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Abstract

Information-Flow Control (IFC) is a well-established approach for
allowing untrusted code to manipulate sensitive data without dis-
closing it. IFC is typically enforced via type systems and static anal-
yses or via dynamic execution monitors. The LIO Haskell library,
originating in operating systems research, implements a purely dy-
namic monitor of the sensitivity level of a computation, particularly
suitable when data sensitivity levels are only known at runtime. In
this paper, we show how to give programmers the flexibility of de-
ferring IFC checks to runtime (as in LIO), while also providing
static guarantees—and the absence of runtime checks—for parts
of their programs that can be statically verified (unlike LIO). We
present the design and implementation of our approach, HLIO (Hy-
brid LIO), as an embedding in Haskell that uses a novel technique
for deferring IFC checks based on singleton types and constraint
polymorphism. We formalize HLIO, prove non-interference, and
show how interesting IFC examples can be programmed. Although
our motivation is IFC, our technique for deferring constraints goes
well beyond and offers a methodology for programmer-controlled
hybrid type checking in Haskell.

Categories and Subject Descriptors D.1.1 [Programming Tech-
niques]: Applicative (Functional) Programming; D.3.3 [Program-
ming Languages]: Language Constructs and Features; D.4.6 [Se-
curity and Protection]: Information flow controls

Keywords Information-flow control, hybrid typing, gradual typ-
ing, dynamic typing, data kinds, constraint kinds, singleton types

1. Introduction

Preserving confidentiality of data has become of extreme impor-
tance, particularly in complex systems where untrusted compo-
nents require access to sensitive information (e.g. text messages,
contact lists, pictures, etc.) in order to provide their functionality.
Information-Flow Control (IFC) is a well-established approach for
allowing untrusted code to manipulate sensitive data without dis-
closing it (Sabelfeld and Myers 2003). IFC essentially scrutinizes
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source code to track how data of different sensitivity levels flows
within a program, where security alarms are raised when confiden-
tiality might be at stake. IFC research has produced three mature
compilers for secure programs: Jif (Myers and Liskov 2000) (based
on Java), FlowCaml (Simonet 2003) (based on Caml and not devel-
oped any more), and Paragon (Broberg et al. 2013) (based on Java).
Alternatively, IFC can be provided via simple libraries in Haskell
where concepts like arrows and monads are repurposed to protect
confidentiality (Li and Zdancewic 2006; Russo et al. 2008).

There exists a broad spectrum of enforcement mechanisms for
IFC, ranging from fully dynamic ones, e.g., in the form of execution
monitors (Austin and Flanagan 2009; Askarov and Sabelfeld 2009),
to static ones, e.g., in the form of type systems (Volpano et al.
1996). Although dynamic and static techniques provide similar
security guarantees (Sabelfeld and Russo 2009), there are many
arguments for choosing dynamic over static approaches and vice
versa. Several of these arguments have their roots in the long-term
dispute between dynamic and static analyses, e.g., overhead vs.
performance, enforcing properties for a program once and for all
vs. monitoring properties in every run of a program, etc.

From the security point of view, specifically, there are good rea-
sons to prefer dynamic over static approaches. Code statically ver-
ified to preserve confidentiality clearly adheres to data sensitivity
levels and policies valid at compile time. However, data sensitiv-
ity levels may be entirely dynamic (e.g. we may read data from a
trusted or a non-trusted domain at runtime) and even policies may
change at runtime (e.g. principals (users) can change the set of prin-
cipals they share data with by—for instance—altering their list of
friends). In situations like this, the statically verified code has to
be restructured to perform runtime checks in ways that the static
analysis or the type system can understand and exploit to verify the
program (we will see an example of that in Section 3.1). Alterna-
tively, programs have to be written in a way that can statically deal
with all possible sensitivity levels or policies that they could poten-
tially encounter at runtime; this in turn may limit the set of useful
side-effects programs can perform.

The LIO library (Stefan et al. 2011b) for Haskell offers a way
of tackling this problem by providing a monad that dynamically
enforces IFC. Borrowing ideas from operating systems research
(VanDeBogart et al. 2007; Zeldovich et al. 2006), the LIO monad
implements an execution monitor that keeps track of a current label
to indicate the sensitivity level of the computation. The current
label may get raised, or tainted, when the computation depends on
sensitive data. Furthermore, sensitive computations are prevented
from writing into public channels. In practice, LIO has proven
suitable for building production secure web systems (Giffin et al.
2012).

There are plenty of opportunities to optimize away LIO runtime
security checks. For example, it is enough to perform a single check



for computations that, within a long loop, attempt to write to the
same channel without affecting the current label. Ideally, runtime
checks should only be applied to those parts of the program where
sensitive labels are unknown at compile time or susceptible to
changes at runtime. Although a state-of-the-art tool, LIO does not
support mixing static and dynamic IFC. In this work, we address
this shortcoming.

We present HLIO, a Hybrid IFC library which combines the
best of both approaches. HLIO statically protects confidentiality
while allowing the programmers to defer selected checks to be done
at runtime. In that manner, security checks involving statically-
unknown or prone-to-change labels can be performed at runtime,
while providing static guarantees for the rest of the code. Existing
LIO code can easily be embedded in HLIO. Furthermore, HLIO
provides a very similar interface to LIO. As a result, existing LIO
code can also be incrementally refactored to work in HLIO so that
programmers can obtain static guarantees where possible. The main
purpose of HLIO is making a LIO-like IFC analysis hybrid rather
than making LIO better in the kind of leaks it prevents. Specifically,
our contributions with this paper are:

• We design and implement HLIO, a hybrid approach to IFC
that allows programmers to defer IFC constraints to runtime.
(Section 4)

• We present a novel technique for embedding HLIO as a library
in Haskell. Our technique makes essential use of advanced fea-
tures of the GHC type system and type inference, namely (a)
singleton types (Eisenberg and Weirich 2012),(b) data promo-

tion (Yorgey et al. 2012), and (c) constraint polymorphism1 , i.e.,
data types that can be parameterized over type class constraints,
to enable deferring IFC checks to runtime. We remark that it
is not necessary to understand these advanced type system fea-
tures in order to use our library. (Sections 5 and 6)

• We formalize the core features of HLIO in a calculus that al-
lows us to establish a simulation with LIO, thereby showing
that HLIO cannot leak secrets, i.e., that it satisfies termination-
insensitive noninterference. (Section 7)

• As an overall contribution, we describe a general-purpose mech-
anism for deferring static constraints without any compiler or
language modifications. Those constraints can go well beyond
IFC, and can even include ordinary type equalities emitted by
GHC’s type inference engine (see Section 8). We thus make
it easier for programmers to move across the static/dynamic
boundary, following the mantra of Meijer and Drayton “Static
typing where possible, dynamic typing when needed!” (Meijer
and Drayton 2005).

2. LIO: Flexible Dynamic IFC for Haskell

In this section, we briefly review LIO and its mechanism for dy-
namically protecting confidentiality of data.

class Lattice α where

⊔ ::α→ α→ α

⊑ ::α→ α→ Bool

Figure 1. Security lattice

Security lattices In an
IFC system, data gets clas-
sified according to its sen-
sitivity degree, which is
often denoted by a secu-
rity label (from now on,
just labels). Formally, la-
bels form a lattice Label to indicate the allowed flows of informa-
tion within a program. Data associated with label ℓ1 can flow into
entities labeled as ℓ2 provided that they respect the order relation-
ship of the lattice, i.e., ℓ1 ⊑ ℓ2. The encoding of security lattices

1 GHC 7.8.1 manual, Section 7.12

can be given as a type class, providing join (⊔), and the order rela-
tionship (⊑)—see Figure 1. In LIO, this type class also includes a
meet (⊓) operation, but we exclude it from our definition since it is

not important for our purposes.2 Our running example is the classi-
cal two-point security lattice, Label, that introduces labels L (low)
and H (high) to classify data as public and secret, respectively.

data Label = L | H
instance Lattice Label

The Label lattice implementation is what one expects; public data
can flow into secret entities, i.e., L ⊑ H , but not vice versa, i.e.,
H 6⊑ L.

The LIO monad LIO provides the LIO monad to guarantee
that computations manipulate data according to the security lattice.

data LIO a

instance Monad LIO

getLabel :: LIO Label

runLIO :: Label → LIO a → IO a

Figure 2. LIO interface

In (Stefan et al.
2012b), this monad
is parametric on the
security lattice be-
ing considered, but
we consider this lat-
tice to be fixed to
type Label to sim-
plify exposition.

