
Flexible Dynamic Information Flow Control in Haskell

Extended Version

Deian Stefan1 Alejandro Russo2 John C. Mitchell1 David Mazières1

(1) Stanford University, Stanford, CA, USA
(2) Chalmers University of Technology, Gothenburg, Sweden

{deian,mitchell}@cs.stanford.edu russo@chalmers.se

Abstract

We describe a new, dynamic, floating-label approach to language-
based information flow control, and present an implementation in
Haskell. A labeled IO monad, LIO, keeps track of a current label
and permits restricted access to IO functionality, while ensuring
that the current label exceeds the labels of all data observed and
restricts what can be modified. Unlike other language-based work,
LIO also bounds the current label with a current clearance that pro-
vides a form of discretionary access control. In addition, programs
may encapsulate and pass around the results of computations with
different labels. We give precise semantics and prove confidential-
ity and integrity properties of the system.

Categories and Subject Descriptors D.1.1 [Programming Tech-
niques]: Applicative (Functional) Programming; D.3.3 [Program-
ming Languages]: Language Constructs and Features—Modules,
packages

General Terms Security, Languages, Design

Keywords Information flow control, Monad, Library

1. Introduction

Complex software systems are often composed of modules with
different provenance, trustworthiness, and functional requirements.
A central security design principle is the principle of least privilege,
which says that each component should be given only the privileges
it needs for its intended purpose. In particular, it is important to dif-
ferentially regulate access to sensitive data in each section of code.
This minimizes the trusted computing base for each overall func-
tion of the system and limits the downside risk if any component is
either maliciously designed or compromised.

Information flow control (IFC) tracks the flow of sensitive data
through a system and prohibits code from operating on data in vio-
lation of security policy. Significant research, development, and ex-
perimental effort has been devoted to static information flow mech-
anisms. Static analysis has a number of benefits, including reduced
run-time overhead, fewer run-time failures, and robustness against
implicit flows [10]. However, static analysis does not work well in
environments where new classes of users and new kinds of data
are encountered at run-time. In order to address the needs of such
systems, we describe a new, dynamic, floating-label approach to

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Haskell’11, September 22, 2011, Tokyo, Japan.
Copyright c© 2011 ACM 978-1-4503-0860-1/11/09. . . $10.00

language-based information flow control and present an implemen-
tation in Haskell.

Our approach uses a Labeled type constructor to protect values
by associating them with labels. However, the labels themselves
are typed values manipulated at run-time, and can thus be created
dynamically based on other data such as a username. Conceptually,
at each point in the computation, the evaluation context has a
current label. We use a labeled IO monad, LIO, to keep track of
the current label and permit restricted access to IO functionality
(such as a labeled file system), while ensuring that the current
label accurately represents an upper bound the labels of all data
observed or modified. Unlike other language-based work, LIO also
bounds the current label with a current clearance. The clearance of
a region of code may be set in advance to impose an upper bound
on the floating current label within that region. This restricts data
access, limits the amount of code that could manipulate sensitive
data, and reduces opportunities to exploit covert channels. Finally,
we introduce an operator, toLabeled, that allows the result of a
computation that would have raised the current label instead to be
encapsulated within the Labeled type.

The main features of our system can be understood using the ex-
ample of an online conference review system, called λChair. In this
system, which we describe more fully later in the paper, authenti-
cated users can read any paper and can normally read any review.
This reflects the normal practice in conference reviewing, for exam-
ple, where every member of the program committee can see sub-
missions, their reviews, and participate in related discussion. Users
can be added dynamically and assigned to review specific papers.
In addition, as an illustration of the power of the labeling system,
integrity labels are used to make sure that only assigned reviewers
can write reviews for any given paper. Conversely, confidentiality
labels are used to manage conflicts of interest. Users with a conflict
of interest on a specific paper lack the privileges, represented by
confidentiality labels, to read a review. As conflicts of interest are
identified, confidentiality labels on the papers may change dynam-
ically and become more restrictive. It is also possible to remove
conflicts of interest dynamically, if desired. A subtlety that we have
found advantageous is that reviewers with a conflict of interest can
potentially refer to reviews (by having a name that is bound to a re-
view) but cannot perform specific operations simply because they
can refer to them. As we have structured our online conference re-
view system, the actual display of a conflict-of-interest review is a
prohibited operation.

The main contributions of this paper include:

◮ We propose a new design point for IFC systems in which most
values in lexical scope are protected by a single, mutable, cur-
rent label, yet one can also encapsulate and pass around the re-
sults of computations with different labels. Label encapsulation

is explicitly reflected by types in a way that prevents implicit
flows.

◮ We prove information flow and integrity properties of our de-
sign and describe LIO, an implementation of the new model in
Haskell. LIO, which can be implemented entirely as a library
(based on type safety), demonstrating both the applicability and
simplicity of the approach.

◮ Unlike other language-based work, our model provides a no-
tion of clearance that imposes an upper bound on the program
label, thus providing a form of discretionary access control on
portions of the code.

IFC originated with military applications [5, 11] that label data
and processes with sensitivity security levels. The associated label-
checking algorithms then prevent a Trojan horse reading classified
data, for example, from leaking the data into less classified files. In
operating systems, IFC is generally enforced at the kernel bound-
ary, allowing a small amount of trusted code to impose a flexible
security policy on a much larger body of supporting software. Ex-
tending the core concepts of IFC to a broader range of situations
involving mutually distrustful parties that mix their code and data,
Myers and Liskov [28] subsequently introduced a decentralized la-
bel model (DLM) that has been the basis of much subsequent OS
and language-based work. Unfortunately, despite its attractiveness,
the DLM is not widely used to protect data in web applications,
for example. In the operating systems domain, most of the past
DLM-inspired work has relied exclusively on dynamic enforce-
ment [21, 37, 39]. This is due to the dynamic nature of operat-
ing systems, which must support a changing set of users, evolving
policies, and dynamically loaded code. But it is often inconvenient
to establish security domains by arranging software according to
course-grained kernel abstractions like processes and files. More-
over, adopting a new OS presents an even bigger barrier to deploy-
ment than adopting a new compiler. LIO uses the type system to
enforce abstraction statically, but checks the values of labels dy-
namically. Thanks to the flexibility of dynamic checking, the li-
brary implements an IFC mechanism that is more permissive than
previous static approaches [26, 30, 31] but providing similar secu-
rity guarantees [33]. Though purely language-based, LIO explores
a new design point centered on floating labels that draw on past OS
work. Both the code and technical details omitted in this paper can
be found at http://www.scs.stanford.edu/~deian/lio.

2. Security Library

In this section, we give an overview of the information flow control
approach used in our dynamic enforcement library for Haskell.

2.1 Labels and IFC

The goal of information flow control is to track and control
the propagation of information according to a security policy. A
well-known policy addressed in almost every IFC system is non-
interference: publicly-readable program results must not depend
on secret inputs. This policy preserves confidentiality of sensitive
data [15].

To enforce information flow restrictions corresponding to secu-
rity policies such as non-interference, every piece of data is asso-
ciated with a label, including the labels themselves. Labels form
a lattice [9] with partial order ⊑ (pronounced “can flow to”) gov-
erning the allowed flows. A lattice can be as simple as a few secu-
rity levels. For instance, the three labels L, M, and H, respectively
denoting unclassified, secret and top secret levels, form the lattice
L ⊑ M ⊑ H. An IFC system such as our LIO library prohibits a
computation running with security level M from reading top secret
data (labeled H) or writing to public channels (labeled L). Dual to

such confidentially policies are integrity policies [6], which use the
partial order on labels to enforce restrictions on writes.

Our library is polymorphic in the label type, allowing different
types of labels to be used. Custom label formats can be created by
defining basic label operations: the can flow to label comparison
(⊑), a function computing the join of two labels (⊔), and a function
computing the meet of two labels (⊓). Concretely, label types are
instances of the Label type class:

class (Eq l) ⇒ Label l where
leq :: l → l → Bool -- Can flow to (⊑)
lub :: l → l → l -- Join (⊔)
glb :: l → l → l -- Meet (⊓)

For any two labels L1 and L2, the join has the property that Li ⊑
(L1 ⊔ L2), i = 1, 2, while the meet has the property that (L1 ⊓
L2) ⊑ Li, i = 1, 2. In this section we present examples using the
simple three-point lattice introduced above, or a generic/abstract
label format; Section 3 details DC labels, a new, practical label
format used to implement λChair.

