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ABSTRACT
Modern web applications are conglomerations of
JavaScript written by multiple authors: application devel-
opers routinely incorporate code from third-party libraries,
and mashup applications synthesize data and code hosted
at different sites. In current browsers, a web application’s
developer and user must trust third-party code in libraries
not to leak the user’s sensitive information from within
applications. Even worse, in the status quo, the only way
to implement some mashups is for the user to give her lo-
gin credentials for one site to the operator of another site.
Fundamentally, today’s browser security model trades pri-
vacy for flexibility because it lacks a sufficient mechanism
for confining untrusted code. We present COWL, a robust
JavaScript confinement system for modern web browsers.
COWL introduces label-based mandatory access control
to browsing contexts in a way that is fully backward-
compatible with legacy web content. We use a series of
case-study applications to motivate COWL’s design and
demonstrate how COWL allows both the inclusion of un-
trusted scripts in applications and the building of mashups
that combine sensitive information from multiple mutu-
ally distrusting origins, all while protecting users’ privacy.
Measurements of two COWL implementations, one in
Firefox and one in Chromium, demonstrate a virtually
imperceptible increase in page-load latency.

1 INTRODUCTION
Web applications have proliferated because it is so easy
for developers to reuse components of existing ones. Such
reuse is ubiquitous. jQuery, a widely used JavaScript li-
brary, is included in and used by over 77% of the Quant-
cast top-10,000 web sites, and 59% of the Quantcast top-
million web sites [3]. While component reuse in the ven-
erable desktop software model typically involves libraries,
the reusable components in web applications are not lim-
ited to just JavaScript library code—they further include
network-accessible content and services.

The resulting model is one in which web developers
cobble together multiple JavaScript libraries, web-based
content, and web-based services written and operated by
various parties (who in turn may integrate more of these re-
sources) and build the required application-specific func-
tionality atop them. Unfortunately, some of the many
∗Work partly conducted while at Mozilla.
†Work partly conducted while at Stanford.

contributors to the tangle of JavaScript comprising an
application may not have the user’s best interest at heart.
The wealth of sensitive data processed in today’s web
applications (e.g., email, bank statements, health records,
passwords, etc.) is an attractive target. Miscreants may
stealthily craft malicious JavaScript that, when incorpo-
rated into an application by an unwitting developer, vio-
lates the user’s privacy by leaking sensitive information.

Two goals for web applications emerge from the prior
discussion: flexibility for the application developer (i.e.,
enabling the building of applications with rich functional-
ity, composable from potentially disparate pieces hosted
by different sites); and privacy for the user (i.e., to en-
sure that the user’s sensitive data cannot be leaked from
applications to unauthorized parties). These two goals
are hardly new: Wang et al. articulated similar ones, and
proposed new browser primitives to improve isolation
within mashups, including discretionary access control
(DAC) for inter-frame communication [41]. Indeed, to-
day’s browsers incorporate similar mechanisms in the
guises of HTML5’s iframe sandbox and postMessage
API [47]. And the Same-Origin Policy (SOP, reviewed in
Section 2.1) prevents JavaScript hosted by one principal
from reading content hosted by another.

Unfortunately, in the status-quo web browser security
architecture, one must often sacrifice privacy to achieve
flexibility, and vice-versa. The central reason that flex-
ibility and privacy are at odds in the status quo is that
the mechanisms today’s browsers rely on for providing
privacy—the SOP, Content Security Policy (CSP) [42],
and Cross-Origin Resource Sharing (CORS) [45]—are
all forms of discretionary access control. DAC has the
brittle character of either denying or granting untrusted
code (e.g., a library written by a third party) access to
data. In the former case, the untrusted JavaScript might
need the sensitive data to implement the desired appli-
cation functionality—hence, denying access prioritizes
privacy over flexibility. In the latter, DAC exercises no
control over what the untrusted code does with the sen-
sitive data—and thus prioritizes flexibility over privacy.
DAC is an essential tool in the privacy arsenal, but does
not fit cases where one runs untrusted code on sensitive
input, which are the norm for web applications, given
their multi-contributor nature.

In practice, web developers turn their backs on privacy
in favor of flexibility because the browser doesn’t offer
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primitives that let them opt for both. For example, a de-
veloper may want to include untrusted JavaScript from
another origin in his application. All-or-nothing DAC
leads the developer to include the untrusted library with
a script tag, which effectively bypasses the SOP, in-
terpolating untrusted code into the enclosing page and
granting it unfettered access to the enclosing page’s ori-
gin’s content.1 And when a developer of a mashup that
integrates content from other origins finds that the SOP
forbids his application from retrieving data from them, he
designs his mashup to require that the user provide the
mashup her login credentials for the sites at the two other
origins [2]—the epitome of “functionality over privacy.”

In this paper, we present COWL (Confinement with
Origin Web Labels), a mandatory access control (MAC)
system that confines untrusted JavaScript in web browsers.
COWL allows untrusted code to compute over sensitive
data and display results to the user, but prohibits the un-
trusted code from exfiltrating sensitive data (e.g., by send-
ing it to an untrusted remote origin). It thus allows web
developers to opt for both flexibility and privacy.

We consider four motivating example web applica-
tions—a password strength-checker, an application that
imports the (untrusted) jQuery library, an encrypted cloud-
based document editor, and a third-party mashup, none
of which can be implemented in a way that preserves
the user’s privacy in the status-quo web security archi-
tecture. These examples drive the design requirements
for COWL, particularly MAC with symmetric and hierar-
chical confinement that supports delegation. Symmetric
confinement allows mutually distrusting principals each
to pass sensitive data to the other, and confine the other’s
use of the passed sensitive data. Hierarchical confinement
allows any developer to confine code she does not trust,
and confinement to be nested to arbitrary depths. And
delegation allows a developer explicitly to confer the priv-
ileges of one execution context on a separate execution
context. No prior browser security architecture offers this
combination of properties.

We demonstrate COWL’s applicability by implement-
ing secure versions of the four motivating applications
with it. Our contributions include:
I We characterize the shared needs of four case-study

web applications (Section 2.2) for which today’s
browser security architecture cannot provide privacy.

I We describe the design of the COWL label-based
MAC system for web browsers (Section 3), which
meets the requirements of the four case-study web
applications.

I We describe designs of the four case-study web appli-
cations atop COWL (Section 4).

I We describe implementations of COWL (Section 5)
for the Firefox and Chromium open-source browsers;

1Indeed, jQuery requires such access to the enclosing page’s content!
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Figure 1: Simplified browser architecture.

our evaluation (Section 6) illustrates that COWL incurs
minimal performance overhead over the respective
baseline browsers.

2 BACKGROUND, EXAMPLES, & GOALS
A single top-level web page often incorporates multiple
scripts written by different authors.2 Ideally, the browser
should protect the user’s sensitive data from unauthorized
disclosure, yet afford page developers the greatest pos-
sible flexibility to construct featureful applications that
reuse functionality implemented in scripts provided by
(potentially untrusted) third parties. To make concrete the
diversity of potential trust relationships between scripts’
authors and the many ways page developers structure
amalgamations of scripts, we describe several example
web applications, none of which can be implemented with
strong privacy for the user in today’s web browsers. These
examples illustrate key requirements for the design of a
flexible browser confinement mechanism. Before describ-
ing these examples, however, we offer a brief refresher on
status-quo browser privacy polices.