It is expected that untrusted code is written using this monad
(and not directly in the IO monad) in order to have some guaran-
tees about its behavior—this can be enforced using other mech-
anisms (Terei et al. 2012). LIO encapsulates IO actions so that
they are only executed when confidentiality is not compromised. To
achieve that, the monad keeps track of a label ℓcur ::Label , called the
current floating label (or current label for short), which can be re-
trieved at any time by the function getLabel . The role of the current
label is two-fold. Firstly, it implicitly labels all the data in scope.
Secondly, it only allows computations to write to channels that are
labeled with ℓ :: Label such that ℓcur ⊑ ℓ; otherwise, LIO aborts
execution. For instance, a computation m :: LIO a with ℓcur = H
indicates that a secret has already been observed by m—thus, m
cannot subsequently write to public channels.

LIO computations have the flexibility to read sensitive data
above the current label, but at the cost of raising the current label
and thus being more restrictive in subsequent computations. More
specifically, when reading data with sensitivity ℓ::Label , the current
label ℓcur is raised to ℓ′cur = ℓcur ⊔ ℓ—in the LIO terminology, the
new current label floats above the observed data. Consequently, the
current label protects all the data that have been observed.

data Labeled a

labelOf :: Labeled a → Label

label :: Label → a

→ LIO (Labeled a)
unlabel :: Labeled a → LIO a

toLabeled :: Label → LIO a

→ LIO (Labeled a)

Figure 3. Labeled expressions

Labeled expressions
As in many other IFC
systems, LIO provides
abstractions to label data
with different sensitivity
degrees in a fine-grained
manner—see Figure 3.
Data type Labeled a as-
sociates an expression of
type a with a label in
Label . The pure function
labelOf can retrieve the
label associated with a labeled expression. The functions label and
unlabel are used to respectively create and destroy elements of
this data type. Term label ℓ x creates a labeled expression which
associates label ℓ with expression x , only if ℓcur ⊑ ℓ. This con-
straint ensures that LIO computations do not allocate data below

2 Meet is normally used for tracking integrity, e.g. for checking that data has
not been corrupted by untrusted parties.



the current label, which could potentially be returned and read by
lower-labeled computations.

Term unlabel x never fails; it extracts the data inside a labeled
expression x but taints (as a side-effect) the current label by join-
ing it (⊔) with the label of the expression. From a security point
of view, creating a labeled expression with label ℓ can be regarded
as writing into a channel at security level ℓ. Similarly, observing
(i.e., unlabeling) a labeled expression is analogous to reading from
a channel with the same security label. For simplicity, we only con-
sider labeled expressions in this paper—they are the simplest ex-
amples of labeled entities. Nevertheless, LIO does support labeled
mutable references (Stefan et al. 2011b), exceptions (Stefan et al.
2012b), and synchronization variables (Stefan et al. 2012a), which
could be orthogonally added.

EXAMPLE 1. (Tainting ℓcur) An LIO computation only raises its
current label when observing (unlabeling) labeled expressions, as
the secure string concatenation example below shows:

lconcat :: Labeled String → Labeled String → LIO String

lconcat lstr1 lstr2 = do -- Initial current label ℓcur

str1 ← unlabel lstr1 -- ℓ′cur = ℓcur ⊔ (labelOf lstr1)
str2 ← unlabel lstr2 -- ℓ′′cur = ℓ′cur ⊔ (labelOf lstr2)
return (str1 ++ str2) -- Final current label ℓ′′cur

Label creep Label creep is the problem of raising the current la-
bel to a point where computations are no longer capable of per-
forming useful side-effects (Sabelfeld and Myers 2003), i.e., the
current label becomes “too high, too soon.” To address this prob-
lem, LIO provides the primitive toLabeled (Figure 3) to allow com-
putations to only temporarily raise their current label. Specifically,
toLabeled ℓ m executes m with the current label ℓcur at the time of
executing this action. It first ensures that ℓcur ⊑ ℓ since it would
attach ℓ to the result of m—after all, it is creating a labeled value.
Computation m can in turn raise the current label during its exe-
cution, to a new ℓ′cur. After m terminates, toLabeled checks that
ℓ′cur ⊑ ℓ, and if that is the case, label ℓ is used to protect the
sensitivity of the result (in the return value of type Labeled a).

In toLabeled ℓ m , ℓ is an upper bound on the final current
label of m . The reason for that is to avoid leaks by manipulating
the current label inside m (Stefan et al. 2011b). Imagine that the
labeled value is instead wrapped with the final current label of m ,
and that the current label before executing toLabeled is set to L. It
could happen that in one run, the current label in m is ℓ1, where
L ⊏ ℓ1, and depending on information at that level, it decides to
unlabel a piece of data which takes the current label to ℓ2 (ℓ2 6≡ ℓ1).
After toLabeled gets executed, the next instruction simply reads the
label of the returned value (labelOf ), which returns either ℓ1 or ℓ2
without raising the current label. In that manner, code with current
label L can learn from data at level ℓ1—an information leak!

EXAMPLE 2. (Avoiding label creep) With toLabeled in place, we
can provide a more flexible version of lconcat as follows.

lconcat ′ :: Labeled String → Labeled String

→ LIO (Labeled String)
lconcat ′ lstr1 lstr2 = do -- Initial current label ℓcur

let lab = labelOf lstr1 ⊔ labelOf lstr2
lresult ← toLabeled lab (lconcat lstr1 lstr2)
return lresult -- Final current label ℓcur

Observe that lconcat ′ , in contrast with lconcat , can concatenate
secret strings without raising the current label.

RunningLIO actions without leaking secrets Function runLIO
uses its first argument to initialize the current label and executes
the LIO action given as its second argument. It returns an IO

action which is IFC-compliant, i.e., where side-effects do not leak
sensitive information with respect to that label.

EXAMPLE 3. (Preventing secret leaking) We describe below a
function which runs untrusted code and publishes a returned string
value in a public web site.

publish :: LIO String → IO String

publish m = do {r ← runLIO L action; report r }
where

action = do

x ← m

lx ← label L x -- succeeds if ℓcur ⊑ L

unlabel lx -- ℓcur is not modified

report s = wget ("http://reports/str=" ++ s) [ ] [ ]

Function wget sends an HTTP request to the URL given as ar-
gument. The action computation runs the untrusted code m but
guards the result x with L by calling label L. This call only suc-
ceeds when the final label of m is less than or equal to L.

Dynamically labeled values As mentioned in the introduction,
runtime IFC enforcement is particularly useful in systems where
values get classified based on runtime information. For instance one
can assume (or implement) a primitive that reads a remote labeled
value from the network:

readRemote ::URI → LIO (Labeled String)

The primitive does not necessarily increase the current label as
sensitive data can be encapsulated in the labeled value we return.
A more realistic example of such a primitive can be found in the
extended version of the paper (Buiras et al. 2015).

Untrusted scripts can freely call readRemote without compro-
mising confidentiality since, in order to observe the returned value,
they would have to have their current label tainted and thus would
be restricted from performing unsafe side-effects. While not a prob-
lem for dynamic LIO, we will see in the next section how dy-
namically labeled data complicates the programming model in a
statically-typed IFC discipline.

3. SLIO: Static IFC for Haskell

LIO performs information-flow checks at runtime, and hence the
ability to discharge those statically is certainly appealing.

Security labels at the type level The first step towards a statically
typed version of LIO in Haskell is to transport labels and lattice
operations over labels to the type level. We illustrate how this can
be done in Haskell for the familiar 2-point lattice:

data Label = L | H

class Flows (ℓ1 :: Label ) (ℓ2 :: Label)
instance Flows L L

instance Flows L H

instance Flows H H

type family Join (ℓ1 :: Label) (ℓ2 :: Label ) :: Label where

Join L L = L

Join L H = H

Join H L = H

Join H H = H

The Label datatype constructors will be used at the type-level. In
Haskell terminology, Label will be a promoted datatype (Yorgey
et al. 2012). Moreover, we can represent ⊑-constraints at the type
level using the type class Flows (ℓ1 :: Label) (ℓ2 :: Label) over
labels. The instances of the type class encode specific cases of the



⊑-relationship. 3 We also use a closed type family (Eisenberg et al.
2014) Join to express the ⊔ computation at the type level.

data SLabel (ℓ :: Label ) where

L :: SLabel L
H :: SLabel H

Figure 4. Singleton labels

Ordinary term-level
labels can now be in-
dexed by type-level la-
bels, i.e., they can be de-
fined as singleton types
in the dependent type the-
ory jargon—see Figure 4.
In a proper dependently typed language, such as Agda or F*, there
would be no need for duplication of labels and lattice functionality
at the type level and, in fact, our formal treatment (Section 7) does
away with the duplication.

