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Abstract. Historically, dynamic techniques are the pioneers of the area of infor-
mation flow in the 70’s. In their seminal work, Denning and Denning suggest a
static alternative for information-flow analysis. Following this work, the 90’s see
the domination of static techniques for information flow. The common wisdom
appears to be that dynamic approaches are not a good match for security since
monitoring a single path misses public side effects that could have happened in
other paths. Dynamic techniques for information flow are on the rise again, driven
by the need for permissiveness in today’s dynamic applications. But they still in-
volve nontrivial static checks for leaks related to control flow.
This paper demonstrates that it is possible for a purely dynamic enforcement to
be as secure as Denning-style static information-flow analysis, despite the com-
mon wisdom. We do have the trade-off that static techniques have benefits of
reducing runtime overhead, and dynamic techniques have the benefits of permis-
siveness (this, for example, is of particular importance in dynamic applications,
where freshly generated code is evaluated). But on the security side, we show
for a simple imperative language that both Denning-style analysis and dynamic
enforcement have the same assurance: termination-insensitive noninterference.

1 Introduction

Historically, dynamic techniques are the pioneers of the area of information flow in the
70’s (e.g., [9]). They prevent explicit flows (as in public := secret) in program runs.
They also address implicit [8] flows (as in if secret then public := 1 ) by enforcing
a simple invariant of no public side effects in secret context, i.e., in the branches of
conditionals and loops with secret guards. These techniques, however, come without
soundness arguments.

In their seminal paper, Denning and Denning [8] suggest a static alternative for
information-flow analysis. They argue that static analysis removes runtime overhead
for security checks. This analysis prevents both explicit and implicit flows statically.
The invariant of no public side effects in secret context is ensured by a syntactic check:
no assignments to public variables are allowed in secret context. Denning and Den-
ning do not discuss soundness, but Volpano et al. [27] show soundness by proving
termination-insensitive noninterference, when they cast Denning and Denning’s anal-
ysis as a security type system. Termination-insensitive noninterference guarantees that
starting with two initial memories that agree on public data, two terminating runs of a
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program result in final memories that also agree on public data. Denning-style analy-
sis is by now the core for the information-flow tools Jif [15], FlowCaml [22], and the
SPARK Examiner [4, 7].

The 90’s see the domination of static techniques for information flow [19]. The
common wisdom appears to be that dynamic approaches are not a good match for secu-
rity since monitoring a single path misses public side effects that could have happened
in other paths.

For example, Myers and Liskov [14] discuss:

. . . static checking allows precise, fine-grained analysis of information flows,
and can capture implicit flows properly, whereas dynamic label checks create
information channels that must be controlled through additional static check-
ing. . .

As can be seen from above (the emphasis is ours), it appears to be suggested that dy-
namic checking alone is insufficient for security.

Dynamic techniques for information flow are on the rise again [25, 13, 21, 12, 24]
driven by the need for permissiveness in today’s dynamic applications. But they still
involve nontrivial static checks for leaks related to control flow.

In this light, it might be surprising that it is possible for purely dynamic enforce-
ment to be as secure as Denning-style static analysis. The key factor is termination.
Program constructs introduce channels for information transfer (recall the explicit and
implicit flows above that correspond to channels via assignments and branching). The
termination channel is introduced by loops: by observing the termination of program
while secret do skip, the attacker learns that secret was 0. Denning-style static analy-
ses are typically termination-insensitive. They ignore leaks via the termination behavior
of programs. Thus, they satisfy termination-insensitive noninterference [27], as previ-
ously mentioned. Monitors supervise the execution of programs to guarantee security
properties. Executed instructions are first analyzed by the monitor to determine if they
are safe to run. In the presence of unsafe instructions, monitors can take several coun-
termeasures: block the execution of programs or transform the unsafe instruction into a
safe one. If the monitor can introduce nontermination by blocking the underlying pro-
gram, this feature can be used for collapsing high-bandwidth information channels into
low-bandwidth ones. Turning the high-bandwidth implicit-flow channel into the low-
bandwidth termination channel is one example: blocking the execution at an attempt of
a public assignment in secret context (note the similarities to the techniques from the
70’s!) is in fact sufficient for termination-insensitive security.

This paper demonstrates the above insight for a simple imperative language. We
present a Denning-style static analysis in the form of a security type system by Volpano
et al. [27] and a simple monitor. We show that a monitor is strictly more permissive
than the type system, and both the type system and the monitor satisfy termination-
insensitive noninterference.