Compared to existing systems, LIO is a language-based floating-
label system, inspired by IFC operating systems [39, 40]. In a
floating-label system, the label of a computation can rise to ac-
commodate reading sensitive data (similar to the program counter
(pc) of more traditional language-based systems [34]). Specifically,
in a floating-label system, a computation C with label LC wish-
ing to observe an object labeled LR must raise its label to the join,
LC ⊔LR, of the two labels. Consider, for instance, a simple λChair
review system computation executing on behalf of a user, Clarice,
with label LC that retrieves and prints a review labeled LR, as
identified by R:

readReview R = do -- LC

rv ← retrieveReview R -- LC ⊔ LR

printLabeledCh rv -- LC ⊔ LR

The computation label (initially LC) is shown in the comments, on
the right. Internally, the retrieveReview function is used to retrieve
the review contents rv, raising the computation label to LC⊔LR to
reflect the observation of confidential data. This directly highlights
the notion of a “floating-label”: a computation’s label effectively
“floats above” the labels of all objects it observes. Moreover, this
implies that a computation cannot write below its label; doing so
could potentially result in writing secret data to public channels.

To illustrate the way floating labels restrict data writes, con-
sider the action following the review retrieval: printLabeledCh rv.
The trusted printLabeledCh function returns an action that writes
the review content rv to an output channel, permitting the output
channel label LO . The output channel label LO is dynamically
set according to the user executing the computation. Specifically,
LO is carefully set as to allow for printing out all but the conflict-
ing reviews. For example, if Clarice is in conflict with review R
then LO is set such that LR 6⊑ LO . Since the computation la-
bel directly corresponds to the labels of the data it has observed,
printLabeledCh simply checks that the computation label flows
to the output channel. In the example above, the trusted function
checks that LC ⊔ LR ⊑ LO before printing to (standard) output
channel O.

As already mentioned, in contrast to other language-based sys-
tems, LIO also associates a clearance with each computation. This
clearance sets an upper bound on the current floating label within
some region of code. For example, code executing with a secret (M)
clearance can never raise its label to read top secret data (labeled
H). The notion of clearance can also prevent Clarice from retrieving
(and not just printing) the contents of a conflicting review R by set-
ting the computation’s clearance to LP such that LR 6⊑ LP . When
the action retrieveReview R attempts to raise the current label to
LC ⊔ LR to retrieve the review contents, the dynamic check will

fail because LC ⊔ LR 6⊑ LP . For flexibility, the output channel
label can simply be LO = ⊤, allowing any information that can be
retrieved to be written to the output channel.

Additionally, clearance can be used to prevent Clarice from
using termination as a covert channel. For example, the following
code can be used to leak conflicting-review information:

leakingRetriveReview r = do
rv ← retrieveReview r
if rv == "Paper..."
then forever (return rv)
else return rv

However, using clearance, we prevent such leaks by setting the
clearance and review labels in such manner that retrieveReview
fails when raising the computation label to retrieve conflicting
reviews.

2.2 Library Interface

LIO is a termination-insensitive [2] and flow-sensitive [20] IFC
library that dynamically enforces information flow restrictions. At
a high level, LIO defines a monad called LIO, intended to be used
in place of IO. The library furthermore contains a collection of LIO
actions, many of them similar to IO actions from standard Haskell
libraries, except that they contain label checks that enforce IFC.
For instance, LIO provides file operations like those of the standard
library, but confining the application to a dedicated portion of the
file system where a label is stored along with each file.

To implement the notion of floating label bounded by a clear-
ance, our library provides LIO as a state monad that uses IO as
the underlying base monad and it is parametrized by the type of
labels. The state consists of a current label Lcur, i.e., the computa-
tion’s floating label, and a current clearance Ccur, which is an upper
bound on Lcur, i.e.,Lcur⊑Ccur. Specifically, the (slightly simplified)
LIO monad can be defined as:

newtype Label l ⇒ LIO l a = LIO (StateT (l, l) IO a)

where the state corresponds to the (Lcur, Ccur) pair. To allow for the
execution of LIO actions, our library provides a function (evalLIO)
that takes an LIO action and returns an IO action which, when ex-
ecuted, will return the result of the IFC-secured computation. It is
important to note that untrusted LIO code cannot execute IO com-
putations by binding IO actions with LIO ones (to bypass IFC re-
strictions), and thus effectively limits evalLIO to trusted code. Ad-
ditionally, using evalLIO, (trusted) programmers can easily, though
cautiously, enforce IFC in parts of an otherwise IFC-unaware pro-
gram.

The current label provides means for associating a label with
every piece of data. Hence, rather than individually labeling def-
initions and bindings, all symbols in scope are protected by Lcur

(when a single LIO action is executed). Moreover, the only way to
read or modify differently labeled data is to execute actions that
internally access restricted symbols and appropriately validate and
adjust the current label (or clearance).

However, in many practical situations, it is essential to be able to
manipulate differently-labeled data without monotonically increas-
ing the current label. For this purpose, the library additionally pro-
vides a Labeled type for labeling values with a label other than Lcur.
A Labeled, polymorphic in the label type, protects an immutable
value with a specified label (irrespective of the current label). This
is particularly useful as it allows a computation to delay raising
its current label until necessary. For example, an alternative ap-
proach to the above retrieveReview (called retrieveReviewAlt)
retrieves the review, encapsulates it as a Labeled value, and returns
the Labeled review, leaving the current label unmodified. This ap-
proach delays the creeping of current label until the review con-

tent, as encapsulated by Labeled, is actually needed, for instance,
by printLabeledCh.

We note that LIO can be used to protect pure values in a similar
fashion as Labeled. However, the protection provided by Labeled

allows for serializing labeled values and straight forward inspec-
tion by trusted code (which should be allowed to ignore the pro-
tecting label). Unlike LIO, Labeled is not a monad. Otherwise, the
monad instance would allow a computation to arbitrarily manipu-
late labeled values without any notion of the current label or clear-
ance, and thus possibly violate the restriction that LIO computa-
tions should not handle values below their label and above their
clearance. Moreover, such instance would require a definition for a
default label necessary when lifting a value with return. Instead,
our library provides several functions that allows for the creation
and usage of labeled values within LIO. Specifically, we provide
(among other) the following functions:

◮ label :: Label l ⇒l → a → LIO l (Labeled l a)

Given a label l such that Lcur ⊑ l ⊑ Ccur and a value v, the
action label l v returns a labeled value that protects v with l.

◮ unlabel :: Label l ⇒Labeled l a →LIO l a

Conversely, the action unlabel lv raises the current label
(clearance permitting) to the join of lv’s label and the current
label, returning the value with the label removed. Note that the
new current label is at least as high as lv’s label, thus protecting
the confidentiality of the value.

◮ toLabeled :: Label l ⇒l → LIO l a →LIO l (Labeled l a)

Given a label l such that Lcur ⊑ l ⊑ Ccur and an LIO action m,
toLabeled l m executes m without raising Lcur. However, in-
stead of returning the result directly, the function returns the
result of m encapsulated in a Labeled with label l. To preserve
confidentiality (see Section 4 for further details), action m must
not read any values with a label above l. We can implement
toLabeled as follows:

toLabeled l m = do
(L′

cur, C′
cur) ← get -- Save context

res ← m -- Execute action

(Lcur, _) ← get -- Get inner context

unless (Lcur ⊑ l) fail -- Check IFC violation

put (L′
cur, C′

cur) -- Restore context

lRes ← label l res -- Encapsulate result

return lRes -- Return result

In monadic terms, toLabeled is an environment-oriented action
that provides a different context for a temporary bind thread,
while unlabel is a state-oriented action that affects the current
bind thread.

◮ labelOf :: Label l ⇒Labeled l a →l

If lv is a labeled value with label l and value v, labelOf lv

returns l.

The formal semantics of these functions are given in Section 4 (see
Figure 4); in this section, we illustrate their functionality and use
through examples.

Consider the previous example of readReview. The internal
function retrieveReview takes a review identifier R and returns the
review contents. This implies that, internally, retrieveReview has
access to a list of reviews. These reviews are individually protected
by a label, where the addition of a new review to the system can be
implemented as:

addReview R LR rv = do
r ← label LR rv
addToReviewList R r

where the addToReviewList simply adds the Labeled review to
the internal list. The implementation of retrieveReview directly
follows:

retrieveReview R = do -- Lcur = LC

r ← getFromReviewList R -- Lcur = LC

rv ← unlabel r -- Lcur = LC ⊔ LR

return rv -- Lcur = LC ⊔ LR

where the getFromReviewList retrieves the Labeled review from
the internal list and unlabel removes the protecting label, and
raises the current label to reflect the read.