2.1 Browser Privacy Policies
Browsing contexts Figure 1 depicts the basic building
blocks of the current web security architecture. A brows-
ing context (e.g., a page or frame) encapsulates pre-
sentable content and a JavaScript execution environment
(heap and code) that interacts with content through the
Document Object Model (DOM) [47]. Browsing contexts
may be nested (e.g., by using iframes). They also may
read and write persistent storage (e.g., cookies), issue
network requests (either implicitly in page content that
references a URL retrieved over the network, or explicitly
in JavaScript, using the XMLHttpRequest (XHR) con-
structor), and communicate with other contexts (IPC-style
via postMessage, or, in certain cases, by sharing DOM
objects). Some contexts such as Web Workers [44] run
JavaScript but do not instantiate a DOM. We use the terms
context and compartment interchangeably to refer to both
browsing contexts and workers, except when the more
precise meaning is relevant.
Origins and the Same-Origin Policy Since different au-
thors may contribute components within a page, today’s

2Throughout we use “web page” and “web application” interchange-
ably, and “JavaScript code” and “script” interchangeably.
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status quo browsers impose a security policy on interac-
tions among components. Policies are expressed in terms
of origins. An origin is a source of authority encoded by
the protocol (e.g., https), domain name (e.g., fb.com),
and port (e.g., 443) of a resource URL. For brevity, we
elide the protocol and port from URLs throughout.

The same-origin policy specifies that an origin’s re-
sources should be readable only by content from the same
origin [7, 38, 52]. Browsers ensure that code executing in
an a.com context can only inspect the DOM and cook-
ies of another context if they share the same origin, i.e.,
a.com. Similarly, such code can only inspect the response
to a network request (performed with XHR) if the remote
host’s origin is a.com.

The SOP does not, however, prevent code from disclos-
ing data to foreign origins. For example, code executing
in an a.com context can trivially disclose data to b.com

by using XHR to perform a network request; the SOP
prevents the code from inspecting responses to such cross-
origin XHR requests, but does not impose any restrictions
on sending such requests. Similarly, code can exfiltrate
data by encoding it in the path of a URL whose origin is
b.com, and setting the src property of an img element
to this URL.
Content Security Policy (CSP) Modern browsers allow
the developer to protect a user’s privacy by specifying a
CSP that limits the communication of a page—i.e., that
disallows certain communication ordinarily permitted by
the SOP. Developers may set individual CSP directives to
restrict the origins to which a context may issue requests
of specific types (for images or scripts, XHR destinations,
etc.) [42]. However, CSP policies suffer from two limita-
tions. They are static: they cannot change during a page’s
lifetime (e.g., a page may not drop the privilege to com-
municate with untrusted origins before reading potentially
sensitive data). And they are inaccessible: JavaScript code
cannot inspect the CSP of its enclosing context or some
other context, e.g., when determining whether to share
sensitive data with that other context.
postMessage and Cross-Origin Resource Sharing
(CORS) As illustrated in Figure 1, the HTML5
postMessage API [43] enables cross-origin communi-
cation in IPC-like fashion within the browser. To prevent
unintended leaks [8], a sender always specifies the origin
of the intended recipient; only a context with that origin
may read the message.

CORS [45] goes a step further and allows controlled
cross-origin communication between a browsing context
of one origin and a remote server with a different origin.
Under CORS, a server may include a header on returned
content that explicitly whitelists other origin(s) allowed
to read the response.

Note that both postMessage’s target origin and CORS
are purely discretionary in nature: they allow static selec-

tion of which cross-origin communication is allowed and
which denied, but enforce no confinement on a receiving
compartment of differing origin. Thus, in the status-quo
web security architecture, a privacy-conscious developer
should only send sensitive data to a compartment of dif-
fering origin if she completely trusts that origin.

2.2 Motivating Examples
Having reviewed the building blocks of security policies
in status-quo web browsers, we now turn to examples of
web applications for which strong privacy is not achiev-
able today. These examples illuminate key design require-
ments for the COWL confinement system.
Password Strength Checker Given users’ propensity
for choosing poor (i.e., easily guessable) passwords, many
web sites today incorporate functionality to check the
strength of a password selected by a user and offer the
user feedback (e.g., “too weak; choose another,” “strong,”
etc.). Suppose a developer at Facebook (origin fb.com)
wishes to re-use password-checking functionality pro-
vided in a JavaScript library by a third party, say, from
origin sketchy.ru. If the developer at fb.com simply
includes the third party’s code in a script tag referenc-
ing a resource at sketchy.ru, then the referenced script
will have unfettered access to both the user’s password
(provided by the Facebook page, which the library must
see to do its job) and to write to the network via XHR.
This simple state of affairs is emblematic of the ease with
which naı̈ve web developers can introduce leaks of sensi-
tive data in applications.

A more skilled web developer could today host the
checker script on her own server and have that server
specify a CSP policy for the page. Unfortunately, a CSP
policy that disallows scripts within the page from ini-
tiating XHRs to any other origins is too inflexible, in
that it precludes useful operations by the checker script,
e.g., retrieving an updated set of regular expressions de-
scribing weak passwords from a remote server (essen-
tially, “updating” the checker’s functionality). Doing so
requires communicating with a remote origin. Yet a CSP
policy that permits such communication, even with the
top-level page’s same origin, is too permissive: a mali-
cious script could potentially carry out a self-exfiltration
attack and write the password to a public part of the
trusted server [11, 50].

This trade-off between flexibility and privacy, while in-
herent to CSP, need not be fundamental to the web model.
The key insight is that it is entirely safe and useful for an
untrusted script to communicate with remote origins be-
fore it reads sensitive data. We note, then, the requirement
of a confinement mechanism that allows code in a com-
partment to communicate with the network until it has
been exposed to sensitive data. MAC-based confinement
meets this requirement.
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Figure 2: Third-party password checker architecture under
COWL.

Figure 2 shows how such a design might look. In this
and subsequent examples, rectangular frames denote com-
partments, arrows denote communication (either between
a compartment and the network, or IPC-style between
compartments), and events during execution are num-
bered sequentially in time. As we have proposed previ-
ously [49], compartments may be labeled (Section 3.1)
with the origins to whose sensitive data they have been
exposed. A compartment that has not yet observed sen-
sitive data is denoted public; however, when it wishes
to incorporate sensitive data, the compartment raises its
label (at the cost of being more restricted in where it can
write). We illustrate the raising of a label with a “flash”
connoting the sensitivity of data being integrated. A com-
partment’s privilege (Section 3.3), which specifies the
origins for which a script executing in that compartment
is trusted, is indicated by a crown. Here, a top-level page
at fb.com encapsulates a password-checker script from a
third-party origin in a new compartment. The label of the
new compartment is initially public. First, in step (1),
the checker script is free to download updated regular ex-
pressions from an arbitrary remote origin. In step (2), the
top-level page sends the user’s password to the checker
script’s worker using postMessage; the password is la-
beled fb.com to indicate that the data is sensitive to this
origin (Section 3.2). In step (3) the checker raises its la-
bel to reflect that the context is about to be exposed to
sensitive data from fb.com and inspects the password.
When the label is raised, COWL atomically denies the
context further access to the network in step (3).3 How-
ever, the checker script is free to compute the result, which
it then returns via postMessage to the top-level page in
step (4); the result carries the label fb.com to reflect that
the sender may be sending data derived from sensitive
data owned by fb.com. Since the top-level page has the
fb.com privilege, it can simply read the data (without
raising its label).

3 For clarity, we use fb.com as the label on the data. This label still
allows the checker to send XHR requests to fb.com; to ensure that the
checker cannot communicate with any origin, COWL provides fresh
origins (see Section 3.3).

Encrypted Document Editor Today’s web applications,
such as in-browser document editors backed by cloud-
based storage (e.g., Google Docs), typically require
the user to trust the app developer/cloud-based storage
provider (often the same principal under the SOP) with
the data in her documents. That is, the provider’s server
observes the user’s data in cleartext. Suppose an organi-
zation wished to use an in-browser document editor but
did not want to reveal its users’ document data to the
editor provider’s server. How might the provider offer a
privacy-preserving editor app that would satisfy the needs
of such a privacy-conscious organization? One promising
approach might be for the “customer” privacy-sensitive
organization to implement a trusted document encryption
service hosted at its own origin, distinct from that which
hosts the editor app. The editor app could allow the user
to specify a JavaScript “plugin” library she trusts to per-
form cryptography correctly. In this design, one origin
serves the JavaScript code for the editor app (say, gdocs
.com) and a different origin serves the JavaScript code for
the cryptography library (say, eff.org). Note that these
two origins may be mutually distrusting. gdocs.com’s
script must pass the document’s cleartext to a script from
eff.org for encryption, but would like to confine the
execution of the encryption script so that it cannot exfil-
trate the document to any origin other than gdocs.com.
Similarly, eff.org’s cryptography library may not trust
gdocs.com with the cleartext document—it would like
to confine gdocs.com’s editor to prevent exfiltration of
the cleartext document to gdocs.com (or to any other
origin). This simple use case highlights the need for sym-
metric confinement: when two mutually distrusting scripts
from different origins communicate, each must be able to
confine the other’s further use of data it provides.