Sections 2–5 consider a batch-job model: programs run until completion before
the produce a result (which is the final memory). Termination-insensitive noninterfer-
ence [27] for batch-job programs simply ignores diverging runs. However, Section 6
generalizes our results to a language with output, a natural extension [1] of the type
system by Volpano et al. [27] with output, and progress-insensitive noninterference [1],
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〈skip, m〉 nop−→〈stop, m〉
m(e) = v

〈x := e, m〉a(x,e)−→ 〈stop, m[x 7→ v]〉

〈c1, m〉
α−→〈stop, m′〉

〈c1; c2, m〉
α−→〈c2, m

′〉
〈c1, m〉

α−→〈c′
1, m

′〉 c′
1 6= stop

〈c1; c2, m〉
α−→〈c′

1; c2, m
′〉

m(e) 6= 0

〈if e then c1 else c2, m〉
b(e)−→〈c1; end , m〉

m(e) = 0

〈if e then c1 else c2, m〉
b(e)−→〈c2; end , m〉

m(e) 6= 0

〈while e do c, m〉 b(e)−→〈c; end ; while e do c, m〉

m(e) = 0

〈while e do c, m〉 b(e)−→〈end , m〉

〈end , m〉 f−→〈stop, m〉

Fig. 1. Command semantics

a generalization of termination-insensitive noninterference to reason about programs
with output, which does not ignore diverging runs, but ignores (the lack of) progress at
each step.

2 Semantics

Figure 1 presents the semantics for a simple imperative language. Configurations have
the form 〈c,m〉, where c is a command and m is a memory mapping variables to values.
Semantic rules have the form 〈c,m〉 α−→〈c′,m′〉, which corresponds to a small step
between configurations. If a transition leads to a configuration with the special com-
mand stop and some memory m, then we say the execution terminates in m. Observe
that there are no transitions triggered by stop. The special command end signifies ex-
iting the scope of an if or a while. Observe that end is executed after the branches
of those commands. Commands stop and end can be generated during execution of
programs but they are not used in initial configurations, i.e., they are not accesible to
programmers. For simplicity, we consider simple integer expressions in our language
(i.e., constants, binary operations, and variables). The semantics for expressions is then
standard and thus we omit it here. We note the result of evaluating expression e under
memory m as m(e). The semantics are decorated with events α for communicating
program events to an execution monitor. Event nop signals that the program performs
a skip. Event a(x, e) records that the program assigns the value of e in the current
memory to variable x. Event b(e) indicates that the program branches on expression
e. Finally, event f is generated when the structure block of a conditional or loop has
finished evaluation.

Assume cfg , cfg ′, . . . range over command configurations and cfgm, cfgm ′, . . .
range over monitor configurations. For this work, it is enough to think of monitor con-
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pc ` skip
lev(e) v Γ (x) pc v Γ (x)

pc ` x := e

pc ` c1 pc ` c2

pc ` c1; c2

lev(e) t pc ` c1 lev(e) t pc ` c2

pc ` if e then c1 else c2

lev(e) t pc ` c

pc ` while e do c

Fig. 2. Typing rules

st
nop−→ st

lev(e) v Γ (x) lev(st) v Γ (x)

st
a(x,e)−→ st

st
b(e)−→ lev(e) : st hd :st

f−→ st

Fig. 3. Monitoring rules

figurations as simple stacks of security levels (see below). The semantics are parametric
in the monitor µ, which is assumed to be described by transitions between monitor con-
figurations in the form cfgm α−→µcfgm ′. The rule for monitored execution is:

cfg α−→cfg ′ cfgm α−→µcfgm ′

〈cfg |µ cfgm〉−→〈cfg ′ |µ cfgm ′〉

The simplest example of a monitor is an all-accepting monitor µ0, which is defined by
ε

α−→µ0ε, where ε is its only state (the empty stack). This monitor indeed accepts all
events α in the underlying program.

3 Type system

Figure 2 displays a Denning-style static analysis in the form of a security type system
by Volpano et al. [27]. Typing environment Γ maps variables to security levels in a
security lattice. For simplicity, we assume a security lattice with two levels L and H
for low (public) and high (secret) security, where L @ H . Function lev(e) returns H if
there is a high variable in e and otherwise returns L. Typing judgment for commands
has the form pc ` c, where pc is a security level known as the program counter that
keeps track of the context. Explicit flows (as in l := h) are prevented by the typing
rule for assignment that disallows assignments of high expressions to low variables.
Implicit flows (as in if h then l := 1 else l := 0) are prevented by the pc mechanism.
It demands that when branching on a high expression, the branches must be typed under
high pc, which prevents assignments to low variables in the branches.

4 Monitor

Figure 3 presents monitor µ1 (we omit the subscript µ1 in the transition rules for clarity).
The monitor either accepts an event generated by the program or blocks it by getting
stuck. The monitor configuration st is a stack of security levels, intended to keep track
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of the current security context: the security levels of the guards of conditionals and
loops whose body the computation currently visits. This is a dynamic version of the pc
from the previous section. Event nop (that originates from a skip) is always accepted
without changes in the monitor state. Event a(x, e) (that originates from an assignment)
is accepted without changes in the monitor state but with two conditions: (i) that the
security level of expression e is no greater than the security level of variable x and (ii)
that the highest security level in the context stack (denoted lev(st) for a stack st) is
no greater than the security level of variable x. The former prevents explicit flows of
the form l := h, whereas the latter prevents implicit flows of the form if h then l :=
1 else l := 0, where depending on the high guard, the execution of the program leads
to different low events.

