytes per cycle, PHmem can support more than 5.7 Gbps of

throughput, requiring 1.1 ELC per matching character. It is noteworthy that

about 30-50% of the required logic area is because of the registered memory

inputs and outputs and the shift registers of incoming data. Using a different

memory utilization strategy like [65] for example, would possibly decrease the

area cost.

PHmem + DCAM

PHmem designs have a significant disadvantage when the pattern set includes

very long patterns. The pattern memory in this case must be wide enough to

fit these long patterns, which results in low memory utilization. Figure 3.4.1

depicts the implementation results of designs that use PHmem for matching

patterns up to 50 characters long and the DCAM for longer patterns. These

designs have similar performance with the original PHmem designs and lower

area cost. Consequently, the performance efficiency metric is higher 10 to

25%.

3.4.3 Memory-Logic Tradeoff

DCAM and PHmem offer a different balance in the resources used for pattern

matching. The decision of following one of the two approaches, or the com-

bination of both, is related to the available resources of a specific device. In

general, using a few tens of block RAMs is relatively inexpensive in recent

FPGA devices, while running out of logic cells can be more critical for a sys-

tem. Counting ELCs that include memory area gives an estimate of the designs

area cost. By using this metric to measure area, we evaluate and compare the

efficiency of PHmem and DCAM designs. Fig. 3.15(c) illustrates the perfor-

mance efficiency metric of DCAM and PHmem. It is clear that the perfect



3.4. EVALUATION 63

0

20

40

60

80

100

120

DpCAM,
G64, P1

DpCAM,
G128, P1

DpCAM,
G256, P1

DpCAM,
G64, P4

PHmem
SM P1

PHmem
DM P1

PHmem
SM P2

PHmem
DM P2

No
rm

ali
ze

d A
rea

 C
os

t
 Eq

. L
C/

ch
ar 

(%
)

18K chars
33.6K chars

Figure 3.16: Normalized area cost per matching character of different PHmem,

DCAM designs that match 18K and 33.6K pattern characters. The values are nor-

malized to the designs that match 18K characters.

hashing designs outperform DCAM, since they require less area and maintain

similar performance. PHmem designs with DCAM for matching long patterns

are even more efficient. The reason is that they have a better pattern mem-

ory utilization (over 70%) and therefore require fewer resources. Designs that

require more logic usually lead to more complicated implementation (synthe-

sis, place & route and wire distances) and require longer cycle times. Conse-

quently, PHmem is simpler to synthesize compared to DCAM, while the cycle

time variation from one design to another is negligible. In summary, even

though the PEM (Eq. 3.13) gives an estimate of which approach is more effi-

cient, it is difficult to make a decision in advance, since the pattern matching

module will be part of a larger system.

3.4.4 Scalability

An IDS pattern matching module needs to scale in terms of performance and

area cost as the number of search patterns increases. That is essential since the

IDS rulesets and the number of search patterns constantly grow. Two different

pattern sets were used to evaluate the scalability of our designs. Apart from

the one used in our previous results which contains about 33K characters, an

older Snort pattern set (18K characters) was employed for this analysis. Both

DCAM and PHmem designs do not have significant performance variations as

the pattern set grows from 18K to 33K characters. Fig. 3.16 depicts how the

area cost scales in terms of ELCs per character. Generally speaking, DCAM

area cost scales well as the pattern set almost doubles since character sharing

is more efficient. DCAM designs that match over 33K characters require about



64 CHAPTER 3. STATIC PATTERN MATCHING

75% of the LC/char compared to the designs that match 18K characters. On the

other hand, PHmem shows some small variations in area cost primarily due to

variations in the pattern memory utilization, however, in general the area cost

is stable. Implementing a memory with a barrel shifter as proposed in 3.3.6

would improve PHmem memory utilization and scalability. In summary, when

the pattern set doubles DCAM and PHmem designs require 1.5× and 2× more

resources respectively, while there are up to 5% variations in throughput.

3.5 Comparison

In Table 3.4, we attempt a fair comparison with previously reported research

on FPGA-based pattern matching designs that can store a full IDS ruleset. The

Table contains our results as well as the results of the most efficient recent

related approaches for exact pattern matching. Here, the reader should be cau-

tioned that some related works were implemented and evaluated on different

FPGA families. Based on previous experience of implementing a single de-

sign in different device families [34, 42, 65] and the Xilinx datasheets [102],

we estimate that compared to Virtex2, Spartan3 is about 10-20% slower, while

Virtex2Pro is about 25-30% faster. Fig. 3.17 illustrates the normalized PEM

of our designs and related work, taking into account the device used for the

implementation. Note that the above results intend to give a better estimate

of different pattern matching designs since different device families achieve

different performance results. Compared to related works, PHmem (P=2) has

at least 20% better efficiency. DCAM has slightly lower or higher efficiency

compared to most of the related works, while PHmem+DCAM is at least 30%

better.

Compared to Attig et al. Bloom-Filter design [103], PHmem has better effi-

ciency [42]. Bloom filters perform approximate pattern matching, since they

allow false positives. Attig et al. proposed the elimination of false positives

using external SDRAM which needs 20 cycles to verify a match. Since the

operation of this SDRAM is not pipelined, the design’s performance is not

guaranteed under worst-case traffic.

It is difficult to compare any FPGA-based approach against the“Bit-Split

FSM” of Tan and Sherwood [38], which was implemented in ASIC 0.13µm

technology. Tan and Sherwood attempted to normalize the area cost of

FPGA designs in order to compare them against their ASIC designs. Based

on this normalization, our best PHmem design has similar and up to 5×
lower efficiency compared to “bit-split FSM” designs, that is: 492 and 540



3.5. COMPARISON 65

Normalized Efficiency

0

P h m
e m

 P = 1

P h m
e m

 P = 1  
D M

P h m
e m

 P = 2

P h m
e m

 P = 2  
D M

P h m
e m

 &  D C A M  P = 1

P h m
e m

 &  D C A M  P = 1  
D M

P h m
e m

 &  D C A M  P = 2

P h m
e m

 &  D C A M  P = 2  
D M

D C A M  P = 1

D C A M  P = 2

D C A M  P = 4
C R C  P = 1

C R C  P = 2

B D D s  P
= 1

B D D s  P
= 6

N F A s  P
= 4

R D L  P
= 1

R O M - b a
s e d

 P = 1

U n a r
y  P

= 1

U n a r
y  P

= 4

T r e e
- b a

s e d
 P = 1

No
rm

al
iz

ed
 n

ew
 P

EM

1
2
3
4
5
6
7

Figure 3.17: Normalized Performance Efficiency Metric of PHmem, DCAM and re-

lated work. The efficiency of designs implemented in other than Virtex2 devices is

normalized as follows: Spartan3: ×1.2, Virtex2Pro: ÷1.25 [34, 42, 65, 102].

Gbps/(char/mm2) for PHmem and PHmem+DCAM, compared to 556-

2,699 Gbps/(char/mm2) for Bit-split. Despite the fact that our approach

is less efficient than the above ASIC implementation, there are several advan-

tages to oppose. The implementation and fabrication of an ASIC is substan-

tially more expensive than an FPGA-based solution. In addition, as part of

a larger system, a pattern matching module should provide the flexibility to

adapt to new specifications and requirements on demand. Such flexibility can

be provided more effectively by reconfigurable hardware instead of an ASIC.

Therefore, reconfigurable hardware is an attractive solution for IDS pattern

matching providing flexibility, fast time to market and low NRE costs (non-

recurring expenses).



66 CHAPTER 3. STATIC PATTERN MATCHING

Table 3.4: Comparison of FPGA-based pattern matching approaches.

Description

Input

Device

Throu-
LUTs Logic Equivalent MEM

#chars PEMbits ghput
/FFs Cells7 LC/char Kbits

/cycle (Gbps)

PHmem

8

Virtex2
2.000

4,165
9,466 0.48 630

33,618

4.15
-1000 8,252

Virtex2

2.8578 6,271
16,852 0.90 1,2608 3.17

-3000

13,418

16

4.000
8,811

15,672 0.68 702 5.81
13,642

5.7148 10,899
22,114 1.10 1,4048 5.18

18,922

DCAM

8
Virtex2

2.667
19,183

24,470 0.72 0 3.66
-3000 22,948

16
Virtex2

4.943
41,416

48,678 1.44 0 3.41
-6000 44,845

32
Virtex2

8.205
75,363

17,538 2.69 0 3.04
-8000 86,623

PHmem 8

2.108
3,451

6,272 0.45 288

20,911

4.72

+

Virtex2 5,805

DCAM for

-1000
2.8868 4,410

9,052 0.71 5768 4.06

long patterns

8,115

[42] 16

4.167
6,675

10,224 0.64 306 6.46
Vitex2 9,459

-1500
5.7348 7,659

12,106 0.89 6128 6.44
11,685

8
Virtex2

2.000 ? 2,570 0.50 630

18,636

4.00
[65] -1000

CRC Hash
16

Virtex2
3.712 ? 5,230 0.96 1,188 3.87

+ MEM -3000

8 2.500
11,780

? ∼0.60 0

19,715

∼4.17
[56] Virtex2 ?

BDDs
48

-8000
∼12-14

70,680
? ∼3.60 0 3.33

?

[32]
32

Virtex2
7.004 ? 54,890 3.10 0 17,5379 2.26

NFAs -8000

[33]

8

Spartan3
2.000

16,930
? 0.81 0

20,800

2.46
RDL w/Reuse -1500 ?

[37] Spartan3
1.900

4,415
>8,00010 >0.4710 162 <4.0610

ROM-based -1000 ?

[31] 8

Virtex2Pro

1.488 ? 8,056 0.41 0

19,584

3.63

Unary 32
-100

4.507 ? 30,020 1.53 0 2.94
[35]

8 1.896 ? 6,340 0.32 0 5.86
tree-based

[83]
8 Virtex4 1.600 ? 4,513 4.09 6,000 16,715 0.39

bit-split

7Logic Cells = 2 × Slices
8Designs that have double memory size to increase performance.
9Over 1,500 patterns that contain 17,537 characters.

10According to [37] the design uses 4,415 LUTs and 99% of available slices, when imple-

mented in Spartan3-400. That is about 8,000 LCs for a Spartan3-400 device.



3.6. CONCLUSIONS 67

3.6 Conclusions

We described two reconfigurable pattern matching approaches, suitable for

intrusion detection and compared them with related works. The first one

(DCAM) uses only logic and the pre-decoding technique to share resources. In

DCAM, it is relatively straightforward to apply fine grain pipelining and paral-

lelism to improve the processing throughput of the design, while pre-decoding

and partial matching of long patterns substantially reduces the area require-

ments. The second technique (PHmem) requires both memory and logic, em-

ploying an, in practice, simple and compact hash function to access the pat-

tern memory. The proposed PHmem algorithm guarantees a perfect minimal

hash function generation for any given set of unique substrings. The com-

plexity of the generation is, in the worst case, O(TmT n log n) (m: length

of substrings, T : Threshold, n: number of patterns) and can be adjusted by

changing the T parameter. The O(n log n) complexity -relative to the number

of patterns- is better than any previous perfect hashing algorithm (the sec-

ond best is O(n2) [64]). The perfect hash tree area cost is, in the worst case,

O(n log n). Both pattern matching techniques were implemented in reconfig-

urable hardware and evaluated in terms of area and performance. We analyzed

their tradeoffs, and discussed their efficiency compared to related work. Uti-

lizing memory turns out to be more efficient than using only logic, while the

combination of PHmem and DCAM produces the most efficient designs. PH-

mem and DCAM are able to support up to 5.7 and 8.2 Gbps throughput respec-

tively in a Xilinx Virtex2 device. Our perfect hashing technique achieves about

20% better efficiency compared to other FPGA-based exact pattern matching

approaches and when combined with the DCAM for matching long patterns

can be up to 30% better. Even compared to ASIC designs our approach has

comparable results. Both DCAM and PHmem scale well in terms of perfor-

mance and area cost as the IDS ruleset grows. Consequently, perfect hashing

provides a high throughput and low area IDS pattern matching which can keep

up with the increasing size of IDS rulesets, while DCAM minimizes the cost

of matching long patterns.





Chapter 4

Regular Expression Matching

R
ecent IDS rulesets use widely regular expressions besides static pat-

terns as a more efficient way to represent hazardous packet payload

contents. The increasing number of IDS regular expressions and the

lack of efficient design and implementation techniques substantially diminish

IDS performance. Software platforms may not be able to provide efficient reg-

ular expression implementations. It is a fact that they can be more than an

order of magnitude slower than hardware designs, their performance does not

scale well as the number of regular expressions increases and their memory re-

quirements may be significantly large [104–107]. Reconfigurable systems may

provide an efficient solution for high speed regular expression pattern match-

ing. FPGAs can operate at hardware speed and exploit parallelism, moreover,

they provide the required flexibility to modify the design on demand. This

chapter offers an efficient regular expression technique for Intrusion Detection

Systems, however, the proposed solution may target any other regular expres-

sion application, such as biomedical [108–110].

Given an input string T [1..n] which uses a finite set of symbols A (alpha-

bet) and a regular expression R of the same alphabet which describes a set of

strings S(R) ⊆ A∗, then matching the regular expression R is to determine

whether T ∈ S(R). For decades, significant effort has been put on implement-

ing regular expressions in software. The Non-deterministic Finite Automata

(NFA) approaches have limited performance in software due to their multiple

active states. Consequently, Deterministic Finite Automata (DFA) are usually

adopted. DFAs allow only one active state at a time, suit better the sequen-

tial nature of General Purpose Processors and achieve higher performance.

However, DFAs suffer from state explosion [111], especially when regular ex-

69



70 CHAPTER 4. REGULAR EXPRESSION MATCHING

pressions contain wildcards (‘.’, ‘?’, ‘+’, ‘*’), character classes or constrained

repetitions. A theoretical worst case study shows that a single regular expres-

sion of length n can be expressed as a DFA of up to O(kn) states, where k is the

number of symbols in the alphabet A (i.e., 28 symbols for the extended ASCII

code), while an NFA representation would require only O(n) states [112].

To exemplify NFA and DFA implementations of regular expressions consider

Figure 4.1. The NFAs allow multiple concurrent transitions from a single state,

i.e., in Figure 4.1(a) from state ‘1’ to states ‘1’ and ‘2’ with input letter ‘x’.

On the contrary, DFAs do not allow multiple transitions and therefore there

is only one active state at a time. Figures 4.1(a) and 4.1(b) depict the imple-

mentation of (x|y) ∗ x{2} in NFA and DFA, respectively. Here both NFA and

DFA have the same number of states, however this is not the case in the next

example of Figures 4.1(c) and 4.1(d). Implementing the regular expression

(x|y) ∗ y(x|y){n} (for n=2) in NFA requires four states and in DFA requires

eight states. Actually the number of NFA states in this example grows linearly

in n, while the number of DFA states grows exponentially in n. In several

cases, such as the above DFAs suffer from state explosion.

Several studies manage to increase the performance of DFAs in software and

reduce the required number of states [104–107]. However, this is not always

possible and usually compromises the accuracy of the implementations (i.e.,

ignoring overlapping matches). Alternatively, regular expressions can be im-

plemented in hardware. A variety of solutions have been proposed and imple-

mented in technologies that range from Programmable Logic Arrays [113,114]

to FPGAs [59]. In the past, some basic blocks have been introduced to imple-

ment wildcards, union and concatenation regular expression operators [115],

however, more complicated regular expression syntaxes are not efficiently sup-

ported. For example, in order to implement constrained repetitions, the same

circuit has to be repeated for a number of times equal to the number of repeti-

tions. When a DFA approach is chosen, a substantially larger number of states

is required compared to NFA solutions. As a consequence DFA approaches

result in large designs in terms of logic and/or memory. On the other hand,

when implemented properly, NFAs can be more compact and area efficient;

hardware is inherently concurrent, and therefore can be suitable for NFA im-

plementations.

We present next an NFA-based approach to match multiple regular expressions

in reconfigurable hardware [116, 117]. We apply and evaluate our approach in

IDS rulesets. The main contributions of this work are the following:

• We introduce three new basic building blocks for constraint repetition



71

1 3start

x|y

x 2 x

(a) NFA representation of the regular expres-

sion: (x|y) ∗ x{2}

1 3start

y

x 2 x

xy
y

(b) DFA representation of the regular expres-

sion: (x|y) ∗ x{2}

1start

x|y

y 2 x | y 43 x|y

(c) NFA representation of the regular ex-

pression: (x|y) ∗ y(x|y){n}, n=2.

1start

x

y 2

3

6

5

4

8

7

x

y

x

y

x

y

x
yx

y y
x

x

y
(d) DFA representation of the regular expression:

(x|y) ∗ y(x|y){n}, n=2.

Figure 4.1: NFA and DFA representations of the regular expressions (x|y) ∗x{2} and

(x|y) ∗ y(x|y){n} (for n=2). The second example illustrates the DFA state explosion.

operators, which are able to detect all overlapping matches. These

blocks handle regular expressions repetitions that require a single cy-

cle to match. When combined with previous research in NFA-based

hardware implementations, efficient designs can be achieved.

• Theoretical proofs are presented to show that two of the constrained

repetition blocks can be simplified without affecting their functionality.

• To improve the efficiency of the designs, we insert a pre-processing op-

timization stage. The extracted regular expressions are modified to suit

our hardware implementation. Syntax features that only facilitate soft-

ware implementations are discarded while others are replaced by equiv-

alent ones (i.e., conditional branches, lookahead statements).

• We employ several techniques to reduce the area requirements of our

designs, such as regular expressions prefix sharing, pre-decoding, cen-

tralized static pattern matching and character classes blocks, etc. Fur-

thermore, we take advantage of the Xilinx SRL16 shift registers to store



72 CHAPTER 4. REGULAR EXPRESSION MATCHING

multiple states using fewer FPGA resources.

• A methodology is introduced to automatically generate the regular ex-

pression pattern matching engines from the IDS rulesets. We show how

a hierarchical representation of the regular expressions is used to facil-

itate the automatic VHDL generation using basic building blocks. A

tool that outputs the VHDL circuit description of the design has been

developed.

• We are able to generate efficient regular expression engines, in terms of

area and performance, outperforming previous FPGA-based approaches.

Our designs match over 1,500 regular expressions and support 1.6-3.2

Gbps throughput requiring a few tens of thousand logic cells. Moreover,

the area requirements are comparable with DFA-based ASIC implemen-

tations which suffer however from state explosion.

• The proposed designs save the 75% of the required NFA states for the

IDS regular expressions sets at hand.

The remainder of this chapter is organized as follows. Section 4.1 offers some

statistics regarding the Perl-compatible regular expressions (PCRE) [24] used

in IDS. In Section 4.2 we survey previous work on hardware regular expression

pattern matching. Section 4.3 describes the top-level approach of our regular

expression engines, the basic building blocks and the techniques employed to

reduce area and increase performance. Section 4.4 presents the methodology

followed to automatically generate VHDL code describing the regular expres-

sion hardware engine for a given set of regular expressions. In Sections 4.5 and

4.6, we present the implementation results of our designs and compare them

with related work. Finally, Section 4.7 draws some conclusions and suggests

future work.

4.1 Regular Expressions in IDS

Recently, IDS rulesets contain increasingly more regular expressions creating

a significant bottleneck in IDS performance. Table 4.1 shows the recent in-

crease of regular expressions in Snort [11, 12] and Bleeding Edge [16] IDS

rulesets, while Figure 4.2 offers the graphical view of this increase for Snort

over the past years. Additionally, the exact number of constrained repetitions is

reported for each ruleset. Constrained repetitions are operators which indicate

a sub-expression to be matched repeatedly for a defined number of repetitions



4.1. REGULAR EXPRESSIONS IN IDS 73

Table 4.1: Regular expressions characteristics used in Snort and Bleeding Edge rule-

sets.

Rulesets

# Regular Expressions

Total
Constrained Repetitions

# Exactly# AtLeast# Between

Snort 2.4 (Mar. 2007) 1,672 282 496 11

Snort 2.4 (Jan. 2007) 1,615 274 495 11

Snort 2.4 (Dec. 2006) 1,589 273 495 10

Snort 2.4 (Nov. 2006) 1,616 271 495 10

Snort 2.4 (Oct. 2006) 1,504 265 478 11

Snort 2.4 (Apr. 2006) 509 209 470 2

Snort 2.3 (Mar. 2005) 301 124 464 1

Snort 2.2 (Jul. 2004) 157 85 22 1

Snort 2.1 (Feb. 2004) 104 52 19 0

Snort 1.9 (May 2003) 65 46 1 0

Bleeding (Dec. 2006) 318 47 7 17

Bleeding (Nov. 2006) 317 48 7 17

Bleeding (Oct. 2006) 310 43 7 17

(Exactly, AtLeast, and Between quantifiers, e.g., a{10}, a{10, }, a{10, 12}).

IDS rulesets include a large number of regular expressions and constrained rep-

etitions which continuously grow. For example, in May 2003 only 65 regular

expressions were present, in April 2006 increased to more than 500 and within

the year tripled exceeding 1,500. It is expected that the number of regular

expressions in the IDS rulesets will continue to increase since new attack de-

scriptions are constantly being added to the rulesets. Based on the data present

at the moment, the number of regular expressions seems to increase more than

the static patterns in Snort v2.4 (with respect to 2006, static patterns increased

2.2× and regular expressions 3×). Figure 4.3 illustrates the number of repeti-

tions and the number of appearances of the most commonly used constrained

repetitions (Exactly{N} and AtLeast{N,}) for the Snort v2.4 Oct. 06 ruleset.

Such operations appear tens or even hundreds of times having up to a thousand

repetitions, which indicates current IDS regular expressions complexity. Cur-

rently, on average one constrained repetition per two regular expressions exists

in Snort. Converting them to DFAs would result in thousands of states, which

would require a significant amount of hardware resources for encoding. Con-



74 CHAPTER 4. REGULAR EXPRESSION MATCHING

1

10

100

1,000

10,000

M a
y - 0

3
A u g

- 0 3
N o v

- 0 3
F e b

- 0 4
M a
y - 0

4
A u g

- 0 4
N o v

- 0 4
F e b

- 0 5
M a
y - 0

5
A u g

- 0 5
N o v

- 0 5
F e b

- 0 6
M a

y - 0
6

A u g
- 0 6

N o v
- 0 6

F e b
- 0 7

#RegExp #Exactly #AtLeast #Between

Figure 4.2: Characteristics of Snort rulesets regarding the regular expressions.

1

10

100

1000

1 2 3 4 5 6 7 8 9 1 0 1 2 1 4 1 5 1 6 1 9 2 1 2 3 2 7 2 8 3 0 3 2 3 7 4 9 5 0 6 3 6 5 6 8 6 9 7 1 1 0
0

1 1
7

1 2
5

1 2
8

1 5
0

1 5
7

1 9
0

2 0
0

2 1
6

2 3
0

2 4
6

2 5
0

2 5
5

2 5
6

2 6
0

2 9
4

3 0
0

4 0
0

4 3
2

5 0
0

5 1
2

5 1
3

5 1
9

5 2
6

9 0
0

1 0
0 0

1 0
0 6

1 0
2 4

1 0
2 5

Repetitions: N

# o
f a

pp
ea

ren
ce

s i
n S

no
rt 2

.4 
rul

es
et 

    

Exactly {N}
AtLeast {N,}

Figure 4.3: Distribution of two of the most commonly used constrained repetitions in

Snort IDS, type Exactly and AtLeast. Results are for the Snort v2.4 Oct. 2006 version.

sequently, dedicated blocks for these operations would substantially reduce the

cost of the IDS regular expression implementations.

Snort and Bleeding Edge adopted the Perl-compatible regular expression syn-

tax (PCRE) [24]. In Chapter 2.1 we described in more detail the use of regular

expressions in IDS and the PCRE features. There are two types of features

that are supported, the first ones are directly mapped to hardware building

blocks (wildcards, union, concatenation, constrained repetitions, and charac-

ter classes) and are explained in more detail in Section 4.3. The second type is

supported by replacing them with equivalent expressions that suit our hardware

implementations (backslash to escape meta-characters, backreferences, dollar,

flags, etc.) during a pre-processing stage. The PCRE syntax not currently



4.2. RELATED WORK 75

supported is related to some anchors (\A, \Z, \z), word boundaries (\b, \B),

differences between Greedy and Lazy quantifiers (we report both matches),

and a “continue from the previous match” command (\G). Since current Snort

and Bleeding Edge rulesets do not use these features, our synthesis tool has

been able to generate designs matching all the regular expressions of the IDS

rulesets.