Third-Party Mashup Some of the most useful web ap-
plications are mashups; these applications integrate and
compute over data hosted by multiple origins. For exam-
ple, consider an application that reconciles a user’s Ama-
zon purchases (the data for which are hosted by amazon

.com) against a user’s bank statement (the data for which
are hosted by chase.com). The user may well deem both
these categories of data sensitive and will furthermore
not want data from Amazon to be exposed to her bank
or vice-versa, nor to any other remote party. Today, if
one of the two providers implements the mashup, its ap-
plication code must bypass the SOP to allow sharing of
data across origin boundaries, e.g., by communicating be-
tween iframes with postMessage or setting a permissive
CORS policy. This approach forfeits privacy: one origin
sends sensitive data to the other, after which the receiving
origin may exfiltrate that sensitive data at will. Alterna-
tively, a third-party developer may wish to implement
and offer this mashup application. Users of such a third-
party mashup give up their privacy, usually by simply
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handing off credentials, as again today’s browser enforces
no policy that confines the sensitive data the mashup’s
code observes within the browser. To enable third-party
mashups that do not sacrifice the user’s privacy, we note
again the need for an untrusted script to be able to issue
requests to multiple remote origins (e.g., amazon.com
and chase.com), but to lose the privilege to commu-
nicate over the network once it has read the responses
from those origins. Here, too, MAC-based confinement
addresses the shortcomings of DAC.
Untrusted Third-Party Library Web application devel-
opers today make extensive use of third-party libraries like
jQuery. Simply importing a library into a page provides
no isolation whatsoever between the untrusted third-party
code and any sensitive data within the page. Developers
of applications that process sensitive data want the conve-
nience of reusing popular libraries. But such reuse risks
exfiltration of sensitive data by these untrusted libraries.
Note that because jQuery requires access to the content
of the entire page that uses it, we cannot isolate jQuery
in a separate compartment from the parent’s, as we did
for the password-checker example. Instead, we observe
that jQuery demands a design that is a mirror image of
that for confining the password checker: we place the
trusted code for a page in a separate compartment and
deem the rest of the page (including the untrusted jQuery
code) as untrusted. The trusted code can then communi-
cate with remote origins and inject sensitive data into the
untrusted page, but the untrusted page (including jQuery)
cannot communicate with remote origins (and thus can-
not exfiltrate sensitive data within the untrusted page).
This refactoring highlights the need for a confinement
system that supports delegation and dropping privilege:
a page should be able to create a compartment, confer
its privileges to communicate with remote origins on that
compartment, and then give these privileges up.

We note further that any library author may wish to
reuse functionality from another untrusted library. Accord-
ingly, to allow the broadest reuse of code, the browser
should support hierarchical confinement—the primitives
for confining untrusted code should allow not only a sin-
gle level of confinement (one trusted context confining
one untrusted context), but arbitrarily many levels of con-
finement (one trusted context confining an untrusted one,
that in turn confines a further untrusted one, etc.).

2.3 Design Goals
We have briefly introduced four motivating web applica-
tions that achieve rich functionality by combining code
from one or more untrusted parties. The privacy chal-
lenges that arise in such applications are unfortunately
unaddressed by status-quo browser security policies, such
as the SOP. These applications clearly illustrate the need
for robust yet flexible confinement for untrusted code in

browsers. To summarize, these applications would appear
to be well served by a system that:
I Applies mandatory access control (MAC);
I Is symmetric, i.e., it permits two principals to mutually

distrust one another, and each prevent the other from
exfiltrating its data;

I Is hierarchical, i.e., it permits principal A to confine
code from principal B that processes A’s data, while
principal B can independently confine code from prin-
cipal C that processes B’s data, etc.

I Supports delegation and dropping privilege, i.e., it
permits a script running in a compartment with the
privilege to communicate with some set of origins to
confer those privileges on another compartment, then
relinquish those privileges itself.

In the next section, we describe COWL, a new confine-
ment system that satisfies these design goals.

3 THE COWL CONFINEMENT SYSTEM
The COWL confinement system extends the browser se-
curity model while leaving the browser fully compatible
with today’s “legacy” web applications.4 Under COWL,
the browser treats a page exactly like a legacy browser
does unless the page executes a COWL API operation,
at which point the browser records that page as running
in confinement mode, and all further operations by that
page are subject to confinement by COWL. COWL aug-
ments today’s web browser with three primitives, all of
which appear in the simple password-checker application
example in Figure 2.

Labeled browsing contexts enforce MAC-based con-
finement of JavaScript at the granularity of a context (e.g.,
a worker or iframe). The rectangular frames in Figure 2
are labeled contexts. As contexts may be nested, labeled
browsing contexts allow hierarchical confinement, whose
importance for supporting nesting of untrusted libraries
we discussed in Section 2.2.

When one browsing context sends sensitive informa-
tion to another, a sending context can use labeled commu-
nication to confine the potentially untrusted code receiv-
ing the information. This enables symmetric confinement,
whose importance in building applications that compose
mutually distrusting scripts we articulated in Section 2.2.
In Figure 2, the arrows between compartments indicate
labeled communication, where a subscript on the commu-
nicated data denotes the data’s label.

COWL may grant a labeled browsing context one or
more privileges, each with respect to an origin, and each
of which reflects trust that the scripts executing within

4In prior work, we described how confinement can subsume today’s
browser security primitives, and advocated replacing them entirely with
a clean-slate, confinement-based model [49]. In this paper, we instead
prioritize incremental deployability, which requires coexistence along-
side the status quo model.
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that context will not violate the secrecy and integrity of
that origin’s data, e.g., because the browser retrieved
them from that origin. A privilege authorizes scripts
within a context to execute certain operations, such as
declassification and delegation, whose abuse would per-
mit the release of sensitive information to unauthorized
parties. In COWL, we express privilege in terms of ori-
gins. The crown icon in the left compartment in Figure 2
denotes that this compartment may execute privileged op-
erations on data labeled with the origin fb.com—more
succinctly, that the compartment holds the privilege for
fb.com. The compartment uses that privilege to remain
unconfined by declassifying the checker response labeled
fb.com.

We now describe these three constructs in greater detail.

3.1 Labeled Browsing Contexts
A COWL application consists of multiple labeled contexts.
Labeled contexts extend today’s browser contexts, used to
isolate iframes, pages, etc., with MAC labels. A context’s
label specifies the security policy for all data within the
context, which COWL enforces by restricting the flow of
information to and from other contexts and servers.

As we have proposed previously [33, 49], a label is a
pair of boolean formulas over origins: a secrecy formula
specifying which origins may read a context’s data, and
an integrity formula specifying which origins may write
it. For example, only Amazon or Chase may read data la-
beled 〈amazon.com ∨ chase.com, amazon.com〉, and
only Amazon may modify it.5 Amazon could assign
this label to its order history page to allow a Chase-
hosted mashup to read the user’s purchases. On the other
hand, after a third-party mashup hosted by mint.com

(as described in Section 2.2) reads both the user’s Chase
bank statement data and Amazon purchase data, the la-
bel on data produced by the third-party mashup will be
〈amazon.com ∧ chase.com, mint.com〉. This secrecy
label component specifies that the data may be sensitive
to both parties, and without both their consent (see Sec-
tion 3.3), it should only be read by the user; the integrity
label component, on the other hand, permits only code
hosted by Mint to modify the resulting data.