Although our running example is the 2-point lattice, we have
successfully applied similar techniques to implement a more com-
plicated type-level lattice, namely DC-labels (Stefan et al. 2011a),
a decentralized security label model for IFC that can express secu-
rity concerns from different actors in a mutual distrust environment.
As far as we know, this is the first implementation of DC-labels at
the type level.

An LIO Hoare state monad Once the type-level machinery is in
place, we replace our dynamic LIO monad with a Hoare state
monad (Nanevski et al. 2006), indexed by the initial label of a
computation (analogous to a pre-condition) and the final label of
a computation (analogous to a post-condition):

data SLIO (ℓi :: Label) (ℓo :: Label) a
runSLIO :: SLabel ℓi → SLIO ℓi ℓo a → IO a

SLIO is just an intermediate step towards our final solution, but
readers can assume a very similar implementation as that of LIO:
a state monad over the current label.

type SLIO ℓi ℓo a = SLabel ℓi → IO (a,SLabel ℓo)

Due to its more expressive type, SLIO is not a Haskell monad.
Nevertheless, it is a monad in the sense that it is possible to de-
fine meaningful (>>=) and return operators that satisfy the usual
monad laws:

(>>=) :: SLIO ℓ1 ℓ2 a → (a → SLIO ℓ2 ℓ3 b)→ SLIO ℓ1 ℓ3 b

return :: a → SLIO ℓ ℓ a

It is easy to see how these functions are implemented.

A statically typed API for IFC SLIO so far seems like a more
precise typing of LIO . However, the ability to express labels and
their operations at the type level immediately opens up the possibil-
ity for converting the dynamic checks of LIO to static proof require-
ments. We do this below by simply rewriting the dynamic API to
use static constraints instead:

data Labeled (ℓ :: Label ) a = Labeled (SLabel ℓ) a
getLabel :: SLIO ℓi ℓi (SLabel ℓi)

labelOf :: Labeled (ℓ :: Label) a → SLabel ℓ

label :: Flows ℓi ℓ⇒ SLabel ℓ→ a

→ SLIO ℓi ℓi (Labeled ℓ a)
unlabel :: Labeled ℓ a → SLIO ℓi (Join ℓi ℓ) a

toLabeled :: SLIO ℓi ℓo a → SLIO ℓi ℓi (Labeled ℓo a)

Function getLabel returns the current label without affecting it.
Function labelOf returns the singleton type corresponding to the
initial label of the computation. Function label creates a labeled
value with label ℓ without modifying the current label ℓi , provided
that ℓi ⊑ ℓ, expressed this time as a static proof obligation

3 Although type classes in Haskell are open, we can prevent malicious users
from introducing bogus instances by employing superclasses and Haskell’s
export mechanism.

Flows ℓi ℓ. Function unlabel , on the other hand, taints the current
label with the value of the labeled expression. Function toLabeled
has a very simple type: just encapsulate the output label in the la-
beled value that we return. The careful reader may observe a small
disconnect between the static and dynamic versions of toLabeled—
this is due to a significant simplification that the static world en-
ables, a point we discuss in detail in Section 8.

Finally, in order to give a valid type to primitives such as
readRemote , it is often convenient to hide the label of a labeled
value with an existential type, so that it no longer appears in the
type. Haskell does not support first-class existential types, so we
encode this with a datatype definition:

data LabeledX a where

LabeledX :: (Labeled (ℓ :: Label) a)→ LabeledX a

3.1 Problems when programming in SLIO

Let us consider how one can program using the SLIO primitives.
Suppose that we have a function report with type

report :: Flows ℓi L⇒ String → SLIO ℓi ℓi ()

that sends a given String to a public server and publishes it on
the Internet. This function has a Flows type class constraint which
specifies that the current label at the time when report is run should
not exceed L, i.e., the public label. For the simple lattice that we
consider in this paper, report can effectively be called only when
ℓi is L. One could imagine more complex situations with a richer
label hierarchy, where more than one label is allowed to report or
when the label associated with the public server is not fixed to L in
advance but is rather dynamically obtained. Such situations would
amplify our arguments in the rest of this section, but the simpler
report above is sufficient for our presentation.

lReport2 lstr1 lstr2 =
do v1 ← unlabel lstr1

v2 ← unlabel lstr2
let result = v1 ++ v2
report result

return result

Figure 5. Static lReport2

Figure 5 considers the se-
cure string concatenation exam-
ple lconcat (from the previous
section), except that we instead
use the statically typed counter-
parts to the LIO operations, and
we incorporate a call to report
in order to publish the result of
the concatenation. This function,
called lReport2 , is a perfectly
well-typed program with type

lReport2 :: Flows (Join (Join ℓi ℓ1) ℓ2) L⇒
Labeled ℓ1 String → Labeled ℓ2 String

→ SLIO ℓi (Join (Join ℓi ℓ1) ℓ2) String

Client scripts can call lReport2 provided that they can sat-
isfy the constraint, which enforces that both strings should be
public, i.e., labeled with L. For instance, assume that we have
lv1 :: Labeled L String , lv2 :: Labeled L String , and code

foo :: SLIO L L String

foo = lReport2 lv1 lv2

All labels are statically resolved, and foo can typecheck as all
constraints can be discharged by the type class and type family
instances.

Consider now the case where some of the labeled values are
dynamically loaded from the network with readRemote from the
previous section, and we furthermore address the label creep issue
by packing the result in a labeled value:



readRemote :: URI → SLIO ℓi ℓi (LabeledX String)

foo = do

LabeledX (lv1 :: Labeled ℓ1 String)← readRemote host1
LabeledX (lv2 :: Labeled ℓ2 String)← readRemote host2
toLabeled (lReport2 lv1 lv2)

foo = do

...

r ← toLabeled (lReport2 lv1 lv2)
-- pack result in existential

return (LabeledX r)

Figure 6. Hiding existential types

The program is ill-
typed for two reasons.
First, the existential la-
bel variables ℓ1 and
ℓ2, arising from un-
packing the existen-
tials that we read with
readRemote , escape
in the return type, i.e.,
Labeled (Join (Join ℓi ℓ1) ℓ2) String . To address this problem
we could pack the return type in an existential (using LabeledX )
to prevent the existential label from escaping. The modification
is shown in Figure 6. However, even if we prevent the escape of
existential variables in the return type of foo, there is another prob-
lem: the existential variables also escape in the constraint, i.e.,
Flows (Join (Join ℓi ℓ1) ℓ2) L, which makes foo ill-typed.

Since we do not statically know the remote labels, one may won-
der if there is a way to rewrite the program to “assume the worst”
(that they are both H ) and that the current label after unlabelling
them is always—conservatively—H . This option is a non-starter:
first, lReport2 would always be returning high-labeled values, but
much more worryingly, we would not be in a position to call report
any more, even in the case where the actually read remote labels
were both L.

A more appealing way to implement foo is to restructure the
code to incorporate a runtime test that inspects the remote labels:

foo = do

LabeledX lv1 ← readRemote host1
LabeledX lv2 ← readRemote host2
case (labelOf lv1, labelOf lv2) of
(L,L)→ do

lv ← toLabeled (lReport2 lv1 lv2) :: SLIO L L String

return (LabeledX lv)
→ error "Both strings should be public!"

The GADT branch on the labels tests for a specific combination
of remote labels, which allows the type checker to refine the corre-
sponding type-level labels and discharge all generated constraints.
We have also introduced annotations in each branch to fix the SLIO
pre- and post-conditions and guide the type inference engine. In
the case of the 2-point lattice, the above restructuring is not terrible
(only one combination of 4 is a non-error), but more complicated
lattices can quickly introduce lots of GADT pattern matches in po-
tentially multiple places inside the user code.

The example illustrates one awkward aspect of the static ap-
proach: every time we have to move dynamic data into a statically
typed piece of code, programs have to be restructured to introduce
runtime tests. While the runtime tests in this situation are unavoid-
able, in this paper we show how to do this without restructuring the
implementation.