4.2 Related Work

In 1959, Rabin and Scott introduced the NFAs and the concept of non-

determinism [118], showing that NFAs can be simulated by (potentially much

larger) DFAs in which each DFA state corresponds to a set of NFA states. Mc-

Naughton and Yamada [119] and Thompson [120] described two of the first

methods to convert regular expressions into NFAs. Thompson encodes the

selection of state transitions with explicit choice nodes and unlabeled arrows

(ǫ-transitions). On the other hand, McNaughton and Yamada, avoided unla-

beled arrows and allowed instead NFA states to have multiple outgoing arrows

with the same label. Their method is easier to map directly to hardware, since

each transition “consumes” an incoming character and the number of states is

reduced.

Matching Regular Expressions in hardware has been widely studied in the past.

In 1979, Mukhopadhyay proposed the basic blocks for Concatenation, Kleene-

star and Union operators [115]. In 1982, Floyd and Ullman discussed the im-

plementation of NFAs in Programmable Logic Arrays [113], proposing among

other aspects a hierarchical implementation described by the McNaughton-

Yamada algorithm [119]. Foster, described some regular expressions modifi-

cations to avoid latch formation in regular expressions implementation [121];

for example, two kleene-stars when put in sequence can form an erroneous

latch which causes incorrect operation.

Several NFA implementations have been proposed for reconfigurable hard-

ware. In 1999, Sidhu and Prasanna presented NFA-based implementations of

regular expressions in FPGAs [59] and used the basic blocks of [115] for Con-

catenation, Kleene-star and Union operators. Hutchings et al. used NFAs to

represent all the Snort static patterns into a single regular expression, requir-

ing substantially lower area [27]. Clark and Schimmel used pre-decoding to

share the character comparators of their NFA implementations and thus reduc-

ing even more hardware resources [32, 50]. Lin et al. saved area resources

of their NFA designs by sharing parts of the regular expressions [122]. Fi-



76 CHAPTER 4. REGULAR EXPRESSION MATCHING

a
bInput String

8-bit ASCII Decoder

RegExp 1

...
RegExp 2

RegExp N

RegExp 1

...

...
RegExp 2

RegExp N

Character Classes

256

Static PatternsStatic PatternsStatic Patterns

9

...

...
...
...

Regular Expressions

Regular Expression 1
Prefix 1

Reg Exp 3
Regular Expression N

Reg Exp 2 Encoder
.

.

.

Figure 4.4: Block diagram of our Regular Expression Engines.

nally, Moscola et al. in [123] attempted to combine previous NFA approaches

[32, 59] with a “pre-decoding” static pattern matching technique [31, 34].

Despite the fact that FPGAs are suitable for NFAs, several researchers fol-

lowed a DFA direction. Moscola et al. used DFAs to match static patterns,

since they discovered that static patterns can be represented in DFAs of practi-

cally O(n) states [61]. More recently, Baker et al. described a microcontroller

DFA implementation in FPGA for matching IDS regular expressions [124].

Their design updates its ruleset by only changing the memory contents. IDS

regular expressions are converted to DFAs in order to be ported into the pro-

posed microcontroller.

Brodie et al. proposed an ASIC implementation of regular expressions in [91].

They converted the IDS patterns and regular expressions into DFAs and im-

plemented them in high-speed FSM structures specially designed for regular

expression matching. Their architecture uses memory to store transition and

indirection tables and therefore the regular expressions can be modified by

changing the contents of the memory blocks.

In summary, some researchers use DFAs to evaluate regular expressions re-

sulting in designs with significant area/memory requirements [61,91,124]. The

rest employ NFAs, however, they do not solve the problem of constrained repe-

titions and consequently, as Sutton notes in [63], need to repeat the same circuit

in order to support them (i.e., fully unrolling the constrained repetitions).



4.3. REGULAR EXPRESSIONS ENGINE 77

4.3 Regular Expressions Engine

In this section, our regular expression engine is described. We exploit reconfig-

urable hardware and generate specialized circuitry for any given set of regular

expressions. Figure 4.4 depicts the top-level diagram of the proposed regular

expressions pattern matching engine. The incoming data (one byte per cycle)

feed a centralized ASCII decoder 8-to-256 bits. The output of the decoder

provides a single wire per character to the regular expression modules. This

way, each character is matched only once and all the regular expression mod-

ules receive the output lines from the decoder. For each regular expression

there is a separate module. Regular expressions with common prefixes share

the same prefix sub-module. The static sub-patterns (more than one character

long) included in each regular expression are matched separately in a DCAM

(Decoded CAM) static pattern matching module as described in Chapter 3.2.

DCAM can be easily integrated in the proposed Regular expression design and

therefore was preferred over the PHmem approach. Similarly, the character

classes (union of several characters e.g., (a|b)) are also implemented separately

and share their results among the regular expression modules. Both static pat-

tern matching and character class modules are fed from the ASCII decoder.

Each regular expression module outputs a match for the corresponding regular

expression and subsequently, all the matches are encoded on a priority encoder

described in Chapter 5.2.

4.3.1 Basic NFA blocks

Our design is based on building blocks that implement basic regular expres-

sion syntax features. A building block consists of one or many, inputs ik (in-

put tokens) that trigger the block and an output o. Additionally, a basic block

may have decoded characters, pattern matching and character classes signals

as inputs. The proposed blocks and consequently the entire regular expres-

sions designs detect all overlapping matches, as opposed to previous DFA

approaches [61, 91, 122]. To exemplify overlapping matches consider the fol-

lowing: given the regular expression “((ad?|b) + bcd)|d(bb)?” and the input

stream “adbbcb”, the following overlapping matches should be detected “d”,

“dbb” and “adbbcb”.

Table 4.2 depicts the list of all the supported blocks along with a brief de-

scription. For Kleene-star (*), Union (|) and Concatenation we use the

blocks described by Mukhopadhyay [115]. Extending upon them we imple-

ment blocks for Caret, Dollar, Dot, Question-mark, Plus, etc. Three new



78 CHAPTER 4. REGULAR EXPRESSION MATCHING

Table 4.2: The basic building blocks of our Regular Expression Engine.
Block Description NonMetaChar count

Character Matches a single character, based on the design of sin-

gle character described in [115].

1

Union Union operator of the regular expressions ri, as de-
scribed in [115].

The non meta chars of the
RegExpr ri

Concatenation Concatenation operator of the regular expressions ri,
as described in [115].

The non meta chars of the
RegExpr ri

Pattern Matches a string of characters. It has an interface for

the DCAM Module. The input token has to be de-
layed for N cycles through an SRL16 in order to be

correctly aligned with the output of the static pattern

matching module.

pattern length

Dollar ($) Validates the match if in the end of the packet. Based

on the Character Block [115].

0

Dot Matches any character but the new line. Based

on the Character Block [115] the input char is the

“newline” (\n) character inverted.

1

Caret (ˆ ) Starts a match every time a packet arrives. Based

on the Character Block [115], the input char is the

“beginning of packet” char.

0

Character Class Matches a set of characters. Based on the Charac-

ter Block [115], the input char is one of the outputs

of character class module. The character class

module ORs the characters included in a Char class.

1

RegexBlock Encapsulates hardware blocks that implement regular

expressions or sub-blocks of RegExprs.

# of non MetaChars of the

RegExpr

Question (?) r?, One or zero times the regular expression r, based

on the design of Kleene-star (r∗) described in [115].

The incoming OR gate (to the flip-flop) has to be re-

moved, consequently, the input token (i) goes directly

to the flip-flop.

# of non MetaChars of the

RegExpr r

Plus (+) r+, One or more times the regular expression r,

based on the design of Kleene-star (r∗) described

in [115]. The outgoing OR gate has to be removed,
consequently, the output token (o) is the output of the

flip-flop, instead of the output of the second OR gate.

# of non MetaChars of the

RegExpr r

Kleene (*) r∗, Zero or more times the regular expression r, as

described in [115].

# of non MetaChars of the

RegExpr r

Exactly r{N}, Matches r exactly N times. Constrained repe-
tition for single characters and sets of characters. De-

scribed in Section 4.3.1.

# of non MetaChars of the
repeated RegExpr r

AtLeast r{N, }, Matches r at least N times. Constrained

repetition for single characters and sets of characters.

Described in Section 4.3.1.

# of non MetaChars of the

repeated RegExpr r

Between r{N, M}, Matches r between N and M times. Con-

strained repetition for single characters and sets of

characters. Described in Section 4.3.1.

# of non MetaChars of the

repeated RegExpr r



4.3. REGULAR EXPRESSIONS ENGINE 79

o i

a RST

i

a

oFF FF

(a) a{1} = a

i

a RST RST

o

RST

FF FF FF

(b) a{N} = aa...a, N times

FFi o
SRL16

a

FF FF

4 Bit 
Counter

SRL16

o

RST Reset for
16 or N cycles

(c) The proposed Exactly block: a{N}. Successive flip-flops and SRL16s

with a reset mechanism.

Figure 4.5: The Exactly block: a{N}.

blocks are introduced and described below to implement constrained repeti-

tions (Exactly, AtLeast, and Between). These blocks, minimizes the num-

ber of required resources, when compared to previous DFA and NFA ap-

proaches [27, 32, 61, 63, 91, 122]. In the previous approaches, the constrained

repetition blocks have to be fully unrolled, and thus require significant amount

of hardware resources.

Exactly block:

This block (e.g., a{N}) will report a match for each N successive ‘a’ symbols.

The Exactly block a{N} is actually the concatenation of N characters ‘a’ and

can be defined as follows:

a{N} =







ǫ for N = 0
a for N = 1
aa..a,N times for N > 1

(4.1)

Figure 4.5(a) depicts the circuit that matches a single character a; it is a logical

AND between the input i and the match of character a feeding a flip-flop. This

circuit can be reduced to a single flip-flop having i as an input and the ā as

a reset. Applying the concatenation for N a’s results in a sequence of flip-



80 CHAPTER 4. REGULAR EXPRESSION MATCHING

i

a

olog2N Bit
Counter

RST

Count N

Figure 4.6: The AtLeast block: a{N, }.

flops as depicted in Figure 4.5(b). The correctness of this circuit can be proven

by induction, however, is also given by the definition of the concatenation

function and therefore omitted from this study. The sequence of flip-flops to

implement a{N} is actually a true FIFO with a reset (flush) pin, and can be

designed for FPGA-based platforms as depicted in Figure 4.5(c).

The proposed Exactly block (Figure 4.5(c)) has the following functionality.

When a token i is received in the input, the exactly block forwards it after N
matches. The input token enters the shift register if there is a match of the

‘a’ character (otherwise the register is reset). The shift register (successive

flip-flops and SRL16 resources) is N bits long and one bit wide. The token is

shifted for N cycles if there is no mismatch. In case of a mismatch, the shift

register must be reset. Each SRL16 (16 bits long) is implemented in a single

LUT and does not have a reset pin. Therefore, a mechanism is required to

reset the contents of the shift register. To do so, flip-flops are inserted between

the SRL16s. The first flip-flop is reset whenever a mismatch occurs. The rest

of the flip-flops are reset for 16 cycles in order to erase the contents of their

previous SRL16. When the shift register is shorter than 17 bits (N < 17) then

the reset of the second flip-flop lasts N − 1 cycles. We use a 4-bit counter in

order to reset the flip-flops for 16 cycles. It is noteworthy that a new token

can be immediately processed in the cycle after a reset, since the first flip-

flop and SRL16 continue to shift their contents. The block can keep track of

all incoming tokens and therefore supports overlapping matches. The exactly

block has an area cost O(N). However, the use of SRL16 minimizes the actual

resources, since an SRL16 and a flip-flop can be mapped on a single logic cell.

The implementation cost in terms of logic cells is relatively low, for example,

the regular expression a{1000} requires only 63 logic cells.



4.3. REGULAR EXPRESSIONS ENGINE 81

AtLeast block:

In this block (e.g., a{N, }) continuous matches will be reported for each N
or more successive ‘a’ symbols. When a token is received, the block should

output a token after N matches and the output should remain active until the

first mismatch. The AtLeast block can be defined as:

a{N, } =

∞
⋃

k=N

a{k} (4.2)

We prove next that the output of the AtLeast block is affected only by the

first input token after the last reset, while subsequent tokens can be ignored.

Consequently, we can implement this block with a single counter controlled

by the first token received after a reset (Figure 4.6). The counter counts up to

N and remains at value N activating the output until a mismatch.

Theorem 4.1. The output of the AtLeast block a{N, } =
∞
⋃

k=N

a{k} depends

on only the first still active input token (received after the last mismatch). Any

subsequent input token does not affect the output of the block.

Proof. Let ilast be the last token received at time t = 0, then the output of the

AtLeast block for this token is:

AtLeast(ilast) =
∞
⋃

k=N

a{k} (4.3)

Let also ifirst be the first token (still processed, not reset) received at time

−t < 0. Then the remaining AtLeast output for ifirst is:

AtLeast(ifirst) =







⋃∞
k=N−t a{k} for N > t

⋃∞
k=0 a{k} for N ≤ t

(4.4)

However, AtLeast(ilast) ⊂ AtLeast(ifirst) and therefore ilast can be ig-

nored.

Hence, the AtLeast block can be implemented using a single counter controlled

by the first input token after a reset. The counter keeps track of the number of

matches (up to N) and its implementation cost is O(log2 N). About 70% of



82 CHAPTER 4. REGULAR EXPRESSION MATCHING

o

a

Start Counting
M-N o

Output “1” 
for (M-N) 
matches

i

RST

N

RST

log2(M-N) Bit 
Counter

Figure 4.7: The Between block: a{N, M} = a{N}a{0, M − N}.

the constrained repetitions in Snort v2.4 are of this kind. Therefore, the above

implementation substantially reduces the area requirements of the hardware

engines.

Between block:

The Between block (e.g., a{N,M}), matches N to M successive matches of

‘a’, its formal definition is the following:

a{N,M} =

M
⋃

k=N

a{k} (4.5)

Let us first define a block a{0, N} =

N
⋃

k=0

a{k} which has an active output

from the time an input token is received up to N matches. We prove next that

the output of the a{0, N} block is affected by only the last input token, while

previous tokens can be ignored. Consequently, this block can be implemented

by a single counter which resets at every mismatch, starts counting from ‘0’

every time a new input token i arrives, counts up to N and then resets.

Theorem 4.2. The output of the block a{0, N} =
N
⋃

k=0

a{k} depends only on

the last still active input token (received after the last mismatch). Any previous

input token does not affect the output of the block.

Proof. Let ilast be the last token received at time t = 0, then the output of the

a{0, N} block for this token is:



4.3. REGULAR EXPRESSIONS ENGINE 83

a{0, N}(ilast) =

N
⋃

k=0

a{k} (4.6)

Let also iprev be any previous token still active received at time −t < 0, then

the remaining output tokens of the a{0, N} block for iprev is:

a{0, N}(iprev) =







⋃N−t
k=0 a{k} for N > t

Ø for N ≤ t

(4.7)

However, a{0, N}(iprev) ⊂ a{0, N}(ilast) and therefore iprev can be ignored.

The Between block a{N,M} can be considered as the concatenation of an

exactly block a{N} and a block such the one described above a{0,M − N}:

a{N,M} =

M
⋃

k=N

a{k} = a{N}

M−N
⋃

k=0

a{k} (4.8)

As depicted in Figure 4.7, the proposed design for the Between block is actu-

ally a{N}a{0,M −N}. The functionality of the Between block is the follow-

ing. The incoming token enters the shift register (length N ) which can be reset

(flushed) by a mismatch. After N simultaneous matches, the shift register out-

puts ‘1’ and the counter is enabled. The counter (counts up to M −N ) outputs

‘1’ for M −N simultaneous matches. Furthermore, it is reset and starts count-

ing from ‘0’ whenever it is enabled by the shift register, even if it has already

started counting for a previous token. In case of an intermediate mismatch, the

counter is reset. It could be assumed that the a{0,M − N} block and a sec-

ond counter (replacing the a{N}) would be sufficient to implement this block

without the use of the shift register. However, this is not possible since the

intermediate tokens would be lost and therefore other (overlapping) matches

would be missed. Consequently, the implementation cost of the between block

is O(N + log2(M −N)), and like the exactly block the FPGA area cost is not

high due to the use of SRL16s.

Design Issues:

The above constrained repetition blocks support repetitions of only a single

character or a character class. They do not support repetitions of expressions



84 CHAPTER 4. REGULAR EXPRESSION MATCHING

Not \n

FF FF o

FF

i

b

[^\n]{2}b+

Figure 4.8: An implementation for the regular expression b+[∧\n]{2}.

that require more than one cycle to match (e.g., (ab){10}), especially when

the length of the expression between the parenthesis is unknown or not con-

stant (e.g., ((ca) ∗ |b){10}, ((ab|b){10})). In these cases, the expressions are

unrolled. To our advantage however is the fact that more than 95% of the

constrained repetitions included in Snort v2.4 and Bleeding Edge IDS regular

expressions are of a single character or character class. The rest 5% are repeti-

tions of regular expressions that require multiple and possibly variable number

of cycles to match. These cases are implemented via unrolling the constrained

repetitions.

Detecting overlapping matches may not be useful when a basic building block

is at the end of a regular expression or forms one on its own. In that case the

first match is enough to match the regular expression. Then, the shift registers

of the Exactly and Between block can be reduced to a counter. On the contrary,

when a basic block is placed in a larger regular expression, the first match may

not lead to the match of the entire regular expression, while another overlap-

ping match may do. There are cases where detecting the last match would be

sufficient. For example, in the regular expression r = a{3}bc, only the last

match of a{3} block can result in a match of r, (i.e., given an input string

aaaaaabc). However, detecting only the last match without keeping track of

all input tokens is not straightforward.

We describe next an implementation example of the regular expression

b+[∧\n]{2} illustrated in Figure 4.8. The above regular expression detects one

or more ‘b’ characters followed by two characters that are not “new lines”.

The module consists of a Plus block (upper-left), a character block (down-left),

and an exactly{2} block (on the right). Consider an input string “bba \ n”. In

the first clock cycle the input ‘i’ will be high, and the first ‘b’ will be accepted.

Hence, the first flip-flop will be activated. At the second cycle the second ‘b’

will keep the first flip-flop high, and activate the second flip-flop. At the third



4.3. REGULAR EXPRESSIONS ENGINE 85

cycle, an ‘a’ arrives, the first flip-flop goes low, while the other two flip-flops

are high and the module outputs a match for the input string “bba”. Then, an

“\n” character arrives, which resets the exactly block, and therefore there is

no second match for the input string ‘ba \ n.

4.3.2 Area Optimizations

We apply several techniques to reduce the area cost of our designs. Apart from

the centralized ASCII decoder, first introduced by Clark and Schimmel [32],

we perform the following optimizations. As mentioned in the previous sub-

section, we employ the SRL16 modules to implement single bit shift registers

and store multiple NFA states. Additionally, we share all the common pre-

fixes; that is, regular expressions with a common prefix share the output of the

same prefix sub-module. Static patterns and character classes are also imple-

mented separately in order to share their results among the RegExp modules.

The above optimizations, excluding the use of SRL16, save more than 30% of

the total FPGA resources for the Snort v2.4 ruleset. Next, each optimization is

discussed in more detail.

Xilinx SRL16: Usually, the states of the NFA are stored in flip-flops, each

flip-flop representing a single state. An area efficient solution to store multiple

states is to configure Xilinx LUTs as shift registers (SRL16s). Many basic

blocks, such as constrained repetitions, need to store a large number of states,

which can also be implemented by shift registers. These shift registers are true

FIFOs, and consequently, can be implemented with SRL16s which require a

single logic cell to store 17 states (a single LUT plus a flip-flop). This extensive

use of SRL16s, to efficiently represent a great number of states, is one of the

main optimizations to reduce the area of our designs.

Prefix Sharing: In some rulesets (e.g., Snort v2.4) a large number of regular

expressions have common prefixes. These prefixes can be shared as depicted in

Figure 4.4. Without any additional hardware the common prefixes are imple-

mented separately, as complete regular expressions, and their outputs provide

an input to the suffixes of the corresponding regular expressions.

Sharing of Character Classes: Character Classes are widely used in Snort

ruleset. Each character class is a Union of several characters. We implement

these blocks separately and share their outputs in order to reduce the area cost.

As an example, note that there are more than 8,000 character class cases in the

Snort 2.4 Oct’06 regular expressions, which are reduced to about 62 unique

cases.



86 CHAPTER 4. REGULAR EXPRESSION MATCHING

Sharing of Static Patterns: Similarly to the character classes, this work con-

siders a static pattern matching module to match static patterns included in

the regular expression set. We use our previously proposed technique DCAM

(Section 3.2) and share the outputs of the module. The sub-patterns are

matched using DCAM because it can be integrated more efficiently with the

rest of the Regular Expression Engine compared to other more area efficient

solutions such as [42]. As an example, note that the Snort v2.4 Oct’06 regu-

lar expressions include more than 2,000 unique static sub-patterns of 35,000

characters in total, and therefore, a large amount of resources is saved.

4.3.3 Performance Optmizations

Two techniques have been employed to improve the performance of the regu-

lar expression engines proposed in this chapter. The first one keeps the fan-out

of certain modules low, while the second one pipelines (when possible) com-

binational logic. More precisely, like in our previous work [30], this study

considers fan-out trees to transfer the outputs of the decoder, the static pattern

matching (DCAM) and the character class blocks to the regular expression

modules. In doing so, the delays of the above connections are reduced at the

cost of a few registers. Second, modules such as the decoder, the DCAM and

the character class are pipelined. Pipelining the above modules is based on the

observation that the minimum amount of logic in each pipeline stage can fit in

a 4-input LUT and its corresponding register. This decision was made based

on the structure of Xilinx logic cells (for device families before Virtex5). The

area overhead of this pipeline is zero since each logic cell used for combina-

tional logic includes a flip-flop. Finally, the output of the pipelined modules is

correctly aligned with the rest of the design.

4.4 Synthesis Methodology

The designs described in this Chapter and also Chapters 3 and 5 are generated

automatically (fully of partially) by custom-VHDL generators. That is in order

to be able to regenerate fast a new design whenever an IDS ruleset changes.

The most interesting and complete case regarding the synthesis methodology

and automatic circuit generation is the one of regular expressions. A similar

methodology is considered for the rest of the designs proposed in this thesis.

We describe next the methodology followed to generate regular expression

hardware engines from PCRE regular expressions. The methodology is sup-



4.4. SYNTHESIS METHODOLOGY 87

VHDL
Generator

.VHD
Files

Compare

PCRE 
Regular 

Expressions
Pre-

processing

Logic 
Synthesis and 
Place & Route

FPGA
BitStreams

Software
Regular 

Expressions 
Engine

RTL
Simulation

Test
Patterns

Test
Patterns

Generator

Hardware
Matches

Software
Matches

Building
Blocks
Library

Figure 4.9: Proposed methodology for generating regular expressions pattern match-

ing designs.

ported by a tool which generates hardware engines based on the basic blocks

previously presented. Figure 4.9 illustrates the steps used for synthesis and

testing of the regular expression hardware engines. Concerning the hardware

synthesis of the regular expressions, the tool uses a syntax tree-based approach

to generate the structure of the hardware engines. That structure uses build-

ing blocks to implement the regular expression primitives. A structural-RTL

VHDL code with components described in behavioral-RTL VHDL is gener-

ated and logic synthesis, mapping, place and routing are then performed to

create the bitstreams able to program the target FPGA.

First, the regular expressions are extracted from the rulesets. Then, an au-

tomatic pre-processing step rewrites regular expressions in order to discard

any software related features (conditionals-lookahead) and to change other

features (back references) to suit hardware implementation. For example, a

conditional-lookahead statement chooses, between multiple regular expres-

sions suffixes, a single one that should be followed, based on the condition.



88 CHAPTER 4. REGULAR EXPRESSION MATCHING

The hardware implementations consider all the multiple suffixes and discard

the conditional statement. A back-reference stores the string matched by a

sub-RegExp and uses it in a subsequent part of the RegExp. For example, the

expression (a|b)\1 has a back reference on (a|b) which is, e.g., the character

a when incoming character a matches the expression (a|b). Consequently, the

expression (a|b)\1 can be matched by the input strings aa or bb, but not by ab.