COWL enforces label policies in a MAC fashion by
only allowing a context to communicate with other con-
texts or servers whose labels are at least as restricting.
(A server’s “label” is simply its origin.) Intuitively, when
a context wishes to send a message, the target must not
allow additional origins to read the data (preserving se-
crecy). Dually, the source context must not be writable
by origins not otherwise trusted by the target. That is, the
source must be at least as trustworthy as the target. We say
that such a target label “subsumes” the source label. For

5∨ and ∧ denote disjunction and conjunction. A comma separates
the secrecy and integrity formulas.

example, a context labeled 〈amazon.com, mint.com〉
can send messages to one labeled 〈amazon.com ∧
chase.com, mint.com〉, since the latter is trusted to
preserve the privacy of amazon.com (and chase.com).
However, communication in the reverse direction is not
possible since it may violate the privacy of chase.com.
In the rest of this paper, we limit our discussion to secrecy
and only comment on integrity where relevant; we refer
the interested reader to [33] for a full description of the
label model.

A context can freely raise its label, i.e., change its label
to any label that is more restricting, in order to receive a
message from an otherwise prohibited context. Of course,
in raising its label to read more sensitive data from an-
other context, the context also becomes more restricted
in where it can write. For example, a Mint context la-
beled 〈amazon.com〉 can raise its label to 〈amazon.com
∧ chase.com〉 to read bank statements, but only at the
cost of giving up its ability to communicate with Ama-
zon (or, for that matter, any other) servers. When creating
a new context, code can impose an upper bound on the
context’s label to ensure that untrusted code cannot raise
its label and read data above this clearance. This notion
of clearance is well established [14, 17, 34, 35, 51]; we
discuss its relevance to covert channels in Section 7.

As noted, COWL allows a labeled context to create ad-
ditional labeled contexts, much as today’s browsing con-
texts can create sub-compartments in the form of iframes,
workers, etc. This functionality is crucial for compart-
mentalizing a system hierarchically, where the developer
places code of different degrees of trustworthiness in sep-
arate contexts. For example, in the password checker ex-
ample in Section 2.2, we create a child context in which
we execute the untrusted checker script. Importantly, how-
ever, code should not be able to leak information by laun-
dering data through a newly created context. Hence, a
newly created context implicitly inherits the current label
of its parent. Alternatively, when creating a child, the par-
ent may specify an initial current label for the child that
is more restrictive than the parent’s, to confine the child
further. Top-level contexts (i.e., pages) are assigned a de-
fault label of public, to ensure compatibility with pages
written for the legacy SOP. Such browsing contexts can
be restricted by setting a COWL-label HTTP response
header, which dictates the minimal document label the
browser must enforce on the associated content.

COWL applications can create two types of context.
First, an application can create standard (but labeled) con-
texts in the form of pages, iframes, workers, etc. Indeed, it
may do so because a COWL application is merely a regu-
lar web application that additionally uses the COWL API.
It thus is confined by MAC, in addition to today’s web
security policies. Note that to enforce MAC, COWL must
mediate all pre-existing communication channels—even
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subtle and implicit channels, such as content loading—
according to contexts’ labels. We describe how COWL
does so in Section 5.

Second, a COWL application can create labeled con-
texts in the form of lightweight labeled workers (LWork-
ers). Like normal workers [44], the API exposed to
LWorkers is minimal; it consists only of constructs for
communicating with the parent, the XHR constructor, and
the COWL API. Unlike normal workers, which execute in
separate threads, an LWorker executes in the same thread
as its parent, sharing its event loop. This sharing has the
added benefit of allowing the parent to give the child (la-
beled) access to its DOM, any access to which is treated as
both a read and a write, i.e., bidirectional communication.
Our third-party library example uses such a DOM worker
to isolate the trusted application code, which requires ac-
cess to the DOM, from the untrusted jQuery library. In
general, LWorkers—especially when given DOM access—
simplify the isolation and confinement of scripts (e.g., the
password strength checker) that would otherwise run in a
shared context, as when loaded with script tags.

3.2 Labeled Communication
Since COWL enforces a label check whenever a context
sends a message, the design described thus far is already
symmetric: a source context can confine a target con-
text by raising its label (or a child context’s label) and
thereafter send the desired message. To read this mes-
sage, the target context must confine itself by raising its
label accordingly. These semantics can make interactions
between contexts cumbersome, however. For example,
a sending context may wish to communicate with mul-
tiple contexts, and need to confine those target contexts
with different labels, or even confine the same target con-
text with different labels for different messages. And a
receiving context may need unfettered communication
with one or more origins for a time before confining itself
by raising its label to receive a message. In the password-
checker example application, the untrusted checker script
at the right of Figure 2 exhibits exactly this latter behav-
ior: it needs to communicate with untrusted remote ori-
gin sketchy.ru before reading the password labeled
fb.com.
Labeled Blob Messages (Intra-Browser) To simplify
communication with confinement, we introduce the la-
beled Blob, which binds together the payload of an in-
dividual inter-context message with the label protecting
it. The payload takes the form of a serialized immutable
object of type Blob [47]. Encapsulating the label with the
message avoids the cumbersome label raises heretofore
necessary in both sending and receiving contexts before
a message may even be sent or received. Instead, COWL
allows the developer sending a message from a context
to specify the label to be attached to a labeled Blob; any

label as or more restrictive than the sending context’s cur-
rent label may be specified (modulo its clearance). While
the receiving context may receive a labeled Blob with no
immediate effect on the origins with which it can com-
municate, it may only inspect the label, not the payload.6

Only after raising its label as needed may the receiving
context read the payload.

Labeled Blobs simplify building applications that in-
corporate distrust among contexts. Not only can a sender
impose confinement on a receiver simply by labeling a
message; a receiver can delay inspecting a sensitive mes-
sage until it has completed communication with untrusted
origins (as does the checker script in Figure 2). They also
ease the implementation of integrity in applications, as
they allow a context that is not trusted to modify content
in some other context to serve as a passive conduit for a
message from a third context that is so trusted.
Labeled XHR Messages (Browser–Server) Thus far
we have focused on confinement as it arises when two
browser contexts communicate. Confinement is of use
in browser-server communication, too. As noted in Sec-
tion 3.1, COWL only allows a context to communicate
with a server (whether with XHR, retrieving an image,
or otherwise) when the server’s origin subsumes the con-
text’s label. Upon receiving a request, a COWL-aware
web server may also wish to know the current label of the
context that initiated it. For this reason, COWL attaches
the current label to every request the browser sends to a
server.7 As also noted in Section 3.1, a COWL-aware web
server may elect to label a response it sends the client
by including a COWL-label header on it. In such cases,
the COWL-aware browser will only allow the receiving
context to read the XHR response if its current label sub-
sumes that on the response.

Here, again, a context that receives labeled data—in
this case from a server—may wish to defer raising its
label until it has completed communication with other
remote origins. To give a context this freedom, COWL
supports labeled XHR communication. When a script in-
vokes COWL’s labeled XHR constructor, COWL delivers
the response to the initiating script as a labeled Blob.
Just as with labeled Blob intra-browser IPC, the script
is then free to delay raising its label to read the payload
of the response—and delay being confined—until after
it has completed its other remote communication. For
example, in the third-party mashup example, Mint only
confines itself once it has received all necessary (labeled)
responses from both Amazon and Chase. At this point
it processes the data and displays results to the user, but
it can no longer send requests since doing so may leak

6The label itself cannot leak information—COWL still ensures that
the target context’s label is at least as restricting as that of the source.

7COWL also attaches the current privilege; see Section 3.3.

7



information.8

3.3 Privileges
While confinement handily enforces secrecy, there are
occasions when an application must eschew confinement
in order to achieve its goals, and yet can uphold secrecy
while doing so. For example, a context may be confined
with respect to some origin (say, a.com) as a result of
having received data from that origin, but may need to
send an encrypted version of that data to a third-party ori-
gin. Doing so does not disclose sensitive data, but COWL
would normally prohibit such an operation. In such sit-
uations, how can a context declassify data, and thus be
permitted to send to an arbitrary recipient, or avoid the
recipient’s being confined?