Events b(e) result in pushing the security level of e onto the stack of the monitor.
This is a part of implicit-flow prevention: runs of program if h then l := 1 else l := 0
are blocked before performing an assignment l because the level of the stack is high
when reaching the execution of the assignment. The stack structure avoids overrestric-
tive enforcement. For example, runs of program (if h then h := 1 else h := 0); l :=
1 are allowed. This is because by the time the assignment to l is reached, the execu-
tion has left the high context: the high security level has been popped from the stack in
response to event f , which the program generates on exiting the if.

We have seen that runs of programs like if h then l := 1 else l := 0 are re-
jected by the monitor. But what about a program like if h then l := 1 else skip,
a common example for illustrating that dynamic information-flow enforcement is deli-
cate? If h is nonzero, the monitor blocks the execution. However, if h is 0, the program
proceeds normally. Are we accepting an insecure program? It turns out that the slight
difference between unmonitored and monitored runs (blocking in case h is nonzero)
is sufficient for termination-insensitive security. In effect, the monitor prevents implicit
flows by collapsing the implicit-flow channel into the termination channel; it does not
introduce any more bandwidth than what the termination channel already permits. In-
deed, implicit flows in unmonitored runs can be magnified by a loop so that secrets can
be leaked bit-by-bit in linear time in the size of the secret. On the other hand, implicit
flows in monitored runs cannot be magnified because execution is blocked whenever it
attempts entering a branch with a public side effect. For example, one implication for
uniformly-distributed secrets is that they cannot be leaked on the termination channel
in polynomial time [1].

5 Results

This section presents the formal results. We assume µ0 is the monitor that accepts all
program events, and µ1 is the monitor from Section 4. First, we show that the monitor
µ1 is strictly more permissive than the type system. If a program is typable, then all of
its runs are not modified by the monitor.

Theorem 1. If pc ` c and 〈〈c,m〉 |µ0 ε〉 −→∗ 〈〈c′,m′〉 |µ0 ε〉, then 〈〈c,m〉 |µ1 ε〉 −→∗

〈〈c′,m′〉 |µ1 st ′〉.

Proof. We prove a generalization of the theorem (see the Appendix). Intuitively, the
theorem holds because (i) the requirements for assignments in the type system and the
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m(e) = v

〈output(e), m〉o(e)−→v〈stop, m〉

lev(e) t pc v L

pc ` output(e)

lev(e) t st v L

st
o(e)−→ st

Fig. 4. Semantics, typing, and monitoring rules for outputs

monitor µ1 are essentially the same; and (ii) there is a tight relation between the join
operations for pc and pushing security levels on the stack st . 2

Further, there are programs (e.g., if l > l then l := h else skip) whose runs are
always accepted by the monitor, but which are rejected by the type system. Hence, the
monitor is strictly more permissive than the type system.

We now show that both the type system and monitor enforce the same security con-
dition: termination-insensitive noninterference [27]. Two memories m1 and m2 are low-
equal (written m1 =L m2) if they agree on the low variables. Termination-insensitive
noninterference demands that starting with two low-equal initial memories, two termi-
nating runs of a typable program result in low-equal final memories.

Theorem 2. If pc ` c, then for all m1 and m2, where m1 =L m2, whenever we have
〈〈c,m1〉 |µ0 ε〉 −→∗ 〈〈stop,m′

1〉 |µ0 ε〉 and 〈〈c,m2〉 |µ0 ε〉 −→∗ 〈〈stop,m′
2〉 |µ0 ε〉,

then m′
1 =L m′

2.

Proof. By adjusting the soundness proof by Volpano et al. [27] (see the Appendix). 2

Termination-insensitive noninterference also holds for the runs monitored by the
monitor from Section 4:

Theorem 3. For all m1 and m2, where m1 =L m2, whenever c contains no end
commands and 〈〈c,m1〉 |µ1 ε〉 −→∗ 〈〈stop,m′

1〉 |µ1 st ′1〉 and 〈〈c,m2〉 |µ1 ε〉 −→∗

〈〈stop,m′
2〉 |µ1 st ′2〉, then m′

1 =L m′
2.

Proof. By induction on −→∗. The details can be found in the Appendix. 2

6 Incorporating output into the language

This section introduces outputs to the language. For simplicity, we only consider pub-
lic outputs. The semantics, typing, and monitoring rules for outputs are described in
Figure 4. Command output(e) outputs the value of expression e on a public channel.
Semantically, configurations might now trigger externally observable events with an
additional label (v) indicating an output value. Public outputs can be considered as spe-
cial assignments to low variables. In this light, the typing and monitor rules (adapted
from [1] and [2], respectively) for this command are similar to the ones applied when
modifying low variables. Event o(e) conveys information that expression e is output by
the program. Monitored configurations need to be adapted to synchronize with output
events. Formally, a monitor transition 〈cfg |µ cfgm〉−→γ〈cfg ′ |µ cfgm ′〉 is possible if
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the program and monitor transitions cfg α−→γcfg ′ and cfgm α−→µcfgm ′ are also possi-
ble. Event α can be o(e) or any of the events described in Section 4. Event γ stands for
an externally observable event: it can be an output (v) or an empty event (ε).