In our implementation we replace the back-references with the sub-RegExp

they refer to (e.g., (a|b)\1 becomes (a|b)(a|b)). This way our designs will not
miss any matches compared to the PCRE-software implementation, however,

may output some extra matches (e.g., (a|b)\1 will match the input string ab).

A more consistent representation of the back-references is planned for future

work. Finally, the flags included in regular expressions are considered, in

order to change (if necessary) the functionality of some blocks (flags such as

case (in)sensitive, multi-line, DOT includes \n, etc.).

After rewriting, each regular expression is transformed into a list of tokens (in

this case with the same meaning used by lexical analysis), and the sequences

of tokens are bound to “basic building blocks” which can be automatically

mapped to hardwired modules. At this level, the tool can perform a number of

optimizations. For example, fully unrolling of certain constrained repetitions

(i.e., non single character and non single character classes) is done at this level.

Some rules are applied to enable full unrolling of some expressions (e.g., fully

unrolling of Between blocks when {n,m}, 0 ≤ n ≤ 2 and 1 ≤ m ≤ 3).
These rules are based on the fact that until a certain value of repetitions it is

better - area and performance wise - to fully unroll the constrained repetition.

The following are examples of rewritten regular expressions. Note that the

following rewritten rules are applied for m > 3 since for lower values of m
the regular expression is fully-unrolled:

R{0,m} ⇒ ((RR?)|R{3,m})?
R{1,m} ⇒ (RR?|R{3,m})
R{2,m} ⇒ ((RR)?|R{3,m})

Performing multiple passes, the tool creates a hierarchical structure of each

regular expression in order to generate the VHDL descriptions for the hardware

blocks. Figure 4.10 illustrates an example of a hierarchical decomposition of

the regular expression “∧CEL \ s[∧\n]{100, }”. First, the tool parses the

regular expression, creates the regular expression hierarchy and identifies the

basic building blocks (upper part of Figure 4.10). Then, the parser gathers the

information needed for its block. For the example of Figure 4.10, that is, the



4.4. SYNTHESIS METHODOLOGY 89

CARET PATTERN CHAR
CLASS QUANTIFIER

ATLEAST

CHAR
CLASS(N)

^ CEL \s

{100,}

[^\n]

CARET PATTERN CHAR
CLASS ATLEASTCHAR

CLASS(N)

^ CEL \s {100,}[^\n]

Figure 4.10: Hierarchical decomposition or the regular expression “∧CEL \
s[∧\n]{100, }”.

Table 4.3: Generation and Implementation times for Snort and Bleeding rulesets of

Oct.’06.

Rulesets # RegExprs
HDL Generation Synthesis Map Time Place & Route

Time (hh:mm:ss) (hh:mm:ss) (hh:mm:ss) (hh:mm:ss)

Snort 2.4
1,504 00:00:22 00:57:54 02:24:47 01:30:47

Oct. 2006

Bleeding
310 00:00:09 00:01:55 00:26:56 00:16:49

Oct. 2006

characters of the character classes and the repeated expression, and the number

of repetitions for the AtLeast block are detected. Subsequently, the generation

of the VHDL representation is straightforward. A bottom-up approach is used

to construct each regular expression module based on the hierarchy extracted

by the tool.

After the VHDL generation, the functionality of the design is automatically

tested. Based on the regular expression set, the tool generates input strings

covering a subset of possible matches. There is at least one random string that

matches each regular expression. These input strings are used by the hardware

implementations and by a software regular expression implementation. As

shown in Figure 4.9, the hardware implementations are tested by comparing

their outputs with the results of the software regular expressions engine.



90 CHAPTER 4. REGULAR EXPRESSION MATCHING

The compilation of current IDS regular expression sets into VHDL hardware

descriptions requires a few tens of seconds, while the logic synthesis, map-

ping and place & route of the design takes a few hours when the time and area

constraints are tight. Looser implementation constraints would lead to shorter

implementation time. Table 4.3 shows the time required in each stage for gen-

erating the regular expression hardware engines of Snort and Bleeding rulesets

of Oct’06. Snort contains about 5× more regular expressions and therefore

requires longer time. The generation of the VHDL code for Snort was com-

pleted in 22 seconds, while the synthesis, map and P&R required about 4 hours

in total. Compared to Snort, the Bleeding ruleset is substantially smaller. Our

tool required 9 seconds to generate the VHDL code, and less than 45 min-

utes for the subsequent steps. We can observe that the time required for the

VHDL generation is negligible compared to the time required for the other

stages (from RTL synthesis to the bitstreams ready to be downloaded to an

FPGA device). Moreover, the VHDL generation scales better than the subse-

quent implementation stages as the regular expression set grows. For 5× more

regular expressions the compilation time increases only 2.5×, synthesis 29×,

and map and P&R about 5.5×.

4.5 Evaluation

In this section, we present the evaluation of our regular expression pattern

matching designs. The designs have been implemented in Xilinx Virtex2 and

Virtex4 devices. The performance is measured in terms of operating frequency

and throughput (post place & route results), and FPGA area cost in terms of

required LUTs, flip-flops (FFs) and logic cells (LCs). The size and density of

the regular expressions sets is evaluated counting their number of non-Meta

characters. Meta characters are the ones that have a special meaning/function

in the regular expression, the rest are non-Meta characters. Table 4.2 presents

the number of Non-Meta characters for each basic building block. For exam-

ple, a character class [A−Z] or a constrained repetition a{100} counts as one

non-Meta character. This might not be the most indicative metric to measure

the size of a regular expression, however, it provides an estimate of the regular

expressions sets and enables us to compare against related approaches.

We first evaluate the area cost of the proposed constrained repetition blocks.

Then, we show the area reduction and the performance increase achieved by

the proposed techniques, offering a step-by-step optimization flow. Finally, we

present the detailed results of our designs when all optimizations are enabled.



4.5. EVALUATION 91

0 2000 4000 6000 8000 10000
10

0

10
1

10
2

10
3

A
re

a
 C

o
s
t 
(#

 L
o
g
ic

 C
e
lls

)

N

Between{N,2N}

Exactly{N}

AtLeast{N,}

Figure 4.11: Area cost of the constrained repetitions blocks.

For evaluation purposes the regular expressions included in three different IDS

rulesets are considered. Namely, the Snort v2.4 of April 2006 and October

2006 [12], and Bleeding Edge of October 2006 [16]. Snort v2.4 of April 2006

contains 509 unique regular expressions of 19,580 non-Meta characters in to-

tal, while the October version is more than 3× larger having 1,504 regular

expressions and 69,127 non-Meta characters. The Bleeding edge ruleset uses

relatively fewer regular expressions (310) of 13,441 non-Meta characters in

total. Table 4.1 includes the main characteristics of these rulesets.

Constrained Repetitions Area Requirements:

Figure 4.11 illustrates the area requirements of the three proposed constrained

repetition blocks for different number of repetitions. The exactly block a{N}
for 10 repetitions (i.e., N =10) needs 5 logic cells (LCs), for N =1,000 it uses

63 LCs, and for 10,000 repetitions needs 593 LCs. Although the Exactly block

has O(N) area requirements, the actual cost is only N
17 LCs plus a 4-bit counter.

The Virtex5 SRL32s would reduce the area cost to N
33 , while an embedded reset

pin in the SRLs would save the 4-bit counter cost. The AtLeast block a{N, }
scales better as the number of repetitions increases due to its O(log2 N) area

cost. For 1,000 and 10,000 repetitions the AtLeast block needs only 22 and

41 LCs respectively. Finally, a Between block a{N,M} of N =1,000 and

M =2,000 requires 85 logic cells, and for N =10,000 and M =20,000 needs

634 LCs.



92 CHAPTER 4. REGULAR EXPRESSION MATCHING

Advantages of our Regular Expressions Optimizations:

Next, we show a progressive area and performance improvement applying dif-

ferent optimizations (see Figure 4.12). The designs have been implemented in

a single device (Virtex2-8000-5) in order to perform a fair comparison. The

above device is the largest of the Virtex2, however, its speed grade (-5) is lower

than other devices of the same family. The lower speed grade and the absence

of area constraints is the reason why the results in Figure 4.12 are slightly dif-

ferent than the best final results depicted next in Table 4.4. For the three sets of

regular expressions included in the IDS rulesets mentioned above, three major

optimizations are enabled one-by-one. The reference design used to evaluate

this proposal is the Sidhu and Prasanna approach [59] combined with the char-

acter pre-decoding technique of [32, 34]. We were able to implement a design

for the reference approach only for the Bleeding edge ruleset. In that case,

the number of constrained repetitions is relatively small to fit the design in a

single FPGA device. For the rest of the rulesets we only measure the required

states needed when unrolling the constrained repetitions operators. The first

optimization is to use the constrained repetition blocks previously described in

this chapter. Subsequently, the prefix sharing optimization is enabled in order

to reduce the required area. Finally, the centralized modules which implement

the character classes and match the static patterns are included.

In Bleeding edge IDS ruleset the reference design requires 2.5× more area

than the design using the constrained repetition blocks. As depicted in Figure

4.12(a), that is about 17,000 more flip-flops which correspond to the number

of states required when unrolling the constrained repetition expressions. The

Exactly and Between blocks store about 15,000 states in about 900 logic cells

exploiting SRL16s. Prefix sharing did not reduce the area requirements, due

to the small number of regular expressions implemented. When dedicated pat-

tern matching and character classes modules are added then 25% of the area

is saved and the maximum clock frequency is improved by 50%. The last de-

sign has 3× less area and more than twice the performance compared to the

reference one.

Figure 4.12(b) illustrates the equivalent results for Snort v2.4 of April 2006.

This set of regular expressions contains about 700 constrained repetitions that

correspond to 470K states when unrolled. Consequently, a reference design

would need to store about 470K states more than the one that exploits our

constrained repetitions building blocks. Given that about 440K of these states

are due to the AtLeast block (a{N, }) which we implement with an area cost

of O(log2 N), the area savings of the proposed building blocks are increased.



4.5. EVALUATION 93

0
5,000
10,000
15,000
20,000
25,000
30,000

Reference + Constraint
Repetitions

+ Prefix Sharing

Designs

# F
F o

r L
UT

s

0
50
100
150
200
250
300

Fr
eq

ue
nc

y (
MH

z)

+ Pattern Matching &
Character Class

LUTs Flip-Flops Frequency

(a) Bleeding Edge Oct’06

+ Constraint Repetitions + Prefix Sharing + Pattern Matching &
Character ClassDesigns

# F
F o

r L
UT

s

Fr
eq

ue
nc

y (
MH

z)

LUTs Flip-Flops Frequency

0

10,000

20,000

30,000

40,000

50,000

0

50

100

150

200

250

(b) Snort Apr’06

0
10,000
20,000
30,000
40,000
50,000
60,000
70,000
80,000

+ Constraint Repetitions + Prefix Sharing + Pattern Matching &
Character ClassDesigns

# F
F o

r L
UT

s

0

50

100

150

200

Fr
eq

ue
nc

y (
MH

z)

LUTs Flip-Flops Frequency

(c) Snort Oct’06

Figure 4.12: Area and performance improvements when applying a step-by-step opti-

mization for three different IDS rulesets.



94 CHAPTER 4. REGULAR EXPRESSION MATCHING

We need shift registers only in the Exactly and Between blocks which store

about 30K of states in 2,000 logic cells using SRL16. When prefix sharing

is applied additionally to the constrained repetition blocks, a 15% area re-

duction is achieved, while the centralized modules for pattern matching and

character classes add another 15% area improvement and a 50% increase in

performance. The fully optimized design compared to the one which uses

only the constrained repetitions building blocks requires about 1/3 less FPGA

resources and achieves about 50% higher frequency.

Figure 4.12(c) depicts the area and performance gain when applying the op-

timizations in the largest regular expressions set used Snort v2.4 of October

2006. The overall number of states required for the ∼750 constrained repe-

titions when unrolled is about 480K, and 440K of them due to the AtLeast

module. In practice, that is the number of extra states required when the con-

strained repetitions blocks are not used. The 37 Kbits of storage needed for the

Exactly and Between blocks are implemented in about 2,200 logic cells. Prefix

sharing further reduces area about 15% without significant performance gain.

A fully optimized design, using centralized static pattern matching and char-

acter classes saves 15% more area and achieves twice the previous maximum

operating frequency.

Although the number of required flip-flops is reduced when a new optimization

is enabled, this is not the case for the utilized LUTs. Designs that match the

static patterns in a separate module require more LUTs than before. Without

this optimization static patterns are matched character-by-character as depicted

in Figure 4.5(a). More precisely, the ASCII decoder provides the decoded

value of each character, the input token is registered and the inverted decoded

character is used for the reset of the flip-flop. This way only a few LUTs are

required however a significant amount of flip-flops are used. On the contrary,

using a centralized module to match the patterns (DCAM [34]) uses shared

SRL16s (each implemented in a LUT) to shift the decoded characters reducing

the required flip-flops and increasing the number of LUTs.

In general, our approach results in significant area savings and performance

improvements. The dedicated constrained repetition blocks substantially re-

duce the overall number of required states. The low area requirements of

the AtLeast block is especially suitable for IDS regular expressions where the

AtLeast statements correspond to over 90% of the total number of constrained

repetitions states (when constrained repetitions are unrolled). The prefix shar-

ing optimization leads to a further ∼15% area reduction. Moreover, the static

pattern matching and character classes modules save another ∼15% of area and



4.5. EVALUATION 95

improve the maximum operating frequency by 1.5-2×. All in all, compared to

previous implementations over 75% of the required FA states are saved. That

is, for our largest RegExp set, over 400Kbits of states are saved and only 150K

states need to be stored in about 40K flip-flops and 7K SRL16s.

Implementation Results:

We further present the detailed results of the fully optimized designs imple-

mented in the fastest Virtex2 and Virtex4 devices for the three IDS rulesets.

The first part of Table 4.4 depicts the area cost and the performance results

of our designs. More precisely, we report the required LUTs, flip-flops (FFs),

logic cells (LCs) and logic cells per matching non-meta character, and the

maximum processing throughput for each design. It is noteworthy that all

designs process a single byte per clock cycle. Matching the 310 regular ex-

pressions of Bleeding Edge ruleset results in about 2.2 and 3.2 Gbps through-

put in Virtex2 and Virtex4 devices, respectively. Less than 11,000 logic cells

are required which translates to 0.8 logic cells per non-Meta character. The

Snort v2.4 ruleset of April 2006 includes over 500 regular expressions and a

great number of constrained repetitions. Consequently, it requires 2.5× more

logic cells and about 1.28 LCs per non-Meta character. The generated design

can support 2 and 2.9 Gbps throughput in Virtex2 and Virtex4 devices, re-

spectively. Although the largest Snort ruleset of Oct’2006 includes 3× more

regular expressions, the number of constrained repetitions has increased only

7%. Therefore, the generated design needs only 0.66 logic cells per charac-

ter and a total of 45,586 logic cells. Note that the overall size of the circuit

causes a performance reduction. The maximum throughput achieved is 1.6

Gbps in a Virtex2-4000 and 2.4 Gbps in a Virtex4-60. In general, the number

of constrained repetitions in the ruleset and in particular the area consuming

ones (Exactly O(N) and Between blocks O(N + log2(M − N))) affect the

required resources and the number of LCs per character. For example, both

Snort rulesets have similar number of constrained repetitions although the re-

cent one (Oct’06) matches 3× more regular expressions. Hence, the area cost

(LC/nMchar) of Snort Oct’06 is substantially lower (half) than the one of Snort

Apr’06. As aforementioned, as the design becomes larger the maximum pro-

cessing throughput decreases. Snort Oct’06 designs maintain about 75% of

the bleeding edge designs performance having a ruleset about 5× larger. Con-

sequently, performance scales relatively well as the ruleset grows, while the

area resources per matching character are not significantly affected. Finally,

partitioning the designs into smaller blocks similarly to [34], can alleviate per-



96 CHAPTER 4. REGULAR EXPRESSION MATCHING

formance decrease at the cost however of extra resources. We partitioned the

designs in groups of 256 and 512 regular expressions (G256, G512). Our

results of partitioned designs show that a 30% and 12% performance improve-

ment can be achieved at the cost of 10% and 4.5% increase in resources for the

G256 and G512 respectively.

Scalability:

Observing the performance and area results of the three different regular ex-

pressions sets we can derive some conclusions regarding the scalability of the

proposed approach. Performance scales well as the number of regular expres-

sions increases, especially when using partitioning for large designs. More

precisely, we can obtain 2-2.2 Gbps throughput in a Virtex2 device for all

three rulesets, while partitioning is required for the Snort Oct’06. The area

requirements heavily depend on the characteristics of the implemented regular

expressions (number of constrained repetitions, prefix sharing, included static

patterns), therefore, it is difficult to safely make some conclusions. The area

results, however, show that the area requirements are about 0.6-1.3 logic cells

per Non-Meta character (LC/char). In summary, performance can scale well

exploiting partitioning when needed, while the area cost depends on the ruleset

and can be estimated by counting LC/char.

4.6 Comparison

Next we attempt a fair comparison with previously reported research on soft-

ware and hardware regular expression matching approaches.

Recent state of the art software-based solutions offer limited performance and

have scalability problems as the regular expression set grows. More precisely,

when matching 70-220 regular expressions a NFA approach supports 1-56

Mbps throughput (Yu et al. [104]). To provide a faster solution Yu et al.
propose a DFA solution and rewrite the regular expressions at hand as follows:

eliminate closure operands (*, +, ?), e.g., \s+ ⇒ \s, reduce the repetitions of

constrained repetition operators, e.g., [A − Z]{j+} ⇒ [A − Z]{j, k}, and do

not detect overlapping matches. Hence the accuracy of their implementation

is compromised. Their DFA approach requires several Mbytes of memory for

only a few tens of regular expressions and achieves 0.6-1.6 Gbps throughput

depending on the regular expression set and the input data [104]. Compared

to our approach, NFA software approaches support about 40× lower through-



4.6. COMPARISON 97

put, while DFA software solutions when matching a 10× smaller set achieve

20-65% of our performance.

We present below a detailed comparison with hardware regular expression

matching approaches. Table 4.4 contains performance and area results of the

most efficient hardware regular expression approaches. In order to compare in

terms of area with designs that utilize memory, the memory area cost is mea-

sured based on the fact that 12 bytes of memory occupy area similar to a logic

cell [101]. Finally, we evaluate and compare the designs with related research,

using the Performance Efficiency Metric (PEM). PEM takes into account both

performance and area cost and is described by the following equation:

PEM =
Performance

Area Cost
=

Throughput

Logic Cells + MEMbytes
12

Non−Meta Characters

(4.9)

The metric is the one of Eq. 3.13 for static pattern matching designs. In the

case of regular expressions, the metric differs in the way the non-meta charac-

ters are counted. As shown in Table 4.2, we count the Non-Meta characters of

a regular expression set as proposed in [27].

Our designs achieve up to 2.5× higher throughput compared to designs that

process the same number of incoming bits per cycle and require the lowest

area cost. More precisely, compared to Lin et al. [122], our design requires

the same or up to 2× more resources. Their design needs 0.66 LC per charac-

ter, while our designs occupy 0.66 to 1.28 LC per character. Unfortunately, Lin

et al. do not report any performance results focusing only on minimizing the

hardware resources and therefore we cannot measure their overall efficiency.

Baker et al. implemented multiple DFA microcontrollers, which are updated

by changing the contents of their memories instead of reconfiguring the FPGA

device [124]. Due to this design decision, their module requires about 5-10×
more resources than our engines taking into account their memory require-

ments. Furthermore, they support about half the throughput compared to our

solution and have a 10-20× lower efficiency.

Brodie et al. implemented DFAs using FSM-based engines aiming at ASIC

implementations [91]. Due to their high area cost their entire design cannot

be prototyped in current FPGA devices. A single engine of Brodie et al. that

matches approximately a single regular expression has been prototyped in a

Virtex2 device. It achieves 4 Gbps (2× vs. our design), processing 4 bytes

per cycle. A single engine requires 860 logic cells and 96 Kbits memory.

Their complete design matches 315 Snort-PCRE regular expressions and has

a density of 204 chars/mm2 in a 65 nm technology. Assuming the same tech-



98 CHAPTER 4. REGULAR EXPRESSION MATCHING

nology, we synthesized our largest design in a Virtex5 (65 nm) device. We

adjusted only the SRL16s into Virtex5 SRL32s and not our pipeline which

is tailored for 4-input LUTs and not the Virtex5 6-input LUTs. Our design

matches more than 1,500 regular expressions (69,000 non-meta characters),

occupies less than 2/3 of a Virtex5LX-110 (729 mm2) which leads to a 142

chars/mm2 density. Consequently, our approach has comparable area require-

ments, while we would support roughly 4-5× lower throughput. Despite the

lower performance results compared to the above ASIC implementation, there

are several advantages to oppose. Brodie et al. implementation suffers from

the DFA drawbacks such as lack of support to overlapping matches and state

explosion. For instance, in case an IDS regular expression when converted to

a DFA requires more states than can be stored in the available memory per en-

gine, then this regular expression cannot be implemented. In addition, the im-

plementation and fabrication of an ASIC is substantially more expensive than

an FPGA-based solution. Therefore, reconfigurable hardware is an attractive

solution for regular expression pattern matching providing higher accuracy,

fast time to market and low cost.

Clark et al. and Hutchings et al. match only static patterns transformed into

regular expressions [27,32] and therefore their designs are simpler. Compared

to Hutchings et al. we achieve more than 2× their throughput (taking into ac-

count that VirtexE devices are about 30-40% slower than Virtex2) and occupy

less than half the area. Compared to Clark and Schimmel design that processes

8-bits per cycle, we achieve similar performance requiring 25-50% fewer re-

sources. Our designs have similar efficiency (based on the PEM) compared to

Clark and Schimmel second design which processes 32 bits per cycle. In static

pattern matching, it is relatively straightforward to exploit parallelism and to

increase resource sharing. Notice however, this shows that our designs, albeit

dealing with dynamic pattern matching, are also comparable to static pattern

matching solutions (unable to deal with most regular expressions). Finally,

Sidhu et al. and Moscola et al. implemented only few regular expressions.

Therefore, their results may not be compared to designs that match complete

rulesets, although, the approach presented in this here clearly outperforms their

designs.



4.6. COMPARISON 99

T
ab

le
4

.4
:

C
o

m
p

ar
is

o
n

b
et

w
ee

n
o

u
r

R
eg

E
x

p
E

n
g

in
es

an
d

o
th

er
H

W
re

g
u

la
r

ex
p

re
ss

io
n

ap
p

ro
ac

h
es

.

D
es

cr
ip

ti
o
n

R
eg

E
x
p
/

In
p
u
t

D
ev

ic
e

T
h
ro

u
-

L
o
g
ic

L
o
g
ic

M
E

M
#
ch

ar
s

P
E

M
S

ta
ti

c
b
it

s
g
h
p
u
t

C
el

ls
C

el
ls

P
at

te
rn

s1
/c

y
cl

e
(G

b
p
s)

/c
h
ar

O
u
r

R
eg

E
x
p

E
n
g
.

R
eg

E
x
p

8

V
ir

te
x
2

2
.1

9
1
0
,6

9
8

0
.8

0
0

1
3
,4

4
1

2
.7

5

B
le

ed
in

g
E

d
g
e

O
ct

’0
6

V
ir

te
x
4

3
.2

6
4
.1

0

O
u
r

R
eg

E
x
p

E
n
g
.

V
ir

te
x
2

2
.0

0
2
5
,0

7
4

1
.2

8
0

1
9
,5

8
0

1
.5

6

S
n
o
rt

A
p
r’

0
6

V
ir

te
x
4

2
.9

0
2
.2

7
O

u
r

R
eg

E
x
p

E
n
g
.

V
ir

te
x
2

1
.6

0
4
5
,5

8
6

0
.6

6
0

6
9
,1

2
7

2
.4

3

S
n
o
rt

O
ct

’0
6

V
ir

te
x
4

2
.4

2
3
.6

8

P
ar

ti
ti

o
n
in

g
G

2
5
6
.

V
ir

te
x
2

2
.1

0
5
0
,0

1
8

0
.7

3
0

2
.9

0

P
ar

ti
ti

o
n
in

g
G

5
1
2

1
.8

2
4
7
,4

2
4

0
.6

9
0

2
.6

4

L
in

e
t
a
l.

[1
2
2
]

N
F
A

R
eg

E
x
p

8
V

ir
te

x
E

N
/A

2
1
3
,7

3
4

0
.6

6
0

2
0
,9

1
4

N
/A

2

B
ak

er
e
t
a
l.