COWL’s privilege primitive enables safe declassifica-
tion. A context may hold one or more privileges, each
with respect to some origin. Possession of a privilege for
an origin by a context denotes trust that the scripts that
execute within that context will not compromise the se-
crecy of data from that origin. Where might such trust
come from (and hence how are privileges granted)? Under
the SOP, when a browser retrieves a page from a.com,
any script within the context for the page is trusted not
to violate the secrecy of a.com’s data, as these scripts
are deemed to be executing on behalf of a.com. COWL
makes the analogous assumption by granting the privilege
for a.com to the context that retrieves a page from a.com:
scripts executing in that context are similarly deemed to
be executing on behalf of a.com, and thus are trusted
not to leak a.com’s data to unauthorized parties—even
though they can declassify data. Only the COWL run-
time can create a new privilege for a valid remote origin
upon retrieval of a page from that origin; a script cannot
synthesize a privilege for a valid remote origin.

To illustrate the role of privileges in declassification,
consider the encrypted Google Docs example application.
In the implementation of this application atop COWL,
code executing on behalf of eff.org (i.e., in a compart-
ment holding the eff.org privilege) with a current label
〈eff.org ∧ gdoc.com〉 is permitted to send messages
to a context labeled 〈gdoc.com〉. Without the eff.org
privilege, this flow would not be allowed, as it may leak
the EFF’s information to Google.

Similarly, code can declassify information when unla-
beling messages. Consider now the password checker ex-
ample application. The left context in Figure 2 leverages
its fb.com privilege to declassify the password strength
result, which is labeled with its origin, to avoid (uneces-
sarily) raising its label to fb.com.

COWL generally exercises privileges implicitly: if a
8To continuously process data in “streaming” fashion, one may

partition the application into contexts that poll Amazon and Chase’s
servers for new data and pass labeled responses to the confined context
that processes the payloads of the responses.

context holds a privilege, code executing in that context
will, with the exception of sending a message, always
attempt to use it.9 COWL, however, lets code control the
use of privileges by allowing code to get and set the under-
lying context’s privileges. Code can drop privileges by set-
ting its context’s privileges to null. Dropping privileges
is of practical use in confining closely coupled untrusted
libraries like jQuery. Setting privileges, on the other hand,
increases the trust placed in a context by authorizing it
act on behalf of origins. This is especially useful since
COWL allows one context to delegate its privileges (or
a subset of them) to another; this functionality is also
instrumental in confining untrusted libraries like jQuery.
Finally, COWL also allows a context to create privileges
for fresh origins, i.e., unique origins that do not have a
real protocol (and thus do not map to real servers). These
fresh origins are primarily used to completely confine a
context: the sender can label messages with such an ori-
gin, which upon inspection will raise the receiver’s label
to this “fake” origin, thereby ensuring that it cannot com-
municate except with the parent (which holds the fresh
origin’s privilege).

4 APPLICATIONS
In Section 2.2, we characterized four applications and
explained why the status-quo web architecture cannot
accommodate them satisfactorily. We then described the
COWL system’s new browser primitives. We now close
the loop by demonstrating how to build the aforemen-
tioned applications with the COWL primitives.
Encrypted Document Editor The key feature needed
by an encrypted document editor is symmetric confine-
ment, where two mutually distrusting scripts can each
confine the other’s use of data they send one another.
Asymmetrically conferring COWL privileges on the dis-
trusting components is the key to realizing this applica-
tion.

Figure 3 depicts the architecture for an encrypted docu-
ment editor. The editor has three components: a compo-
nent which has the user’s Google Docs credentials and
communicates with the server (gdoc.com), the editor
proper (also gdoc.com), and the component that per-
forms encryption (eff.org). COWL provides privacy as
follows: if eff.org is honest, then COWL ensures that
the cleartext of the user’s document is not leaked to any
origin. If only gdoc.com is honest, then gdoc.com may
be able to recover cleartext (e.g., the encryptor may have
used the null “cipher”), but the encryptor should not be
able to exfiltrate the cleartext to anyone else.

How does execution of the encrypted document edi-
tor proceed? Initially, gdoc.com downloads (1) the en-

9 While the alternative approach of explicit exercise of privileges
(e.g., when registering an onmessage handler) may be safer [23, 34,
51], we find it a poor fit with existing asynchronous web APIs.

8



eff.org$

public$ gdoc.com$

[EKEY(doc)]$gdoc.com$
2$3$

2$2$

2$4$

gdoc.com$

2$1$ EKEY(doc)$

KEY$

gdoc.com$��eff.org$

[doc]$gdoc.com�eff.org$ 2$5$

editor$

public$

DOM$ DOM$

DOM$

gdoc.com�$ eff.org�$

gdoc.com�$

crypto$

Figure 3: Encrypted document editor architecture.
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Figure 4: Third-party mashup under COWL.

crypted document from Google’s servers. As the docu-
ment is encrypted, it opens an iframe to eff.org, with
initial label public so it can communicate with the
eff.org server and download the private key (2) which
will be used to decrypt the document. Next, it sends
the encrypted document as a labeled Blob, with the la-
bel 〈gdoc.com〉 (3); the iframe unlabels the Blob and
raises its label (4) so it can decrypt the document. Finally,
the iframe passes the decrypted document (labeled as
〈gdoc.com ∧ eff.org〉) to the iframe (5) implementing
the editor proper.

To save the document, these steps proceed in reverse:
the editor sends a decrypted document to the encryptor (5),
which encrypts it with the private key. Next, the critical
step occurs: the encryptor exercises its privileges to send
a labeled blob of the encrypted document which is only
labeled 〈gdoc.com〉 (3). Since the encryptor is the only
compartment with the eff.org privilege, all documents
must pass through it for encryption before being sent
elsewhere; conversely, it itself cannot exfiltrate any data,
as it is confined by gdoc.com in its label.

We have implemented a password manager atop COWL
that lets users safely store passwords on third-party web-
accessible storage. We elide its detailed design in the
interest of brevity, and note only that it operates similarly
to the encrypted document editor.
Third-Party Mashup Labeled XHR as composed with
CORS is central to COWL’s support for third-party
mashups. Today’s CORS policies are DAC-only, such
that a server must either allow another origin to read its

jquery.com$
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2$3$

2$4$
DOM$

public$

app#TCB#

public$

a.com�$
unq0�$

a.com�$
unq0�$

unq0$

2$2$

Figure 5: Privilege separation and library confinement.

data and fully trust that origin not to disclose the data, or
deny the other origin access to the data altogether. Under
COWL, however, a server could CORS-whitelist a foreign
origin to permit that origin to read its data, and by set-
ting a label on its response, be safe in the knowledge that
COWL would appropriately confine the foreign origin’s
scripts in the browser.

Figure 4 depicts an application that reconciles a user’s
Amazon purchases and bank statement. Here, Chase and
Amazon respectively expose authenticated read-only APIs
for bank statements and purchase histories that whitelist
known applications’ origins, such as mint.com, but set
MAC labels on responses.10 As discussed in Section 7,
with MAC in place, COWL allows users to otherwise
augment CORS by whitelisting foreign origins on a per-
origin basis. The mashup makes requests to both web
sites using labeled XHR (1) to receive the bank statement
and purchase history as labeled Blobs. Once all of the in-
formation is received, the mashup unlabels the responses
and raises its context’s label accordingly (2–3); doing so
restricts communication to the web at large.