We present the adaptation of Theorems 1–3 for a language with outputs (proved in
an accompanying technical report [20]). The next theorem looks the same as Theorem
1 except for the presence of a vector of output events (~γ).

Theorem 4. If pc ` c and 〈〈c,m〉 |µ0 ε〉−→~γ
∗〈〈c′,m′〉 |µ0 ε〉, then there exists st ′ such

that 〈〈c,m〉 |µ1 ε〉−→~γ
∗〈〈c′,m′〉 |µ1 st ′〉.

As before, there are programs (e.g., if l > l then l := h else skip) whose runs
are always accepted by the monitor, but which are rejected by the type system. Hence,
the monitor for the extended language is strictly more permissive than the extended type
system.

As explained in Section 1, Sections 2–5 consider a batch-job model: programs run
until completion before the produce a result (which is the final memory). Termination-
insensitive noninterference [27] for batch-job programs simply ignores diverging runs.
This condition is not appropriate for reasoning about programs with output since a pro-
gram that outputs a secret and then diverges would be secure[3, 1]. Thus, the security
condition guarantee for the extended type system establishes progress-insensitive non-
interference [1], a generalization of termination-insensitive noninterference to reason
about programs with output, which does not ignore diverging runs, but ignores (the
lack of) progress at each step. We show that given two low-equivalent initial memories,
and the two sequences of outputs generated by monitored executions in these memo-
ries, then either the sequences are the same or one of them is a prefix of the other, in
which case the execution that generates the shorter sequence produces no further public
output events. Formally:

Theorem 5. If pc ` c, then for all m1 and m2, where m1 =L m2, whenever we have
〈〈c,m1〉 |µ0 ε〉−→ ~γ1

∗〈〈stop,m′
1〉 |µ0 st ′1〉, then there exists c′, m′

2, st ′2, ~γ2 such that
〈〈c,m2〉 |µ0 ε〉−→ ~γ2

∗〈〈c′,m′
2〉 |µ0 st ′2〉 where | ~γ2| ≤ | ~γ1|, and

a) If | ~γ2| = | ~γ1|, then ~γ1 = ~γ2.
b) If | ~γ2| < | ~γ1|, then prefix ( ~γ2, ~γ1) holds and 〈〈c′,m′

2〉 |µ0 st ′〉 ⇒H .

The number of events in ~γ is denoted by |~γ|. We also define predicate prefix (~x, ~y)
to hold when list ~x is a prefix of list ~y. We write 〈〈c,m〉 |µ cfgm〉 ⇒H to denote a
monitored execution that does not produce any public output. Generalized termination-
insensitive noninterference also holds for the extended monitor. More precisely, we
have the following theorem.

Theorem 6. For all m1 and m2, where m1 =L m2, whenever c contains no end com-
mands and 〈〈c,m1〉 |µ1 ε〉−→ ~γ1

∗〈〈stop,m′
1〉 |µ1 st ′1〉 then there exists c′, m′

2, st ′2, ~γ2

such that 〈〈c,m2〉 |µ1 ε〉−→ ~γ2
∗〈〈c′,m′

2〉 |µ1 st ′2〉 where | ~γ2| ≤ | ~γ1|, and

a) If | ~γ2| = | ~γ1|, then ~γ1 = ~γ2.
b) If | ~γ2| < | ~γ1|, then prefix ( ~γ2, ~γ1) holds and 〈〈c′,m′

2〉 |µ1 st ′2〉 ⇒H .
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7 Discussion

On joint points The monitor critically relies on the joint-point information for each
branching point (in conditionals in loops). This allows the monitor to discover that the
execution has left a secret context, and relax restrictions on assignment to public vari-
ables. When branching, the command end is inserted at the joint point by the semantics
in Figure 1. At the time of execution, end communicates information that a joint point
has been reached to the monitor.

In a more complex language, we would expect the interpreter/compiler to extract
the information about joint points from the scopes in the program text. This might be
natural in a structured language. We remark, however, that in a low-level languages, or
in a language with breaks and continues, this might require a separate static analysis.

On flow sensitivity Another point to emphasize is regarding flow sensitivity, i.e., pos-
sibility for variables to store values of different sensitivity (low and high) over the
course of computation. Although it might be against the intuition, if we consider a
flow-sensitive type system [11], then it is actually impossible to have a purely dynamic
sound mechanism that is more precise than the type system. We give the formal details
in a separate paper [17], and illustrate the issue with an example (similar examples have
been discussed in the literature [24, 6]). In the following program, assume secret is a
high variable containing a boolean secret (either 0 or 1):

public := 1; temp := 0;
if secret then temp := 1;
if temp 6= 1 then public := 0

Imagine a simple purely dynamic monitor that keeps track of security levels of variables
and updates them on each assignment in the following way. The monitor sets the level
of the assigned variable to high in case there is a high variable on the right-hand side
of the assignment or in case the assignment appears inside of a high context. The level
of the variable is set to low in case there are no high variables in the right-hand side
of the assignment and the assignment does not appear in high context. Otherwise, the
monitor does not update the the level of the assigned variable. This is a straightforward
extension of the monitor from Section 4 with flow sensitivity.