[1
2
4
]

D
F
A

µ
-c

tr
l

R
eg

E
x
p

8
V

ir
te

x
4

1
.4

N
/A

2
.5

6
6
M

b
1
6
,7

1
5

0
.2

2

S
id

h
u

e
t
a
l.

[5
9
]

N
F
A

s
R

eg
E

x
p

8
V

ir
te

x
0
.4

6
1
,9

2
0

6
6

0
2
9

0
.0

1

B
ro

d
ie

e
t
a
l.

[9
1
]

R
eg

E
x
p

3
2

V
ir

te
x
2

4
.0

8
6
0

N
/A

9
6
K

b
p
er

en
g
in

e3
N

/A
3

D
F
A

s
A

S
IC

1
6
.0

N
/A

N
/A

2
7
M

b
1
1
,1

2
6

N
/A

3

H
u
tc

h
in

g
s

e
t
a
l.

[2
7
]

N
F
A

s
S

t.
P

at
te

rn
s

8
V

ir
te

x
E

0
.4

4
0
,2

3
2

2
.5

2
0

1
6
,0

2
8

0
.1

6

C
la

rk
e
t
a
l.

[3
2
]

S
ta

ti
c

8
V

ir
te

x
2

2
.0

2
9
,2

8
1

1
.7

0
0

1
7
,5

3
7

1
.1

9

D
ec

o
d
ed

N
F
A

s
P

at
te

rn
s

3
2

-8
0
0
0

7
.0

5
4
,8

9
0

3
.1

0
2
.2

6

M
o
sc

o
la

e
t
a
l.

D
F
A

s
[6

1
]

S
t.

P
at

te
rn

s
3
2

V
ir

te
x
E

1
.1

8
8
,1

3
4

1
9
.4

0
4
2
0

0
.0

6

1
W

e
d
en

o
te

d
as

“R
eg

E
x
p
”

th
e

d
es

ig
n
s

th
at

m
at

ch
P

C
R

E
S

n
o
rt

re
g
u
la

r
ex

p
re

ss
io

n
s,

an
d

“S
ta

ti
c

p
at

te
rn

s”
th

e
o
n
es

th
at

m
at

ch
ID

S
(S

n
o
rt

)
st

at
ic

p
at

te
rn

s
b
y

co
nv

er
ti

n
g

th
em

in
to

re
g
u
la

r
ex

p
re

ss
io

n
s.

2
T

h
er

e
ar

e
n
o

p
er

fo
rm

an
ce

re
su

lt
s

(f
re

q
u
en

cy
-t

h
ro

u
g
h
p
u
t)

fo
r

th
is

d
es

ig
n
.

3
T

h
e

au
th

o
rs

p
ro

v
id

e
th

e
lo

g
ic

an
d

m
em

o
ry

co
st

p
er

E
n
g
in

e.
T

h
ey

n
ee

d
2
8
7

en
g
in

es
to

m
at

ch
3
1
5

P
C

R
E

-S
n
o
rt

re
g
u
la

r
ex

p
re

ss
io

n
s.

T
h
ei

r

co
m

p
le

te
A

S
IC

d
es

ig
n

m
at

ch
in

g
th

e
3
1
5

re
g
u
la

r
ex

p
re

ss
io

n
s

(1
1
,1

2
6

ch
ar

s)
w

o
u
ld

re
q
u
ir

e
ab

o
u
t

2
4
7
K

lo
g
ic

ce
ll

s
an

d
2
7
M

b
it

s
o
f

m
em

o
ry

if
it

co
u
ld

b
e

im
p
le

m
en

te
d

in
a

V
ir

te
x
2
.

In
a

6
5

n
m

te
ch

n
o
lo

g
y

it
is

es
ti

m
at

ed
th

at
th

ei
r

m
o
d
u
le

w
o
u
ld

h
av

e
a

d
en

si
ty

o
f

2
0
4

ch
ar

ac
te

rs
p
er

m
m

2
.



100 CHAPTER 4. REGULAR EXPRESSION MATCHING

4.7 Conclusions

In this chapter we presented techniques for FPGA-based regular expression

pattern matching. We described a method to automatically generate hardwired

engines that match Perl-compatible regular expressions (PCRE). We intro-

duced three new basic building blocks to implement constrained repetitions

and proved that two of them can be simplified without affecting their function-

ality. Moreover, a number of techniques were employed to minimize the area

cost and improve performance. Large regular expressions IDS rulesets were

employed to validate the proposed approach. Furthermore, we discussed our

methodology and suggested techniques to rewrite PCRE regular expressions

in order to suit hardware implementations. The proposed approach is used

to implement the entire Snort and Bleeding Edge regular expression sets and

saves about 75% of the NFA states compared to previous approaches. Our de-

signs achieve a throughput of 1.6-2.2 and 2.4-3.2 Gbps in Virtex2 and Virtex4

devices, respectively and require 0.66-1.28 logic cells per non-Meta charac-

ter. Based on the performance efficiency metric (PEM), our designs are 10-

20× more efficient than the best related FPGA approaches. Even compared

to designs that match static patterns using regular expressions, and therefore

are simpler, our approach has similar and up to 10× better efficiency. In addi-

tion, the proposed NFA-based designs have comparable area costs with current

ASIC DFA-based approaches.



Chapter 5

Packet Prefiltering

A
s Intrusion Detection Systems (IDS) utilize more complex syntax

to efficiently describe attacks, their processing requirements increase

rapidly. Hardware and, even more, software platforms face difficulties

in keeping up with the computationally intensive IDS tasks, and face overheads

that can substantially diminish performance. A packet classifier and a content

matching engine used to be sufficient when implementing the detection core of

an IDS that comes after packet reassembly and reordering. However, networks

becoming faster and IDS systems, as described in Chapter 2.1, are becoming

more complex supporting more efficient attack descriptions; therefore a simple

merging of the packet classification and the content matching is not enough to

detect hazardous packets. More precisely, Snort IDS rules include statements

which, for example, define payload regions where specific patterns should be

matched (depth, offset) or require a pattern to be found within a num-

ber of bytes after matching another pattern (within, distance). Con-

sequently, each rule requires to be processed separately to keep track of the

payload matches and detect which parts of the payload are valid. Although,

software implementations are not heavily affected since each rule might be

matched separately (presumably sequentially), in hardware it used to be the

case that all payload patterns were matched in parallel and then a simple AND

with the packet classifier outcome would produce a rule match. However, re-

quiring to implement each rule separately to support these new IDS syntax

features, is not scalable and introduces significant overheads.

In this chapter, we introduce packet pre-filtering as a means to alleviate the

above overheads and improve IDS scalability in terms of area cost and perfor-

mance [125]. The main idea of packet pre-filtering is the following:

101



102 CHAPTER 5. PACKET PREFILTERING

Rule #1 Rule #2 Rule #3 Rule #N

Initial latency

Prefiltering latency

(a) Sequential processing.

Rule #1

Rule #2

Rule #3

Rule #N

Initial 
required 

PEs

required 
PEs
after 

Prefiltering

(b) Parallel processing.

Figure 5.1: The effect of packet pre-filtering in a sequential and a parallel IDS pro-

cessing model.

We observe that it is very rare for a single incoming packet to

fully or partially match more than a few tens of IDS rules. We

capitalize on this observation selecting a small portion from each

IDS rule to be matched in the pre-filtering step. The result of

this partial match is a small subset of rules per packet that are

activated for a full match. Given this pruned set of rules that can

apply to a packet, a second-stage, full-match engine can sustain

higher throughput.

More precisely, header matching (a 5-tuple filter i.e. Source IP Address, Desti-

nation IP Address, Protocol, Source Port and Destination Port) and a relatively

low-cost pattern matching module (matching 2-10 bytes per rule) activate only

a few tens of rules excluding all the rest from further processing.

To show the benefits of packet prefiltering we consider two extreme process-

ing models for intrusion detection. As depicted in Figure 5.1 we consider a

sequential model where each IDS rule is processed sequentially one by one

and a parallel model where all IDS rules are processed in parallel in differ-

ent processing elements. In the first case (Figure 5.1(a)), the initial latency of

a single packet is N times the processing latency of a rule, where N is the

number of rules in the IDS ruleset. When packet prefiltering is used then the

overall latency is reduced to only the number of rules that are activated. The

parallel model of Figure 5.1(b) requires N parallel engines to process each



103

rule requiring N times the area and power. Prefiltering activates only a small

subset of the ruleset and therefore requires less parallel engines than the initial

model. This translates in either area savings -implementing in hardware fewer

engines- or power savings by turning off the engines that are not used.

Packet pre-filtering is based on the observation that a single incoming packet

usually will not match (even partially) many attack descriptions. Especially,

when part of the payload is included in the filter, it is unlikely that a packet

matches multiple payload patterns of several rules. Not excluding other op-

tions, our solution could be integrated in a full-featured IDS detection engine

as follows: the pre-filtering module determines a “candidate matching” rule

subset per packet, and then (possibly multiple) specialized processing engines

are employed to fully match these rules. This approach exploits parallelism

between the match of different rules, that is not restricted to a reconfigurable

architecture; the exact rule processing can also be assigned to multiple threads

on the same or multiple processing cores.

Whenever the pre-filtering module outputs a rule ID then a specialized module

is reserved to match the rule and afterwards released (either at the end of the

packet or due to a match or mismatch before the end of the packet). In the

rare occasion, where there is no specialized engine to match a rule, the packet

should be reported with the indication that it was not fully examined and then

policies defined by the user could be applied. We provide experimental evi-

dence suggesting that our proposal is promising. In this chapter we:

• Introduce the packet pre-filtering approach to determine only few tens of

rules (out of thousands) that could possibly match per incoming packet.

• Present a theoretical analysis regarding the probability of a single packet

to activate more than a few tens of IDS rules. We show that matching

4-8 bytes of payload patterns results in a probability lower than 10−5 to

activate more than a few tens of rules.

• Use DefCon11 real traffic attack traces and Snort v2.4 ruleset to show

that in the worst case 39 out of about 3,200 rules are detected for pay-

load match per packet, while the average number of rules that need to

be checked for payload match is another order of magnitude smaller,

requiring minimal processing.

• We propose two stages of IDS packet processing. The first one performs

lightweight packet processing of the entire IDS ruleset (packet prefilter-

ing). The small number of activated rules after prefiltering enables the

second stage to perform more sophisticated packet inspection.



104 CHAPTER 5. PACKET PREFILTERING

• We discuss alternative architectures to integrate the packet prefiltering

module into a full-featured hardware or software IDS detection engine.

We suggest the second stage after prefiltering to have two separate dat-

apaths for different traffics. A guaranteed throughput datapath for the

majority of the packets that activate a small number of IDS rules, and a

best effort processing path for the exceptional cases that activate more

rules.

• Introduce a new priority encoder design which is pipelined and therefore

scales in terms of performance as the number of inputs (rules) increases.

In addition, the priority encoder reports sequentially all the active inputs,

based on a statically defined priority.

• Provide implementation results of a reconfigurable packet pre-filtering

module. Our implementations sustain a throughput of 2.5-10 Gbps

throughput and fit in less than 1/5 of a large FPGA (such as Virtex2-

8000).

The remainder of the chapter is organized as follows: Section 5.1 describes

some related techniques utilized for pattern matching. In section 5.2, we

present the packet pre-filtering technique along with a design for reconfig-

urable hardware. In section 5.3 we discuss ways to integrate the pre-filtering

module in hardware and software IDS and suggest a reconfigurable architec-

ture called PINE: Packet INspection Engine. Section 5.4 offers a theoretical

analysis of packet prefiltering. In Section 5.5 we present simulation results

showing the effectiveness of our solution in real traffic, and implementation

results in current reconfigurable devices. Finally, in Section 5.6 we conclude

the chapter.

5.1 Related Work

In the past, related techniques have been applied for static IDS pattern match-

ing. In order to match multiple IDS patterns in software, Markatos et al. use

a two step approach that detects whether an incoming stream contains all the

pattern characters (possibly in arbitrary positions) and only then perform a full

match of the search pattern [47]. More recently, they proposed Piranha, that ex-

tends the first checking step with 32-bit “rare” substrings that will enable fewer

rules to be matched in the second step [126]. Their approach is software-based

and proposed to replace the main execution loop of Snort. Baker and Prassana



5.2. PACKET PREFILTERING 105

employed an approximate pattern matching technique for reconfigurable IDS

pattern matching. They modified their “shift-and-compare” design, reducing

the area cost, adding some uncertainty and allowing false positives, to filter out

streams that would not match their pattern set [31]. Furthermore, techniques

utilizing bloom filters [72] to detect IDS patterns can be considered that have

similar functionality [36, 73, 103]. Bloom filters, predict with a probability of

false positives whether an input stream will match a set of patterns, however,

there are no false negatives (a “no-match” is always “no-match”) and therefore

can be used to exclude patterns for further matching. Another related tech-

nique for accelerating IDS pattern matching is the approximate fingerprinting

described in [127]. Approximate fingerprinting, originally introduced in [128],

reduces pattern matching memory requirements and speeds up pattern match-

ing. This method computes fingerprints of pattern prefixes and matches them

against the packet payloads to “clear” a significant fraction of the input stream

that will not match any of the patterns; about 75% of the pre-processed trace

needs further processing.

The above approaches do not consider packet classification, and therefore limit

their efficiency. On the other hand, software implementations of IDS, such as

Snort, can group the rules into different sets based on only their rule headers.

Specifically, TCP and UDP rules can be grouped based on their source and des-

tination ports, ICMP rules based on their ICMP type and IP rules based on their

protocol. This grouping creates sets of rules that are compatible and may be

activated at the same time. This fact allows software IDS processing a packet

to discover a single rule set that covers a large portion of possible attacks and

perform a single payload scan for the patterns in that set. In practice however,

to minimize processing IDS software may opt for a quick and not so refined

approach; Snort just used the destination port for TCP and UDP rules [129],

resulting in larger groups but minimal header processing and classification.

This represents a basic tradeoff in software systems between time to process

the header and space since more payload test strings must be simultaneously

checked.

5.2 Packet Prefiltering

In this section, we present the functionality of packet pre-filtering and design

details of the reconfigurable hardware design. Our key observation in packet

pre-filtering is that matching a small part of each rule’s payload combined with

matching the header information (Source & Destination IP/Port and Protocol)



106 CHAPTER 5. PACKET PREFILTERING

can substantially reduce the set of the possibly matching rules compared to us-

ing only header matching as in previously proposed approaches. Using merely

the header description results in multiple applicable IDS rules, which can be up

to several hundreds in the case of a Snort-like IDS [23]. However, when adding

to the filter a few bytes of payload patterns, this set of activated IDS rules can

be significantly reduced. That is because it would be relatively rare for a single

incoming packet to match payload search patterns of multiple rules.

Our IDS packet pre-filtering approach relies on the above conjectures to mini-

mize the set of rules required to be matched per incoming packet. We propose

to have two stages of IDS packet processing. The first stage uses a simpli-

fied version of the IDS rules and therefore achieves a lightweight processing

to exclude the majority of the rules. Subsequently, the second stage can use

more advanced and sophisticated rule descriptions for only those rules that

are specified (per incoming packet) by the previous stage. This way, the re-

quired processing can be reduced and the system can support high processing

throughput at a reduced implementation cost.

Figure 5.2 offers the block diagram of our proposed design. The prefiltering

module is designed for reconfigurable hardware and therefore can update its

supported IDS ruleset via reconfiguration. The top part of the figure illustrates

the overall system arrangement. Incoming packets are first filtered through

the packet pre-filtering module (i.e. matches the first part of each rule header

plus a few bytes of payload pattern); subsequently, only the candidate rules,

reported by the pre-filtering, are further processed in a separate hardware or

software module/sub-system.

The bottom part of Figure 5.2 expands in detail the internals of the pre-filtering

block. The incoming packets feed a field extractor module, which performs

header delineation, field separation, and payload extraction. The packet header

is sent to the Header Matching module that performs the necessary header clas-

sification based on the header descriptions of the ruleset at hand and reports a

bitmask of potential matching rules. The payload is sent to the partial Payload

Match module which partially matches the payload description of each rule

and also reports a bitmask of potential matching rules. Depending on each

rule’s definition, the two bitmasks are combined to determine which IDS rules

are activated. Subsequently, the activated rules are reported to the full match

module using a priority encoder, although in a purely hardware implementa-

tion and depending on the implementation of the full match module it could be

reported as a full bitmask.

The header and the partial payload matching modules are customized for the



5.2. PACKET PREFILTERING 107

Incoming 
Packets

Activated 
rules IDs Matching 

Rules IDs

Second Stage of 
processing

Complete Match Engine
for the reported rules

(HW or SW)

Packet 
Pre-filtering

Field 
Extractor

Header

Payload

Incoming 
Packets

RULESET

Rule A: header1 payload_pattern1 payload_pattern2
Rule B: header2
Rule C:       payload_pattern3

Partial Payload Matching

Header Matching

Bitmask

Rule C

Rule A

Rule B
Priority 
Encoder

header1 

Partial
Payload_pattern1 

Partial 
Payload_pattern3 

header2 
Activated 
rules IDs

Figure 5.2: The Packet Pre-filtering block diagram. Packet pre-filtering is customized

based on the IDS ruleset at hand.

IDS ruleset at hand, while the bitmask and priority encoder sizes depend on the

number of rules. Consequently, when a new rule is released the entire packet

prefiltering module needs to be regenerated and reconfigured. Figure 5.2 il-

lustrates also the way the IDS rules are partially implemented in the packet

prefiltering module and that the bits in the bitmask are set according to the

characteristics of each rule.

Header Matching: This module compares the header of the incoming packets

against the header description of each IDS rule and reports the outcome of the

comparison at the output, a separate bit per rule. The header fields enter the

packet classification module, which performs a more fine-grained grouping

than Snort. For header classification, we use 3 to 5 of all the packet header

fields: source and destination IP address and protocol type are used for all

rules, with the source and destination ports being additional parameters for

TCP/UDP rules and the ICMP type for ICMP rules, as proposed in [23]. Here

we have to make two observations: (i) these fields involve the IP header as well



108 CHAPTER 5. PACKET PREFILTERING

as the TCP/UDP headers and the ICMP header, and (ii) additional header fields

can be used in the Snort rules, but are not used for the header classification, so

as to avoid excessive number of small groups. The header fields are registered

and forwarded to a pipelined comparator module.

Partial Pattern Matching: Similarly, the packet payload is scanned using a

partial search pattern per rule. From each Snort rule specifying one or more

payload search contents, we select the pattern portion that will be included in

the filter (prefixes between 2 and 10 bytes long in our experiments). Although,

there are other alternatives as described below, the main prefiltering approach

indicates that the prefix of the first pattern of each rule is selected to be in the

filter. In doing so, the pre-filtering module will match the first part of each

rule and then the next stage will process the remain portions of the activated

rules. This way, the flow of the incoming packets is not stalled, since the parts

of the rules matched in the prefiltering phase are not matched again. If the

pattern is shorter than the selected number of prefix bytes then the full pattern

is matched. At this stage the placement of the patterns in the packet payload is

not checked, the second processing stage (after prefiltering) will perform this

check for the activated rules. The static patterns are matched utilizing DCAM,

a pre-decoding technique described in Chapter 3. The entire pattern match-

ing module as well as the header matching module are fine-grain pipelined in

order to increase its operating frequency. Since the header matching involves

comparisons of fixed location fields in each packet, the overall throughput of

the packet pre-filtering module is determined by the throughput of the partial

pattern matching. Consequently, in order to increase the performance of the

packet pre-filtering, the pattern matching module can process multiple incom-

ing bytes per cycle and increase accordingly the overall throughput. In our

current experiments (section 5.5) the pre-filtering module matches only static

patterns; however, it can be extended to support also regular expressions. In

case regular expression payload description is selected, then the pre-filtering

module would match a part of the expression (i.e. a prefix), which may include

wild cards, constrained repetitions, union, concatenation, or any other regular

expression operations.

Bitmask: Both header and partial pattern matching outputs feed a bitmask

which indicates all activated rules. Each bit of the mask corresponds to a sin-

gle rule. For some rules, the pre-filtering module may match only the packet

header, if no payload patterns are included (e.g. numerical check of some pay-

load bytes might be performed). In this case, the output of the header matching

alone determines the value of this bit in the bitmask. Other rules may match

packets of any header and therefore only matching a payload content may de-



5.2. PACKET PREFILTERING 109

LOGIC

LOGIC

LOGIC

Input 0

{Encd_out
Valid_out

LOGIC

LOGIC

LOGIC

LOGIC

Input 1

Input N

(a) Priority Encoder tree structure

NEncd_1

Valid_1

NEncd_0

Valid_0

Valid_out
Encd_out 
(N+1)-bits

N
N

M
UX

}

Load_En

Load_En

Load_En

STAGE N-1 STAGE N

BASIC BLOCK
(b) Basic building block.

Figure 5.3: Pipelined priority encoder implementation details.

termine the outcome of the filter. Furthermore, in case of a rule which needs

both the header and the payload pattern, a subsequent AND between the cor-

responding header and payload pattern matching results produce the outcome

of the bitmask. Finally, when the header and pattern matching performed in

pre-filtering module is equivalent to a complete IDS rule, this rule should be

directly reported and no further matching is required.



110 CHAPTER 5. PACKET PREFILTERING

In0: 1
In1: 1

In2: 1
In3: 1 2

In0: 1 0In1: 1

In2: 1
In3: 1

0
2

In0: 0 0In1: 1

In2: 0
In3: 1

0
2

In0: 0 11In1: 1

In2: 0
In3: 1

1
2

In0: 0 11In1: 0

In2: 0
In3: 1

1
2

In0: 0
In1: 0

In2: 0
In3: 1

2
2

In0: 0
In1: 0

In2: 0
In3: 1

2
3

In0: 0
In1: 0

In2: 0
In3: 1

3
3

In0: 0
In1: 0

In2: 0
In3: 0

Cycle 1 Cycle 2 Cycle 3

Cycle 4 Cycle 5 Cycle 6

Cycle 7 Cycle 8 Cycle 9

Figure 5.4: An example of the pipelined priority encoder.

Priority Encoder: The bitmask feeds a priority encoder, which outputs se-

quentially all the positions of the active bits in the bitmask (activated rules

IDs). Our priority encoder is fine-grain pipelined and therefore scales well in

terms of performance as the number of inputs increases. Figure 5.3(a) depicts

the binary-tree-like structure of the pipelined priority encoder. The active in-

puts are partially encoded stage-by-stage through the tree and one out of each

pair -based on the priority- is forwarded each time to the next stage. Fig-

ure 5.3(b) depicts the basic building block used to construct the encoders tree

structure. This block selects one out of two inputs to be encoded in the output.

Each input is composed of its partially encoded value and a valid signal. In the

first pipeline stage, the valid and encode inputs are the same bit. In each

pipeline stage of the encoder, an input is selected over the other to be sent out

whenever the next stage register is ready to receive a value. When a partially

encoded value is forwarded to the next pipeline stage, then is subsequently

deleted from the previous stage. To do so, we use extra logic to produce “load

enable” signals for the registers of every pipeline stage. Consequently, all the

inputs of the priority encoder are encoded and forwarded to the output based on

their priority/position, and reported sequentially. Figure 5.4 illustrates an ex-

ample of a 4-input priority encoder. In order to accomplish fine-grain pipeline

an encoded value of stage N cannot be deleted/overwritten by the next value

coming from the stage N-1 before it is verified that is forwarded in stage N+1.

Therefore, each input is reported in the output of the priority encoder for two

cycles. However, in our packet pre-filtering design this is not an issue, since



5.2. PACKET PREFILTERING 111

H

Prefiltering 
scan for rule N

2nd Stage scan 
for rule N

1st NRETTAP

Packet 
Header

Packet 
Payload 

(a) Prefiltering scans the first part of the packet matching the header and searching for

the prefix of the first payload pattern “PATT”, in case of a match the rule N is activated,

subsequently the second stage scans the remaining of the packet to find the rest of the

pattern “ERN 1”

H

Both Prefiltering 
and 2nd Stage scan 
the entire packet

Packet 
Header

Packet 
Payload 

1st NRETTAP

(b) Prefiltering scans the entire packet matching the header and some parts of the pay-

load pattern(s) (in this case “A” and “R”. In case of match the rule N is activated and

the second stage scans again the packet to completely match rule N.