Note that in contrast to when solely using CORS, by
setting MAC labels on responses, Chase and Amazon
need not trust Mint to write bug-free code—COWL con-
fines the Mint code to ensure that it cannot arbitrarily
leak sensitive data. As we discuss in Section 7, however,
a malicious Mint application could potentially leak data
through covert channels. We emphasize that COWL nev-
ertheless offers a significant improvement over the status
quo, in which, e.g., users give their login credentials to
Mint, and thus not only trust Mint to keep their bank
statements confidential, but also not to steal their funds!
Untrusted Third-Party Library COWL can confine
tightly coupled untrusted third-party libraries like jQuery
by delegating privileges to a trusted context and subse-
quently dropping them from the main page. In doing so,
COWL completely confines the main page, and ensures
that it can only communicate with the trusted and uncon-
fined context. Here, the main page may start out with
sensitive data in context, or alternatively, receive it from
the trusted compartment.

10On authentication: note that when the browser sends any XHR
(labeled or not) from a foreign origin to origin chase.com, it still
includes any cookies cached for chase.com in the request.
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interface Label :
Label Label(String)
Label and(String or Label)
Label or(String or Label)
bool subsumes(Label [,Privilege])

interface Privilege :
Privilege FreshPrivilege()
Privilege combine(Privilege)
readonly attribute Label asLabel

(a) Labels and privileges.

interface LabeledBlob :
readonly attribute Label label
readonly attribute Blob blob

(b) Labeled Blobs.

interface COWL :
static void enable()
static attribute Label label
static attribute Label clearance
static attribute Privilege privilege

interface LWorker :
LWorker LWorker(String, Label

[, Privilege, object])
postMessage(object)
attribute EventHandler onmessage

(c) Labeled compartments.
Figure 6: COWL programming interface in simplified WebIDL.

Figure 5 shows how to use COWL to confine the un-
trusted jQuery library referenced by a web page. The goal
is to establish a separate DOM worker with the a.com

privilege, while the main browsing context runs jQuery in
confined fashion—without privileges or the ability to talk
to the network. Initially the main browsing context holds
the a.com privilege. The page generates a fresh origin
unq0 and spawns a DOM worker (1), delegating it both
privileges. The main context then drops its privileges and
raises its label to 〈unq0〉 (2). Finally, the trusted worker
downloads jQuery (3) and injects the script content into
the main context’s DOM (4). When the library is loaded,
the main context becomes untrusted, but also fully con-
fined. As the trusted DOM worker holds both privileges,
it can freely modify the DOM of the main context, as well
as communicate with the wider web. One may view this
DOM worker as a firewall between the page proper (with
the untrusted library) and the rest of the world.

5 IMPLEMENTATION

We implemented COWL in Firefox 31.0a1 and Chromium
31.0.1612.0. Because COWL operates at a context granu-
larity, it admits an implementation as a new DOM-level
API for the Gecko and Blink layout engines, without any
changes to the browsers’ JavaScript engines. Figure 6
shows the core parts of this API. We focus on the Fire-

Channel Mechanism

postMessage Cross-compartment wrappers11

DOM window properties Cross-compartment wrappers
Content loading CSP
XHR CSP + DOM interposition
Browser storage SOP + CSP (sandbox)
Other (e.g., iframe height) DOM interposition

Table 1: Confining code from exfiltrating data using existing
browser mechanisms.

fox implementation and only describe the Chromium one
where the two diverge non-trivially.

5.1 Labeled Browsing Contexts
Gecko’s existing isolation model relies on JavaScript com-
partments, i.e., disjoint JavaScript heaps, both for effi-
cient garbage collection and security isolation [40]. To
achieve isolation, Gecko performs all cross-compartment
communication (e.g., postMessage between iframes)
through wrappers that implement the object-capability
membrane pattern [21, 22]; membranes enable sound rea-
soning about “border crossing” between compartments.
Wrappers ensure that an object in one compartment can
never directly reference another object in a different com-
partment. Wrappers also include a security policy, which
enforces all inter-compartment access control checks spec-
ified by the SOP. Security decisions are made with respect
to a compartment’s security principal, which contains the
origin and CSP of the compartment.

Since COWL’s security model is very similar to this
existing model, we can leverage these wrappers to intro-
duce COWL’s new security policies. We associate a label,
clearance, and privilege with each compartment along-
side the security principal. Wrappers consider all of these
properties together when making security decisions.
Intra-Browser Confinement As shown in Table 1, we
rely on wrappers to confine cross-compartment communi-
cation. Once confinement mode is enabled, we “recom-
pute” all cross-compartment wrappers to use our MAC
wrapper policy and thereby ensure that all subsequent
cross-compartment access is mediated not only by the
SOP, but also by confinement. For postMessage, our
policy ensures that the receiver’s label subsumes that of
the sender (taking the receiver’s privileges into consider-
ation); otherwise the message is silently dropped. For a
cross-compartment DOM property access, we addition-
ally check that the sender’s label subsumes that of the
receiver—i.e., that the labels of the compartments are
equivalent after considering the sender’s privileges (in
addition to the same-origin check performed by the SOP).

Blink’s execution contexts (the dual to Gecko’s com-
partments) do not rely on wrappers to enforce cross-
context access control. Instead, Blink implements the

11 Since the Chromium architecture does not have cross-compartment
wrappers, we modify the DOM binding code to insert label checks.
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SOP security checks in the DOM binding code for a lim-
ited subset of DOM elements that may allow cross-origin
access. Since COWL policies are more fine-grained, we
modified the binding code to extend the security checks to
all DOM objects and also perform label checks when con-
finement mode is enabled. Unfortunately, without wrap-
pers, shared references cannot efficiently be revoked (i.e.,
without walking the heap). Hence, before enabling con-
finement mode, a page can create a same-origin iframe
with which it shares references, and the iframe can there-
after leak any data from the parent even if the latter’s
label is raised. To prevent this eventuality, our current
Chromium API allows senders to disallow unlabeling
Blobs if the target created any children before entering
confinement mode.

Our implementations of LWorkers, whose API appears
in Figure 6c, reuse labeled contexts straightforwardly.
In fact, the LWorker constructor simply creates a new
compartment with a fresh origin that contains a fresh
JavaScript global object to which we attach the XHR con-
structor, COWL API, and primitives for communicating
with the parent (e.g., postMessage). Since LWorkers
may have access to their parents’ DOM, however, our
wrappers distinguish them from other contexts to bypass
SOP checks and only restrict DOM access according to
MAC. This implementation is very similar to the content
scripts used by Chrome and Firefox extensions [10, 26].
Browser-Server Confinement As shown in Table 1, we
confine external communication (including XHR, content
loading, and navigation) using CSP. While CSP alone is
insufficient for providing flexible confinement,12 it suf-
ficiently addresses our external communication concern
by precisely controlling from where a page loads content,
performs XHR requests to, etc. To this end, we set a cus-
tom CSP policy whenever the compartment label changes,
e.g., with COWL.label. For instance, if the effective com-
partment label is Label("https://bank.ch").and

("https://amazon.com"), all the underlying CSP di-
rectives are set to ’none’ (e.g., default-src ’none’),
disallowing all network communication. We also disable
navigation with the ’sandbox’ directive [46–48].
Browser Storage Confinement As shown in Table 1,
we use the sandbox directive to restrict access to storage
(e.g., cookies and HTML5 local storage [47]), as have
other systems [5]. We leave the implementation of labeled
storage as future work.

6 EVALUATION
Performance largely determines acceptance of new
browser features in practice. We evaluate the performance

12 There are two primary reasons. First, JavaScript code cannot
(yet) modify a page’s CSP. And, second, CSP does not (yet) pro-
vide a directive for restricting in-browser communication, e.g., with
postMessage.
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New iframe 14.4 14.5 14.4 50.6 48.7 51.8
New worker 15.9 15.4 0.9† 18.9 18.9 3.3†

Iframe comm. 0.11 0.11 0.12 0.04 0.04 0.04
XHR comm 3.5 3.6 3.7 7.0 7.4 7.2
Worker comm. 0.20 0.24 0.03‡ 0.07 0.07 0.03‡

Table 2: Micro-benchmarks, in milliseconds.

of COWL by measuring the cost of our new primitives
as well as their impact on legacy web sites that do not
use COWL’s features. Our experiments consist of micro-
benchmarks of API functions and end-to-end benchmarks
of our example applications. We conducted all measure-
ments on a 4-core i7-2620M machine with 16GB of RAM
running GNU/Linux 3.13. The browser retrieved appli-
cations from the Node.js web server over the loopback
interface. We note that these measurements are harsh for
COWL, in that they omit network latency and the com-
plex intra-context computation and DOM rendering of
real-world applications, all of which would mask COWL’s
overhead further. Our key findings include:
I COWL’s latency impact on legacy sites is negligible.
I Confining code with LWorkers is inexpensive, espe-

cially when compared to iframes/Workers. Indeed,
the performance of our end-to-end confined password
checker is only 5 ms slower than that of an inlined
script version.