We previously alluded to an alternative implementation of
retrieveReview which, instead, returns the labeled review content
while keeping the current label the same. As getFromReviewList

is a trusted function and not directly available to untrusted users,
such as Clarice, retrieveReviewAlt can be implemented in terms
of toLabeled and retrieveReview:

retrieveReviewAlt R = do -- Lcur = LC

r ← toLabeled (LC ⊔ LR) $ do -- Lcur = LC

rv ← retrieveReview R -- Lcur = LC ⊔ LR

return rv -- Lcur = LC ⊔ LR

return r -- Lcur = LC

Note that although the current label within the inner computation is
raised, the outer computation’s label does not change—instead the
review content is protected by (LC ⊔ LR). Hence, only when the
review content is actually needed, unlabel can be used to retrieve
the content and raise the computation’s label accordingly:

readReviewAlt R = do -- Lcur = LC

r ← retrieveReviewAlt R -- Lcur = LC

-- Perform other computations -- Lcur = L′
C

rv ← unlabel r -- Lcur = L′
C
⊔ LR

printLabeledCh rv -- Lcur = L′
C
⊔ LR

Our library also provides labeled alternatives to IORefs and
files. Specifically, we provide labeled references Ref l a that are
created with newRef, read with readRef, and written to with
writeRef. When creating or writing to a reference with label LR,
it must be the case that Lcur ⊑ LR ⊑ Ccur, while reading raises
Lcur to Lcur ⊔ LR ⊑ Ccur. The rules for file operations follow
identically, however writing to a file also implies observation (since
the write can fail) and so the current label is raised in both cases.
Finally, though beyond the scope of this paper, the library provides
support for privileges. Privileges allow LIO code to operate under
a more permissive ⊑ relation, but still more restricting than simply
allowing the execution of arbitrary IO actions.

3. λChair

To demonstrate the flexibility of our dynamic information flow
library, we present λChair, a simple API (built on the examples of
Section 2) for implementing secure conference reviewing systems.
In general, a conference reviewing system should support various
features (and security policies) that a program committee can use
in the review process; minimally, it should support:

◮ Paper submission: ability to add new papers to the system.

◮ User creation: ability to dynamically add new reviewers.

◮ User login: a means for authenticating users.

◮ Review delegation: ability to assign reviewers to papers.

◮ Paper reading: means for reading papers.

◮ Review writing: means for writing reviews.

◮ Review reading: means for reading reviews.

◮ Conflict establishment: ability to restrict specific users from
reading conflicting reviews.

Even for such a minimal system, a number of security concerns
must be addressed. First, only users assigned to a paper may write
the corresponding reviews. Second, information from the review of
one paper should not leak into a different paper’s review. Third,

a reviewer should not be permitted to modify the review of a pa-
per that she/he is not assigned to review. And, fourth, users should
not received any information regarding papers for which they have
conflicts. We establish these four policies as non-interference poli-
cies for the confidentiality and integrity of reviews. We note that,
although enforcing additional security properties is desirable, these
four policies are sufficient when implementing a minimalistic and
fair review system.

λChair’s API provides the aforementioned security policies by
applying information flow control. Following the examples of Sec-
tion 2, we take the approach of enforcing IFC when writing to
output channels, and thus the security for the above policies cor-
respond to that of non-interference, i.e., secret data is not leaked
into less secret channels/reviews. We do, however, note that the al-
ternative, clearance restricting approach of Section 2, can be imple-
mented and thus enforce the security policies by confinement rather
than non-interference (see Section 5). Before delving into the de-
tails of the λChair, we first introduce the specific label format used
in the implementation.

3.1 DC Labels

λChair is implemented using Disjunction-Category (DC) labels, a
new label format especially suitable for systems with mutually dis-
trusting parties. DC labels can be used to express a conjunction
of restrictions on data, which allows for the construction of poli-
cies that reflect the concern of multiple parties. Such policies are
expressed by leveraging the notions of principals and Disjunction
Categories (henceforth just categories).

A principal is a string representation of a source of authority
such as a user, a group, a role, etc. To ensure egalitarian protection
mechanisms, any code is free to create principals.

A category is an information-flow restriction specifying the set
of principals that own it. Each category is denoted as a disjunction
of its owners; for example, the category owned by principals P1 and
P2 is written as [P1 ∨ P2]. Additionally, categories are qualified to
be secrecy or integrity categories. A secrecy category restricts who
can read, receive, or propagate information; an integrity category
specifies who can modify a piece of data.

A DC label L = 〈S, I〉 is a set S of secrecy categories and
a set I of integrity categories. All categories must be satisfied
in order to allow information to flow and thus we write each
set as a conjunction of categories. For example, the DC label
〈{[P1 ∨ P2] ∧ [P2 ∨ P3]} , {[P4]}〉 has two secrecy categories and
a single integrity category. Data with a DC label L1 can be prop-
agated to an endpoint having a DC label L2 if the restrictions
imposed by L1 are uphold by L2. We formalize this notion using
the ⊑-relationship as follows.

Definition 1 (Can flow to). Given any two DC labels L1 =
〈S1, I1〉 and L2 = 〈S2, I2〉, and interpreting each principal as
a Boolean variable named according to the content of the string
itself, we have

∀c1 ∈ S1.∃c2 ∈ S2 : c2 ⇒ c1 ∀c2 ∈ I2.∃c1 ∈ I1 : c1 ⇒ c2

〈S1, I1〉 ⊑ 〈S2, I2〉
,

where ⇒ denotes Boolean implication.

From now on, when we refer to a principal P , it can be in-
terpreted as a string or Boolean variable depending on the con-
text. As an example of the use of ⊑-relationship, the DC label
〈{[P1 ∨ P2] ∧ [P2 ∨ P3]} , {[P4]}〉 ⊑ 〈{[P1] ∧ [P3]} , {[P4 ∨ P6]}〉
since P1 ⇒ P1∨P2, P3 ⇒ P2∨P3, and P4 ⇒ P4∨P6. Intuitively,
the higher we move in the ⊑-relationship, the more restrictive the
secrecy category becomes, while the integrity category, on the other
hand, changes into a more permissive one. Additionally, we note
that if a label contains a category that is implied by another, the

latter is extraneous, as it has no effect on the value of the label, and
can be safely removed.

The join and meet for labels L1 = 〈S1, I1〉 and L2 = 〈S2, I2〉
are respectively defined as follows:

L1 ⊔ L2 = 〈reduce(S1 ∧ S2), reduce(I1 ∨ I2)〉

L1 ⊓ L2 = 〈reduce(S1 ∨ S2), reduce(I1 ∧ I2)〉

Here, reduce removes any extraneous categories from a given set
and ∧ and ∨ denote the conjunction and disjunction of two cate-
gory sets viewed as Boolean formulas of principals in conjunctive
normal form.

In the context of the well-known DLM [28], a DC label se-
crecy category of the form [P1 ∨ P2 ∨ · · · ∨ Pn] can be in-
terpreted as the (slightly modified) DLM label component/policy
{P1, P2, . . . , Pn : P1, P2, . . . , Pn}, where principals P1, . . . , Pn

are both the owners and readers. Although a DLM component con-
sists of a single owner, which does not need to be part of the reader
list, a DC label component (category) consists of multiple owners
which are also the (only) readers. Using this slightly modified no-
tion of a label component, a DLM label (set of components) loosely
corresponds to our notion of a label (conjunction of disjunctions).
Readers interested in the formal semantics of DC labels and the
comparison with DLM can refer to http://www.scs.stanford.
edu/~deian/dclabel for further details.

3.2 DC Labels in λChair

In this section we describe the data structures and the role of DC
labels (from now on just labels) in λChair.

λChair provides an API to build review systems for the func-
tionalities described in Section 3. Intuitively, the API just sup-
plies administrators and reviewers with functions for querying re-
view entries and modifying user accounts. Technically speaking,
λChair runs over an underlying state monad that stores informa-
tion regarding reviews and users.

Review entries A review entry is defined as a record consisting of
a paper id, a reference to the corresponding paper, and a reference
to the shared review ‘notebook’. Specifically, a review entry is
defined as

data ReviewEnt = ReviewEnt { paperId :: Id
, paper :: DCRef Paper
, review :: DCRef Review }

where DCRef is a labeled reference using DC labels. In other words,
type DCRef a = Ref DCLabel a. Note that this differs from the
examples of Section 2, in which the reviews were simply Labeled

types.