Figure 5.5: Packet pre-filtering alternatives.

only a few rules are expected to partially match, and this way we achieve per-

formance scalability for large bitmasks. Otherwise, to delete at the same cycle

a value forwarded in the next stage, a combinational logic would be required

that spans from the root of the tree down to the leafs. Such a solutions however

would be slow and not scalable.

Prefiltering setup: selecting parts of IDS rules. There are two alternatives

when selecting parts of the IDS rules to be included in the prefiltering stage.

This decision determines the design of the second stage. As depicted in Figure

5.5, the pre-filtering module can be configured to match either the first part

of each IDS rule (i.e. header and payload pattern prefix, Figure 5.5(a)) or en-

tirely scan each incoming packet matching selected parts of each rule (Figure

5.5(b)). The first approach has the advantage of scanning each packet only



112 CHAPTER 5. PACKET PREFILTERING

once. That is because the second stage is required to match only the remaining

parts of the activated rules. This minimizes the processing latency and avoids

queueing/storing packets before going to the next stage. On the other hand,

the second case may have higher latency since the next stage needs to scan

the entire packet again, however we are free to put any part of each rule in the

prefiltering. Been limited to use only the first payload pattern prefix of each

rule may reduce the effectiveness of prefiltering. As shown in coming Section

5.5.1, including other parts of each rule in the filter may reduce the number of

activated rules per packet.

We have described our proposal in terms of a hardware implementation; in-

deed it seems that prefiltering better fits a hardware instead of a software im-

plementation. In software, header matching can be relatively efficient: specific

comparisons against fixed-location fields can be performed in a tree-structure

and occurs exactly once per packet. However implementing the pre-filtering

technique may require scanning the payload part of the packet twice, first for

the pre-filtering and once more for the actual match. A hardware implemen-

tation overcomes this problem through the use of parallelism; if such parallel

resources are available in a software implementation (for example in the form

of multi-core general-purpose processor or a network processor), then our pre-

filtering approach can be proven efficient.

5.3 Integrating Packet Pre-filtering

Packet prefiltering can be integrated in both a software and a hardware-based

intrusion detection engine. We briefly discuss below the way this can be

achieved offering some design alternatives. Subsequently, we describe our

suggested solution of IDS processing, called PINE: Packet INspection Engine.

PINE is an architecture for a IDS detection engine1 which uses packet pre-

filtering and a second processing stage to process IDS rules.

In software-based platforms, the packet pre-filtering module reports the acti-

vated rules needed to be fully matched, and subsequently, software is employed

to continue the processing of these rules. Packet pre-filtering would preferably

be implemented in a hardware coprocessor (i.e. as proposed here in reconfig-

urable), in order to exploit parallelism and match concurrently the simplified

version of all the IDS rules. However, purely software solutions cannot be ex-

cluded. In the second stage, each packet will be scanned in software for the

1Detection engine is a module as described in 1.2 and 2.1.



5.3. INTEGRATING PACKET PRE-FILTERING 113

activated rules. As described below in Section 5.5.1, at least 99% of the rules

can be excluded and therefore, the workload of software can be significantly

reduced. Parallelism however is still preferred and therefore multiple threads

and/or multiple cores would be more efficient to perform the second stage of

processing.

Packet pre-filtering is more suitable for a hardware-based IDS. In this case, we

can have a simpler and faster interface between prefiltering and second stage of

packet processing, while the required parallelism for the second stage comes

inherently. The second stage of processing would have a number of specialized

processing engines (PEs) to process the rules activated by the prefiltering. In

hardware there are two design alternatives for the second processing stage:

Guarantee throughput processing. Having a number of available process-

ing elements, each one assigned to process an activated rule per packet.

Packets that activate more rules than the available PEs should not slow

down the processing rate. As a solution, these packets could be either

dropped, processed in a different stage, process only the first activated

rules that fit in the PEs, or use priorities among the rules.

Best effort processing. All activated rules will be processed even when it re-

quires to queue a packet and therefore reduce the processing throughput.

In case the packet queue is full, flow control mechanisms can stall or

slow down incoming traffic.

On the one hand, the guaranteed throughput approach carries the disadvantage

of dropping or not completely processing packets in case of more activated

rules than the available processing elements. On the other hand, the best effort

alternative suffers from Denial of Service (DoS) attacks, since malicious traf-

fic may overload the system and substantially reduce performance (processing

throughput). We suggest next a new reconfigurable architecture for an intru-

sion detection engine to tackle the above drawbacks.

PINE: Packet INspection Engine

We propose two separate processing paths, the first one guarantees constant

operating throughput for traffic that activates up to a specific number of IDS

rules, while the second one performs best effort processing for the packets that

activate more rules. The detection engine is designed for reconfigurable hard-

ware, includes a packet prefiltering module as described in the previous section



114 CHAPTER 5. PACKET PREFILTERING

and contains content inspection coprocessors with the properties described in

the previous two Chapters (Chapters 3, and 4).

Figure 5.6, depicts the block diagram of our suggested Packet INspection En-

gine. Incoming packets enter the packet pre-filtering module, which detects

the possibly matching rules. In case there are already matching rules in this

stage, they are reported. The IDs of the detected candidate rules (that require

further processing - full match) are sent to the second processing stage. In

case there are up to a certain number of activated rules per packet, then the

guaranteed throughput datapath is followed. Each activated rule is assigned

to a specialized engine and the corresponding firmware is downloaded from a

memory. A specialized processing engine (PE) is reserved whenever a rule is

activated by the pre-filtering stage, and afterwards released in case of either a

match, a mismatch or end of packet. Each PE keeps track of the stages a rule

should pass through in order to produce a match. The processing engines do

not perform payload pattern matching. Instead, centralized coprocessors are

utilized to match all the static patterns and regular expressions included in the

IDS ruleset as described in Chapters 3 and 4. An interface between the copro-

cessors and the PEs is used to feed the PEs with the payload matches and their

exact position in the packet payload. Then, the ID of a rule matched by a PE is

reported at the output. In case there is no available guaranteed throughput PE to

process some activated rules, a separate best effort datapath is followed. A re-

quest to process the extra rules is queued together with the coprocessors results

that correspond to these rules. Then, a separate processing engine (e.g, GPP) is

employed to handle the extra workload performing best effort processing. This

can occur only when a single packet partially matches the descriptions of mul-

tiple rules (more than the threshold defined by the system designer). When the

best effort queue is full, then packets destined there need to be either dropped

or apply a flow control mechanism which will not stall the rest of the traffic.

In any case, packets that activate an acceptable number of rules will still enjoy

the guaranteed throughput processing.

Based on the theoretical analysis of Section 5.4 and the results of real traffic

traces presented in Section 5.5.1 the probability for a packet to activate more

than a few tens of rules (i.e., 32 or 64) is low. Although highly unlikely, we

cannot exclude the possibility of a normal packet to require best effort pro-

cessing. There is a chance that normal traffic may constantly activate more

rules that can be handled by the PEs, increasing the workload and processing

latency for the best effort path. In order to alleviate such cases the following

can be performed:



5.3. INTEGRATING PACKET PRE-FILTERING 115

Best Effort 
Processing 
Engine(s)

Processing 
Element(s)

GPP, SMT, etc.Pre-Filtering Coprocessors

OUTPUT: 
MATCHING rule ID

Header 
Matching

Partial 
Payload
Match

Priority 
Encoder

Activated 
Rules

Static 
Patterns

Regular 
Expressions

INCOMING
Packets

Output I/F

MATCHING rule ID

Separate 
queue

MATCHING 
rule ID

Guaranteed 
Throughput 

Specialized Engines

PE PE PE PE

PE PE PE PE

Configuration
Memory

PE

PEMATCHING 
rule ID

Activated 
Rules

Figure 5.6: PINE: Packet INspection Engine. A Reconfigurable Intrusion Detection

Engine utilizing packet pre-filtering.

• The pre-filtering can be refined (change the size or/and parts of the rules

used by pre-filtering) so that such packets no longer activate many rules.

For example, characters or substrings that frequently occur in the pay-

loads of these normal packets can be avoided.

• A header description or payload pattern, that indicates such a packet is

normal, can be added in the pre-filtering.

• We can take advantage of the priorities that IDS rules have (this is how

software IDSs are currently implemented [12]). Low priority rules that

when matched do not drop the packet and just rise a warning flag may re-

lease their occupied PE for a high priority rule to be processed. The low

priority rules may still get flagged, and processed at their destination.

This way we may increase the number of PEs available for processing

activated rules.



116 CHAPTER 5. PACKET PREFILTERING

5.4 Analysis

We present next a theoretical analysis regarding the probability of a packet to

activate more rules than a maximum threshold. Based on the probability of a

single character occurrence in a stream of data, we calculate the probability of

one and many patterns to be found in the stream. In this analysis we make the

following assumptions:

1. The header description of the packets matches all the header descriptions

of the rules. Consequently, the activation of a rule depends only on the

packet payload.

2. The probability of a character a1 to be found at position i of a packet

payload is independent of the probability to find a character a2 at posi-

tion i + 1. This assumption simplifies the analysis and helps reusing the

normal traffic data found in related works [130–132].

3. The probability to find a pattern at position i is independent of the prob-

ability to find the same pattern at i + 1. In reality this is not true, and

actually the probability depends on the characteristics of a specific pat-

tern [133]. As shown in [134], assuming that the two events are inde-

pendent gives a close estimate.

4. Similarly, multiple (substrings of) IDS attack patterns do not overlap

with each other. This assumption simplifies the analysis and intuitively

as the payload size increases does not affect significantly the final result.

Let c be the probability to find any character used by the prefiltering in the

payload of a normal packet. Then, the probability s to find an m-character

(sub)string used by the prefiltering in m-bytes of a packet payload is:

s = cm (5.1)

Assuming independent trials (assumption 3), the probability p(m,n) to find

an m-character substring used by the prefiltering in any position of an n-bytes

long packet payload (n > m) is described by the following equation [134]:

p(m,n) = 1 − (1 − s)n−m+1 = 1 − (1 − cm)n−m+1 (5.2)



5.4. ANALYSIS 117

2^8 2^10 2^12 2^14 2^16 2^18 2^20
10

−350

10
−300

10
−250

10
−200

10
−150

10
−100

P
ro

b
a

b
ili

ty
 o

f 
(a

c
ti
v
a

te
d

 r
u

le
s
 >

 M
A

X
)

Payload Size (bytes)

prefix length = 4 bytes, maximum rules = 32

prefix length = 4 bytes, maximum rules = 64

prefix length = 6 bytes, maximum rules = 32

Figure 5.7: Probability for a packet to activate more than 32 or 64 rules considering

random traffic, c = 1

256
.

That is, “1” minus the probability not to find the m-long substring in any of

the possible (n − m + 1) payload positions. As shown in [134], Eq. 5.2 ap-

proximates well the probability to find an m-character pattern in a n-character

long stream of data.

Then, the upper bound of the probability to find MAX rules m-long substrings

in the n-bytes long packet payload (n > m ∗ MAX rules) is:

Pall =

MAX rules
∏

i=0

p(m,n − m ∗ i) (5.3)

Assuming independent events for each pattern, Pall of Eq. 5.3 is the product

of the distinct probabilities for each (sub)string. Based on equation 5.3 and by

giving a value to the probability c of a given character to be found in a packet

payload we can find the probability for a packet payload to activate more than

MAX rules.

We first consider random traffic where each character has equal probability

to be found. Subsequently, we use statistics of normal traffic traces found in

related works and make the conservative assumption that all the characters

used by prefiltering have a probability to occur equal to the most frequent

character of the above traces.



118 CHAPTER 5. PACKET PREFILTERING

2^8 2^10 2^12 2^14 2^16 2^18 2^20
10

−350

10
−300

10
−250

10
−200

10
−150

10
−100

10
−50

10
0

p
ro

b
a

b
ili

ty
 a

c
ti
v
a

te
d

 r
u

le
s
 >

 M
A

X

length of patterns (bytes)

prefix length = 4 bytes, maximum rules = 32

prefix length = 4 bytes, maximum rules = 64

prefix length = 6 bytes, maximum rules = 32

prefix length = 6 bytes, maximum rules = 64

(a) c = 6%

2^8 2^10 2^12 2^14 2^16 2^18 2^20
10

−250

10
−200

10
−150

10
−100

10
−50

10
0

p
ro

b
a
b
ili

ty
 a

c
ti
v
a
te

d
 r

u
le

s
 >

 M
A

X

length of patterns (bytes)

prefix length = 4 bytes, maximum rules = 32

prefix length = 4 bytes, maximum rules = 64

prefix length = 6 bytes, maximum rules = 32

prefix length = 6 bytes, maximum rules = 64

10
−12

10
−6

(b) c = 10%

Figure 5.8: Probability for a packet to activate more than 32 or 64 rules considering

that all prefix characters used in prefiltering have 10% or 6% probability to be found.

The payload size is between 512 bytes to 1 Mbyte.



5.4. ANALYSIS 119

When considering random traffic each character has equal probability to be

found, c = 1
256 . Figure 5.7 shows the probability of a random payload to acti-

vate more than MAX rules, where MAX rules= 32 or 64, and the prefix patterns

of each rule used for prefiltering is 4 or 6 bytes. Even though TCP packet have

a payload length from 0 to 1460 bytes, we consider a payload size of 512 bytes

to 1 Mbyte which may be rather long however in case of reassembling TCP

packets to construct a large IP packet this may be possible. In all cases the

probability to activate more than MAX rules is less than 10−100. As expected,

the longer the prefixes, the lower the probability, and as the payload size grows

the probability increases.

Based on statistics of normal traffic traces we consider next the following pes-

simistic scenario: any character included in the pattern prefixes used in the

prefiltering has a probability equal to the most frequent character of a normal

packet. Table 5.1 depicts the probability of the most frequent characters in

traces of normal traffic used in [130–132]. The most frequent character among

all traces is found with probability 10%, while in some traces this probability

is 8, 6 or 1.2%. Based on these numbers, we chose to analyze the probability

of a packet to activate more than MAX rules using c = 0.1 (10%) and c = 0.06
(6%). Figure 5.8 shows the probability for a packet to activate more than 32 or

64 rules for payloads 512 bytes to 1 Mbyte and probability to find any charac-

ter used by the prefiltering 6 or 10% (Figures 5.8(a) and 5.8(b) respectively).

As expected for larger MAX rules the probability is lower, the same holds for

longer prefix lengths m. For c = 0.06 and prefix of m=4 bytes, payloads larger

than 128 Kbytes have high probability (> 10−5) to activate more rules than the

MAX rules. On the contrary, for prefixes of m=6 bytes the probability is very

Table 5.1: Most frequent characters in normal traffic traces.

Ref. Description

1st most 2nd most 3rd most

freq. freq. freq.

char. char. char.

[130] 100 normal traffic streams 10% 8% 7%

[131] normal traffic for port 80 (web)

on the same host (Web) server
with payload length 200 bytes

(DARPA MIT dump)

<6% <6% 5%

[131] normal Traffic for port 80 (web)
on the same host (Web) server

with payload length 1460 bytes

(DARPA MIT dump)

1.2% 1% 1%

[132] normal HTTP traffic using ser-

vices such as GET, POST etc.

∼8% ∼6% ∼5%



120 CHAPTER 5. PACKET PREFILTERING

2^16 2^18 20 2^22 2^24 2^26 2^28
10

−100

10
−80

10
−60

10
−40

10
−20

10
0

p
ro

b
a
b
ili

ty
 a

c
ti
v
a
te

d
 r

u
le

s
 >

 M
A

X

length of patterns (bytes)

prefix length = 6 bytes, maximum rules = 32

prefix length = 6 bytes, maximum rules = 64

prefix length = 8 bytes, maximum rules = 32

prefix length = 8 bytes, maximum rules = 64

10
−5

10
−9

10
−2 10

−1

Figure 5.9: Probability for a packet to activate more than 32 or 64 rules considering

that all prefix characters used in prefiltering have c = 10% probability to be found and

the payload size is very long (1-256 Mbytes).

low (< 10−43). For c = 0.1 and 4 bytes prefixes the probability is acceptable

and below 10−3 for up to 16 Kbytes. However, when prefiltering uses 6 bytes

prefixes then in all cases the probability is below 10−6. Finally, Figure 5.9

depicts the same results for very long payloads (1 to 256 Mbytes). In this case

6-bytes long prefixes work well for up to 2 Mbytes, while prefixes of 8-bytes

are efficient for payloads below 128 Mbytes.

Summarizing, random traffic and conservative normal traffic scenarios have

in general very low probability to activate many rules. For random traffic the

probability is below 10−100 while normal network traffic where any character

used by prefiltering would have 10% probability to be found has acceptable

results using only a few bytes (6 to 8) of prefix patterns.

Worst-case number of activated rules

We find next the upper bound of the number of activated rules by prefiltering.

Considering a ruleset where each rule has a unique part (payload description),

then we can state the following: searching incoming data for these unique



5.5. EXPERIMENTAL RESULTS 121

parts of every rule in a specific alignment can result in only a single match per

incoming byte. That is because in a specific window of incoming data only

the unique part of one rule can match. In essence, only a single rule would be

activated per incoming byte of data. That means that the worst case workload

is not to process the entire ruleset per packet, but only a number of rules equal

to the length of the packet. The above is interesting only when the number of

total rules is greater than the packet length.

The above observation shows that there is a direct relation between the rate of

incoming data (incoming throughput) and the maximum workload of a NIDS.

Consequently, we can state that a prefiltering mechanism could use -instead of

partial pattern matching- a perfect hashing scheme to distinguish the unique

parts of each rule and activate a single rule per incoming byte.

5.5 Experimental Results

In this section, we present experimental results of our packet pre-filtering ap-

proach. First, we utilize the DefCon traces [135] to evaluate the effectiveness

of our proposal. We then provide implementation and performance results of

the packet pre-filtering module using Xilinx Virtex2-4000-6 FPGA device.

5.5.1 Simulation Results

To evaluate the effectiveness of the proposed packet pre-filtering module we

use trace-driven execution. We use the Snort v2.4 ruleset and Defcon11 real

traffic traces. For each Snort rule, the pre-filtering module matches the header

of the packet (IP header as well as the TCP/UDP headers (source and destina-

tion ports), and the ICMP header) and a portion of a payload pattern (whenever

included in a rule). First packet pre-filtering is configured to match the first part

of each rule, the header description and the prefix of the first payload pattern.

Subsequently, we present simulation results where different parts of payload

patterns are included in the filter. Namely, the prefixes of the first two pat-

terns of each rule, the prefix of the longest pattern of each rule, and finally, the

prefixes of all the payload patterns included in a rule. In our experiments, we

match 2, 4, 6, 8 or 10 prefix characters of the payload pattern. When the rule

payload pattern is shorter than the prefix length, then the entire, exact pattern

is matched.

The Snort v2.4 ruleset consists of 3191 rules, out of which 2271 rules (or

71.2%) require content matching, while the remaining 920 rules (or 28.8%)



122 CHAPTER 5. PACKET PREFILTERING

Millions of packets per trace

0

0.5

1

1.5

2
e t h

0

z n
b 0

z n
b 1

z n
b 2

z n
b 3

z n
b 4

z n
b 5

z n
b 6

z n
b 7

Header Only 
With payload

Figure 5.10: Packet trace statistics: number of packets that include payload and

header-only packets in Defcon11 traces.

Snort Pattern Length Cumulative Distribution

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59

Pattern Length (chars)

Ra
tio

Figure 5.11: Cumulative distribution of payload pattern length in the SNORT rules.

check only header parameters. The rules were grouped into 381 rule sets using

a fine-grained header classification that takes into account up to 5 fields as

described in section 5.2. For our tests, we configured the symbolic addresses

of the rule-set considering a class-C local network $HOME NET to protect

(that is having upto 254 hosts), while the external network is anything but the

local network ($EXTERNAL NET is !$HOME NET).

We evaluated our architecture using Defcon11 traces. Defcon11 contains 9

trace files, 10 million packets in total, out of which 4.6 million packets have

payload. The mean payload length is 698 bytes and the maximum payload

length is 1460 bytes. Figure 5.10 plots a break-down of the total number of

packets according to the trace files, and also distinguishes between packets

with and without payload.

During the IDS execution, each packet activated an average of 3.7 sets of rules



5.5. EXPERIMENTAL RESULTS 123

Average Candidate Rules After Pre-filtering

0

2

4

6

8

10

12

e t h
0

z n b
0

z n b
1

z n b
2

z n b
3

z n b
4

z n b
5

z n b
6

z n b
7

T O
T A
L

2 bytes
4 bytes
6 bytes
8 bytes
10 bytes

Figure 5.12: Average number of candidate rules per packet after the pre-filtering step

as a function of the pre-filtering length.

(or header groups). This result is interesting since it shows that even com-

plete header matching is not refined enough, and leaves opportunities for our

pre-filtering step to refine the search space. In addition, out of the 2271 rules

that specify pattern matching, the header classification process of the packet

determined that an average of ∼45 rules (1.9%) were applicable to be con-

tent matched. The maximum number of rules that required string matching

for a single packet is an impressive 142 rules (4.5%). Figure 5.11 shows the

pattern length cumulative distribution in our Snort rules. We can observe that

more than half of all patterns have length above 11 characters, and that 10%

of the rules have length exceeding 34 characters. These numbers show that

we would need very wide prefix lengths to guarantee exact matching in the

majority of the rules. Small prefixes, in the range of the ones we consider,

achieve exact match for 40% of the rules for prefix of size 10, a value that

drops quickly to 30% for length of 8, and 20% for length of 4 characters. This

full matching however is one of the advantages of our prefiltering technique,

since full matches can be directly reported and avoid loading the heavier full-

match module that would provide no additional useful information.

The following two figures show the effectiveness of the prefiltering technique

when matching the first part of each IDS rule (header and prefix of he first pat-

tern). Figure 5.12 shows the average number of patterns that are determined as

eligible or candidate for a full match by our pre-filtering step. As mentioned

earlier, we consider pattern prefixes of 2, 4, 6, 8 and 10 characters. The pre-

filtering result is a small number of rules which are eligible and depending on

the trace and the prefix length ranges from below 1 up to 12 rules. It is note-

worthy that, when matching more than 2 payload pattern bytes the average



124 CHAPTER 5. PACKET PREFILTERING

Maximum Candidate Rules After Pre-filtering

0
5
10
15
20
25
30
35
40

e t h
0

z n b
0

z n b
1

z n b
2

z n b
3

z n b
4

z n b
5

z n b
6

z n b
7
T O
T A
L

4 bytes
6 bytes
8 bytes
10 bytes

Figure 5.13: Maximum number of candidate rules per single incoming packet after

the pre-filtering step as a function of the pre-filtering length (length 2 was omitted for

clarity due to exceedingly large values).

number of candidate rules is significantly reduced down to about 1-4 rules per

packet. For 8-character prefix width the maximum value across all traces is

only about 3 candidate rules, while the overall average is 1.8 rules. This corre-

sponds directly to the amount of work that the full-match module would have

to perform to determine the final match. The effect of pre-filtering is more than

an order of magnitude reduction in the number of activated rules compared to

simply using header match information which would have checked 45 rules.

Figure 5.13 shows the maximum number of patterns per packet that were in-

dicated as candidates by our pre-filtering according to the trace files and the

prefix length. This results are important to measure the maximum amount of

work that the full match module will experience. For a best-effort implemen-

tation that can delay packets while the processing is not completed, these max-

imum values offer an indication of the maximum jitter in packet latency. For a

fixed latency implementation, the maximum values indicate the degree of par-

allelism that must be provided to guarantee maximum processing throughput

under all circumstances. We note that for small prefixes the maximum values

are indeed very high (up to 143 when prefix length is 2 bytes). However for

more than 2 character prefixes, all trace files result in a maximum value of no

more than 39 rules. We should emphasize again here that these numbers are

rare since the average numbers are much smaller, and indicate the worst and

infrequent case.

The above analysis indicates that (i) pre-filtering can be very effective in re-

ducing the search space for a full-match module, and (ii) that it can achieve

this goal using relatively small prefix lengths. In general, larger prefix length



5.5. EXPERIMENTAL RESULTS 125

would result in marginally better results but at increased pre-filtering cost. Nar-

rower prefixes will reduce the pre-filtering cost, but increase the load of the full

match unit. Since the pre-filtering performance does not improve noticeably

when increasing the prefix length from 8 to 10 characters, we believe that a

good tradeoff for the prefix length is 4-8 characters and we proceed to evalu-

ate the system implementation cost and performance with a prefix length of 8

characters.