4. HLIO: Mixing Static and Dynamic Typing

In HLIO, users can instead take the “natural” way to write foo and
make the program typeable by using our primitive defer (under-

lined below):4

4 We do not yet give type signatures since types slightly differ from the types
of the corresponding primitives in SLIO.

foo host1 host2 = do

LabeledX lv1 ← readRemote host1
LabeledX lv2 ← readRemote host2
lv ← defer (toLabeled (lReport2 lv1 lv2))
return (LabeledX lv)

The role of defer is to defer static constraints to runtime; in this
case, the one which arises from toLabeled (lReport2 lv1 lv2).
This constraint will be ℓi ⊔ ℓ1 ⊔ ℓ2 ⊑ L, where ℓi is the initial
label and ℓ1 and ℓ2 are the labels of the returned labeled values
from the two readRemote calls.

To demonstrate how this works, assume that readRemote re-
turns a high-labeled value from host ”secure.org”, but a low-labeled
value from ”public.org”. The following sequence of calls (using
runHLIO , the HLIO analogue of runSLIO) shows that indeed
our primitive performs the check at runtime:

ghci> runHLIO L (foo "secure.org" "public.org")
*** Exception: IFC violation!
ghci> runHLIO L (foo "public.org" "public.org")
Success
ghci> runHLIO H (foo "public.org" "public.org")
*** Exception: IFC violation!

In the first case, the first labeled value will contain a high label
that taints the current label and results eventually in an IFC excep-
tion. In the second case, we only readRemote from public domains
and hence no exception is thrown. In the final case, although we
read from two public sites, we start from an already high label.

The defer primitive can be used at every point in the assembly
of a computation to selectively defer to runtime the constraints aris-
ing from a subcomputation, at the programmer’s will. For example,
the following variations are all well-typed:

lvL :: Labeled L String -- a statically known public value

bar x = do

LabeledX lv ← readRemote host

s1 ← defer (toLabeled (lReport2 x lv))
s2 ← lReport2 x lvL

return s2

baz x = do

LabeledX lv ← readRemote host

s1 ← defer (toLabeled (lReport2 x lv))
s2 ← defer (lReport2 x lvL)
return s2

The difference between bar and baz lies in the set of constraints
they dynamically check; in bar , we have to statically discharge
the constraints that arise from the computation of s2, but we will
dynamically check the constraints arising from lReport2 x lv
when computing s1. In baz , we will convert the constraints from s2
to be runtime checks. In both cases, we must defer the constraints
that arise from the computation of s1 as the label of lv would
otherwise escape in the returned constraint.

The mechanism of defer has also the benefit of addressing
the incompleteness of type inference engines or type-level lattice
specifications—any time we are faced with a constraint that we
cannot statically discharge, defer will convert it to a runtime check.

4.1 The HLIO API

Having described the functionality we are aiming for, we now
present the HLIO API without yet diving into the internals of its
implementation.

Label expressions Whenever a getLabel operation runs, we must
produce a runtime representation of the current label, i.e., a sin-
gleton. Consider the case where the current label is of the form
Join ℓ1 ℓ2. When ℓ1 and ℓ2 are known statically, we can just apply



the type family and compute the resulting label. However, if ℓ1 and
ℓ2 are existentially quantified, we need a way of computing a single-
ton for the Join by combining the singletons for ℓ1 and ℓ2. There-
fore, it will be convenient to introduce another promoted datatype
that captures unevaluated label expressions as well as a type family
to reduce them to Label types. As we will see in Section 6, this
additional level of indirection allows us to compute singletons for
Join and also to defer constraints involving existentials.

data LExpr a = LVal a | LJoin (LExpr a) (LExpr a)

type family E (ℓ :: LExpr Label) :: Label where

E (LVal x) = x

E (LJoin ℓ1 ℓ2) = Join (E ℓ1) (E ℓ2)

class Flows (E ℓ1) (E ℓ2)⇒
FlowsE (ℓ1 :: LExpr Label) (ℓ2 :: LExpr Label )

instance Flows (E ℓ1) (E ℓ2)⇒ FlowsE ℓ1 ℓ2

data Labeled (ℓ :: LExpr Label) a =
Labeled (SLabel (E ℓ)) a

Data type LExpr Label captures unevaluated label expressions at
the type level, and E reduces them to Label values. The type class
FlowsE is isomorphic to Flows , with the exception that it ranges
over LExpr Label instead of Label . Note that we also redefine the
Labeled data type to include arbitrary labeled expressions. Type
family LJoin encodes ⊔ at the level of types.

HLIO monad GHC introduces a kind Constraint to classify
constraints and allows constraint polymorphism (Orchard and
Schrijvers 2010). This means that ADTs can be parameterized over
constraints. HLIO exploits this feature to provide a monad HLIO
below:

data HLIO (c :: Constraint)
(ℓi :: LExpr Label ) (ℓo :: LExpr Label) a

The HLIO datatype is very similar to SLIO except that it also
records a constraint c ::Constraint (we motivate this design choice
in Section 6). The rest of the HLIO API provides mechanisms to
discharge these constraints statically or dynamically. A computa-
tion HLIO c ℓi ℓo a should be read as a computation that, under
constraint c and from initial label ℓi produces a value a and raises
the current label to ℓo . The types of (>>=) and return show how
constraints are collected:

(>>=) :: HLIO c1 ℓ1 ℓ2 a

→ (a → HLIO c2 ℓ2 ℓ3 b)→ HLIO (c1, c2) ℓ1 ℓ3 b

return :: a → HLIO () ℓi ℓi a

Note that the type of (>>=) creates a tuple of constraints (c1, c2)
by collecting constraints c1 and c2 from the sub-computations. The
type of return collects a trivial constraint ().

IFC functionality HLIO provides the same API as SLIO:

labelOf :: Labeled ℓ a → SLabel (E ℓ)
getLabel :: HLIO () ℓi ℓi (SLabel (E ℓi))
unlabel :: Labeled ℓ a → HLIO () ℓi (LJoin ℓi ℓ) a
label :: SLabel ℓ→ a

→ HLIO (FlowsE ℓi (LVal ℓ))
ℓi ℓi (Labeled (LVal ℓ) a)

toLabeled ::HLIO c ℓi ℓo a

→ HLIO c ℓi ℓi (Labeled ℓo a)

Unlike in SLIO, label just records constraint FlowsE ℓi (LVal ℓ)
in its result type—instead of actually constraining the whole type
of the function. This is the only HLIO primitive that generates a
constraint.

Deferring and simplifying constraints In addition to the core IFC
functionality, HLIO adds the ability to defer collected constraints,
or explicitly simplify them in one go:

defer ::Deferrable c ⇒ HLIO c ℓi ℓo a → HLIO () ℓi ℓo a

simplify :: c ⇒ HLIO c ℓi ℓo a → HLIO () ℓi ℓo a

The function defer accepts an HLIO computation that would
be typeable under constraint c, and returns a computation that is ty-
peable under no constraint! Indeed, the purpose of this combinator
is to discharge the constraint by a runtime test. The puzzled reader
may wonder how it is even possible to have a sound implementa-
tion of defer . The magic is in the Deferrable type class, which we
describe in Section 5.

Dually to deferring constraints to runtime, we may require them
to be statically discharged—function simplify allows us to do
that. Like defer , simplify accepts an HLIO computation that
is typeable under constraint c, and returns a computation that is
typeable under the empty constraint provided that we can discharge
c statically (hence the quantification c ⇒ ...).

Running HLIO computations Finally, the function that runs
HLIO computations is analogous to runSLIO , except that we

require the collected constraints to be provable.5

runHLIO :: c ⇒ SLabel ℓ→ HLIO c (LVal ℓ) ℓo a → IO a

The rest of the paper In the rest of the paper, we describe the
Deferrable class which enables us to implement the defer combi-
nator (Section 5), and we present the design decisions and the im-
plementation of the HLIO API (Section 6). We formalize the core
features of HLIO as a calculus and prove non-interference by elabo-
ration to (ordinary) LIO (Section 7). We discuss other applications
of Deferrable beyond IFC (Section 8).