I COWL’s incurs low overhead when enforcing confine-
ment on mashups. The greatest overhead observed is
16% (for the encrypted document editor). Again, the
absolute slowdown of 16 ms is imperceptible by users.

6.1 Micro-Benchmarks
Context Creation Table 2 shows micro-benchmarks for
the stock browsers (vanilla), the COWL browsers with
confinement mode turned off (unlabeled), and with con-
finement mode enabled (labeled). COWL adds negligi-
ble latency to compartment creation; indeed, except for
LWorkers (†), the differences in creation times are of the
order of measurement variability. We omit measurements
of labeled “normal” Workers since they do not differ from
those of unlabeled Workers. We attribute COWL’s iframe-
creation speedup in Chromium to measurement variability.
We note that the cost of creating LWorkers is considerably
less than that for “normal” Workers, which run in separate
OS threads (†).
Communication The iframe, worker, and XHR com-
munication measurements evaluate the round-trip laten-
cies across iframes, workers, and the network. For the
XHR benchmark, we report the cost of using the labeled
XHR constructor averaged over 10,000 requests. Our
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Chromium implementation uses an LWorker to wrap the
unmodified XHR constructor, so the cost of labeled XHR
incorporates an additional cross-context call. As with cre-
ation, communicating with LWorkers (‡) is considerably
faster than with “normal” Workers. This speedup arises
because a lightweight LWorker shares an OS thread and
event loop with their parent.
Labels We measured the cost of setting/getting the cur-
rent label and the average cost of a label check in Firefox.
For a randomly generated label with a handful of origins,
these operations take on the order of one microsecond.
The primary cost is recomputing cross-compartment wrap-
pers and the underlying CSP policy, which ends up costing
up to 13ms (e.g., when the label is raised from public to a
third-party origin). For many real applications, we expect
raising the current label to be a rare occurrence. Moreover,
there is much room for optimization (e.g., porting COWL
to the newest CSP implementation, which sets policies
15× faster [19]).
DOM We also executed the Dromaeo benchmark
suite [29], which evaluates the performance of core func-
tionality such as querying, traversing, and manipulating
the DOM, in Firefox and Chromium. We found the per-
formance of the vanilla and unlabeled browsers to be on
par: the greatest slowdown was under 4%.

6.2 End-to-End Benchmarks
To focus on measuring COWL’s overhead, we compare
our apps against similarly compartmentalized but non-
secure apps—i.e., apps that perform no security checks.
Password-Strength Checker We measure the average
duration of creating a new LWorker, fetching an 8 KB
checker script based on [24], and checking a password
sixteen characters in length. The checker takes an average
of 18 ms (averaged over ten runs) on Firefox (labeled), 4
ms less than using a Worker on vanilla Firefox. Similarly,
the checker running on labeled Chromium is 5 ms faster
than the vanilla counterpart (measured at 54 ms). In both
cases COWL achieves a speedup because its LWorkers
are cheaper than normal Workers. However, these mea-
surements are roughly 5 ms slower than simply loading
the checker using an unsafe script tag.
Encrypted Document Editor We measure the end-to-
end time taken to load the application and encrypt a 4
KB document using the SJCL AES-128 library [32]. The
total run time includes the time taken to load the docu-
ment editor page, which in turn loads the encryption-layer
iframe, which further loads the editor proper. On Firefox
(labeled) the workload completes in 116 ms; on vanilla
Firefox, a simplified and unconfined version completes
in 100ms. On Chromium, the performance measurements
were comparable; the completion time was within 1ms
of 244ms. The most expensive operation in the COWL-
enabled Firefox app is raising the current label, since it

requires changing the underlying document origin and
recomputing the cross-compartment wrappers and CSP.
Third-Party Mashup We implemented a very simple
third-party mashup application that makes a labeled XHR
request to two unaffiliated origins, each of which pro-
duces a response containing a 27-byte JSON object with
a numerical property, and sums the responses together.
The corresponding vanilla app is identical, but uses the
normal XHR object. In both cases we use CORS to per-
mit cross-origin access. The Firefox (labeled) workload
completes in 41 ms, which is 6 ms slower than the vanilla
version. As in the document editor the slowdown derives
from raising the current label, though in this case only
for a single iframe. On Chromium (labeled) the workload
completes in 55 ms, 2 ms slower than the vanilla one;
the main slowdown here derives from our implementing
labeled XHR with a wrapping LWorker.
Untrusted Third-Party Library We measured the load
time of a banking application that incorporates jQuery and
a library that traverses the DOM to replace phone num-
bers with links. The latter library uses XHR in attempt to
leak the page’s content. We compartmentalize the main
page into a public outer component and a sensitive iframe
containing the bank statement. In both compartments, we
place the bank’s trusted code (which loads the libraries) in
a trusted labeled DOM worker with access to the page’s
DOM. We treat the rest of the code as untrusted. As our
current Chromium implementation does not yet support
DOM access for LWorkers, we only report measurements
for Firefox. The measured latency on Firefox (labeled) is
165 ms, a 5 ms slowdown when compared to the uncon-
fined version running on vanilla Firefox. Again, COWL
prevents sensitive content from being exfiltrated and in-
curs negligible slowdown.

7 DISCUSSION AND LIMITATIONS
We now discuss the implications of certain facets of
COWL’s design, and limitations of the system.
User-Configured Confinement Recall that in the status-
quo web security architecture, to allow cross-origin shar-
ing, a server must grant individual foreign origins access
to its data with CORS in an all-or-nothing, DAC fash-
ion. COWL improves this state of affairs by allowing a
COWL-aware server to more finely restrict how its shared
data is disseminated—i.e., when the server grants a for-
eign origin access to its data, it can confine the foreign
origin’s script(s) by setting a label on responses it sends
the client.

Unfortunately, absent a permissive CORS header that
whitelists the origins of applications that a user wishes
to use, the SOP prohibits foreign origins from reading
responses from the server, even in a COWL-enabled
browser. Since a server’s operator may not be aware of
all applications its users may wish to use, the result is
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usually the same status-quo unpalatable choice between
functionality and privacy—e.g., give one’s bank login
credentials to Mint, or one cannot use the Mint appli-
cation. For this reason, our COWL implementation lets
browser users augment CORS by configuring for an origin
(e.g., chase.com) any foreign origins (e.g., mint.com,
benjamins.biz) they wish to additionally whitelist. In
turn, COWL will confine these client-whitelisted origins
(e.g., mint.com) by labeling every response from the
configured origin (chase.com). COWL obeys the server-
supplied label when available and server whitelisting is
not provided. Otherwise, COWL conservatively labels the
response with a fresh origin (as described in Section 3.3).
The latter ensures that once the response has been in-
spected, the code cannot communicate with any server,
including at the same origin, since such requests carry
the risks of self-exfiltration [11] and cross-site request
forgery [39].
Covert Channels In an ideal confinement system, it
would always be safe to let untrusted code compute on
sensitive data. Unfortunately, real-world systems such
as browsers typically exhibit covert channels that mali-
cious code may exploit to exfiltrate sensitive data. Since
COWL extends existing browsers, we do not protect
against covert channel attacks. Indeed, malicious code
can leverage covert channels already present in today’s
browsers to leak sensitive information. For instance, a
malicious script within a confined context may be able to
modulate sensitive data by varying rendering durations. A
less confined context may then in turn exfiltrate the data
to a remote host [20]. It is important to note, however,
that COWL does not introduce new covert channels—
our implementations re-purpose existing (software-based)
browser isolation mechanisms (V8 contexts and Spider-
Monkey compartments) to enforce MAC policies. More-
over, these MAC policies are generally more restricting
than existing browser policies: they prevent unauthorized
data exfiltration through overt channels and, in effect,
force malicious code to resort to using covert channels.