Reading and writing papers Upon logging in, users are allowed
to read and print out any paper by providing the paper id. The label
of the reference paper in the ith-review entry is set to 〈{} , {[Pi]}〉.
Observe that the secrecy categories is empty (we interpret the
empty category as the true Boolean value), thus allowing any func-
tion (without other integrity categories in its label) to read the pa-
per by reading the reference content, i.e., the paper. This label does,
however, restrict the modification of the paper to code running in
a process that owns the integrity category Pi and can therefore run
with the category [Pi] in the integrity set of its current label. Only
a trusted administrator is allowed to own such principals. Conse-
quently, reviewers’ code cannot modify the paper because their cur-
rent label (assigned by the trusted login procedure) never includes
Pi in their integrity set.

Reading and writing reviews Similarly, reviewers’ code is al-
lowed to access any reviews written to any reference review. How-
ever, once a review has been read, its contents must not be written
to another paper’s review. We fulfill this requirement by identify-

ing, using labels, when a given piece of code reads a certain review.
More specifically, we label the reference review in the ith-review
entry as 〈{[Ri]} , {[Ri]}〉. As a consequence, when a function
wishes to read the review for entry i, it must raise its current label
as to include category [Ri] in its secrecy and integrity sets (clear-
ance permitted). Once a process has been tainted as such, it will not
be able to modify the contents of another paper’s review since the
integrity category [Ri] will cause the current label’s integrity set to
contain Ri in every category and (Ri ∨ C) 6⇒ Rj for any C and
i 6= j. Consider, for instance, a reviewer’s code that has the current
label set (by the trusted login procedure) to 〈{[Ri]} , {[Ri]}〉, i.e.,
in the process of reviewing paper Pi. If the code reads another re-
view with label Lj = 〈{[Rj]} , {[Rj]}〉, the current label is then
updated to L = 〈{[Ri] ∧ [Rj]} , {[Ri ∨ Rj]}〉, which clearly im-
plies that L 6⊑ Lj . The integrity category [Ri] restricts the modi-
fication of the review to processes that own Ri. In this case, how-
ever, the process running reviewers’ code, assigned to review paper
i, contains, at least initially, category [Ri] in the integrity set of its
current label.

Users A reviewer is defined as a record consisting of a unique
user name, password (used for authentication), and two disjoint
sets of paper ids (in our implementation these are simple lists).
One set corresponds to the user’s conflicting papers, the second
set corresponds to the papers the user has been assigned to review.
Concretely, we define a user as follows:

data User = User { name :: Name
, password :: Password
, conflicts :: [Id]
, assignments :: [Id] }

A user is authenticated using the name and password creden-
tials. Upon logging in, the code of the reviewer assigned to pa-
pers 1, . . . , n is executed with the current label initially set to
〈{} , {[R1] ∧ · · · ∧ [Rn]}〉, where Ri is the principal correspond-
ing to review entry i. The current clearance is set to 〈ALL, {}〉. The
special category set ALL (denoting the conjunction of all possible
categories) in the clearance allows the executing code to (raise its
current label and) read any data, while the integrity categories in the
current label allow the process to only write to assigned reviews.
Note, however, that in our case all reviewers append their review to
the same review “notebook” and thus a write implies a read. Hence,
to allow a reviewer to effectively perform a write-only operation,
the process must execute the append function using toLabeled.
We note the user is exposed to a function that appends to the re-
view rather than directly writing to it, because multiple users are
assigned to review the same paper and one should not be allowed
to overwrite the work of another (using privileges a more elegant
solution can easily be implemented).

Conflicts Following the readReview examples of Section 2, we
restrict the reading, or more specifically, printing of a review to
those reviewers in conflict with the paper. Although every user is
allowed to retrieve a review, they cannot observe the result unless
they write it to an output channel (in our simple example this
corresponds to the standard output). Hence, code running on behalf
of a user (determined after logging in) can only write to the output
channel (using printLabelCh) if the current label L can flow to
the output channel label Lo. Using the set of conflicting paper
ids, for every user, we dynamically assign the output channel label
Lo = 〈So, {}〉, where So = {[R1] ∧ · · · ∧ [Rn] ∧ [Rn+1 ∨
CONFLICT] ∧ · · · ∧ [RN ∨ CONFLICT]} and Ri where i = n +
1, . . . , N are the principals corresponding to all the review entries
in the system (at the point of the print) that the authenticated
user conflicts with. Here, CONFLICT corresponds to a principal
that none of the users own (similar to Pi used in the labels of
paper references). For each conflicting paper i, we create a category

[Ri ∨ CONFLICT]. To observe the properties of this label, consider
the case when executing code reads a conflicting paper Ri. In this
situation, the current label is raised to L = 〈{[Ri] ∧ · · · } , {· · · }〉,
and subsequently when attempting to write to the output channel, it
is the case that L 6⊑ Lo. For L ⊑ Lo to hold true, there must be a
category in Lo that implies [Ri]. However, due to the conflict, the
only category containing Ri in the channel label’s secrecy category
is [Ri ∨ CONFLICT] (and clearly [Ri ∨ CONFLICT] 6⇒ [Ri]), which
asserts that conflicting data cannot flow to the output channel.
We further highlight that the channel label permits non-conflicting
reviews j to be observed by including the corresponding category
[Rj] without principal CONFLICT.

3.3 Implementation

In this section we present the API provided by λChair. As the
main goal of λChair is to demonstrate the flexibility and power
of our dynamic information flow library, we do not extend our
example to a full-fledged system; the API can, however, be used
to build relatively complex review systems. Below, we present the
details of the λChair functions, which return actions in the RevLIO

monad. This monad is a State monad defined using the State monad
transformer with LIO as the base monad, and a state consisting
of the system users, review entries, and name of the user that the
executing code is running on behalf of.

System administrator interface A λChair administrator is pro-
vided with several functions that dynamically change the system
state. Of these, we detail the most interesting cases below.

◮ addPaper :: Paper →RevLIO Id

Given a paper, it creates a new review entry for the paper and
return the paper id. Internally, addPaper uses a function similar
to addReview of Section 2.

◮ addUser :: Name →Password →RevLIO ()

Given a unique user name and password, it adds the new user.

◮ addAssignment ::Name →Id → RevLIO ()

Given a user name and paper id, it assigns the user to review the
corresponding paper. The user must not already be in conflict
with the paper.

◮ addConflict :: Name →Id → RevLIO ()

Given a user name and paper id, it marks the user as being in
conflict with the paper. As above, it must be the case that the
user is not already assigned to review the paper.

◮ asUser :: Name →RevLIO () →RevLIO ()

Given a user name, and user-constructed piece of code, it firsts
authenticates the user and then executes the provided code with
the current label and clearance of the user as described in Sec-
tion 3.2. After the code is executed, the current label and clear-
ance are restored and any information flow violations are re-
ported.

Reviewer interface The reviewer, or user, composes an untrusted
RevLIO computation (or action) that the trusted code executes using
asUser. Such actions may be composed using the following inter-
face:

◮ findPaper :: String →RevLIO Id

Given a paper title, it returns its paper id, or fails if the paper is
not found.

◮ readPaper :: Id → RevLIO Paper

Given a paper id, the function returns an action which, when
executed, returns the paper content.

◮ readReview :: Id → RevLIO ()

Given a paper id, the function returns an action which, when ex-
ecuted, prints the review to the standard output. Its implementa-
tion is similar to the example of Section 2, except operating on
references.

Figure 1 An example of code using λChair API.

module Admin where

import Alice
import Bob

main = evalRevLIO $ do
-- Adding users to system

addUser "Alice" "password"
-- Adding papers to system

p1 ← addPaper "Flexible Dynamic..."
p2 ← addPaper "A Static..."
-- Assign reviewers

addAssignment "Alice" p1
addAssignment "Alice" p2

-- Executing Alice’s code

asUser "Alice" $ aliceCode

-- Adding new users to system

addUser "Bob" "password"
-- Assign reviewers and conflicts

addAssignment "Bob" p2
addConflict "Bob" p1

-- Executing Bob’s code

asUser "Bob" $ bobCode

module AliceCode where

aliceCode = do
p1 ← findPaper "Flexible Dynamic..."
p2 ← findPaper "A Static..."
readPaper p1
appendToReview p1 "Interesting work!"
readPaper p2
readReview p2
appendToReview p2 "What about adding new users?"
return ()

module BobCode where

bobCode = do
p1 ← findPaper "Flexible Dynamic..."
p2 ← findPaper "A Static..."
appendToReview p2 "Hmm, IFC.."
readReview p1 -- IFC violation attempt

return ()

◮ appendToReview ::Id→Content→RevLIO ()

Given a paper id and a review content, the function returns an
action which, when executed, appends the supplied content to
the review entry. Since there is no direct observation of the
current review content, and to avoid label creep, the function,
internally, uses toLabeled.