This monitor labels public and temp as low after the first two assignments because
the variables receive low information (constants). If secret is nonzero, variable temp
becomes high after the first conditional. In this case the guard in the second conditional
is false, and so the then branch with the assignment public := 0 is not taken. Therefore,
the monitor allows this execution. If secret is zero, then temp is not relabeled to high,
and so the second if is also allowed by the monitor even though the then branch is taken:
because it branches on an expression that does not involve high variables. As a result,
the value of secret is leaked into public, which is missed by the monitor.

This illustrates that flow sensitivity introduces a channel that poses a challenge for
purely dynamic enforcement.
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8 Related work

Fenton [9] presents a monitor that takes into account program structure. It keeps track
of the security context stack, similarly to ours. However, Fenton does not discuss sound-
ness with respect to noninterference-like properties. Volpano [25] considers a monitor
that only checks explicit flows. Implicit flows are allowed, and therefore the monitor
does not enforce noninterference. Boudol [5] revisits Fenton’s work and observes that
the intended security policy “no security error” corresponds to a safety property, which
is stronger than noninterference. Boudol shows how to enforce this safety property with
a type system.

Mechanisms by Venkatakrishnan et al. [23], Le Guernic et al. [13, 12], and Shroff et
al. [21] combine dynamic and static checks. They have a number of attractive features,
for example, the mechanism by Le Guernic et al. [13, 12] is flow-sensitive: security
levels of variables may change during the program execution. We take a deeper look at
the impact of flow sensitivity on the trade off between static and dynamic information-
flow enforcement in a separate paper [17] (cf. discussion in Section 7).

Tracking information flow in web applications is becoming increasingly important
(e.g., recent highlights are a server-side mechanism by Huang et al. [10] and a client-
side mechanism for JavaScript by Vogt et al. [24], although they do not discuss sound-
ness). Dynamism of web applications puts higher demands on the permissiveness of the
security mechanism: hence the importance of dynamic analysis.

Yet, all the mechanisms from the above two paragraphs involve nontrivial static
analysis for side effects in conditionals and loops, whereas our proof-of-concept moni-
tor is purely dynamic.

The monitor presented here is at core of (i) the termination-insensitive part of
the enforcement of information-release (or declassification) policies by Askarov and
Sabelfeld [2] for a language with dynamic code evaluation and communication and (ii)
the monitor by Russo and Sabelfeld [18] to secure programs with timeout instructions.

9 Concluding remarks

When it comes to information-flow tracking, static techniques have benefits of re-
ducing runtime overhead, and dynamic techniques have the benefits of permissive-
ness (this, for example, is of particular importance in dynamic applications, where
freshly generated code is evaluated). But on the security side, we have demonstrated
that both Denning-style analysis and dynamic enforcement have the same guarantees:
termination-insensitive noninterference. Another way to interpret the result is that nei-
ther Denning-style analysis nor termination-insensitive noninterference itself offer strong
guarantees (as also hinted in previous findings [1]).

However, when termination-sensitive noninterference is desired, the absence of side
effects of traces not taken is hard to ensure dynamically.

But which policy should be the one of choice, termination-insensitive noninterfer-
ence or termination-sensitive noninterference? Termination-sensitive noninterference
is attractive, but rather difficult to guarantee. Typically, strong restrictions (such as no
loops with secret guards [26]) are enforced. Program errors exacerbate the problem.
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Even in languages like Agda [16], where it is impossible to write nonterminating pro-
grams, it is possible to write programs that terminate abnormally: for example, with a
stack overflow. Generally, abnormal termination due to resource exhaustion, is a chan-
nel for leaks that can be hard to counter.

As mentioned earlier, the information-flow tools Jif [15], FlowCaml [22], and the
SPARK Examiner [4, 7] avoid these problems by targeting termination-insensitive non-
interference. The price is that the attacker may leak secrets by brute-force attacks via
the termination channel. But there is formal assurance that these are the only possible
attacks. Askarov et al. [1] show that if a program satisfies termination-insensitive non-
interference, then the attacker may not learn the secret in polynomial running time in
the size of the secret; and, for uniformly-distributed secrets, the probability of guessing
the secret in polynomial running time is negligible.
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and VR.
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A Appendix

Before proving the theorems described in body of the paper, we need to introduce some
auxiliary lemmas. We describe the most important ones here. We start by showing lem-
mas related to sequential composition of monitored executions.

Lemma 1. If 〈〈c,m〉 |µ st〉 −→∗ 〈〈stop,m′〉 |µ st ′〉, then st = st ′, where µ ∈
{µ0, µ1}.