5. Deferrable Constraints

To understand the implementation of HLIO, we first dive into the
internals of Deferrable . For a given constraint c, an instance of
Deferrable c defines a single function deferC :

class Deferrable (c :: Constraint) where

deferC :: forall a.Proxy c → (c ⇒ a)→ a

The Proxy c argument is a commonly used technique to get
around the lack of explicit type applications in the Haskell source
language—instead, we provide a never-evaluated Proxy c argu-
ment that we can provide an annotation for, e.g., deferC (⊥ ::
Proxy (C Int)) m .

The second argument, c ⇒ a , represents a computation that can
only be executed if we can statically satisfy the constraint c. The
return type of defer is plainly the result of that computation.

It should (rightly so) seem impossible to implement an instance
of Deferrable for every possible constraint c. However, we can
provide instances for specific constraints, provided we have enough
runtime information around. In what follows, we show how to
provide an instance for FlowsE . We start by creating a type-class
capturing a singleton label:

class ToSLabel (ℓ :: LExpr Label) where

slabel :: LProxy ℓ→ SLabel (E ℓ)

instance ToSLabel (LVal H ) where slabel = H

instance ToSLabel (LVal L) where slabel = L

instance (ToSLabel ℓ1,ToSLabel ℓ2)

5 Alternatively, we could equally require that c be simply Deferrable , or
that c be () and make use of the appropriate defer or simplify combinators
when constructing an HLIO computation.



⇒ ToSLabel (LJoin ℓ1 ℓ2) where

slabel = case (slabel p1, slabel p2) of
(H ,H )→ H

(H ,L)→ H

(L,L)→ L

(L,H )→ H

where p1 = ⊥ :: LProxy ℓ1; p2 = ⊥ :: LProxy ℓ2

Note that we have given instances for the full range of label expres-
sions LExpr Label .

If we have instances for ToSLabel ℓ1 and ToSLabel ℓ2 around,
then we effectively have runtime witnesses for the corresponding
singleton labels, and, in that case, it is very simple to provide an

instance for Deferrable (FlowsE ℓ1 ℓ2)
6:

instance (ToSLabel ℓ1,ToSLabel ℓ2)⇒
Deferrable (FlowsE ℓ1 ℓ2) where

deferC p m = case (slabel p1, slabel p2) of
(L,L) → m

(L,H ) → m

(H ,H )→ m

(H ,L) → error "IFC violation!"

where p1 = ⊥ :: LProxy ℓ1; p2 = ⊥ :: LProxy ℓ2

The implementation of deferC pattern matches against the run-
time representations of the labels ℓ1 and ℓ2. In each correspond-
ing case, the GADT pattern match (e.g. (L,L) in the first case)
allows the type system to refine ℓ1 and ℓ2 (e.g. ℓ1 := LVal L and
ℓ2 :=LVal L in the first case). Thus, every constraint FlowsE ℓ1 ℓ2
required by m can be refined (e.g. to FlowsE (LVal L) (LVal L)
in the first case) and can be readily discharged by top-level in-
stances for FlowsE . It is still possible to forget to include some
of the cases, but this will only make the test more conservative.

Note that in the fourth case above (for which no instance exists!),
we have no way of calling m , i.e., deferC would be ill-typed if we
tried. This case corresponds to a genuine runtime error, and we
return an error indicating a violation of the IFC policy.

Constraints will be collected together in tuples through uses of
(>>=) and hence we also provide an instance for pairs of constraints,
whose definition we omit, i.e., Deferrable (c1, c2).

Finally, we also revisit our definition of LabeledX to include a
dictionary for ToSLabel to produce a singleton for the existentially-
quantified label.

data LabeledX a where

LabeledX :: ToSLabel ℓ⇒ Labeled (ℓ :: Label ) a
→ LabeledX a

This is necessary for applying defer to computations involving
labeled expressions that have been unpacked from a LabeledX .

The Deferrable class is an extremely powerful abstraction for
transforming static errors to dynamic checks, and we later show
that even type checker equalities generated by the compiler infer-
ence mechanism can be defered (Section 8). We proceed to show
how Deferrable can be used to implement the defer primitive.

6. HLIO Design and Implementation

In Haskell, we embed HLIO as a GADT where the constructors cor-
respond to the primitives described in Section 4. More specifically,
data type HLIO has constructors Return , Bind , Unlabel , Label ,
ToLabeled , GetLabel , Defer , and Simplify, which represent un-
interpreted commands return , bind , unlabel , label , toLabeled ,
getLabel , defer , and simplify , respectively. The types for these
constructors match the types given for the commands they repre-

6 Readers can ignore the proxy arguments p, p1 and p2.

sent. In order to give semantics to HLIO terms, we provide an
interpretation function go with the type

go :: forall c ℓi ℓo a.HLIO c ℓi ℓo a

→ (c ⇒ SLabel (E ℓi)→ IO (a,SLabel (E ℓo)))

The interpretation of HLIO is in an IO monad combined with
a state to represent the current label (in the style of LIO). Although
it might be tempting to get rid of the runtime representation of the
current label, this is not possible since code is allowed to inspect it
at any time (as a runtime value) using getLabel .

go (Return x) ℓi = return (x , ℓi)
go (Bind m f ) ℓi = do (a, ℓ′i)← go m ℓi ; go (f a) ℓ′i

go (GetLabel ℓi) = return (ℓi , ℓi)
go (Unlabel (Labeled ℓ v)) ℓi = return (v , ℓi ‘ljoin‘ ℓ)
go (Label ℓ a) ℓi = return (Labeled ℓ a, ℓi)

go (ToLabeled (m :: HLIO c ℓi ℓ
′
o a ′)) ℓi = do

(x , ℓo)← go m ℓi ; return (Labeled ℓo x , ℓi)

go (Defer slio) ℓi = deferC (setProxy slio) (go slio ℓi)
where setProxy ::HLIO c ℓi ℓo a → Proxy c

setProxy = error "Proxy!"

go (Simplify m) ℓi = go m ℓi

The interesting cases are the definitions for Unlabel , Defer , and
Simplify. For Unlabel , go performs an ordinary term-level ljoin:

ljoin :: SLabel ℓ1 → SLabel ℓ2 → SLabel (Join ℓ1 ℓ2)

but we never get to inspect the return label unless we explicitly
perform a getLabel and subsequently strictly use the label, or
unless we perform some form of runtime check. For Defer , go
applies the technique from Section 5 with the appropriate proxy.
Simplify executes m , but exposing its constraints to GHC in order
to statically discharge them.

6.1 Design decisions

We briefly motivate some of the design choices made in HLIO.

(Singleton classes) We have seen in the previous section that
the motivation for a type-class ToSLabel ℓ containing a single-
ton SLabel (E ℓ) comes from the need for deferring FlowsE con-
straints.

(LExpr Label and Deferrable) When describing SLIO, we used
the Label datatype and the Flows type class. However, HLIO
shifted to datatype LExpr Label and the FlowE type class to
be able to defer constraints. To illustrate the reason behind that,
consider an alternative Deferrable instance, without all the LExpr
complications, and where ToSLabel was indexed by Label :

instance (ToSLabel (ℓ1 :: Label),ToSLabel (ℓ2 :: Label))⇒
Deferrable (Flows ℓ1 ℓ2) where

With this definition, we may find ourselves in need of deferring
constraints of the form Flows (Join ℓ1 L) L, where Join is the ⊔-
operation type family implementation directly on Label s. But type
class axioms do not match on type families! (They only match on
rigid type constructors.) Consequently, it is impossible to discharge
that constraint either statically or dynamically. In contrast, by ex-
posing a rigid constructor LJoin , we were able to give instances
for the join of two labels; with our approach, it is true that the con-
straint ToSLabel (LJoin ℓ1 L) is automatically discharged from
ToSLabel ℓ1.

(Embedding constraints in HLIO) The introduction of constraint
c as part of the HLIO definition achieves a purely syntactic ma-
nipulation of constraints, and excludes any possible simplification
by GHC—except when the programmer explicitly requires so with



simplify. This aspect is beneficial for two reasons: Firstly, this al-
lows us to prevent eager simplification of certain constraints into
a form that cannot be deferred or even discharged. For instance,
imagine that a constraint FlowsE ℓ1 ℓ2 floats outside of the
HLIO type. In this case, GHC tries to discharge it by proving
Flows (E ℓ1) (E ℓ2). However, as we discussed before, type
class axioms do not match on type families. Moreover, even if
that were possible, deferring such a constraint would require in-
stances of ToSLabel (LVal (E ℓ1)) and ToSLabel (LVal (E ℓ2)),
which cannot be constructed from instances of ToSLabel ℓ1 or
ToSLabel ℓ2. Secondly, when evaluating a defer expression, the
constraint c in HLIO makes it possible for the go function to au-
tomatically supply a proxy to instantiate c (by unification) for a
particular constraint in the type of deferC , thus allowing the type
checker to select the right instance of Deferrable without any help
from the programmer. If we were not collecting the constraint c in
HLIO , the programmer would have to supply these proxies explic-
itly, making HLIO much more cumbersome to use.