Next, we present a similar analysis for different prefiltering configurations.

The following results plotted in Figures 5.14 and 5.15 show the average and

maximum number of activated rules respectively, when prefiltering matches

other part(s) of the payload than the prefix of the first pattern. In the next

examples, we match either the prefixes of the first two patterns, the prefix of the

longest pattern, or the prefixes of all the patterns in each IDS rule. Although

we match prefixes of payload patterns, suffixes or infixes (even of variable

length) could also be chosen. When matching the prefixes of the two first

patterns of each rule (when a rules contains at least two patterns), then the

average activated rules per packet are slightly lower than the previous case.

For any prefix length more than 2 bytes, the difference compared to matching

only the prefix of the first pattern is less than 0.25-0.35 rules per packet. The

maximum activated rules per packet in this case are about 34 compared to 39

in the previous case. When the prefix of longest pattern of each rule is chosen,

then the average candidate rules per packet are reduced even more. About 1.5

less rules are activated on average compared to the first pattern case. On the

contrary, the maximum candidate rules per packet do not change significantly.

Finally, in the case where the prefixes of all the rule patterns are matched in

the prefiltering the average candidate rules are reduced to 0.3-0.8 in total for

prefixes longer than 2 bytes, while the maximum activated rules are reduced in

about half, that is less than 20 rules per packet at most.

Figures 5.16 and 5.17 summarize a comparison between the four different pre-

filtering configurations presented above. The total results across all trace files

for the average and maximum number of activated rules per packet and vari-

ous prefix lengths are shown. As expected, when matching the prefixes of all

patterns included in each rule the maximum and average number of rules is the

lowest. In all other cases, the maximum candidate rules per packet are similar

when the prefixes are longer than 2 bytes. On the contrary, the average number

of activated rules differs. Matching the prefix of the longest pattern is almost

as good as matching the prefixes of all the patterns in a rule, and about 2-4×
better compared to matching the prefix of the first or the first two patterns of

each rule. This means, that choosing the right part of each rule to be included



126 CHAPTER 5. PACKET PREFILTERING

Average Candidate Rules After Pre-filtering

0

2

4

6

8

10

12

e t h
0

z n b
0

z n b
1

z n b
2

z n b
3

z n b
4

z n b
5

z n b
6

z n b
7

T O
T A
L

2 bytes
4 bytes
6 bytes
8 bytes
10 bytes

(a) The prefixes of the first two patterns per rule are included in the

prefiltering.

Average Candidate Rules After Pre-filtering

0

2

4

6

8

10

12

e t h
0

z n b
0

z n b
1

z n b
2

z n b
3

z n b
4

z n b
5

z n b
6

z n b
7

T O
T A
L

2 bytes
4 bytes
6 bytes
8 bytes
10 bytes

(b) The prefix of the longest pattern per rule is included in the prefilter-

ing.

Average Candidate Rules After Pre-filtering

0

2

4

6

8

10

12

e t h
0

z n b
0

z n b
1

z n b
2

z n b
3

z n b
4

z n b
5

z n b
6

z n b
7

T O
T A
L

2 bytes
4 bytes
6 bytes
8 bytes
10 bytes

(c) The prefixes of all the patterns of each rule are included in the pre-

filtering.

Figure 5.14: The average number of activated rules per packet when matching differ-

ent portions of the rules in the pre-filtering stage.



5.5. EXPERIMENTAL RESULTS 127

Maximum Candidate Rules After Pre-filtering

0
5
10
15
20
25
30
35
40

e t h
0

z n b
0

z n b
1

z n b
2

z n b
3

z n b
4

z n b
5

z n b
6

z n b
7
T O
T A
L

4 bytes
6 bytes
8 bytes
10 bytes

(a) The prefixes of the first two patterns per rule are included in the

prefiltering.

Maximum Candidate Rules After Pre-filtering

0
5
10
15
20
25
30
35
40

e t h
0

z n b
0

z n b
1

z n b
2

z n b
3

z n b
4

z n b
5

z n b
6

z n b
7
T O
T A
L

4 bytes
6 bytes
8 bytes
10 bytes

(b) The prefix of the longest pattern per rule is included in the prefilter-

ing.

Maximum Candidate Rules After Pre-filtering

0

5

10

15

20

25

e t h
0

z n b
0

z n b
1

z n b
2

z n b
3

z n b
4

z n b
5

z n b
6

z n b
7
T O
T A
L

4 bytes
6 bytes
8 bytes
10 bytes

(c) The prefixes of all the patterns of each rule are included in the pre-

filtering.

Figure 5.15: The maximum number of activated rules per packet when matching dif-

ferent portions of the rules in the pre-filtering stage.



128 CHAPTER 5. PACKET PREFILTERING

0

1

2

3

4

5

6

7

2 bytes 4 bytes 6 bytes 8 bytes 10 bytes Entire
PatternPrefix LengthAv

ere
ge

 C
an

did
ate

 R
ule

s p
er 

Pa
ck

et

the 1st pattern prefix 
   the two 1st pattern prefixes

the longest pattern prefix
All pattern prefixes
ALL patterns

Figure 5.16: Comparison of the average number of activated rules per incoming packet

when choosing different prefix lengths and different parts of the rules to be included

in the prefiltering

100

120

140

Prefix Length

Ma
xim

um
 C

an
did

ate
 R

ule
s p

er 
Pa

ck
et

the 1st pattern prefix 
the two 1st pattern prefixes
the longest pattern prefix
All pattern prefixes
ALL patterns

0

20

40

60

80

2 bytes 4 bytes 6 bytes 8 bytes 10 bytes Entire
Pattern

Figure 5.17: Comparison of the maximum number of activated rules per incoming

packet when choosing different prefix lengths and different parts of the rules to be

included in the prefiltering

in the prefiltering, may be more effective than matching a larger portion of the

rule. Finally, when matching all the entire patterns of each rule on average

there are 0.16 matched rules per packet, and 9 rules per packet in the worst

case. This implies that on average about 5-10% (0.16 out of 2-3 rules) of the

rules activated by the prefiltering give a match. Furthermore, an IDS using

such prefiltering will require about 4 times more PEs in the second processing

stage than the theoretical minimum; that is 39 PEs instead of 9.

In summary, there are two decisions need to be taken when setting up a packet



5.5. EXPERIMENTAL RESULTS 129

prefiltering module. The first one is whether prefiltering will be restricted to

match the first part of each rule (Figure 5.5(a)) and subsequently the remaining

portion of the rule will be completed on the next stage, or prefiltering is free

to choose any parts of each rule (case of Figure 5.5(b)) and consequently the

second processing stage will need to scan again the entire packet. The second

decision is whether the maximum or the average number of activated rules per

packet is more important for the performance of the system. This primarily

depends on the design of the second processing stage. In case the second stage

has limited resources and a strict upper bound of rules that can be processed in

parallel (i.e., guaranteed throughput processing), then the maximum number

of activated rules per packet is more crucial. On the contrary, when the second

stage is designed so that can compromise some of the processing throughput to

increase the number of rules processed concurrently (i.e., best effort process-

ing), then it is more efficient to setup the prefiltering according to the average

number of candidate rules per packet.

Overall Computation Reduction: So far, we have shown the efficiency of

packet prefiltering in terms of number of activated rules. Based on the sim-

ulation results described above, we present next an estimation of the overall

computation reduction when using prefiltering.

Snort v2.4 has about 3200 rules, considering that we process a header descrip-

tion and on average 10 pattern bytes per rule, matching these rules one-by-one

per packet would require the following processing:

Procinit = 3200 ∗ (Header + 10 ∗ Payload) (5.4)

Lets assume now that packet prefiltering matches all the header descriptions

and up to 4 bytes of payload patterns per rule. That is a header and about one

pattern byte on average per rule. The second stage would require to process

the remaining of 1.2% rules at most (39 out of 3200). Therefore, the overall

processing when using prefiltering is:

Procpref = 3200 ∗ (Header + Payload) + 39 ∗ (9 ∗ Payload) (5.5)

Consequently, compared to the initial computation, when using packet pre-

filtering we need to match all the header descriptions and search for only

∼11% of the payload patterns. It is worth noting that the above estimation



130 CHAPTER 5. PACKET PREFILTERING

is rather conservative since we ignore computation due to payload region lim-

itations and distances between patterns.

5.5.2 Implementation Results

Next, we present the implementation results of two packet pre-filtering designs

in terms of area and throughput. These designs match the first part of each IDS

rule; that is, the header description and an 8-characters long prefix of the first

payload pattern. We also estimate the area cost of a complete reconfigurable

IDS as described in Figure 5.6.

For the evaluation of our packet pre-filtering designs we used the Xilinx ISE

8.1 tools for synthesis and place and route operations. and a Virtex2-4000-6

FPGA device. Table 5.2 lists the area cost of our designs in terms of flip-flops,

LUTs and total device slices. The header matching part of the design involves

comparisons between numerical values and fixed location fields of the packet

which is implemented in parallel. Consequently, the supported throughput of

our designs is determined by the payload pattern matching module. We im-

plemented two alternative pattern matching designs to be integrated with the

rest of the packet pre-filtering module. The first one processes one incoming

payload byte per cycle, while the second processes four bytes per cycle and

thus supports higher throughput (about 4× higher). The overall area cost of

the packet pre-filtering module is 10,774 and 15,189 slices for 8 and 32-bits

Table 5.2: Packet Pre-filtering Area Cost.

Module FFs LUTs Slices

Header Field Extractor 120 49 64

Header Matching 1352 778 946

Static Pattern Matching 3,226 2,929 1,688

DCAM [34] (8 bits/c.c.)

Static Pattern Matching 12,164 11,276 6,103

DCAM [34] (32 bits/c.c.)

Priority encoder 12,804 15,986 8,020

Control 112 112 56

Total (8 bits/c.c.) 17,614 19,854 10,774

Total (32 bits/c.c.) 26,552 28,201 15,189



5.5. EXPERIMENTAL RESULTS 131

datapaths respectively, which easily fits in a small/medium FPGA device2. Ta-

ble 5.2 also offers a break-down of this area cost per module, and as expected

the majority of the flip-flops and logic is consumed by the payload pattern

matching module and the priority encoder. The total cost is dominated by

the priority encoder, since a 3,191-bit bitmask (which corresponds to 3,191

Snort v2.4 rules) has to be encoded. The priority encoder is about 75% of

the entire pre-filtering module, when 8-bits per cycle are processed, and 50%

when the datapath width is 32 bits. All the packet pre-filtering sub-modules

are fine-grain pipelined and therefore the operating frequency of the designs

is relatively high: 335 MHz (8-bits/cycle) and 303 MHz (32-bits/cycle) for

Virtex2-4000-6, supporting 2.7 and 9.7 Gbps throughput respectively.

Apart from the packet pre-filtering, an intrusion detection engine, as depicted

in Figure 5.6, consists of the payload matching coprocessors and the special-

ized engines. Taking in to account the static and regular expressions pattern

matching implementation results (Chapters 3 and 4) we can estimate the per-

formance and area cost of the coprocessors for the current SNORT v2.4 IDS

ruleset. When processing 8 bits per cycle the coprocessor is able to support 2

Gbps throughput and requires about 17,000 slices. For 32-bit datapaths, our

preliminary results show that the area cost of the coprocessors would be about

65K slices and 1,4 Mbits memory. Each specialized engine would consist of

the following:

• only a few specialized instructions (∼8),

• a few counters to measure pattern distances,

• a few comparators to detect if the ID of a matched pattern coming from

the coprocessors corresponds to the processing rule, and

• next to the engines there should be a few Mbits of Block RAMs to store

the firmware of the IDS rules. Each rule would require a firmware of a

few tens of instructions.

Valuating the cost of the specialized engines, we can estimate that a overall cost

of a design that processes 8-bits per cycle would require approximately 35K

slices and 3-5 Mbits Block RAM, while for 32-bit datapaths it would occupy

about 90K slices and 4-6 Mbits RAM. Taking into account that a GPP included

in a Xilinx FPGA can perform the best effort processing for the problematic

packets, a system such as the one described above would be able to fit in a

single large FPGA device.

2Current Xilinx FPGA devices contain up to 90,000 Slices.



132 CHAPTER 5. PACKET PREFILTERING

Packet Pre-filtering Scalability

The main contribution of packet prefiltering is reducing the overall IDS pro-

cessing load. This implicitly improves the scalability of the IDS system since

the number of activated rules depends mostly on the incoming traffic instead

of the ruleset. However, we need to further investigate how the number of

activated rules scale as the IDS ruleset grows.

Next we discuss the scalability of packet prefiltering module in terms of oper-

ating frequency and area cost. Prefiltering is composed by a DCAM module

(Chapter 3.2) a header matching module (similar structure with DCAM) and

a priority encoder. In Chapter 3.4.4, we discussed the scalability of DCAM

while the header matching module is expected to have similar characteristics,

that is scaling well in terms of frequency and having an area cost at least anal-

ogous to the ruleset. The priority encoder is pipelined and therefore is scalable

in terms of performance. It has a binary tree structure of n-1 nodes (n is the

number of input bits/rules), where each node has 1 to log n bits, therefore, its

area cost is n log n. In summary, packet prefiltering is expected to maintain

operating frequency as the IDS ruleset gets larger, while its area cost can be

estimated to be analogous to the ruleset size.

IDS Scalability

The scalability of the entire IDS is very important and determines the life time

of the system. That is because an IDS that cannot fit an entire ruleset does

not efficiently protect a network. One of the reasons for using reconfigurable

technology is to offer the flexibility of adding new rules. Therefore, we need

investigate the scalability of a reconfigurable architecture like the proposed

PINE (Figure 5.6) as the number of rules increases in terms of performance

and resources.

Based on the scalability of the partial modules for content and packet inspec-

tion -discussed in Sections 3.4.4, 4.5 and the above paragraph- we can derive

some conclusions regarding PINE scalability. The operating frequency of the

system can be maintained as the IDS ruleset grows, using partitioning when

the size of the partial modules gets large. We cannot safely state how the sys-

tem would scale in terms of area requirements, however, our results indicate

that the area cost increases by about the same factor as the ruleset.



5.6. CONCLUSIONS 133

5.6 Conclusions

In this chapter, we have presented Packet Prefiltering, a powerful hardware-

based technique aim to reduce the processing requirements and improve the

scalability of intrusion detection. We claim that implementing the header

matching portion of an IDS system together with a small payload substring

(in the range of 4-8 characters) can eliminate most of the rules and determine

a handful of applicable rules, that can then be checked more efficiently by a

full-match module. The technique is amenable to various kinds of parallelism

at the full-match module whether implemented in hardware or in software.

Packet prefiltering can either match the first part of each IDS rule or choose

arbitrary substrings of a rule to be included in the filter. Selecting arbitrary

substrings instead of prefixes, may improve the accuracy of pre-filtering or

reduce the required length of the matched substrings. Matching the prefix of

each rule has lower latency since the second stage requires to check only the

remaining parts of the activated rules. We can further optimize pre-filtering by

supporting variable substring lengths per rule. This flexibility may allow us to

select an “optimal” substring length at the rule granularity with two potential

benefits: (i) cost savings from smaller lengths when possible, and (ii) better

accuracy when selectively longer prefixes are used.

The second IDS stage after prefiltering can perform processing which is ei-

ther Guaranteed Throughput, Best Effort or a hybrid approach. Guaranteed

throughput requires strict decisions for packets that activate many rules, best

effort processing makes the system vulnerable in DoS attacks, while a hybrid

approach seems to be more efficient providing alternative paths for problem-

atic and normal packets.

We suggested a reconfigurable architecture, called PINE, for the IDS detec-

tion engine using packet prefiltering and two separate datapaths for the second

processing stage. We proposed guaranteed processing throughput for packets

that activate few IDS rules and best effort processing for problematic traffic.

This way, DoS attacks may reduce systems performance for only “high-risk”

traffic, while the rest of the packets are still served at high processing rates.

A theoretical analysis showed that the probability of random and normal traf-

fic to activate more than a few tens of IDS rules after prefiltering is negligible

(< 10−5). Moreover, simulation results of real traffic traces showed that on

average 99.9% of the IDS rules do not require further processing after prefilter-

ing, while in the worst case only up to 39 rules per packet are activated. Finally,

we presented a pre-filtering implementation in reconfigurable hardware. For



134 CHAPTER 5. PACKET PREFILTERING

the Snort v2.4 ruleset, packet prefiltering can fit in a current small/medium

FPGA (Virtex2-4000-6), and achieves throughput of about 2.5 and 10 Gbps

processing one character and four characters per cycle respectively.



Chapter 6

Conclusions

K
ey network security drawbacks have been addressed in this disserta-

tion. It has been indicated that IDS rulesets are becoming larger in-

cluding increasingly more complex payload descriptions while contin-

uously faster network processing rates are required creating fundamental per-

formance and implementation difficulties in intrusion detection systems. This

thesis introduced new designs and algorithms for packet and content inspection

to alleviate the rapid increase of IDS processing requirements, and improve

IDS scalability. Reconfigurable hardware was exploited as the implementa-

tion platform for challenging intrusion detection functions providing flexibility

and hardware performance. High performance and efficient content inspection

techniques were designed providing multi-Gbps guaranteed throughput at low

implementation cost. The proposed content inspection techniques offer these

properties even when matching thousands of payload patterns against incom-

ing traffic. Fundamental regular expression issues were addressed, simplifying

design complexity and improving performance. Packet Prefiltering was intro-

duced as the answer to the IDS scalability, substantially reducing the required

IDS processing. The proposed solutions were implemented in reconfigurable

hardware, while tools and scripts have been developed to automatically gener-

ate IDS designs from any given IDS ruleset. This way, fast design update can

be achieved. The introduced designs and algorithms were tested in real traffic,

analyzed theoretically and compared against related works.

This chapter summarizes the contents of the dissertation, outlines its contri-

butions and proposes future research directions. It is organized as follows:

Section 6.1 summarizes the main conclusions we obtained from the presented

research efforts. Section 6.2, highlights the main contributions of the thesis.

Finally, Section 6.3, draws some open research directions.

135



136 CHAPTER 6. CONCLUSIONS

6.1 Summary

The significant impact of network security in modern economies and societies

coupled with the increasing network processing requirements motivated the

focus of this thesis. As Chapter 1 reported, billions of US dollars are lost every

year due to network attacks, while network bandwidth and hence network pro-

cessing requirements increase at least three times faster than the available com-

puting power. Deep Packet Inspection is currently the most efficient solution

for network security (IDS) and, in general, sophisticated network processing

providing content-aware processing.

The core of an IDS is the detection engine and uses predefined attack descrip-

tions to scan incoming traffic. It performs packet classification and content

inspection to determine whether a packet is malicious. Chapter 2 showed that

about 65-85% of the total IDS execution in GPPs is due to the detection engine

while content inspection takes roughly 40-80% of the total processing. More-

over, IDS rulesets grow rapidly increasing the IDS processing requirements.

Within the past five years the number of IDS rules quadrupled, the number of

static patterns tripled having 6× more characters and the number of regular

expressions increased 25 times. Chapter 2 also presented several implementa-

tion platform alternatives for IDS. GPPs are the most flexible solution at the

cost of low performance, ASICs can support high performance, however are

rigid. The alternative option for the IDS tasks proposed here is reconfigurable

technology providing flexibility, hardware speed, and parallelism.

In Chapter 3, we considered hardware-based static pattern matching to scan

packet payload and detect hazardous contents. We presented two static pat-

tern matching techniques to compare incoming packets against the intrusion

detection search patterns. The first approach, DCAM, pre-decodes incoming

characters, aligns the decoded data and ANDs them to produce the match sig-

nal for each pattern. The second approach, PHmem, utilizes a new perfect-

hashing technique to access a memory that contains the search patterns, and

a simple comparison between incoming data and memory output determines

the match. Our designs are well suited for reconfigurable logic and match

about 2,200 intrusion detection patterns using a single Virtex2 FPGA device.

We showed that DCAM achieves a throughput between 2 to 8 Gbps requiring

0.58 to 2.57 logic cells per search character. On the other hand, PHmem de-

signs can support 2 to 5.7 Gbps using a few tens of block RAMs (630-1,404

Kbits) and 0.28 to 0.65 logic cells per character. We evaluated both approaches

in terms of performance and area cost and analyzed their efficiency, scalabil-

ity and tradeoffs. Finally, we showed that our designs achieve at least 30%



6.1. SUMMARY 137

higher efficiency compared to previous work, measured in throughput per area

required per search character.

Recent IDS rulesets additionally use regular expressions instead of static pat-

terns as a more efficient way to represent hazardous packet payload contents.

Chapter 4 focused on regular expression matching engines implemented in re-

configurable hardware. We proposed a NFA-based implementation and intro-

duced new basic building blocks to support more complex regular expressions

than the previous approaches. Theoretical proofs showed the correct function-

ality of the new simplified blocks. Furthermore, we exploited techniques to

reduce the area cost of our designs and maximize performance. In our ex-

periments the generated designs match 300 to 1,500 IDS regular expressions

using only 10-45K logic cells and supporting throughput of 1.6-2.2 and 2.4-3.2

Gbps on Virtex2 and Virtex4 devices, respectively. Concerning the through-

put per area required per matching non-Meta character, our hardware engines

are 10-20× more efficient than previous FPGA approaches, while they have

comparable area requirements to current ASIC solutions.

Due to the increasing size of IDS rulesets and payload descriptions, IDS pro-

cessing requirements increase rapidly. In Chapter 5 we introduced the packet

pre-filtering technique as a means to resolve, or at least alleviate, the increas-

ing processing needs of current and future intrusion detection systems. We

observed that it is rare for a single incoming packet to fully or partially match

more than a few tens of IDS rules. We capitalized on this observation select-

ing a small portion from each IDS rule to be matched in the pre-filtering step.

The result of this partial match is a small subset of rules that are candidates

for a full match. Given this pruned set of rules that can apply to a packet, a

second-stage, full-match engine can sustain higher throughput. A theoretical

analysis showed that the probability to activate more than a few tens of rules

per incoming packet is very low (less than 10−5) when 6-8 bytes of payload

patterns are used in the prefiltering. We also used real traffic traces and Snort

IDS to show that matching the header and up to an 8-character pattern prefix

for each rule can determine a few rules per incoming packet to be processed.

On average 1.8 rules may apply on each packet after prefiltering, while the

maximum number of rules to be checked across all packets is 39. Effectively,

packet pre-filtering prevents matching at least 99% of the IDS rules per packet

and, as a result, minimizes processing and improves the scalability of the sys-

tem. Furthermore, we proposed and evaluated the cost and performance of a

reconfigurable architecture that uses multiple processing engines in order to

exploit the benefits of pre-filtering.



138 CHAPTER 6. CONCLUSIONS

All the proposed designs are generated automatically for the given IDS ruleset

in order to speed up system updates for a newly released ruleset. This is essen-

tial since new IDS rulesets are given every few weeks and need to be applied

relatively fast.

6.2 Contributions

This dissertation addressed several challenging issues regarding the design of

network intrusion detection systems aiming mainly at reducing the overall IDS

computation and at performing the content inspection task more efficiently. We

proposed the use of reconfigurable hardware for high-speed, low implementa-

tion cost solutions as well as flexibility and scalability. Concisely, the area cost

of static pattern matching is reduced by an order of magnitude compared to

works prior to this research (before 2004). The regular expressions efficiency

is another order of magnitude better than FPGA-based related works, while

packet prefiltering reduces the number of processing rules per packet by two

orders of magnitude, and the overall IDS workload by one order of magnitude.

More precisely:

The main contributions of the dissertation regarding content inspection are the

following:

• The proposed static pattern matching techniques can support 2-8 Gbps

throughput requiring 10-48K logic cells in reconfigurable hardware for

matching over 2,000 patterns. Compared to FPGA-based related works

the efficiency of the designs introduced here are at least 30% higher.

• DCAM and pre-decoding increases resource sharing using centralized

decoders and SRL16. Consequently, performance scales better as the

number of matching patterns increases.

• PHmem requires storing of each packet in the memory only once even

in designs that use parallelism. PHmem logic resources depend on the

number of matching patterns instead of the total number of characters.

• PHmem is the first method to generate a perfect hash function that pro-

vides all following properties:

– it guarantees perfect hash function generation for any given input

set of patterns.



6.2. CONTRIBUTIONS 139

– the number of required memory entries is equal to the number of

patterns.