Lemma 2. Given that stop; c′ denotes c′, if 〈〈c1,m〉 |µ st〉 −→∗ 〈〈c′,m′〉 |µ st ′〉, then
〈〈c1; c2,m〉 |µ st〉 −→∗ 〈〈c′; c2,m

′〉 |µ st ′〉, where µ ∈ {µ0, µ1}.

Lemma 3. If 〈〈c1; c2,m〉 |µ st〉 −→∗ 〈〈c′,m′〉 |µ st ′〉 and c1 contains no end instruc-
tions, then there exists c∗, m′′, and st∗ such that c′ = c∗; c2 and 〈〈c1,m〉 |µ st〉 −→∗

〈〈c∗,m′〉 |µ st∗〉; or 〈〈c1,m〉 |µ st〉 −→∗ 〈〈stop,m′′〉 |µ st〉 and 〈〈c2,m
′′〉 |µ st〉 −→∗

〈〈c′,m′〉 |µ st ′〉, where µ ∈ {µ0, µ1}.
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These lemmas can be proved by a simple induction on −→∗. Before proving Theo-
rem 1, we prove a generalization of it described in the following lemma.

Lemma 4. If pc ` c, 〈〈c,m〉 |µ0 ε〉 −→∗ 〈〈c′,m′〉 |µ0 ε〉, then it holds ∀ lev(st) v
pc · ∃ lev(st ′) · 〈〈c,m〉 |µ1 st〉 −→∗ 〈〈c′,m′〉 |µ1 st ′〉.

Proof. By induction on −→∗ and the number of sequential instructions in c. We only
show the most interesting cases.

x := e) Given a st such that lev(st) v pc, we need to prove that exists st ′ such
that lev(st ′) and 〈〈x := e,m〉 |µ1 st〉 −→ 〈〈stop,m′〉 |µ1 st ′〉. Let’s take st ′ =
st . Then, the transition under µ1 is possible provided that lev(e) v Γ (x) and
lev(st) v Γ (x). By the typing rules, it holds that lev(e) v Γ (x) and pc v Γ (x).
By these two facts, and having that lev(st) v pc, it holds that lev(e) v Γ (x) and
lev(st) v Γ (x).

c1; c2) Given a st such that lev(st) v pc, we need to prove that exists st ′ such that
〈〈c1; c2,m〉 |µ1 st〉 −→∗ 〈〈stop,m′〉 |µ1 st ′〉. By applying Lemma 3 to the transi-
tion µ0 in the hypothesis, it holds that there exists c∗, m′′, st∗ such that
c′ = c∗; c2) In this case, we have that

〈〈c1,m〉 |µ0 ε〉 −→∗ 〈〈c∗,m′〉 |µ0 st∗〉 (1)

We know that st∗ = ε from the definition of µ0. We apply IH on pc ` c1

(obtaining from the typing rules) and (1), then we obtain that ∀ lev(st1) v
pc · ∃ lev(st ′1) · 〈〈c1,m〉 |µ1 st1〉 −→∗ 〈〈c∗,m′〉 |µ1 st ′1〉. Let’s instantiate
this formula by taking st1 = st . We then have that

〈〈c1,m〉 |µ1 st〉 −→∗ 〈〈c∗,m′〉 |µ1 st ′1〉 (2)

By Lemma 2 applied to (2) and c2, we obtain the transition 〈〈c1; c2,m〉 |µ1 st〉
−→∗ 〈〈c′,m′〉 |µ1 st ′1〉.

c′ 6= c∗; c2)

〈〈c1,m〉 |µ0 ε〉 −→∗ 〈〈stop,m′′〉 |µ0 ε〉 (3)
〈〈c2,m

′′〉 |µ0 ε〉 −→∗ 〈〈c′,m′〉 |µ0 ε〉 (4)

We omit the proof when 〈〈c2,m
′′〉 |µ0 ε〉 −→0 〈〈c′,m′〉 |µ0 ε〉 since it follows

as the previous case. We apply IH on pc ` c1 (obtaining from the typing rules)
and (3), then we obtain that ∀ lev(st1) v pc · ∃ lev(st ′1) · 〈〈c1,m〉 |µ1 st1〉 −→∗

〈〈stop,m′′〉 |µ1 st ′1〉. Let’s instantiate this formula by taking st1 = st . We then
have that

〈〈c1,m〉 |µ1 st〉 −→∗ 〈〈stop,m′′〉 |µ1 st ′1〉 (5)

From Lemma 1, we have that st ′1 = st . Similarly, by instantiating the formula
obtained by IH on pc ` c2 and (4), we have that

〈〈c2,m
′′〉 |µ1 st〉 −→∗ 〈〈c′,m′〉 |µ1 st ′2〉 (6)

By Lemma 2 applied to (5), we have 〈〈c1; c2,m〉 |µ1 st〉 −→∗ 〈〈c2,m
′′〉 |µ1 st〉.