In summary, we have chosen to keep the constraints in their
unsimplified form as much as possible, and give the programmer
the freedom to decide whether they are to be checked statically or
dynamically via explicit annotations (simplify and defer ).

7. Formal Semantics and Non-interference

In this section, we formalize HLIO and provide security guarantees
for our approach by interpreting HLIO in LIO and showing an
equivalence in the security checks performed by both systems.

Figure 7 presents a type system for HLIO. For the sake of
brevity, the figure only shows the security-relevant rules; the re-
maining rules are standard and can be found in the extended ver-
sion of this paper. The terms of HLIO are the same as in LIO, with
the addition of the defer construct. A lattice expression ℓ is either
a primitive label Label , a join operation (⊔), or a meet operation
(⊓). A constraint c is either the empty constraint (), a pair of two
constraints ((c, c)), or a flow constraint among label expressions
(ℓ ⊑ ℓ). The type HLIO is a Hoare state monad in the style of
statically-typed LIO, as presented in Section 3, except that it also
includes a constraint c. A computation with type HLIO c ℓi ℓo τ
is subject to constraints c, and takes the current label from ℓi to ℓo ,
and produces a value of type τ . The type Labeled ℓ τ represents
expressions with label ℓ and type τ , and the type Label ℓ is a single-
ton type for label ℓ, i.e., a type with a single total inhabitant, which
can be identified with ℓ.

The typing rule for return simply states that the current label
is not changed and no constraints need to be checked. Rule (BIND)
looks like the usual typing rule for (>>=), but it additionally com-
bines the constraints generated by m and f (c and c′) into one and
also expresses that the final label of computation m should match
the initial label of the computation produced by f . Rule (LABEL)
generates a security check as a constraint (ℓi ⊑ ℓ), and also ex-
presses that the current label does not change. Note that in this rule
we also check the connection between term-level s and type-level ℓ,
by using the singleton type. Rule (UNLABEL) reflects the fact that
unlabeling an expression labeled ℓ raises the current label ℓi to the
join ℓi ⊔ ℓ. Rule (TOLABELED) checks that the subcomputation
m has a valid HLIO type, and expresses that the toLabeled com-
putation will not change the current label (or rather, that it will be
restored after m finishes), and also that the resulting value of type
a is protected by label ℓo , i.e., the maximum (and final) label at-
tained by m . Rule (DEFER) checks that the subcomputation m has
a valid type and hides the constraints produced by m , so that the
expression defer m is subject to no static checks.

Values v ::= True | False | () | λx .t | Label
| LIOTCB t | LabeledTCB ℓ t

Terms t ::= v | x | t t | fix t | if t then t else t

| t ⊗ t | return t | t >>= t | getLabel
| label t t | unlabel t | labelOf t

| toLabeled t t | defer t

LOps ⊗ ::= ⊔ | ⊓ |⊑
Lattice ℓ ::= Label | ℓ ⊔ ℓ | ℓ ⊓ ℓ

Constraints c ::= () | (c, c) | ℓ ⊑ ℓ

Types τ ::= Bool | () | τ → τ | HLIO c ℓi ℓo τ

| Labeled ℓ τ | Label ℓ

RETURN

Γ ⊢ x : τ

Γ ⊢ return x : HLIO () ℓi ℓi τ

BIND

Γ ⊢ m :HLIO c ℓi ℓ a Γ ⊢ f : a → HLIO c′ ℓ ℓo b

Γ ⊢ m >>= f :HLIO (c, c′) ℓi ℓo b

LABEL

Γ ⊢ t : a Γ ⊢ s : Label ℓ

Γ ⊢ label s t : HLIO (ℓi ⊑ ℓ) ℓi ℓi (Labeled ℓ a)

UNLABEL

Γ ⊢ v : Labeled ℓ a

Γ ⊢ unlabel v :HLIO () ℓi (ℓi ⊔ ℓ) a

TOLABELED

Γ ⊢ m : HLIO c ℓi ℓo a

Γ ⊢ toLabeled m : HLIO c ℓi ℓi (Labeled ℓo a)

DEFER

Γ ⊢ m : HLIO c ℓi ℓo a

Γ ⊢ defer m : HLIO () ℓi ℓo a

Figure 7. Type system for HLIO.

7.1 Semantics for LIO

Figure 8 shows the semantics of LIO, which we will use to interpret
HLIO. The semantics closely follows previous work on LIO (Stefan
et al. 2011b), given as a small-step operational semantics based
on a transition relation −→ between configurations of the form
〈ℓcur | t〉, where ℓcur is the current label and t is the term being
evaluated. As before, we only show the rules for computations
with security-relevant effects. The full presentation also includes
a relation for pure computation ( ), which is used in the rule
for labelOf , but we elide the details since they are not relevant
for our purposes. The semantics uses Felleisen-style evaluation
contexts to specify evaluation order, where Ep stands for contexts
for pure computations and E stands for contexts for effectful ones.
As usual, we define −→∗ to be the reflexive and transitive closure
of−→. Additionally, our transitions are labeled by the information-
flow constraints that are being checked at runtime, as can be seen

in rule (LABEL). We write A
c
−→

∗
B if A −→∗ B while

performing the set of security checks c. For technical reasons, we
also include a nonstandard primitive eval which is used to force
pure computations. Despite not being a part of LIO, we remark
that it acts on pure values and its evaluation involves no security-
relevant effects, so it is easy to prove that the calculus is still
sound after adding it. Essentially, LIO already includes a way to
force evaluation for booleans (if statements), so eval is merely a
generalization of this construct.



Ep ::= Ep t | fix Ep | if Ep then t else t | Ep ⊗ t | v ⊗ Ep

| label Ep t | unlabel Ep | labelOf Ep | toLabeled Ep t

E ::= [ ] | Ep | E >>= t

GETLABEL

〈ℓcur | E [getLabel ]〉 −→ 〈ℓcur | E [return ℓcur ]〉

TOLABELED

ℓcur ⊑ ℓ 〈ℓcur | t〉
c

−→
∗
〈ℓ′cur | LIO

TCB t ′〉 ℓ′cur ⊑ ℓ

〈ℓcur | E [toLabeled ℓ t ]〉
c

−→ 〈ℓcur | E [ label ℓ t ′ ]〉

LABEL

ℓcur ⊑ ℓ

〈ℓcur | E [ label ℓ t ]〉
ℓcur⊑ℓ
−−−−→ 〈ℓcur | E [return (LabeledTCB ℓ t)]〉

UNLABEL

ℓ′cur = ℓcur ⊔ ℓ

〈ℓcur | E [unlabel (LabeledTCB ℓ t)]〉 −→ 〈ℓ′cur | E [return t ]〉

EVAL

t  ∗ v

Ep [eval t ]  Ep [v ]

LABELOF

Ep [ labelOf (LabeledTCB ℓ t)] Ep [ℓ ]

Figure 8. Evaluation contexts and reduction rules.

interp (label t t ′) = LabeledTCB (eval t) (interp t ′)
interp (unlabel t) = unlabel (interp t)
interp (LabeledTCB t : Labeled ℓ τ) = LabeledTCB ℓ (interp t)
interp (defer (m :HLIO c ℓi ℓo τ)) = guards c >> interp m

interp (toLabeled (m : HLIO c ℓi ℓo τ)) =
toLabeled ℓo (interp m)

interp (m >>= f ) = interp m >>= interp.f

· · ·

toLIO (label t t ′) = label t (toLIO t ′)
toLIO (unlabel t) = unlabel (toLIO t)
toLIO (LabeledTCB t : Labeled ℓ a) = LabeledTCB ℓ (toLIO t)
toLIO (defer m) = toLIO m

toLIO (toLabeled (m : HLIO c ℓi ℓo a)) =
toLabeled ℓo (toLIO m)

toLIO (m >>= f ) = toLIO m >>= toLIO .f

· · ·

Figure 9. The functions interp and toLIO . The missing equations
just behave homomorphically.