The only fashion in which COWL relaxes status-quo
browser policies is by allowing users to override CORS to
permit cross-origin (labeled) sharing. Does this function-
ality introduce new risks? Whitelisting is user controlled
(e.g., the user must explicitly allow mint.com to read
amazon.com and chase.com data), and code reading
cross-origin data is subject to MAC (e.g., mint.com can-
not arbitrarily exfiltrate the amazon.com or chase.com
data after reading it). In contrast, today’s mashups like
mint.com ask users for their passwords. COWL is
strictly an improvement: under COWL, when a user de-
cides to trust a mashup integrator such as mint.com, she
only trusts the app to not leak her data through covert chan-
nels. Nevertheless, users can make poor security choices.
Whitelisting malicious origins would be no exception;

we recognize this as a limitation of COWL that must be
communicated to the end-user.

A trustworthy developer can leverage COWL’s support
for clearance when compartmentalizing his application to
ensure that only code that actually relies on cross-origin
data has access to it. Clearance is a label that serves as an
upper bound on a context’s current label. Since COWL en-
sures that the current label is adjusted according to the sen-
sitivity of the data being read, code cannot read (and thus
leak) data labeled above the clearance. Thus, Mint can
assign a “low” clearance to untrusted third-party libraries,
e.g., to keep chase.com’s data confidential. These li-
braries will then not be able to leak such data through
covert channels, even if they are malicious.
Expressivity of Label Model COWL uses DC la-
bels [33] to enforce confinement according to an infor-
mation flow control discipline. Although this approach
captures a wide set of confinement policies, it is not ex-
pressive enough to handle policies with a circular flow of
information [6] or some policies expressible in more pow-
erful logics (e.g., first order logic, as used by Nexus [30]).
DC labels are, however, as expressive as other popular
label models [25], including Myers and Liskov’s Decen-
tralized Label Model [27]. Our experience implementing
security policies with them thus far suggests they are
expressive enough to support featureful web applications.

We adopted DC labels largely because their fit with
web origins pays practical dividends. First, as developers
already typically express policies by whitelisting origins,
we believe they will find DC labels intuitive to use. Sec-
ond, because both DC labels and today’s web policies
are defined in terms of origins, the implementation of
COWL can straightforwardly reuse the implementation
of existing security mechanisms, such as CSP.

8 RELATED WORK
Existing browser confinement systems based on informa-
tion flow control can be classified either as fine-grained or
coarse-grained. The former associate IFC policies with
individual objects, while the latter associate policies with
entire browsing contexts. We compare COWL to previ-
ously proposed systems in both categories, then contrast
the two categories’ overall characteristics.
Coarse-grained IFC COWL shares many features with
existing coarse-grained systems. BFlow [50], for example,
allows web sites to enforce confinement policies stricter
than the SOP via protection zones—groups of iframes
sharing a common label. However, BFlow cannot me-
diate between mutually distrustful principals—e.g., the
encrypted document editor is not directly implementable
with BFlow. This is because only asymmetric confinement
is supported—a sub-frame cannot impose any restrictions
on its parent. For the same reasons, BFlow cannot support
applications that require security policies more flexible
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than the SOP, such as our third-party mashup example.
These differences reflect different goals for the two sys-
tems. BFlow’s authors set out to confine untrusted third-
party scripts, while we also seek to support applications
that incorporate code from mutually distrusting parties.

More recently, Akhawe et al. propose the data-confined
sandbox (DCS) system [5], which allows pages to inter-
cept and monitor the network, storage, and cross-origin
channels of data:URI iframes. The limitation to data:
URI iframes means DCS cannot confine the common case
of a service provided in an iframe [31]. Like BFlow, DCS
does not offer symmetric confinement, and does not incor-
porate functionality to let developers build applications
like third-party mashups.
Fine-grained IFC Per-object-granularity IFC makes it
easier to confine untrusted libraries that are closely cou-
pled with trusted code on a page (e.g., jQuery) and avoid
the problem of over-tainting, where a single context accu-
mulates taint as it inspects more data.

JSFlow [15] is one such fine-grained JavaScript IFC
system, which enforces policies by executing JavaScript
in an interpreter written in JavaScript. This approach in-
curs a two order of magnitude slowdown. JSFlow’s au-
thors suggest that this cost makes JSFlow a better fit for
use as a development tool than as an “always-on” privacy
system for users’ browsers. Additionally, JSFlow does not
support applications that rely on policies more flexible
than the SOP, such as our third-party mashup example.

The FlowFox fine-grained IFC system [12] enforces
policies with secure-multi execution (SME) [13]. SME
ensures that no leaks from a sensitive context can leak into
a less sensitive context by executing a program multiple
times. Unlike JSFlow and COWL, SME is not amenable
to scenarios where declassification plays a key role (e.g.,
the encrypted editor or the password manager). FlowFox’s
labeling of user interactions and metadata (history, screen
size, etc.) do allow it to mitigate history sniffing and
behavior tracking; COWL does not address these attacks.

While fine-grained IFC systems may be more con-
venient for developers, they impose new language se-
mantics for developers to learn, require invasive modi-
fications to the JavaScript engine, and incur greater per-
formance overhead. In contrast, because COWL repur-
poses familiar isolation constructs and does not require
JavaScript engine modifications, it is relatively straight-
forward to add to legacy browsers. It also only adds over-
head to cross-compartment operations, rather than to all
JavaScript execution. The typically short lifetime of a
browsing context helps avoid excessive accumulation of
taint. We conjecture that coarse-grained and fine-grained
IFC are equally expressive, provided one may use arbi-
trarily many compartments—a cost in programmer con-
venience. Finally, coarse- and fine-grained mechanisms
are not mutually exclusive. For instance, to confine legacy

(non-compartmentalized) JavaScript code, one could de-
ploy JSFlow within a COWL context.

Sandboxing The literature on sandboxing and secure
subsets of JavaScript is rich, and includes Caja [1],
BrowserShield [28], WebJail [37], TreeHouse [18],
JSand [4], SafeScript [36], Defensive JavaScript [9], and
Embassies [16]). While our design has been inspired by
some of these systems (e.g., TreeHouse), the usual goals
of these systems are to mediate security-critical opera-
tions, restrict access to the DOM, and restrict communica-
tion APIs. In contrast to the mandatory nature of confine-
ment, however, these systems impose most restrictions in
discretionary fashion, and are thus not suitable for build-
ing some of the applications we consider (in particular,
the encrypted editor). Nevertheless, we believe that access
control and language subsets are crucial complements to
confinement for building robustly secure applications.

9 CONCLUSION

Web applications routinely pull together JavaScript con-
tributed by parties untrusted by the user, as well as by
mutually distrusting parties. The lack of confinement for
untrusted code in the status-quo browser security archi-
tecture puts users’ privacy at risk. In this paper, we have
presented COWL, a label-based MAC system for web
browsers that preserves users’ privacy in the common
case where untrusted code computes over sensitive data.
COWL affords developers flexibility in synthesizing web
applications out of untrusted code and services while pre-
serving users’ privacy. Our positive experience building
four web applications atop COWL for which privacy had
previously been unattainable in status-quo web browsers
suggests that COWL holds promise as a practical plat-
form for preserving privacy in today’s pastiche-like web
applications. And our measurements of COWL’s perfor-
mance overhead in the Firefox and Chromium browsers
suggest that COWL’s privacy benefits come at negligible
end-to-end cost in performance.
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