The result follows from (6).
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if e then c1 else c2) Let’s assume that m(e) 6= 0 (the proof follows the same struc-
ture when m(e) = 0). We omit the proof when −→0 since it holds trivially. By
semantics, we know that

〈〈if e then c1 else c2,m〉 |µ0 ε〉 −→ 〈〈c1; end ,m〉 |µ0 ε〉 (7)
〈〈c1; end ,m〉 |µ0 ε〉 −→∗ 〈〈c′,m′〉 |µ0 ε〉 (8)

By definition of the monitor, we know that

〈〈if e then c1 else c2,m〉 |µ1 st〉 −→ 〈〈c1; end ,m〉 |µ1 lev(e) : st〉 (9)

If −→∗ is −→0 in (8), the result follows from (9). Otherwise, by applying Lemma
3 on (8) and semantics, we have that there exists m′′, c∗, and st∗ such that
c′ = c∗; end ) In this case, we have that

〈〈c1,m〉 |µ0 ε〉 −→∗ 〈〈c∗,m′〉 |µ0 st∗〉 (10)

We know that st∗ = ε from the definition of µ0. We apply IH on lev(e)t pc `
c1 (obtaining from the typing rules) and (10), then we obtain that ∀ lev(st1) v
lev(e) t pc · ∃ lev(st ′1) · 〈〈c1,m〉 |µ1 st1〉 −→∗ 〈〈c∗,m′〉 |µ1 st ′1〉. Let’s
instantiate this formula by taking st1 = lev(e) : st . We then have that

〈〈c1,m〉 |µ1 lev(e) : st〉 −→∗ 〈〈c∗,m′〉 |µ1 st ′1〉 (11)

By Lemma 2 applied to (11) and end , we obtain 〈〈c1; end, m〉 |µ1 lev(e) : st〉
−→∗ 〈〈c′,m′〉 |µ1 st ′1〉. The result follows from this transition and (9).

c′ 6= c∗; end )

〈〈c1,m〉 |µ0 ε〉 −→∗ 〈〈stop,m′′〉 |µ0 ε〉 (12)
〈〈end ,m′′〉 |µ0 ε〉 −→∗ 〈〈c′,m′〉 |µ0 ε〉 (13)

By IH on lev(e) t pc ` c1 (obtaining from the typing rules) and (12), we
have that ∀ lev(st1) v lev(e) t pc · ∃ lev(st ′1) · 〈〈c1,m〉 |µ1 st1〉 −→∗

〈〈stop,m′′〉 |µ1 st ′1〉. Let’s instantiate this formula with st1 = lev(e) : st . We
then have that

〈〈c1,m〉 |µ1 lev(e) : st〉 −→∗ 〈〈stop,m′′〉 |µ1 st ′1〉 (14)

At this point, we do not know the shape of st ′1, but we can deduced it by
applying the Lemma 1 to it: st ′1 = lev(e) : st . Then, by Lemma 2 on (14) and
semantics for end , we have that

〈〈c1; end ,m〉 |µ1 lev(e) : st〉 −→∗ 〈〈end ,m′′〉 |µ1 lev(e) : st〉 (15)

In the case that −→∗ is −→0 in (13), the result holds from (9) and (15). Oth-
erwise, from semantics rules in (13), we know that c′ = stop and m′ = m′′.
By monitor semantics, we know that

〈〈end ,m′′〉 |µ1 lev(e) : st〉 −→ 〈〈stop,m′′〉 |µ1 st〉 (16)

The result then follows from (9), (15), and (16).
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while e do c) Similar to the previous case.

2

We can then prove the first theorem.

Theorem 1. If pc ` c and 〈〈c,m〉 |µ0 ε〉 −→∗ 〈〈stop,m′〉 |µ0 ε〉, then 〈〈c,m〉 |µ1 ε〉 −→∗

〈〈stop,m′〉 |µ1 st ′〉.

Proof. By Lemma 4, we obtain that ∀ lev(st) v pc · ∃ lev(st ′) · 〈〈c,m〉 |µ1 st〉 −→∗

〈〈stop,m′〉 |µ1 st ′〉. The result follows by instantiating the formula with st = ε since
lev(ε) = L. 2

To prove Theorem 2, we firstly prove that, for terminating programs, there is an
isomorphism between the command semantics and executions under µ0.

Lemma 5. Given command c that contains no end instructions, 〈c,m〉 −→∗ 〈stop,m′〉
⇔ 〈〈c,m〉 |µ0 ε〉 −→∗ 〈〈stop,m′〉 |µ0 ε〉.

Proof. Both directions of the implication are proved by a simple induction on −→∗. 2

Now, we are in conditions to prove the mentioned Theorem.

Theorem 2. If pc ` c, then for all m1 and m2, where m1 =L m2, whenever we have
〈〈c,m1〉 |µ0 ε〉 −→∗ 〈〈stop,m′

1〉 |µ0 ε〉 and 〈〈c,m2〉 |µ0 ε〉 −→∗ 〈〈stop,m′
2〉 |µ0 ε〉,

then m′
1 =L m′

2.