An IFC violation results in an exception (not-catchable by un-
trusted code) being thrown (in the semantics presented in Section 4,
the program gets “stuck”). Figure 1 shows a simple example us-
ing the λChair API. In this example, Alice is assigned to review
two papers. She does so by reading each paper (for the second, she
also reads the existing reviews) and appending to the shared review.
Bob, on the other hand, is added to the system after Alice’s code
is executed. Bob first writes a review for paper 2 and then attempts
to violate IFC by trying to read (and write to the output channel)
the reviews of paper 1. Though his review is appended to the cor-
rect paper, the review of the first paper is suppressed. We finally
note that although the example is quite simple, it illustrates the use

of the λChair primitives that may be used to implement a usable
paper review system.

4. Formal Semantics for LIO

Figure 2 Formal syntax for terms, expressions, and types.

Label: l

Address: a

Term: v ::= true | false | () | l | a | x | λx.e | (e, e)

| fix e | Lb v e | (e)LIO | •

Expression: e ::= v | e e | πi e | if e then e else e

| let x = e in e | return e | e >>= e

| label e e | unlabel e | toLabeled e e

| newRef e e | readRef e | writeRef e e

| lowerClr e | getLabel | getClearance

| labelOf e | labelOfRef e

Type: τ ::= Bool | () | τ → τ | (τ, τ)

| ℓ | Labeled ℓ τ | LIO ℓ τ | Ref ℓ τ

Store: φ :Address → Labeled ℓ τ

This section formalizes our library for a simple call-by-name1

λ-calculus extended with Booleans, unit values, pairs, recursion,
references, and the monadic operations for LIO. Figure 2 provides
the formal syntax of the considered language. Syntactic categories
v, e, and τ represent terms, expressions, and types, respectively.
Terms are side-effect free while expressions denote (possible) side-
effecting computations.

In the syntax category v, symbol true and false represent
Boolean values. Symbol () represents the unit value. Symbol ℓ de-
notes security labels. Symbol a represent memory addresses in a
given store. Terms include variables (x), functions (λx.e), tuples
(e, e), and recursive functions (fix e). Three special syntax nodes
are added to this category: Lb v e, (e)LIO, and •. Node Lb v e de-
notes the run-time representation of a labeled value. Similarly, node
(e)LIO denotes the run-time representation of a monadic LIO com-
putation. Node • represents an erased term (explained in Section
5). None of these special nodes appear in programs written by users
and they are merely introduced for technical reasons.

Expressions are composed of values (v), function applications
(e e), pair projections (πi e), conditional branches (if e then e
else e), and local definitions (let x = e in e). Additionally,
expressions may involve operations related to monadic computa-
tions in the LIO monad. More precisely, return e and e >>= e
represent the monadic return and bind operations. Monadic opera-
tions related to the manipulation of labeled values inside the LIO
monad are given by label, unlabel, and toLabeled. Expression
label e1 e2 creates a labeled value that guards e2 with label e1.
Expression unlabel e acquires the content of the labeled value
e while in a LIO computation. Expression toLabeled e1 e2 cre-
ates a labeled value, with label e1, of the result obtained by eval-
uating the LIO computation e2. Non-proper morphisms related to
creating, reading, and writing of references are respectively cap-
tured by expressions newRef, readRef, and writeRef. Expres-
sion lowerClr e allows lowering of the current clearance to e. Ex-
pressions getLabel and getClearance return the current label
and current clearance of an LIO computation. Finally, expressions

1 For clarity, we use a call-by-name instead of call-by-need calculus; exten-
sion to the latter is straight forward, as shown in [23].

labelOf e and labelOfRef e respectively obtain the security la-
bel of labeled values and references.

We consider standard types for Booleans (Bool), unit (()),
pairs (τ, τ), and function (τ → τ) values. Type ℓ describes se-
curity labels. Type Labeled ℓ τ describes labeled values of type τ
where the label is of type ℓ. Type LIO ℓ τ represents monadic LIO
computations, with a result type τ and the security labels of type ℓ.
Type Ref ℓ τ describes labeled references, with labels of type ℓ, to
values of type τ .

Figure 3 Operational semantics I.

E ::= [·] | Lb E e | E e | πi E | if E then e else e

〈Σ, E[(λx.e1) e2]〉 −→ 〈Σ, E[[e2/x]e1]〉

〈Σ, E[fix e]〉 −→ 〈Σ, E[e (fix e)]〉

〈Σ, E[πi (e1, e2)]〉 −→ 〈Σ, E[ei]〉

〈Σ, E[if true then e1 else e2]〉 −→ 〈Σ, E[e1]〉

〈Σ, E[if false then e1 else e2]〉 −→ 〈Σ, E[e2]〉

〈Σ, E[let x = e1 in e2]〉 −→ 〈Σ, E[[e1/x]e2]〉

The LIO monad presented in Section 2 is implemented as a State
monad. To simplify the formalization and description of expres-
sions, without loss of generality, we make the state of the monad
part of a run-time environment. More precisely, for a given LIO
computation, the symbol Σ denotes a run-time environment that
contains the current label, written Σ.lbl, the current clearance,
written Σ.clr, and store, written Σ.φ. A run-time environment Σ
and LIO computation form a configuration 〈Σ, e〉. Given a config-
uration 〈Σ, e〉, the current label, clearance, and store when starting
evaluation e is given by Σ.lbl, Σ.clr, and Σ.φ, respectively.

The relation 〈Σ, e〉 −→ 〈Σ′, e′〉 represents a single evaluation
step from expression e, under the run-time environment Σ, to
expression e′ and run-time environment Σ′. We say that e reduces
to e′ in one step. We define such relation in terms of a structured
operational semantics via evaluation contexts [14].

Figure 3 defines the set of evaluation contexts and reduction
rules for standard constructs in our language. We note that substi-
tution ([e1/x] e2) is defined in the usual way: homomorphic on
all operators and renaming bound names to avoid captures. The re-
duction rules are self-explanatory and we do not describe them fur-
ther. More interestingly, Figure 4 presents the non-standard eval-
uation contexts and reduction rules for our language. These rules
guarantee that programs written using our approach fulfill non-
interference, i.e., confidential information is not leaked, and con-
finement, i.e., a computation cannot access data above the clear-
ance. The evaluation rules for return and >>= are standard.

The main contribution of our language are the primitives label,
unlabel, and toLabeled. Rule (LAB) generates a labeled value
if and only if the label is between the current label and clearance of
the LIO computation and thus guaranteeing containment properties
(see Section 5). Rule (UNLAB) provides a method for accessing
the content e of a labeled value Lb l e in LIO computations. When
the content of a labeled value is “retrieved” and used in a LIO
computation, the current label is raised (Σ′ = Σ[lbl 7→ l′],
where l′ = Σ.lbl ⊔ l), capturing the fact that the remaining
computation might depend on e. Rule (TOLAB) deserves some
attention. We write −→∗ for the reflexive and transitive closure of
−→. Expression toLabeled l e is used to execute the provided
LIO computation e until completion (〈Σ, e〉 −→∗ 〈Σ′, (v)LIO〉)
and wraps its result v into a labeled value with label l. Observe
that the label l needs to be an upper bound on the current label
for the evaluation of computation e (Σ′.lbl ⊑ l). Specifying

Figure 4 Operational semantics II.