– a single memory access determines the output.

• The worst case complexity of PHmem for generating a perfect hash

function is O(n log n) relative to the number of patterns n. To the best

of our knowledge, this is the lowest complexity of a perfect hashing al-

gorithm, since the second best has a complexity of O(n2) [64].

• The proposed regular expression designs support 1.6-3.2 Gbps through-

put requiring 10-50K LC to match over 1,500 IDS regular expressions

in reconfigurable hardware. To the best of our knowledge, this is the

fastest and most area efficient NFA approach. The designs are 10-20×
more efficient than previous FPGA-based regular expression approaches

and require only 30% more die area than ASIC DFA designs.

• New regular expression basic building blocks are introduced to support

constrained repetition features. These blocks require substantially fewer

resources than previous solutions. Moreover, this thesis provides theo-

retical proofs for their correct functionality.

• In current IDS regular expressions sets, the proposed constrained repe-

titions block save over 400Kbits of states storage. Our designs need less

than 40K flip-flops and 7K SRL16s to store about 150Kbits states.

Concerning the overall IDS computation of the IDS detection engine, the major

contributions of this dissertation are the following:

• The packet pre-filtering technique reduces overall IDS processing.

Matching a small portion of each IDS rule we exclude the majority of

the rules from further processing. In practice, matching 4-6 payload

bytes of every rule excludes about 99% of the rules, while a theoretical

analysis indicates that the probability of activating more than a few tens

of rules when matching 6-8 bytes is very low (less than 10−5) even for

large payloads (tens of Mbytes long).

• We suggested two different datapaths for processing incoming packets

when using prefiltering. Based on the number of activated rules an in-

coming packet will follow a guaranteed throughput datapath (when ac-

tivating less rules than the set threshold) or a best effort datapath (acti-

vated rules more than threshold). This way, the majority of packets can



140 CHAPTER 6. CONCLUSIONS

be processed in a constant rate, while problematic packets are sent to a

best effort queue for processing.

• We introduced an original design for reconfigurable hardware imple-

menting the packet prefiltering technique. The design requires only 20-

30K FPGA logic cells (less than 20% of a large FPGA device) and pro-

cesses packets at 2.5 to 10 Gbps supporting OC-48 and OC-192 connec-

tions, respectively.

6.3 Proposed Research Directions

We proposed several new ideas for deep packet inspection that provide high-

speed processing, low cost, flexibility and scalability. These ideas can be fur-

thered and complemented by the following:

• The suggested PINE architecture of Section 5.3 should be further ex-

plored to solve practical problems regarding the flow of packets, to deter-

mine design details, and to test its tolerance in DoS attacks. In addition,

we can seek techniques to avoid implementing the entire set of payload

descriptions (coprocessors) in the PINE, further exploiting prefiltering.

• It would be interesting to explore whether there is a correlation between

the activated rules per packet in prefiltering. If so, the second stage of

processing could possibly be improved by e.g., merging some rules.

• Regarding packet prefiltering, the following can be performed:

– we can investigate how the number of activated rules scale as the

IDS ruleset grows in prefiltering,

– we can explore the benefits of perfect hashing in prefiltering.

– we can search for specific guidelines for writing NIDS rules in

order to improve prefiltering.

• This thesis showed that reconfigurable hardware is suitable for packet

inspection, however, the use of reconfigurable technology raises several

issues such as power consumption and the integration of reconfigurable

parts into a complete system.

• It would be significant to speed up the reconfiguration times and design

implementation in order to provide faster system updates. Fine-grain



6.3. PROPOSED RESEARCH DIRECTIONS 141

dynamic reconfiguration and incremental design implementation are two

possible directions.

• Hashing algorithms have been used in the past for packet classification.

It would be interesting to investigate the efficiency of a modified PHmem

algorithm for such a task.

• There are several issues still open regarding regular expression match-

ing. The constrained repetitions of variable-length expressions are not

efficiently supported, while exploiting parallelism is not straightforward.





Bibliography

[1] Computer Economics, “Annual Worldwide Economic Dam-

ages from Malware Exceed $13 Billion,” June 2007.

http://www.computereconomics.com/article.cfm?id=1225.

[2] Mi2g, “Digital Attacks Report - SIPS Monthly Intelligence Descrip-

tion, Economic Damage - All Attacks - Yearly,” September 2004.

http://www.mi2g.net/cgi/mi2g/sipsgraph.php.

[3] M. Fisk and G. Varghese, “An Analysis of Fast String Matching Applied

to Content-based Forwarding and Intrusion Detection,” in Techical Re-

port CS2001-0670, (University of California - San Diego), 2002.

[4] D. L. Schuff and V. S. Pai, “Design alternatives for a high-performace

self-securing ethernet network interface,” in IEEE International Paral-

lel & Distributed Processing Symposium (IPDPS), (Long Beach, CA),

pp. 1–10, March 2007.

[5] S. Yusuf, W. Luk, M. K. N. Szeto, and W. Osborne, “Unite: Uniform

hardware-based network intrusion detection engine.,” in Int. Workshop

on Applied Reconfigurable Computing, pp. 389–400, 2006.

[6] Y. Yu, A Contnet-addressable-memory Assisted Intrusion Prevention

Expert System For Gigabit Networks. Ph.D., University of Pittsburgh,

August 2006.

[7] G. Gilder, “Telecosm: How Infinite Bandwidth Will Revolutionize Our

World,” September 2000. Free Press.

[8] G. Moore, “Cramming more components onto integrated circuits,” Elec-

tronics, vol. 38, no. 8, 1965.

[9] I. Dubrawsky, “Firewall Evolution - Deep Packet Inspaction.”

http://www.securityfocus.com/infocus/1716, July 2003.

143



144 BIBLIOGRAPHY

[10] S. Antonatos, K. G. Anagnostakis, E. P. Markatos, and M. Polychron-

akis, “Performance Analysis of Content Matching Intrusion Detection

Systems,” in Proceedings of the International Symposium on Applica-

tions and the Internet, (Los Alamitos, CA, USA), pp. 208–218, 2004.

[11] M. Roesch, “Snort - lightweight intrusion detection for networks,” in

Proceedings of LISA’99: 13th Administration Conference, pp. 229–238,

November 7-12 1999. Seattle Washington, USA.

[12] SNORT official web site, “http://www.snort.org.”

[13] A. Valdes and K. Skinner, “Probabilistic alert correlation,” in Proceed-

ings of the 4th International Symposium on Recent Advances in In-

trusion Detection (RAID), (London, UK), pp. 54–68, Springer-Verlag,

2001.

[14] D. Xu and P. Ning, “Alert correlation through triggering events and

common resources,” in Proceedings of the 20th Annual Computer Se-

curity Applications Conference (ACSAC’04), (Washington, DC, USA),

pp. 360–369, IEEE Computer Society, 2004.

[15] F. Valeur, G. Vigna, C. Kruegel, and R. A. Kemmerer, “A comprehen-

sive approach to intrusion detection alert correlation,” IEEE Trans. De-

pendable Secur. Comput., vol. 1, no. 3, pp. 146–169, 2004.

[16] Bleeding Edge Threats web site, “http://www.bleedingthreats.net.”

[17] J. van Lunteren and T. Engbersen, “Fast and scalable packet classifi-

cation,” IEEE Journal on Selected Areas in Communications, vol. 21,

pp. 560–571, 2003.

[18] P. Gupta and N. McKeown, “Algorithms for packet classification,” IEEE

Network, vol. 15, no. 2, pp. 24–32, 2001.

[19] D. E. Taylor, “Survey and taxonomy of packet classification tech-

niques,” ACM Comput. Surv., vol. 37, no. 3, pp. 238–275, 2005.

[20] J. Moscola, Y. H. Cho, and J. W. Lockwood, “A reconfigurable archi-

tecture for multi-gigabit speed content-based routing,” in 14th Annual

IEEE Symposium on High Performance Interconnects (HotI-14), (Stan-

ford, CA), pp. 61–66, Aug. 2006.



BIBLIOGRAPHY 145

[21] H. Song, J. Turner, and J. Lockwood, “Shape shifting tries for faster IP

route lookup,” in Proceedings of the IEEE International Conference on

Network Protocols (ICNP), (Boston, MA), pp. 358–367, Nov. 2005.

[22] H. Song and J. W. Lockwood, “Efficient packet classification for net-

work intrusion detection using FPGA,” in International Symposium

on Field-Programmable Gate Arrays (FPGA’05), (Monterey, CA),

pp. 238–245, Feb. 2005.

[23] V. Dimopoulos, G. Papadopoulos, and D. Pnevmatikatos, “On the im-

portance of header classification in hw/sw network intrusion detection

systems,” in Proceedings of the 10th Panhellenic Conference on Infor-

matics (PCI), November 11-13, 2005.

[24] PCRE -Perl Compatible Regular Expressions, “http://www.pcre.org/.”

[25] N. P. Sedcole, B. Blodget, T. Becker, J. Anderson, and P. Lysaght,

“Modular partial reconfiguration in virtex fpgas.,” in Int. Conf. on Field

Programmable Logic and Applications (FPL), pp. 211–216, 2005.

[26] M. Attig and J. Lockwood, “A framework for rule processing in re-

configurable network systems,” in FCCM ’05: Proceedings of the 13th

Annual IEEE Symposium on Field-Programmable Custom Computing

Machines (FCCM’05), (Washington, DC, USA), pp. 225–234, IEEE

Computer Society, 2005.

[27] B. L. Hutchings, R. Franklin, and D. Carver, “Assisting Network Intru-

sion Detection with Reconfigurable Hardware,” in Proceedings of the

10th Annual IEEE Symposium on Field-Programmable Custom Com-

puting Machines (FCCM), pp. 111–120, 2002.

[28] Y. H. Cho, S. Navab, and W. Mangione-Smith, “Specialized Hard-

ware for Deep Network Packet Filtering,” in 12th International Confer-

ence on Field Programmable Logic and Applications, (London, UK),

pp. 452–461, Springer-Verlag, 2002.

[29] M. Gokhale, D. Dubois, A. Dubois, M. Boorman, S. Poole, and

V. Hogsett, “Granidt: Towards Gigabit Rate Network Intrusion De-

tection Technology,” in Proceedings of 12th Int. Conference on Field

Programmable Logic and Applications, (London, UK), pp. 404–413,

Springer-Verlag, 2002.



146 BIBLIOGRAPHY

[30] I. Sourdis and D. Pnevmatikatos, “Fast, Large-Scale String Match for a

10Gbps FPGA-based Network Intrusion Detection System,” in proceed-

ings of 13th International Conference on Field Programmable Logic

and Applications (FPL 2003), pp. 880–889, September 2003.

[31] Z. K. Baker and V. K. Prasanna, “A Methodology for Synthesis of Ef-

ficient Intrusion Detection systems on FPGAs,” in IEEE Symposium on

Field-Programmable Custom Computing Machines, pp. 135–144, 2004.

[32] C. R. Clark and D. E. Schimmel, “Scalable Parallel Pattern-Matching

on High-Speed Networks,” in IEEE Symposium on Field-Programmable

Custom Computing Machines, pp. 249–257, 2004.

[33] Y. H. Cho and W. H. Mangione-Smith, “Deep Packet Filter with Dedi-

cated Logic and Read Only Memories,” in IEEE Symposium on Field-

Programmable Custom Computing Machines, (Washington, DC, USA),

pp. 125–134, 2004.

[34] I. Sourdis and D. Pnevmatikatos, “Pre-decoded CAMs for Efficient and

High-Speed NIDS Pattern Matching,” in IEEE Symposium on Field-

Programmable Custom Computing Machines (FCCM 2004), pp. 258–

267, April 2004.

[35] Z. K. Baker and V. K. Prasanna, “Automatic Synthesis of Efficien Intru-

sion Detection Systems on FPGAs,” in 14th International Conference

on Field Programmable Logic and Applications, pp. 311–321, 2004.

[36] M. Attig, S. Dharmapurikar, and J. Lockwood, “Implementation Re-

sults of Bloom Filters for String Matching,” in IEEE Symposium on

Field-Programmable Custom Computing Machines, (Napa, CA, USA),

pp. 322–323, 2004.

[37] Y. H. Cho and W. H. Mangione-Smith, “Programmable Hardware for

Deep Packet Filtering on a Large Signature Set,” in First Watson Con-

ference on Interaction between Architecture, Circuits, and Compil-

ers(P=ac2), (NY), October 2004.

[38] L. Tan and T. Sherwood, “A High Throughput String Matching Archi-

tecture for Intrusion Detection and Prevention,” in 32nd International

Symposium on Computer Architecture (ISCA 2005), (Madison, Wiscon-

sin, USA), pp. 112–122, June 2005.



BIBLIOGRAPHY 147

[39] P. Krishnamurthy, J. Buhler, R. D. Chamberlain, M. A. Franklin,

K. Gyang, and J. Lancaster, “Biosequence similarity search on the mer-

cury system.,” in 15th IEEE International Conference on Application-

Specific Systems, Architectures, and Processors (ASAP 2004), pp. 365–

375, 2004.

[40] E. Sotiriadis, C. Kozanitis, and A. Dollas, “FPGA Based Architecture

for DNA Sequence Comparison and Database Search,” in 13th Recon-

figurable Architectures Workshop (RAW), April 2006.

[41] I. Sourdis and D. Pnevmatikatos, “Fast, large-scale string match for

a 10gbps fpga-based nids,” in Chapter in ”New Algorithms, Architec-

tures, and Applications for Reconfigurable Computing” (P. Lysaght and

W. Rosenstiel, eds.), pp. 195–207, Springer, 2005.

[42] I. Sourdis, D. Pnevmatikatos, S. Wong, and S. Vassiliadis, “A Recon-

figurable Perfect-Hashing Scheme for Packet Inspection,” in Proceed-

ings of 15th Int. Conf. on Field Programmable Logic and Applications,

pp. 644–647, 2005.

[43] R. Boyer and J. Moore, “A fast string match algorithm,” in Commun.

ACM, vol. 20(10), pp. 762–772, October 1977.

[44] A. Aho and M. Corasick, “Fast pattern matching: an aid to bibliographic

search,” in Commun. ACM, vol. 18(6), pp. 333–340, June 1975.

[45] D. Gusfield, “Algorithms on strings, trees, and sequences: Computer

science and computational biology,” in University of California Press,

(CA), 1997.

[46] S. Wu and U. Mander, “A fast algorithm for multi-pattern searching,” in

Techical Report TR-94-17, (University of Arisona), 1994.

[47] E. Markatos, S. Antonatos, M. Polyhronakis, and K. G.Anagnostakis,

“Exclusion-based signature matching for intrusion detection,” in Pro-

ceedings of the IASTED International Conference on Communications

and Computer Networks (CCN), pp. 146–152, November 2002.

[48] D. V. Pryor, M. R. Thistle, and N. Shirazi, “Text searching on splash 2,”

in IEEE Symposium on Field-Programmable Custom Computing Ma-

chines, pp. 172–177, April 1993.



148 BIBLIOGRAPHY

[49] J. M. Arnold, D. A. Buell, and E. G. Davis, “Splash 2,” in Proceedings

of the fourth annual ACM symposium on Parallel algorithms and archi-

tectures (SPAA’92), (New York, NY, USA), pp. 316–322, ACM Press,

1992.

[50] C. R. Clark and D. E. Schimmel, “Efficient reconfigurable logic circuit

for matching complex network intrusion detection patterns,” in 13th In-

ternational Conference on Field Programmable Logic and Applications,

pp. 956–959, 2003.

[51] R. A. Baeza-Yates and G. H. Gonnet, “A new approach to text search-

ing,” in Proceedings of the 12th International Conference on Research

and Development in Information Retrieval (N. J. Belkin and C. J. van

Rijsbergen, eds.), (Cambridge, MA), pp. 168–175, ACM Press, 1989.

[52] D. E. Knuth, J. H. M. Jr., and V. R. Pratt, “Fast pattern matching in

strings,” SIAM Journal on Computing, vol. 6, no. 2, pp. 323–350, 1977.

[53] F. Yu, R. H. Katz, and T. V. Lakshman, “Gigabit rate packet pattern-

matching using tcam,” in ICNP ’04: Proceedings of the Network Proto-

cols, 12th IEEE International Conference on (ICNP’04), (Washington,

DC, USA), pp. 174–183, IEEE Computer Society, 2004.

[54] L. Bu and J. A. Chandy, “FPGA based network intrusion detection

using content addressable memories,” in IEEE Symposium on Field-

Programmable Custom Computing Machines, pp. 316–317, April 2004.

Napa, CA, USA.

[55] J. Singaraju, L. Bu, and J. A. Chandy, “A signature match processor

architecture for network intrusion detection.,” in IEEE Symposium on

Field-Programmable Custom Computing Machines (FCCM), pp. 235–

242, 2005.

[56] S. Yusuf and W. Luk, “Bitwise Optimized CAM For Network Intrusion

Detection Systems,” in Proceedings of 15th International Conference

on Field Programmable Logic and Applications, pp. 444–449, 2005.

[57] Z. K. Baker and V. K. Prasanna, “High-throughput linked-pattern

matching for intrusion detection systems,” in ANCS ’05: Proceedings

of the 2005 symposium on Architecture for networking and communica-

tions systems, (New York, NY, USA), pp. 193–202, ACM Press, 2005.



BIBLIOGRAPHY 149

[58] Z. K. Baker and V. K. Prasanna, “Automatic synthesis of efficient intru-

sion detection systems on fpgas.,” IEEE Trans. Dependable Sec. Com-

put., vol. 3, no. 4, pp. 289–300, 2006.

[59] R. Sidhu and V. K. Prasanna, “Fast Regular Expression Matching Using

FPGAs,” in Proceedings of the 9th Annual IEEE Symposium on Field-

Programmable Custom Computing Machines (FCCM), pp. 227–238,

2001.

[60] J. Lockwood, “Field Programmable Port Extender (FPX) User Guide:

Version 2.2,” Technical Report WUCS-02-15, Washington University,

Department of Computer Science, June 2002.

[61] J. Moscola, J. Lockwood, R. P. Loui, and M. Pachos, “Implementation

of a Content-Scanning Module for an Internet Firewall,” in Proceedings

of the 11th Annual IEEE Symposium on Field-Programmable Custom

Computing Machines (FCCM), pp. 31–38, 2003.

[62] J. W. Lockwood, “An open platform for development of network pro-

cessing modules in reconfigurable hardware,” in IEC DesignCon ’01,

2001. Santa Clara, CA, USA.

[63] P. Sutton, “Partial Character Decoding for Improved Regular Expres-

sion Matching in FPGAs,” in Proceedings of IEEE International Con-

ference on Field-Programmable Technology (FPT), pp. 25–32, 2004.

[64] M. D. Brain and A. L. Tharp, “Using tries to eliminate pattern colli-

sions in perfect hashing,” IEEE Transactions on Knowledge and Data

Engineering, vol. 6, no. 2, pp. 239–247, 1994.

[65] G. Papadopoulos and D. Pnevmatikatos, “Hashing + Memory = Low

Cost, Exact Pattern Matching,” in 15th International Conference on

Field Programmable Logic and Applications (FPL), pp. 39–44, 2005.

[66] F. J. Burkowski, “A Hardware Hashing Scheme in the Design of a Mul-

titerm String Comparator.,” IEEE Transactions on Computers, vol. 31,

no. 9, pp. 825–834, 1982.

[67] Y. H. Cho and W. H. Mangione-Smith, “Fast reconfiguring deep packet

filter for 1+ gigabit network,” in FCCM ’05: Proceedings of the 13th

Annual IEEE Symposium on Field-Programmable Custom Computing

Machines (FCCM’05), (Washington, DC, USA), pp. 215–224, IEEE

Computer Society, 2005.



150 BIBLIOGRAPHY

[68] Y. H. Cho and W. H. Mangione-Smith, “A pattern matching coprocessor

for network security,” in DAC ’05: Proceedings of the 42nd annual

conference on Design automation, (New York, NY, USA), pp. 234–239,

ACM Press, 2005.

[69] A. Arelakis and D. Pnevmatikatos, “Variable-Length Hashing for Exact

Pattern Matching,” in Proceedings of 16th International Conference on

Field Programmable Logic and Applications (FPL), pp. 1–6, 2006.

[70] J. Botwicz, P. Buciak, and P. Sapiecha, “Building dependable intrusion

prevention systems.,” in DepCoS-RELCOMEX, pp. 135–142, 2006.

[71] R. M. Karp and M. O. Rabin, “Efficient randomized pattern-matching

algorithms,” IBM Journal of Ressearch and Development, vol. 31, no. 2,

pp. 249–260, 1987.

[72] B. H. Bloom, “Space/time trade-offs in hashing coding with allowable

errors,” in Communications of the ACM, 13(7), pp. 422–426, July 1970.

[73] S. Dharmapurikar, P. Krishnamurthy, T. Spoull, and J. Lockwood,

“Deep Packet Inspection using Bloom Filters,” in Hot Interconnects,

2003. Stanford, CA.

[74] S. Dharmapurikar, H. Song, J. Turner, and J. Lockwood, “Fast packet

classification using bloom filters,” in ANCS ’06: Proceedings of the

2006 ACM/IEEE symposium on Architecture for networking and com-

munications systems, (New York, NY, USA), pp. 61–70, ACM Press,

2006.

[75] S. Dharmapurikar and J. Lockwood, “Fast and scalable pattern match-

ing for content filtering,” in ANCS ’05: Proceedings of the 2005 sym-

posium on Architecture for networking and communications systems,

(New York, NY, USA), pp. 183–192, ACM Press, 2005.

[76] S. Dharmapurikar and J. W. Lockwood, “Fast and Scalable Pattern

Matching for Network Intrusion Detection Systems,,” IEEE Journal

on Selected Areas in Communications, vol. 24, no. 10, pp. 1781–1792,

2006.

[77] H. Song and J. W. Lockwood, “Multi-pattern signature matching for

hardware network intrusion detection systems,” in IEEE Globecom

2005, (St. Louis, MO), pp. CN–02–3, Nov. 2005.



BIBLIOGRAPHY 151

[78] H. Song, S. Dharmapurikar, J. Turner, and J. Lockwood, “Fast hash ta-

ble lookup using extended bloom filter: An aid to network processing,”

in ACM SIGCOMM, (Philadelphia, PA), pp. 181–192, Aug. 2005.

[79] R. Sidhu, A. Mei, and V. K. Prasanna, “String matching on multicon-

text FPGAs using self-reconfiguration,” in Proceedings of FPGA ’99,

pp. 217–226, 1999.

[80] Z. K. Baker and V. K. Prasanna, “Time and Area Efficient Recon-

figurable Pattern Matching on FPGAs,” in Proceedings of FPGA ’04,

pp. 223–232, 2004.

[81] Z. K. Baker and V. K. Prasanna, “A Computationally Efficient Engine

for Flexible Intrusion Detection,” IEEE Transactions on Very Large

Scale Integration (VLSI) Systems, vol. 13, no. 10, pp. 1179– 1189, 2005.

[82] V. Dimopoulos, I. Papaefstathiou, and D. Pnevmatikatos, “A memory-

efficient reconfigurable aho-corasick fsm implementation for intrusion

detection systems,” in Int. Conf. on Embedded Computer Systems: Ar-

chitectures, Modeling and Simulation (IC-SAMOS), (Samos, Greece),

pp. 186–193, 2007.

[83] H.-J. Jung, Z. K. Baker, and V. K. Prasanna, “Performance of FPGA Im-

plementation of Bit-split Architecture for Intrusion Detection Systems,”

in Proceedings of the Reconfigurable Architectures Workshop at IPDPS

(RAW ’06), 2006.

[84] M. Aldwairi, T. Conte, and P. Franzon, “Configurable string matching

hardware for speeding up intrusion detection,” SIGARCH Comput. Ar-

chit. News, vol. 33, no. 1, pp. 99–107, 2005.

[85] Y. Sugawara, M. Inaba, and K. Hiraki, “Over 10gbps string match-

ing mechanism for multi-stream packet scanning systems.,” in FPL,

pp. 484–493, 2004.

[86] J. van Lunteren, “High-performance pattern-matching for intrusion de-

tection,” in Proceedings of IEEE INFOCOM’06, 2006.

[87] S. Kim, “Pattern matching acceleration for network intrusion detection

systems.,” in SAMOS, pp. 289–298, 2005.