7.2 Semantics for HLIO

Figure 9 introduces the functions interp and toLIO , which we
use to interpret HLIO and relate this interpretation with the corre-
sponding standard LIO semantics. These two functions are defined
as term-to-term transformations. The returned term, however, only
utilizes LIO primitives. (Function interp closely follows the defi-
nition of function go described in Section 6.)

The function interp provides an interpretation of HLIO in dy-
namic LIO (Stefan et al. 2012b). Given a well-typed HLIO com-
putation m , interp m runs m without performing any security
checks, except for those in defer . This fact can be seen in the defi-
nition for label—the case where security side-effects are triggered.
This case simply synthesizes a labeled term (LabeledTCB ℓ t), thus

skipping any security check. The unlabel operation performs no
security checks, so its interpretation is exactly the same as in LIO.
The interpretation of labeled terms are simply cast into dynamic
labeled terms in LIO , where the dynamic label is determined by
static information (i.e., LabeledTCB t :Labeled ℓ a). In the interpre-
tation of defer , we use the guards command, which takes a set of
constraints and checks all of them at runtime, aborting the program
if any of them fails. These constraints are checked in one go, before
running the subcomputation itself. The static version of toLabeled
is translated into its dynamic counterpart, where the final current
label (after executing m) is predicted to be ℓo . The interpretation
of (>>=) simply applies interp to its arguments.

Different from interp , the function toLIO directly translates
an HLIO computation into a dynamic LIO computation where all
the security checks occur dynamically. The translation for labeled
terms, toLabeled , and (>>=) are defined similarly as in interp . La-
bel and unlabel, however, simply reformulate the command in LIO ,
where the corresponding security side-effects might be triggered.

7.3 Non-interference

We define the simulation relation ∼, which expresses that two
terminating programs perform the same information flow checks
and compute the same values.

DEFINITION 1. (Simulation between LIO terms) Let A and B be

LIO configurations, then A ∼ B iff A
c
−→

∗
X and B

c
−→

∗
X ,

where X is A’s weak head normal form. Note that we only con-
sider terminating programs due to the fact that LIO only provides
security guarantees for terminating runs.

We define a big-step evaluation relation ⇓ for HLIO terms.

DEFINITION 2. (Big-step semantics for HLIO) Given an HLIO
term, (t : HLIO c ℓi ℓo τ ) ⇓ v if and only if 〈ℓi | interp t〉
c
′

→
∗

〈ℓo | toLIO v〉.

The definition leverages the LIO semantics. It applies interp to the
term being reduced as well as toLIO to the result. Observe that
toLIO is needed for cases where v still contains HLIO terms, e.g.,
when v is composed of nested labeled terms.

The next lemma (see details in the extended version of the paper
(Buiras et al. 2015) ) introduces a relationship between the security
checks done by HLIO and LIO.

LEMMA 1 (Simulation between HLIO and LIO terms).
Given that (t : HLIO c ℓi ℓo τ ) ⇓ v , then 〈ℓi | guards c >>
interp t〉 ∼ 〈ℓi | toLIO t〉.

The lemma states that if we take the statically-determined con-
straints c for a well-typed term t into account, we can prove that
the programs guards c >> interp t and toLIO t are in simulation
with respect to their security checks and final values. The former
performs all statically-determined security checks in the beginning,
and then runs the program with the deferred checks. The latter is ob-
tained by viewing the original program as an LIO program, where
all defer operations are removed.

The semantic correspondence from Lemma 1 guarantees that
if an HLIO program is well-typed and terminates successfully,
then the equivalent LIO program would also terminate successfully.
Conversely, if the LIO program fails with a security error, the HLIO
program will either not have a type or fail during a defer computa-
tion. Since the HLIO and LIO enforcement mechanisms are equiv-
alent in this sense, and LIO enforces noninterference (Stefan et al.
2011b), we can show that HLIO enforces the same property.

For our security guarantees, we consider an attacker at sensi-
tivity level l, who can only observe values at a security level at
most l. LIO defines two terms t1 and t2 to be l-equivalent (written



t1 ≈l t2) if the attacker is unable to distinguish between them, e.g.
LabeledTCB L 3 ≈l LabeledTCB L 3 and LabeledTCB H 1 ≈l

LabeledTCB H 5, but LabeledTCB L 2 6≈l Labeled
TCB L 1—LIO

also extends this notion to configurations. We leverage LIO defini-
tions to express our non-interference theorem—after all, HLIO gets
interpreted in LIO!

Noninterference expresses the notion that a program cannot leak
secrets. Intuitively, a program is noninterfering if, considering two
independent runs with l-equivalent inputs, their final values are also
l-equivalent. In other words, attackers cannot distinguish the values
of secret inputs by observing the outputs.

THEOREM 1 (Termination-insensitive noninterference).
Given HLIO terms t1 and t2 with no constructors ·TCB such that
constraints c1 and c2 hold, (t1 : HLIO c1 ℓ1 ℓ2 τ ) ⇓ v1, (t2 :
HLIO c2 ℓi ℓo τ ′) ⇓ v2, and 〈ℓi | toLIO t1〉 ≈l 〈ℓi | toLIO t2〉,
then it holds that 〈ℓo | toLIO v1〉 ≈l 〈ℓo | toLIO v2〉.

PROOF SKETCH 1. The proof uses Lemma 1 to relate the reduc-
tions of interp t1 and interp t2 with toLIO t1 and toLIO t2,
respectively. Once that is done, the result follows by applying the
LIO non-interference theorem in (Stefan et al. 2012b). This theo-
rem requires that t1 and t2 do not include constructors of the form
·TCB. Consequently, observe that it is not possible to directly con-
sider l-equivalence between interpreted terms, i.e., interp t1 and
interp t2—they introduce constructors LabeledTCB to avoid secu-
rity checks. The proof is given in the extended version of the paper
(Buiras et al. 2015).

The theorem indicates that l-equivalent (fully) dynamic interpreta-
tions of HLIO terms (i.e., 〈ℓi | toLIO t1〉 ≈l 〈ℓi | toLIO t2〉),
where the static checks hold, produce l-equivalent results (in LIO)
(i.e., 〈ℓo | toLIO v1〉 ≈l 〈ℓo | toLIO v2〉). Observe that if
any HLIO terms leaked secrets, l-equivalence involving v1 and v2
would not hold.

8. Discussion

This section explains some design choices, while exploring others.

The toLabeled function The HLIO type for toLabeled deserves
some attention. From Section 2, we know that toLabeled ℓ m in
LIO performs two security checks: ℓcur ⊑ ℓ at the begining of
toLabeled , and ℓ′cur ⊑ ℓ where ℓ′cur is the current label obtained by
evaluating m . A directly corresponding static version of toLabeled
(and its dynamic checks) might be:

toLabeled :: Label ℓ→ HLIO c ℓi ℓo a

→ HLIO (c,FlowsE ℓi ℓ,FlowsE ℓo ℓ) ℓi ℓi (Labeled ℓ a)

Recall that, for security reasons, the role of the first argument (of
type Label ℓ) is to statically predict an upper bound of the current
label obtained by running m . The constraints in the return type of
toLabeled express this fact. In HLIO, however, that prediction is
already given! Observe that type m :: HLIO c ℓi ℓo a says “after
running m , the final current label is ℓo .” We can use ℓo as the upper
bound, i.e., ℓ ≡ ℓo , and remove the static check FlowsE ℓo ℓ.
Moreover, we know that ℓi ⊑ ℓo by construction, which allows
the removal of FlowE ℓi ℓ. By taking all these facts together, we
can dismiss all the extra constraints.

toLabeled ::HLIO c ℓi ℓo a → HLIO c ℓi ℓi (Labeled ℓo) a

In Section 7, we have formally proved that this primitive is secure
by establishing a simple relationship with its counterpart in LIO.

Conditionals The monad HLIO is embedded in Haskell as a
GADT, so it is possible to use Haskell’s if statements to express
conditional branching. However, the Haskell type system requires

that the types of both branches be the same. In particular, if the
branches are HLIO computations, their types must also completely
agree, including constraints and initial and final labels. Unfortu-
nately, this means that it is not possible to have if statements where
one branch produces a constraint and the other one does not or,
more generally, where the branches produce different sets of con-
straints. For example, the following expression, where x :: Int , is
ill-typed:

if x > 0 then (label H x >> return x) else return (x + 1)

The reason for the type error is that one branch has type
HLIO (Flows ℓi H ) ℓi ℓi Int , while the other one has type
HLIO () ℓi ℓi Int . When it comes to disparities in the constraints,
it is possible to work around this restriction by means of defer
operations. The programmer can use defer to check one or both
of the branches dynamically, which causes the constraints in the
HLIO type to be (), thus keeping the Haskell type checker happy.
However, if the current label is not updated in exactly the same way
in both branches, the if statement will also be ill-typed. Note that
this cannot be solved with defer .