E ::= · · · | return E | E >>= e

| label E e | unlabel E | toLabeled E e

| newRef E e | readRef E | writeRef E e

| lowerClr E | labelOf E | labelOfRef E

〈Σ, E[return v]〉 −→ 〈Σ, E[(v)LIO]〉

〈Σ, E[(v)LIO >>= e2]〉 −→ 〈Σ, E[e2 v]〉

(LAB)

Σ.lbl ⊑ l ⊑ Σ.clr

〈Σ, E[label l e]〉 −→ 〈Σ, E[return (Lb l e)]〉

(UNLAB)

l′ = Σ.lbl ⊔ l l′ ⊑ Σ.clr Σ′ = Σ[lbl 7→ l′]

〈Σ, E[unlabel (Lb l e)]〉 −→ 〈Σ′, E[return e]〉

(TOLAB)

Σ.lbl ⊑ l ⊑ Σ.clr 〈Σ, e〉 −→∗ 〈Σ′, (v)LIO〉
Σ′.lbl ⊑ l Σ′′ = Σ′[lbl 7→ Σ.lbl, clr 7→ Σ.clr]

〈Σ, E[toLabeled l e]〉 −→ 〈Σ′′, E[label l v]〉

(NREF)

Σ.lbl ⊑ l ⊑ Σ.clr Σ′ = Σ.φ[a 7→ Lb l e]

〈Σ, E[newRef l e]〉 −→ 〈Σ′, E[return a]〉
a fresh

(RREF)

Σ.φ(a) = Lb l e
l′ = Σ.lbl ⊔ l l′ ⊑ Σ.clr Σ′ = Σ[lbl 7→ l′]

〈Σ, E[readRef a]〉 −→ 〈Σ′, E[return e]〉

(WREF)

Σ.φ(a) = Lb l e
Σ.lbl ⊑ l ⊑ Σ.clr Σ′ = Σ.φ[a 7→ Lb l e′]

〈Σ, E[writeRef a e′]〉 −→ 〈Σ′, E[return ()]〉

(LWCLR)

Σ.lbl ⊑ l ⊑ Σ.clr Σ′ = Σ[clr 7→ l]

〈Σ, E[lowerClr l]〉 −→ 〈Σ′, E[return ()]〉

(CLAB)

l = Σ.lbl

〈Σ, E[getLabel]〉 −→ 〈Σ, E[return l]〉

(CCLR)

l = Σ.clr

〈Σ, E[getClearance]〉 −→ 〈Σ, E[return l]〉

(GLAB)

〈Σ, E[labelOf (Lb l e)]〉 −→ 〈Σ, E[l]〉

(GLABR)

e = Σ.φ(a)

〈Σ, E[labelOfRef a]〉 −→ 〈Σ, E[labelOf e]〉

label l is responsibility of the programmer. The reason for this is
due to the fact that security labels are protected by the current
label, effectively making them public information accessible to
any computation within scope (see rules (GLAB) and (GLABR)).
As a consequence, if toLabeled did not require an upper bound
on the data to be observed within e, labels can be used to leak
information. Recall that the current label and clearance of a given
LIO computation can be changed dynamically. To illustrate this
point, consider a computation whose current label is l0, taking two
(confidential) labeled values as arguments, with respective labels l1
and l2 such that li 6⊑ l0, i = 1, 2.

leak lV1 lV2 = do

lV3 ← toLabeled’ $ do
v1 ← unlabel lV1 -- Lcur = l1

if v1 then return True
else unlabel lV2 -- Lcur = l2

return (labelOf lV3)

Therefore, if the returned value is l1 or l2 (remember that labels
are public information), information is directly leaked! To close this
channel, programmers should provide an upper bound of the cur-
rent label obtained when e finishes computing. Since our approach
is dynamic, flow-sensitive, and sound, this may require non-trivial,
and possibly complicated, static analysis in order to automatically
determine the label for each call of toLabeled [32].

By using big-step semantics instead of an evaluation context of
the form toLabeled l E, rule (TOLAB) does not need to rely on
the use of trusted primitives or a stack for (saving and) restoring the
current label and clearance when executing toLabeled.

When creating a reference, newRef l e produces a labeled value
that guards e with label l (Lb l e) and stores it in the memory store
(Σ′ = Σ.φ[a 7→ Lb l e]). The result of this operation is the memory
address a (return a). Observe that references are created only if
the reference’s label (l) is between the current label and clearance
label of the LIO monad (Σ.lbl ⊑ l ⊑ Σ.clr). The restriction
l ⊑ Σ.clr is to assure that programs cannot manipulate or access
data beyond their clearance (see Section 5). Rule (RREF) obtains
the content e of a labeled value Lb l e stored in the address a.
This rule raises the current label to the security level l′ (Σ′ =
Σ[lbl 7→ l′] where l′ = Σ.lbl ⊔ l). As in the previous rule,
(RREF) enforces that the result of reading a reference is below the
clearance (l′ ⊑ Σ.clr). Rule (WREF) updates the memory store
with a new value for the reference (Σ′ = Σ.φ[a 7→ Lb l e′]) as long
as the label of the reference is above the current label and it does
not exceed the clearance (Σ.lbl ⊑ l ⊑ Σ.clr). If considering
Σ.lbl as a dynamic version of the pc the restriction that the label
of the reference must be above the current label (Σ.lbl ⊑ l) is
similar to the one imposed by [30].

Rule (LWCLR) allows a computation to lower the current clear-
ance to l. This operation is particularly useful when trying to con-
tain the access to some data as well as the effects produced by com-
putations executed by toLabeled. Rules (CLAB) and (CCLR) ob-
tain the current label and clearance from the run-time environment.
Finally, rules (GLAB) and (GLABR) return the labels of labeled
values and references. Observe that, regardless of the current label
and clearance of the run-time environment, these two rules always
succeed, effectively making labels public data.

4.1 Typing rules for LIO

Figure 5 Typing rules for terms.

⊢ true : Bool ⊢ false : Bool ⊢ () : () ⊢ l : ℓ

Γ(a) = Labeled ℓ τ

Γ ⊢ a : Ref ℓ τ

Γ(x) = τ

Γ ⊢ x : τ

Γ[x 7→ τ1] ⊢ e : τ2

Γ ⊢ λx.e : τ1 → τ2

Γ ⊢ e1 : τ1 Γ ⊢ e2 : τ2

Γ ⊢ (e1, e2) : (τ1, τ2)

Γ ⊢ e : τ → τ

Γ ⊢ fix e : τ

Γ ⊢ e1 : ℓ Γ ⊢ e2 : τ

Γ ⊢ Lb e1 e2 : Labeled ℓ τ

Γ ⊢ e : τ

Γ ⊢ (e)LIO : LIO ℓ τ

Γ ⊢ • : τ

The typing rules are described in Figures 5 and 6. The typing
rules are standard and therefore we do not describe them any fur-

Figure 6 Typing rules for expressions.

Γ ⊢ e1 : τ1 → τ2 Γ ⊢ e2 : τ1

Γ ⊢ e1 e2 : τ2

Γ ⊢ e : (τ1, τ2)

Γ ⊢ πi e : τi

Γ ⊢ e1 : Bool Γ ⊢ e2 : τ Γ ⊢ e3 : τ

Γ ⊢ if e1 then e2 else e3 : τ

Γ ⊢ e1 : τ1 Γ[x 7→ τ1] ⊢ e2 : τ2

Γ ⊢ let x = e1 in e2 : τ2

Γ ⊢ e : τ

Γ ⊢ return e : LIO ℓ τ

Γ ⊢ e1 : LIO ℓ τ1 Γ ⊢ e2 : τ1 → LIO ℓ τ2

Γ ⊢ e1 >>= e2 : LIO ℓ τ2

Γ ⊢ e1 : ℓ Γ ⊢ e2 : τ

Γ ⊢ label e1 e2 : LIO ℓ (Labeled ℓ τ)

Γ ⊢ e : Labeled ℓ τ

Γ ⊢ unlabel e : LIO ℓ τ

Γ ⊢ e1 : ℓ Γ ⊢ e2 : LIO ℓ τ

Γ ⊢ toLabeled e1 e2 : LIO ℓ (Labeled ℓ τ)

Γ ⊢ e1 : ℓ Γ ⊢ e2 : τ

Γ ⊢ newRef e1 e2 : LIO ℓ (Ref ℓ τ)

Γ ⊢ e : Ref ℓ τ

Γ ⊢ readRef e : LIO ℓ τ

Γ ⊢ e1 : Ref ℓ τ Γ ⊢ e2 : τ

Γ ⊢ writeRef e1 e2 : LIO ℓ ()

Γ ⊢ e : ℓ

Γ ⊢ lowerClr e : LIO ℓ ()
⊢ getLabel : LIO ℓ ℓ

⊢ getClearance : LIO ℓ ℓ
Γ ⊢ e : Lb ℓ τ

Γ ⊢ labelOf e : ℓ

Γ ⊢ e : Ref ℓ τ

Γ ⊢ labelOfRef e : ℓ

ther. We, however, note that, different from previous work [12, 31],
we do not require use any of the sophisticated features of Haskell’s
type-system, a direct consequence of our dynamic approach.