152 BIBLIOGRAPHY

[88] H.-C. Roan, W.-J. Hwang, and C.-T. D. Lo, “”shift-or circuit for ef-

ficient network intrusion detection pattern matching”,” in the 16th In-

ternational Conference on Field Programmable Logic and Applications

(FPL 2006), pp. 785–790, August 2006.

[89] N. Tuck, T. Sherwood, B. Calder, and G. Varghese, “Deterministic

memory-efficient string matching algorithms fo intrusion detection,” in

Proceedings of the IEEE Infocom Conference, pp. 333–340, 2004.

[90] L. Tan and T. Sherwood, “Architectures for bit-split string scanning in

intrusion detection,” IEEE Micro, vol. 26, no. 1, pp. 110–117, 2006.

[91] B. C. Brodie, D. E. Taylor, and R. K. Cytron, “A Scalable Architec-

ture For High-Throughput Regular-Expression Pattern Matching,” in

33rd International Symposium on Computer Architecture (ISCA’06),

pp. 191–202, 2006.

[92] Xilinx, “Virtex-II Platform FPGAs: Complete data sheet.” DS031 v3.3,

June 2004.

[93] B. Kernigham and S. Lin, “An efficient heuristic procedure for parti-

tioning graphs,” Bell Systems Technology J., vol. 49, no. 2, pp. 292–370,

1970.

[94] R. C. Merkle, “Protocols for public key cryptosystems.,” in IEEE Sym-

posium on Security and Privacy, pp. 122–134, 1980.

[95] M. Karnaugh, “The map method for synthesis of combinational logic

circuits,” AIEE Trans. on Comm. & Elect., vol. 9, pp. 593–599, 1953.

[96] E. J. McCluskey, “Minimization of Boolean functions,” Bell System

Technical Journal, vol. 35, pp. 1417–1444, April 1959.

[97] F. F. Sellers, M.-Y. Hsiao, and L. W. Bearnson, Error Detecting Logic

for Digital Computers. McGraw-Hill Inc., 1968.

[98] N. Song and M. A. Perkowski, “Minimization of exclusive sum-of-

products expressions for multiple-valued input, incompletely specified

functions,” IEEE Trans. on CAD of Integrated Circuits and Systems,

vol. 15, no. 4, pp. 385–395, 1996.

[99] T. Kozlowski, E. L. Dagless, and J. Saul, “An enhanced algorithm for

the minimization of exclusive-OR sum-of-products for incompletely



BIBLIOGRAPHY 153

specified functions,” in Int. Conf. on Computer Design, pp. 244–249,

1995.

[100] S. Vassiliadis, D. S. Lemon, and M. Putrino, “S/370 sign-magnitude

floating-point adder,” IEEE Journal of Solid-State Circuits, vol. 24,

no. 4, pp. 1062–1070, 1989.

[101] T. Sproull, G. Brebner, and C. Neely, “Mutable Codesign For Embedded

Protocol Processing,” in Proceedings of 15th International Conference

on Field Programmable Logic and Applications, pp. 51–56, 2005.

[102] XILINX official web site, “VirtexE, Virtex2, Virtex2Pro, and Spartan3

Datasheets,” in http://www.xilinx.com.

[103] S. Dharmapurikar, P. Krishnamurthy, T. S. Sproull, and J. W. Lock-

wood, “Deep packet inspection using parallel Bloom filters,” IEEE Mi-

cro, vol. 24, pp. 52–61, Jan. 2004.

[104] F. Yu, Z. Chen, Y. Diao, T. V. Lakshman, and R. H. Katz, “Fast and

memory-efficient regular expression matching for deep packet inspec-

tion,” in 2nd ACM/IEEE Symposium on Architectures for Networking

and Communications Systems (ANCS), pp. 93–102, ACM Press, 2006.

[105] F. Yu, Z. Chen, Y. Diao, T. Lakshman, and R. H. Katz, “Fast and

memory-efficient regular expression matching for deep packet inspec-

tion,” Tech. Rep. UCB/EECS-2006-76, EECS Department, University

of California, Berkeley, May 22 2006.

[106] S. Kumar, J. Turner, and J. Williams, “Advanced algorithms for fast and

scalable deep packet inspection,” in ANCS ’06: Proceedings of the 2006

ACM/IEEE symposium on Architecture for networking and communica-

tions systems, (New York, NY, USA), pp. 81–92, ACM Press, 2006.

[107] S. Kumar, S. Dharmapurikar, F. Yu, P. Crowley, and J. Turner,

“Algorithms to accelerate multiple regular expressions matching for

deep packet inspection,” SIGCOMM Computer Communication Review,

vol. 36, no. 4, pp. 339–350, 2006.

[108] S. Stephens, J. Y. Chen, M. G. Davidson, S. Thomas, and B. M. Trute,

“Oracle database 10g: a platform for blast search and regular expres-

sion pattern matching in life sciences.,” Nucleic Acids Research, vol. 33,

no. Database-Issue, pp. 675–679, 2005.



154 BIBLIOGRAPHY

[109] S. Ray and M. Craven, “Learning Statistical Models for Annotating Pro-

teins with Function Information using Biomedical Text.,” BMC Bioin-

formatics., vol. 6, 2005.

[110] J.-M. Champarnaud, F. Coulon, and T. Paranthoen, “Compact and Fast

Algorithms for Regular Expression Search,” Int. Journal of Computer

Mathematics, vol. 81, no. 4, pp. 383–401.

[111] G. Berry and R. Sethi, “From regular expressions to deterministic au-

tomata,” Theoretical Computer Science, vol. 48, no. 1, pp. 117–126,

1986.

[112] J. E. Hopcroft and J. D. Ullman, Introduction to Automata Theory, Lan-

guages and Computation. Reading, Mass.: 2nd Ed., Addison-Wesley,

2001.

[113] R. W. Floyd and J. D. Ullman, “The Compilation of Regular Expres-

sions into Integrated Circuits,” J. ACM, vol. 29, pp. 603–622, July 1982.

[114] A. Karlin, H. Trickey, and J. Ullman, “Experience with a regular expres-

sion compiler,” in Proc. IEEE Conf. on Circuits and Systems, pp. 656–

665, Oct. 1983.

[115] A. Mukhopadhyay, “Hardware algorithms for non-numeric computa-

tion,” IEEE Trans. Comput., vol. C-28, no. 6, pp. 384–394, 1979.

[116] I. Sourdis, J. Bispo, J. M. Cardoso, and S. Vassiliadis, “Regular expres-

sion matching in reconfigurable hardware,” Int. Journal of VLSI Signal

Processing Systems, 2007.

[117] J. C. Bispo, I. Sourdis, J. M. Cardoso, and S. Vassiliadis, “Regular

Expression Matching for Reconfigurable Packet Inspection,” in IEEE

International Conference on Field Programmable Technology (FPT),

pp. 119–126, December 2006.

[118] M. Rabin and D. Scott, “Finite automata and their decision problems,”

in IBM Journal of Research and Development 3, pp. 114–125, 1959.

[119] R. McNaughton and H. Yamada, “Regular Expressions and State

Graphs for Automata,” IEEE Transactions on Electronic Computers,

vol. 9, pp. 39–47, 1960.

[120] K. Thompson, “Regular expression search algorithm,” Communications

of the ACM, vol. 11, no. 6, pp. 419–422, 1968.



BIBLIOGRAPHY 155

[121] M. J. Foster, “Avoiding latch formation in regular expression recogniz-

ers,” IEEE Trans. Comput., vol. 38, no. 5, pp. 754–756, 1989.

[122] C.-H. Lin, C.-T. Huang, C.-P. Jiang, and S.-C. Chang, “Optimization of

regular expression pattern matching circuits on FPGA,” in DATE ’06:

Proceedings of the conference on Design, automation and test in Eu-

rope, pp. 12–17, 2006.

[123] J. Moscola, Y. H. Cho, and J. W. Lockwood, “A scalable hybrid

regular expression pattern matcher,” in Proceedings of the 14th An-

nual IEEE Symposium on Field-Programmable Custom Computing Ma-

chines (FCCM’06), pp. 337–338, 2006.

[124] Z. K. Baker, H.-J. Jung, and V. K. Prasanna, “Regular Expression

Software Deceleration For Intrusion Detection Systems,” in 16th Inter-

national Conference on Field Programmable Logic and Applications,

pp. 418–425, 2006.

[125] I. Sourdis, V. Dimopoulos, D. Pnevmatikatos, and S. Vassil-

iadis, “Packet Pre-filtering for Network Intrusion Detection,” in 2nd

ACM/IEEE Symposium on Architectures for Networking and Commu-

nications Systems (ANCS), pp. 183–192, December 2006.

[126] S. Antonatos, M. Polychronakis, P. Akritidis, K. D. Anagnostakis, and

E. P. Markatos, “Piranha: Fast and memory-efficient pattern matching

for intrusion detection,” in Proceedings 20th IFIP International Infor-

mation Security Conference (SEC 2005), pp. 393–408, May.

[127] R. Ramaswamy, L. Kencl, and G. Iannaccone, “Approximate finger-

printing to accelerate pattern matching,” in IMC ’06: Proceedings of the

6th ACM SIGCOMM on Internet measurement, (New York, NY, USA),

pp. 301–306, ACM Press, 2006.

[128] M. Rabin, “Fingerprinting by random polynomials,” Technical Report

TR-15-81, Harvard University, Department of Computer Science, 1981.

[129] Sourcefire, “Snort rule optimizer.,” in

www.sourcefire.com/whitepapers/sf snort20 ruleop.pdf, June 2002.

[130] Y. Tang and S. Chen, “An automated signature-based approach against

polymorphic internet worms.,” IEEE Trans. Parallel Distrib. Syst.,

vol. 18, no. 7, pp. 879–892, 2007.



156 BIBLIOGRAPHY

[131] K. Wang, G. Cretu, and S. J. Stolfo, “Anomalous payload-based net-

work intrusion detection.,” in 7th Int. Symposium on Recent Advances

in Intrusion Detection, pp. 203–222, 2004.

[132] J. M. Estevez-Tapiador, P. Garcia-Teodoro, and J. E. Diaz-Verdejo,

“Measuring normality in http traffic for anomaly-based intrusion de-

tection,” Computer Networks, vol. 45, no. 2, pp. 175–193, 2004.

[133] L. J. Guibas and A. M. Odlyzko, “String overlaps, pattern matching, and

nontransitive games.,” J. Comb. Theory, Ser. A, vol. 30, no. 2, pp. 183–

208, 1981.

[134] M. Mungan, A. Kabakcioglu, D. Balcan, and A. Erzan, “Analytical so-

lution of a stochastic content based network model,” Journal of Physics

A: Mathematical and General, vol. 38, pp. 9599–9620, 2005.

[135] Shmoo Group: the Capture the Flag Data, “http://cctf.shmoo.com/.”



List of Publications

Book Chapters

• I. Sourdis and D. Pnevmatikatos, Fast, Large-Scale String Match for

a 10Gbps FPGA-based NIDS, Chapter in “New Algorithms, Architec-

tures, and Applications for Reconfigurable Computing”, Patrick Lysaght

and Wolfgang Rosenstiel (Eds.), Chapter 16, pp. 195–207, ISBN 1–

4020–3127–0, Springer, 2005.

International Journals

• I. Sourdis, D.N. Pnevmatikatos, S. Vassiliadis, Scalable Multi-Gigabit

Pattern Matching for Packet Inspection, to appear in IEEE Transac-

tions on Very Large Scale Integration (VLSI) Systems, special section on

Configurable Computing Design, 2007/2008.

• I. Sourdis, J. Bispo, J. M.P. Cardoso and S. Vassiliadis, Regular Expres-

sion Matching in Reconfigurable Hardware, to appear in Int. Journal

of VLSI Signal Processing Systems. Springer, 2007/2008.

International Conference Proceedings

• I. Sourdis, V. Dimopoulos, D.N. Pnevmatikatos, S. Vassiliadis, Packet

Pre-filtering for Network Intrusion Detection, in 2nd ACM/IEEE

Symposium on Architectures for Networking and Communications Sys-

tems (ANCS), ACM, pp. 183–192, San Jose, California, December 2006.

• J. Bispo, I. Sourdis, J. M.P. Cardoso, S. Vassiliadis, Regular Expression

Matching for Reconfigurable Packet Inspection, IEEE International

Conference on Field Programmable Technology (FPT), IEEE, pp. 119–

126, December 2006.

157



158 LIST OF PUBLICATIONS

• I. Sourdis, D.N. Pnevmatikatos, S. Wong, S. Vassiliadis, A Reconfig-

urable Perfect-Hashing Scheme for Packet Inspection, in Proceed-

ings of 15th International Conference on Field Programmable Logic

and Applications (FPL 2005), IEEE, pp. 644–647, Tampere, Finland,

August 2005.

• I. Sourdis, D.N. Pnevmatikatos, Pre-decoded CAMs for Efficient and

High-Speed NIDS Pattern Matching, IEEE Symposium on Field-

Programmable Custom Computing Machines (FCCM 2004), IEEE, pp.

258–267, Napa CA, USA, April 2004.

• I. Sourdis, D.N. Pnevmatikatos, Fast, Large-Scale String Match for

a 10Gbps FPGA-based Network Intrusion Detection System, in

Proceedings of 13th International Conference on Field Programmable

Logic and Applications (FPL 2003), Springer LNCS, pp. 880–889, Lis-

bon, Portugal, September 2003.

International Workshop Proceedings

• J. Bispo, I. Sourdis, J. M.P. Cardoso, S. Vassiliadis, Synthesis of Reg-

ular Expressions Targeting FPGAs: Current Status and Open Is-

sues”, Int. Workshop on Applied Reconfigurable Computing (ARC

2007), pp. 179–190, Springer LNCS, Mangaratiba, Rio de Janiero,

Brazil, March 2007.



LIST OF PUBLICATIONS 159

Other publications, not directly related to this dissertation:

• S. Vassiliadis, I. Sourdis, FLUX Interconnection Networks on De-

mand, Journal of Systems Architecture, pp. 777–793, vol. 53 (10) Else-

vier, October 2007.

• S. Vassiliadis, I. Sourdis, FLUX Networks: Interconnects on De-

mand, Int. Conf. on Embedded Computer Systems: Architectures, Mod-

eling and Simulation (IC-SAMOS), IEEE, pp. 160–167, Samos, Greece,

July 2006.

• S. Vassiliadis, I. Sourdis, Reconfigurable FLUX Networks, IEEE

International Conference on Field Programmable Technology (FPT),

IEEE, pp. 81–88, December 2006.

• S. Vassiliadis, I. Sourdis, Reconfigurable Fabric Interconnects, in Int.

Symposium on System-on-Chip (SoC), IEEE, pp. 41–44, Tampere, Fin-

land, November 2006.

• D.N. Pnevmatikatos, I. Sourdis, K. Vlachos, An Efficient,Low-Cost

I/O Subsystem for Network Processors, IEEE Design & Test of Com-

puters, Vol. 20, Issue 4, pp. 56–64, July 2003.

• G. Lykakis, N. Mouratidis, K. Vlachos, N. Nikolaou, S. Perissakis, I.

Sourdis, G. Konstantoulakis, D.N. Pnevmatikatos, D. Reisis, Efficient

Field Processing Cores in an Innovative Protocol Processor System-

on-Chip, Design, Automation and Test in Europe (DATE 2003), IEEE,

pp. 20014–20019, Messe Munich, Germany, March 2003.

• I. Sourdis, D.N. Pnevmatikatos, K. Vlachos, An Efficient and Low-

Cost Input/Output Subsystem for Network Processors, Workshop on

Application Specific Processors (WASP-1), Istanbul, Turkey, November

2002.





Samenvatting

D
it proefschrift behandeld essentiële onderwerpen met betrekking tot

op hoge snelheid presterende verwerkingsprocessen voor netwerk

beveiliging en diepe pakket inspectie. De oplossingen zoals in dit

proefschrift voorgesteld houden gelijke tred met de toenemende hoeveelheid

en complexiteit van bekende inbraak beschrijvingen waarbij een doorvoersnel-

heid van enkele Gigabits per seconde wordt gerealiseerd. We beargumenteren

het gebruik van herconfigureerbare hardware om te voorzien in flexibiliteit,

hardware snelheid en parallellisme bij het gebruik van complexe pakket en in-

houd inspectie functies. Dit proefschrift kent twee delen: enerzijds inhoud in-

spectie en anderzijds pakket inspectie. Het eerste deel beschouwd het op hoge

snelheid doorzoeken en analyseren van de inhoud van een pakket om onveilige

inhoud te detecteren. Dergelijke inhoud is beschreven als statische patronen of

reguliere expressies (veel voorkomende uitdrukkingen) die worden vergeleken

met inkomende data. De voorgestelde methode - vergelijken van statische pa-

tronen - introduceert a-priori decoderen om accorderende karakters the de-

len in CAM-achtige vergelijkers en een nieuw ‘perfect-hashing’ algoritme om

accorderende patronen te voorspellen. De FPGA vormgevingen vergelijken

meer dan 2000 statische patronen, voorzien in 2-8 Gbps operationele door-

voer en vereisen 10 tot 30 procent van een herconfigureerbare chip; dit is de

helft van de snelheid van een ASIC en ongeveer 30 procent efficiënter dan

eerdere FPGA-gebaseerde oplossingen. Het ontwerp van reguliere expressies

is uitgevoerd volgens een Niet Deterministische Automaten methode en intro-

duceert nieuwe basis onderdelen voor complexe eigenschappen van reguliere

expressies. De theoretische onderbouwing van de nieuwe basis onderdelen

worden behandeld om hun juistheid te bewijzen. Hierdoor hoeven bij benader-

ing vier keer minder gevallen van Eindige Automata te worden opgeslagen.

De ontwerpen bereiken 1,6 tot 3,2 Gbps doorvoer op 10 tot 30 procent van een

grote FPGA voor het vergelijken van meer dan 1500 reguliere expressies; dit

is 10 tot 20 keer efficiënter dan voorgaande FPGA-gebaseerde oplossingen en

vergelijkbaar met ASIC’s. Het tweede deel van het proefschrift behandelt het

ontlasten van de algemene processen van een pakket inspectie machine. We

introduceren a-priori filteren van pakketten als oplossing voor - of ten minste

verminderen van - de verwerkingslast van het vergelijken van inkomend ver-

keer met datasets van bekende aanvallen. Gedeeltelijk vergelijken van beschri-

jvingen van onbetrouwbaar verkeer vermijdt het verwerken van meer dan 98

161



162 SAMENVATTING

procent van de aanval beschrijvingen per pakket. A-priori filteren van pakket-

ten wordt geı̈mplementeerd in herconfigureerbare technologie en behoud 2,5

tot 10 Gbps doorvoersnelheid in een Xilinx Virtex2.



SÔnoyh
H

diatrib  aut  pragmateÔetai jemeli¸dh zht mata gr gorh epexer-gas�a gia thn asf�leia diktÔwn kai thn se b�jo epije¸rhsh pa-kètwn. Oi lÔsei pou prote�nontai antapokr�nontai sti apait seipou dhmiourgoÔn h poluplokìthta kai to auxanìmeno pl jo twn perigra-f¸n gnwst¸n diadiktuak¸n epijèsewn parèqonta taqÔthte epexergas�apoll¸n Gigabits/sec. Uposthr�zoume thn qr sh anadiatassìmenh logik gia na prosfèroume prosarmostikìthta, uyhl  taqÔthta -ef�millh aut twn oloklhrwmènwn kuklwm�twn- kai parallhlismì se apaithtikè lei-tourg�e epije¸rhsh pakètwn kai perieqomènwn. H diatrib  qwr�zetai sedÔo mèrh: thn epije¸rhsh perieqìmenwn kai thn epije¸rhsh pakètwn. Topr¸to mèro melet� thn gr gorh an�qneush kai an�lush twn wfèlimwn de-domènwn twn pakètwn gia ton entopismì epik�ndunwn perieqomènwn. Tètoioue�dou perieqìmena mporoÔn na perigr�foun me stajerè sumboloseirè  kanonikè ekfr�sei pou prèpei na sugkrijoÔn me ta eiserqìmena dedomèna.H proteinìmenh lÔsh gia thn tautopo�hsh stajer¸n sumboloseir¸n eis�geithn teqnik  pre-decoding, gia na moiraste� to kìsto sÔgkrish sumbìlwn(qarakt rwn) se diakritoÔ sugkritè, kai èna nèo algìrijmo tèleiou ka-takermatismoÔ (perfect hashing) o opo�o problèpei thn sumboloseir� poumpore� na odhg sei se tautopo�hsh. Ta kukl¸mata pou ulopoioÔn ti para-p�nw teqnikè se anadiatassìmenh logik  aniqneÔoun tautìqrona p�nw apì2.000 stajerè sumboloseirè, epitugq�noun taqÔthte 2-8 Gigabits/sec kaikatalamb�noun 10-30% mia meg�lh suskeu  FPGA. Ta parap�nw ku-kl¸mata epitugq�noun taqÔthta �sh per�pou me th mis  enì ASIC kai apì-dosh 30% kalÔterh apì k�je �llh ant�stoiqh mèjodo anadiatassìmenhlogik . H proteinìmenh lÔsh ulopo�hsh kanonik¸n ekfr�sewn akolou-je� prosèggish mh nteterministik¸n peperasmènwn autìmatwn (NFA) kaieis�gei nèa basik� domik� stoiqe�a gia sÔnjeta qarakthristik� kanonik¸nekfr�sewn. Parajètontai ep�sh jewrhtikè apode�xei ti orj  leitour-g�a twn parap�nw nèwn domik¸n stoiqe�wn. Aut  h mèjodo qrei�zetaina apojhkèusei tèsseri forè ligìtere katast�sei peperasmènwn autì-matwn se sqèsh me prohgoÔmene teqnikè. Ulopoi jhkan kukl¸mata pousugkr�noun tautìqrona p�nw apì 1.500 kanonikè ekfr�sei, epitugq�non-ta taqÔthte 1.6-3.2 Gigabits/sec kai katalamb�nonta to 10-30% mia me-g�lh FPGA suskeu . Aut� ta apotelèsmata metafr�zontai se 10 me 20forè pio apodotik  epexergas�a se sÔgkrish me �lle mejìdou anadia-tassìmenh logik  kai sugkr�simh apìdosh me aut  twn ASICs. To deÔte-ro mèro th diatrib  asqole�tai me thn apofìrtish twn epexergastik¸n163



164 SÔnoyhapait sewn mia mhqan  epije¸rhsh pakètwn. Parousi�zetai h teqnik 
packet pre-filtering w mèso ep�lush   toul�qiston el�frunsh tou meg�-lou epexergastikoÔ fìrtou pou apaite�tai gia thn tautopo�hsh eiserqìme-nh k�nhsh pakètwn me meg�lo arijmì perigraf¸n gnwst¸n diadiktuak¸nepijèsewn. H merik  sÔgkrish perigraf¸n diadiktuak¸n epijèsewn apo-feÔgei thn peraitèrw epexergas�a p�nw apì to 98% tou sunìlou twn diadi-ktuak¸n epijèsewn an� pakèto. H teqnik  packet pre-filtering ulopoi jhkese anadiatassìmenh logik  kai exuphrete� rujmoÔ epexergas�a 2.5 me 10
Gigabits/sec se mia Xilinx Virtex2 suskeu .



Curriculum Vitae

Ioannis SOURDIS was born in Kerkyra (Corfu),

Greece, in 1979. He received his Diploma degree

in 2002 in Electronic and Computer Engineering

from the Technical University of Crete, Greece.

His Diploma thesis was on Network processing

and part of the PRO3 network processor. In 2004,

he obtained his Masters degree from the same

university performing research on Network Secu-

rity. In parallel, he worked on EU projects and

systems such as the modem of a wireless LAN

system, and a SPARC v8 memory management

unit.

In November 2004, Ioannis Sourdis joined the Computer Engineering of the

Delft University of Technology (TU Delft), The Netherlands, as a researcher.

In TU Delft, he pursued a PhD degree under the inspiring supervision of his

advisor prof. dr. Stamatis Vassiliadis. During his PhD studies, Ioannis contin-

ued his research on network security and started working on interconnection

networks and networks on chip for multiprocessor parallel systems. This dis-

sertation contains the outcome of his research activity on network security,

during the period 2004-2007. During his Master and PhD studies Ioannis has

been a teaching assistant in various undergraduate and graduate courses.

His research interests include architecture and design of computer systems,

multiprocessor parallel systems, interconnection networks, reconfigurable

computing, network security and networking systems.

165