Proof. By Lemma 5, we have that 〈c,m1〉 −→∗ 〈stop,m′
1〉 and 〈c,m2〉 −→∗ 〈stop,m′

2〉.
The result follows by applying the soundness theorem from [27] to pc ` c, 〈c,m1〉 −→∗

〈stop,m′
1〉, and 〈c,m2〉 −→∗ 〈stop,m′

2〉. 2

We need two auxiliary lemmas in order to prove Theorem 3. They express that
public variables cannot be affected when the security level of the monitor’s stack is H .

Lemma 6. If c contains no end instructions, lev(st) = H , and 〈〈c,m〉 |µ1 st〉 −→∗

〈〈stop,m′〉 |µ1 st ′〉, then m =L m′.

Proof. By induction on −→∗. 2

Lemma 7. If c contains no end instructions, and 〈〈while e do c,m〉 |µ1 st〉 −→∗

〈〈stop,m′〉 |µ1 st ′〉, then m =L m′.

Proof. By performing one small-step in the semantics and then applying Lemma 6. 2

The next lemma is a generalization of Theorem 3.

Lemma 8. For all m1 and m2, where m1 =L m2, whenever c contains no end com-
mands and 〈〈c,m1〉 |µ1 st〉 −→∗ 〈〈stop,m′

1〉 |µ1 st ′1〉 and 〈〈c,m2〉 |µ1 st〉 −→∗

〈〈stop,m′
2〉 |µ1 st ′2〉, then m′

1 =L m′
2.

Proof. By induction on −→∗. We list the most interesting cases.
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c1; c2) By applying Lemma 3 to our hypothesis, we obtain that there exists m′′
1 and

m′′
2 such that

〈〈c1,m1〉 |µ1 st〉 −→∗ 〈〈stop,m′′
1〉 |µ1 st〉 (17)

〈〈c2,m
′′
1〉 |µ1 st〉 −→∗ 〈〈stop,m′

1〉 |µ1 st ′1〉 (18)
〈〈c1,m2〉 |µ1 st〉 −→∗ 〈〈stop,m′′

2〉 |µ1 st〉 (19)
〈〈c2,m

′′
2〉 |µ1 st〉 −→∗ 〈〈stop,m′

2〉 |µ1 st ′2〉 (20)

By IH on m1 =L m2, (17) and (19), we obtain that m′′
1 =L m′′

2 . By IH on m′′
1 =L

m′′
2 , (18), and (20), we have that m′

1 =L m′
2 as expected.

if e then c1 else c2) We consider the case when lev(e) = H and that m1(e) 6=
m2(e). Otherwise, the proof follows by simply applying IH and Lemmas 2 and 3.
We assume, without loosing generality, that m1(e) 6= 0. Consequently, by seman-
tics, we have that

〈〈if e then c1 else c2,m1〉 |µ1 st〉 −→ 〈〈c1; end ,m1〉 |µ1 lev(e) : st〉 (21)
〈〈c1; end ,m1〉 |µ1 lev(e) : st〉 −→∗ 〈〈stop,m′

1〉 |µ1 st ′1〉 (22)
〈〈if e then c1 else c2,m2〉 |µ1 st〉 −→ 〈〈c2; end ,m2〉 |µ1 lev(e) : st〉 (23)

〈〈c2; end ,m2〉 |µ1 lev(e) : st〉 −→∗ 〈〈stop,m′
2〉 |µ1 st ′2〉 (24)

By applying Lemma 3 on (22) and (24), we have that there exists m′′
1 and m′′

2 such
that

〈〈c1,m1〉 |µ1 lev(e) : st〉 −→∗ 〈〈stop,m′′
1〉 |µ1 lev(e) : st〉 (25)

〈〈end ,m′′
1〉 |µ1 lev(e) : st〉 −→∗ 〈〈stop,m′

1〉 |µ1 st ′1〉 (26)
〈〈c2,m2〉 |µ1 lev(e) : st〉 −→∗ 〈〈stop,m′′

2〉 |µ1 lev(e) : st〉 (27)
〈〈end ,m′′

2〉 |µ1 lev(e) : st〉 −→∗ 〈〈stop,m′
2〉 |µ1 st ′2〉 (28)

By applying Lemma 6 on (25) and (27), we have that m′′
1 =L m1 =L m2 =L m′′

2 .
By semantics, (26), and (28), we have that m′

1 = m′′
1 and m′

2 = m′′
2 . Consequently,

we have that m′
1 =L m′

2 as expected.
while e do c) The proof proceeds similarly as the previous case but also applying

Lemma 7 when needed.

2

We prove our last last theorem as follows.

Theorem 3. For all m1 and m2, where m1 =L m2, whenever c contains no end
commands and 〈〈c,m1〉 |µ1 ε〉 −→∗ 〈〈stop,m′

1〉 |µ1 st ′1〉 and 〈〈c,m2〉 |µ1 ε〉 −→∗

〈〈stop,m′
2〉 |µ1 st ′2〉, then m′

1 =L m′
2.

Proof. By applying Lemma 8 with st = ε. 2
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