5. Soundness

In this section we show that LIO computations satisfy two secu-
rity policies: non-interference and containment. Non-interference
shows that secrets are not leaked, while containment establishes
that certain piece of code cannot manipulate or have access to cer-
tain data. The latter policy is similar to the containment policies
presented in [4, 24].

5.1 Non-interference

As in [26, 31], we prove the non-interference property by using the
technique of term erasure. Intuitively, data at security levels where
the attacker cannot observe information can be safely rewritten to
the syntax node •. For the rest of the paper, we assume that the at-
tacker can observe data up to security level L. The syntactic term •,
denoting an erased expression, may be associated to any type (re-
call Figure 5). Function εL is responsible for performing the rewrit-

Figure 7 Erasure function for terms, memory store and configura-
tions.

εL(true) = true εL(false) = false εL(()) = ()

εL(l) = l εL(a) = a εL(x) = x

εL(λx.e) = λx.εL(e) εL((e, e)) = (εL(e), εL(e))

εL(fix e) = fix εL(e)

εL(Lb l e) =

{
Lb l • l 6⊑ L
Lb l εL(e) otherwise

εL((e)
LIO) = (εL(e))

LIO εL(•) = •

εL(Σ.φ) = {(x, εL(Σ.φ(x)) : x ∈ dom(Σ.φ)}

εL(Σ) = Σ[φ 7→ εL(Σ.φ)]

εL(〈Σ, e〉) =

{
〈εL(Σ), •〉 Σ.lbl 6⊑ L
〈εL(Σ), εL(e)〉 otherwise

ing for data at security level not lower than L. In most of the cases,
the erasure function is simply applied homomorphically (e.g.,
εL(if E then e else e′) = if εL(E) then εL(e) else εL(e

′)).
In the case of data constructors it is simply the identity function.
The definition of εL for expressions and evaluation contexts are
shown in Appendix A. The two interesting cases for this function
are when εL is applied to a labeled value or a given configuration.
In such cases, term erasing could indeed modify the behavior of the
program. Figure 7 shows the definition of εL for terms and con-
figurations. A labeled value is erased if the label assigned to it is
above L (εL(Lb l e) = Lb l •, if l 6⊑ L). Similarly, the computation
performed in a certain configuration is erased if the current label is
above L (εL(〈Σ, e〉) = 〈εL(Σ), •〉 if Σ.lbl 6⊑ L).

Following the definition of the erasure function, we introduce a
new evaluation relation −→L as follows:

Definition 2 (−→L).

〈Σ, e〉 −→ 〈Σ′, e′〉

〈Σ, e〉 −→L εL(〈Σ
′, e′〉)

Expressions under this relationship are evaluated in the same
way as before, with the exception that, after one evaluation step,
the erasure function is applied to the resulting configuration, i.e.,
run-time environment and expression. In that manner, the relation
−→L guarantees that confidential data, i.e., data not below level L,
is erased as soon as it is created. We write −→∗

L for the reflexive
and transitive closure of −→L.

〈Σ, e〉 −−−−−→∗ 〈Σ′, e′〉

yεL

yεL

εL(〈Σ, e〉) −−−−−→∗
L εL(〈Σ

′, e′〉)

Figure 1. Simulation between
−→∗ and −→∗

L.

Most results that prove
non-interference pursue
the goal of establishing
a relationship between
−→∗ and −→∗

L through
the erasure function, as
highlighted in Figure 1.
Informally, the diagram
establishes that erasing all
secret data, i.e., data not
below L, and then taking
evaluation steps in −→L is the same as taking steps in −→ and then
erasing all the secret values in the resulting configuration. Observe
that if information from some level above L is leaked by e, then
erasing all secret data and then taking evaluation steps in −→L

might not be the same as taking steps in −→ and then erasing all
the secret values in the resulting configuration.

For simplicity, we assume that the space address of the memory
store is split into different security levels and that allocation is
deterministic. In that manner, the address returned when creating
a reference with level l depends only on the references with level
l already in the store. These assumptions are valid in our language
since, similar to traditional references in Haskell, we do not provide
any mechanisms for deallocation or inspection of addresses in the
API. However, when memory allocation is an observable channel,
the library could be adapted in order to deal with non-opaque
pointers [17].

We start by showing that the evaluation relationship −→ and
−→L are deterministic. We note that e = e′ means syntactic
equality between expressions e and e′. Equality between run-time
environments, written Σ = Σ′, is defined as the point-wise equality
between mappings Σ and Σ′.

Proposition 1 (Determinacy of −→).

◮ For any expression e and run-time environment Σ such that
〈Σ, e〉 −→ 〈Σ′, e′′〉, there is a unique term e′ and unique
evaluation context E such that e = E[e′].

◮ If 〈Σ, e〉 −→ 〈Σ′, e′〉 and 〈Σ, e〉 −→ 〈Σ′′, e′′〉, then e′ = e′′

and Σ′ = Σ′′.

Proof. By induction on expressions and evaluation contexts.

Proposition 2 (Determinacy of −→L). If 〈Σ, e〉 −→L 〈Σ′, e′〉
and 〈Σ, e〉 −→L 〈Σ′′, e′′〉, then e′ = e′′ and Σ′ = Σ′′.

Proof. From Proposition 1 and definition of εL.

The following proposition shows that the erasure function is ho-
momorphic to the application of evaluation contexts and substitu-
tion as well as that it is idempotent.

Proposition 3 (Properties of erasure function).

1. εL(E[e]) = εL(E)[εL(e)]
2. εL([e2/x]e1) = [εL(e2)/x]εL(e1)
3. εL(εL(e)) = εL(e)
4. εL(εL(E)) = εL(E)
5. εL(εL(Σ)) = εL(Σ)
6. εL(εL(〈Σ, e〉)) = εL(〈Σ, e〉)

Proof. All follow from the definition of the erasure function εL,
and by induction on expressions and evaluation contexts,

1. By induction on expressions and case analysis on evaluation
contexts. We show several cases below.

(a) Let E := Lb [] e0, it follows that εL(E) := Lb [] εL(e0),
and εL(E[e]) = εL(Lb e e0) = Lb εL(e) εL(e0) =
εL(E)[εL(e)].

(b) Let E := [·] e0, it follows that εL(E) := [·] εL(e0), and
εL(E[e]) = εL(e e0) = εL(e) εL(e0) = εL(E)[εL(e)].

(c) Let E := πi [], it follows that εL(E) := πi [], and
εL(E[e]) = εL(πi e) = πi εL(e) = εL(E)[εL(e)].

2. By expansion εL([e2/x]e1) = εL((λx.e1) e2), from which we
have εL(λx.e1) εL(e2) = [εL(e2)/x]εL(e1).

3. Directly from definition of the erasure function and induction
on expressions.

4. Directly from definition of the erasure function and induction
on expressions and evaluation contexts.

5. Directly from definition of the erasure function on stores and
property 3 above.

6. Directly from definition of the erasure function on configura-
tions and properties 3 and 5, above.

The next lemma establishes a simulation between −→ and
−→L for expressions that do not execute toLabeled.

Lemma 1 (Single-step simulation without toLabeled). If Γ ⊢ e :
τ and 〈Σ, e〉 −→ 〈Σ′, e′〉 where toLabeled is not executed, then
Γ ⊢ e′ : τ and εL(〈Σ, e〉) −→L εL(〈Σ

′, e′〉).

Proof. Part of the lemma shows subject reduction, which is proved
by showing that a reduction step does not change the types of
references in the store Σ.φ and then applying induction on the
typing derivations.

It remains then to show the simulation. For clarity, we omit
the environment in cases where it is not essential. Moreover, we
assume that Σ.lbl ⊑ L ⊑ Σ.clr, the proof for the case where
L is below the current label is straight forward since the εL erases
any expression in a configuration to a hole.

We show the simulation for several exemplary/interesting cases,
the remaining cases follow similarly.

◮ Case E[(λx.e1) e2] −→ E[[e2/x]e1]:

εL(E[(λx.e1) e2]) = εL(E)[εL((λx.e1) e2)]

= εL(E)[(λx.εL(e1)) εL(e2)]

−→L εL(εL(E)[[εL(e2)/x]εL(e1)])

= εL(εL(E))[εL([εL(e2)/x]εL(e1))]

= εL(E)[εL([εL(e2)/x]εL(e1))]

= εL(E)[[εL(e2)/x]εL(e1)]

= εL(E)[εL([e2/x]e1)] = εL(E[[e2/x]e1])

by Proposition 3.