An alternative solution that addresses the problem with both
constraints and the current label involves adding another primitive
for if statements, i.e., a constructor If for the HLIO GADT. The
type of this constructor would accurately express the connection
between constraints and current labels in both branches, as follows:

If :: Bool → HLIO c1 ℓi ℓo a → HLIO c2 ℓi ℓ
′
o a

→ HLIO (c1, c2) ℓi (LJoin ℓo ℓ′o) a

Essentially, the primitive would over-approximate the con-
straints and the final label, as can be expected from a static analysis.
This solution would not only introduce notational overhead but
also complicate the formal treatment of HLIO significantly, as we
would no longer have a one-to-one correspondence between static
and dynamic checks. Instead, we could prove that the dynamic
checks are a subset of the statically-determined constraints. In or-
der to simplify our exposition, we chose to avoid this solution, but
we believe it would be a reasonably straightforward extension.

Deferring constraints beyond non-interference The Deferrable
type class enables programmers to give instances for deferring the
check for a constraint to runtime. In this section, we show how
to push this idea to the extreme, by deferring the check for type
equalities that are generated by GHC’s type inference. We iterate
that the code in this section (and everywhere in this paper) requires
no modifications to GHC.

We wish to defer a type equality between two types ta and tb ,
which in GHC type system would be expressed as ta∼tb of kind
Constraint . Of course, in order to perform such a test at runtime,
we need to have runtime type information around about the shape
of types ta and tb. GHC provides the Typeable type class that
captures runtime type representations. This enables the following
instance definition:

instance (Typeable a,Typeable b)⇒
Deferrable (a∼b) where

defer p m = case eqT ::Maybe (a :∼: b) of
Nothing → error "type error!"

Just Refl → m

Function eqT is a standard library function, providing a runtime
witness of the equality of two types that are instances of Typeable :

eqT :: (Typeable b,Typeable a)⇒ Maybe (a :∼: b)

and a :∼: b is a GADT expressing with its only constructor Refl
the fact that a and b are in fact equal:

data (a :∼: b) where Refl :: (a∼b)⇒ (a :∼: b)



If programmers write a program that contains a type error:

foo :: forall a.a → a → a

foo x y = if x then False else y

GHC will report: Couldn’t match expected type ‘Bool’
with actual type ‘a’. As we may, in fact, apply foo to two
boolean values at runtime, programmers may want to make this
program typeable by deferring the constraint:

foo :: forall a.Typeable a ⇒ a → a → a

foo x y = defer p (if x then False else y)
where p :: Proxy (a∼Bool) = ⊥

In this case, foo True False returns False , while foo 3 4 produces
*** Exception: type error. Note that this behaviour differs
from related work (Vytiniotis et al. 2012), which defers unsatis-
fiable constraints as errors to runtime. Instead, we do genuinely
defer the check at the (unavoidable) cost of having the type repre-
sentation around.

9. Related work

Hybrid IFC There is considerable literature on static analyses aid-
ing IFC execution monitors for different purposes. To boost permis-
siveness, Le Guernic et al. provide monitors which statically ana-
lyze non-taken branches of secret conditionals (Le Guernic et al.
2007; Le Guernic 2007). Similarly, Shroff et al. design a monitor
which leverages variable dependencies (provided by a type sys-
tem) when programs branch on secrets (Shroff et al. 2007). Be-
sides permissiveness, hybrid analyses are used to avoid leaks in
dynamic flow-sensitive IFC monitors, where variables change their
security levels at runtime based on what data they store (Russo
and Sabelfeld 2010). Moore and Chong utilizes static analysis to
avoid tracking variables which do not impose security violations,
thus improving performance on dynamic monitors (Moore and
Chong 2011). Jif, an IFC-aware compiler for Java programs, sup-
ports dynamic labels to classify data based on runtime observations
(Zheng and Myers 2007). Similar to our work, operations on labels
are modeled at the level of types. In the dynamic part, however,
they only allow for runtime checks based on the ⊑ relationship.
As in this work, there is some literature which connects dynamic
and static analysis at the programming-language level. Disney and
Flanagan describe an IFC type-system for a pure λ-calculus which
defers cast checks to runtime when they cannot be determined stati-
cally (Disney and Flanagan 2011). Luminous and Thiemann extend
that work to consider references (Fennell and Thiemann 2013).

Security libraries Li and Zdancewic’s seminal work (Li and
Zdancewic 2006) shows how arrows (Hughes 2000) can provide
IFC without runtime checks as a library in Haskell. Tsai et al. (Tsai
et al. 2007) extend Li and Zdancewic’s work to support concur-
rency and data with multiple security labels. Rather than using
arrows, Russo et al. (Russo et al. 2008) shows that monads are ca-
pable of providing a library which statically enforces IFC. Devriese
and Piessens provide a monad transformer to extend imperative-
like APIs with support for IFC. Their technique is applied to dy-
namic, static, and hybrid IFC techniques. Devriese and Piessens’
work requires a deep embedding of the target language in order
to perform static analysis. In contrast, our approach leverages the
type-system features found in Haskell. Jaskelioff and Russo im-
plements a library which dynamically enforces IFC using secure
multi-execution (SME) (Jaskelioff and Russo 2011)—a technique
that runs programs multiple times (once per security level) and
varies the semantics of inputs and outputs to protect confidentiality.
The series of work on LIO can be referred to as the state-of-the-art
in dynamic IFC in Haskell (Stefan et al. 2011b, 2012b,a; Buiras
et al. 2013; Buiras and Russo 2013; Buiras et al. 2014).

Programming languages Combining dynamic and static analysis
is not exclusive to IFC research. It has been extensively studied by
the programming languages community. We briefly mention some
highlights and their relation to this work. Flanagan (Flanagan 2006)
develops the concept of hybrid type checking for type systems capa-
ble of delaying subtyping checks until runtime. Siek and Taha (Siek
and Taha 2006) coined the term gradual typing, which applies when
programmers can control the combination of static and dynamic
approaches at the programming language level—simultaneously,
Hochstadt and Felleisen (Hochstadt and Felleisen 2006) introduce
similar ideas. Due to the defer primitive, HLIO can be considered
as a simple gradual typing system. Wadler and Findler (Wadler
and Findler 2009) presents the idea of blame to explain failure
of dynamic type casts (specially for languages with higher-order
functions). HLIO is a system which only produces positive blame.
Recently, the idea of gradual typing has gained popularity among
several programming languages. Typed Scheme (Hochstadt and
Felleisen 2006) and Racket (Takikawa et al. 2012) allow Scheme
programmers to decorate their code with type annotations. Retic-
ulated Python (Vitousek et al. 2014) implements gradual typing,
where a type checker is provided in combination with a code-to-
code transformation into Python 3. JavaScript has been also a re-
cent target of this kind of systems (Swamy et al. 2014; Rastogi et al.
2015). Different from these approaches, HLIO does not provide a
fully-fledged gradual typing system. On the other hand, it avoids
any compiler modification by leveraging Haskell’s powerful type
system.

10. Conclusions and Future Work

We have presented HLIO, a new hybrid IFC enforcement in Haskell
that allows programmers to defer static constraints to runtime. This
feature is particularly useful, for instance, in production systems—
where it is often the case that security labels are not available (or
even known) at compile time. Different from other programming
languages, GHC’s powerful type-system and features allowed us
to build HLIO as a simple library, where no runtime or compiler
modifications were needed. On formal aspects, we showed that
the library satisfies termination-insensitive non-interference for an
arbitrary security lattice.

As part of developing HLIO, we have identified an indepen-
dently useful technique for deferring other forms of static con-
straints, including ordinary type equalities. In future work, we aim
to explore the use of these techniques in languages with similarly
expressive type systems, such as dependently typed languages. In
addition, we plan to further explore the design and application
space of these techniques, and explore their usability in embedded
domain-specific languages and code generators.
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