◮ Case 〈Σ, E[return v]〉 −→ 〈Σ, E[(v)LIO]〉:
◮ Σ.lbl ⊑ L:

εL(〈Σ, E[return v]〉)

= 〈εL(Σ), εL(E[return v])〉

= 〈εL(Σ), εL(E)[return εL(v)]〉

−→L εL(〈εL(Σ), εL(E)[(εL(v))
LIO]〉)

= 〈εL(Σ), εL(E)[(εL(v))
LIO]〉

= 〈εL(Σ), εL(E)[εL((v)
LIO)]〉

= 〈εL(Σ), εL(E[(v)LIO])〉 = εL(〈Σ, E[(v)LIO]〉)

by definition of εL and Proposition 3.

◮ Σ.lbl 6⊑ L:

εL(〈Σ, E[return v]〉) = 〈εL(Σ), •〉

−→L εL(〈εL(Σ), •〉) = 〈εL(Σ), •〉 = εL(〈Σ, E[(v)LIO]〉)

by definition of εL and Proposition 3.

This illustrates the approach used to prove simulation of most
cases. Moreover, it shows the trivial case for Σ.lbl 6⊑ L.

◮ Case
Σ.lbl ⊑ l ⊑ Σ.clr

〈Σ, E[label l e]〉 −→ 〈Σ, E[return (Lb l e)]〉
:

◮ l ⊑ L:

εL(〈Σ, E[label l e]〉)

= 〈εL(Σ), εL(E)[label l εL(e)]〉

−→L εL(〈εL(Σ), εL(E)[return (Lb l εL(e))]〉)

= 〈εL(Σ), εL(E)[return (Lb l εL(e))]〉

= 〈εL(Σ), εL(E)[εL(return (Lb l e))]〉

= εL(〈Σ, E[return (Lb l e)]〉)

◮ l 6⊑ L:

εL(〈Σ, E[label l e]〉)

= 〈εL(Σ), εL(E)[label l εL(e)]〉

−→L εL(〈εL(Σ), εL(E)[return (Lb l εL(e))]〉)

= 〈εL(Σ), εL(E)[return (Lb l •)]〉

= 〈εL(Σ), εL(E)[εL(return (Lb l e))]〉

= εL(〈Σ, E[return (Lb l e)]〉)

◮ Case
l′ = Σ.lbl ⊔ l l′ ⊑ Σ.clr Σ′ = Σ[lbl 7→ l′]

〈Σ, E[unlabel (Lb l e)]〉 −→ 〈Σ′, E[return e]〉
:

◮ l ⊑ L:

εL(〈Σ, E[unlabel (Lb l e)]〉)

= 〈εL(Σ), εL(E[unlabel (Lb l e)])〉

= 〈εL(Σ), εL(E)[unlabel (Lb l εL(e))]〉

−→L 〈εL(εL(Σ
1)), εL(εL(E)[return (εL(e))])〉

= 〈εL(Σ
1), εL(E)[return εL(e)]〉

= 〈εL(Σ
1), εL(E)[εL(return e)]〉

= 〈εL(Σ
1), εL(E[return e])〉

= 〈εL(Σ
′), εL(E[return e])〉

= εL(〈Σ
′, E[return e]〉)

where εL(Σ
1) = εL(Σ[lbl 7→ l′]), and thus it directly

follows that εL(Σ
1) = εL(Σ

′).

◮ l 6⊑ L:

εL(〈Σ, E[unlabel (Lb l e)]〉)

= 〈εL(Σ), εL(E[unlabel (Lb l e)])〉

= 〈εL(Σ), εL(E)[unlabel (Lb l •)]〉

−→L εL(〈εL(Σ
1), εL(E)[return •]〉)

= 〈εL(εL(Σ
1)), •〉

= εL(〈Σ
′, E[return e]〉)

The last steps holds, as in the case of return, because
Σ′.lbl 6⊑ L and any term is erased to •. Similarly,
εL(Σ

1) = εL(Σ
′) follows as before.

◮ Case
Σ.lbl ⊑ l ⊑ Σ.clr Σ′ = Σ.φ[a 7→ Lb l e]

〈Σ, E[newRef l e]〉 −→ 〈Σ′, E[return a]〉
a fresh :

◮ l ⊑ L:

εL(〈Σ, E[newRef l e]〉)

= 〈εL(Σ), εL(E[newRef l e])〉

= 〈εL(Σ), εL(E)[newRef l εL(e)]

−→L 〈εL(εL(Σ
1)), εL(εL(E)[return εL(a)])〉

= 〈εL(Σ
1), εL(E[return a])〉

= εL(〈Σ
′, E[return a]〉)〉,

where εL(Σ
1) = εL(Σ).φ[a 7→ Lb l e], and so εL(Σ

1) =
εL(Σ

′) follows directly.

◮ l 6⊑ L: as above. However, in this case, εL(Σ
1) =

εL(Σ).φ[a 7→ Lb l •]. From εL(Σ
1).φ(a) = εL(Lb l •) =

εL(Lb l e) = εL(Σ
′).φ(a) it follows that εL(Σ

1) =
εL(Σ

′).

Using this lemma, we then show that the simulation is preserved
when performing several evaluation steps.

Lemma 2 (Simulation for expressions not executing toLabeled).
If Γ ⊢ e : τ , 〈Σ, e〉 −→∗ 〈Σ′, e′〉 where there are no executions of
toLabeled, then Γ ⊢ e′ : τ and εL(〈Σ, e〉) −→

∗
L εL(〈Σ

′, e′〉).

Proof. By induction on −→ and applying Lemma 1.

The reason for highlighting the distinction between expressions
executing toLabeled and those not executing it is due to the
fact that the evaluation of toLabeled involves big-step semantics
(recall rule (TOLAB) in Figure 4). However, the next lemma shows
the simulation between −→∗ and −→∗

L for any expression e.

Lemma 3 (Simulation). If Γ ⊢ e : τ and 〈Σ, e〉 −→∗ 〈Σ′, e′〉 then
εL(〈Σ, e〉) −→

∗
L εL(〈Σ

′, e′〉).

Proof. Lemma 2 shows the multi-step simulation for expressions
that do not execute toLabeled. Thus, to show the general multi-
step simulation we must first show that toLabeled preserves the
simulation. The general simulation follows directly.

The proof for the simulation of toLabeled follows by induc-
tion on the number of executed toLabeled. The base case consists
of a single toLabeled. Specifically, for a computation with a sin-
gle executed toLabeled, we have:

〈Σ, e〉 −→∗ 〈Σ′, e′〉,

that can be expanded into

〈Σ, e〉 −→∗ 〈Σ0, E[toLabeled l e0]〉

−→ 〈Σ1, E[label l v]〉 −→∗ 〈Σ′, e′〉,

where 〈Σ0, e0〉 −→∗ 〈Σ′
0, (v)

LIO〉. The expansion highlights the
first occurrence of a toLabeled, and so e0, and e′ do not have any
additional toLabeleds. Using this observation, it is clear that the
simulation of the base case follows directly by Lemma 2 and the
simulation of

Σ0.lbl ⊑ l ⊑ Σ0.clr 〈Σ0, e0〉 −→
∗ 〈Σ′

0, (v)
LIO〉

Σ′
0.lbl ⊑ l Σ′′

0 = Σ′
0[lbl 7→ Σ0.lbl, clr 7→ Σ0.clr]

〈Σ0, E[toLabeled l e0]〉 −→ 〈Σ′′
0, E[label l v]〉

for e0 with no toLabeled expressions. The simulation of the big
step in the premise follows from Lemma 2, while the simulation of
the conclusion is

εL(〈Σ0, E[toLabeled l (e0)
LIO]〉)

= 〈εL(Σ0), εL(E[toLabeled l (e0)
LIO])〉

= 〈εL(Σ0), εL(E)[toLabeled l (εL(e0))
LIO]〉

−→L 〈εL(εL(Σ
′′
0)), εL(εL(E)[label l εL(v)])〉

= 〈εL(Σ
′′
0), εL(E)[label l εL(v)]〉

= 〈εL(Σ
′′
0), εL(E[label l v])〉

= εL(〈Σ
′′
0, E[label l v]〉)

Correspondingly, the simulation of the 〈Σ1, E[label l v]〉 −→∗

〈Σ′, e′〉 step follows directly by Lemma 2.
Our inductive hypothesis states that the simulation of

〈Σ, e〉 −→∗ 〈Σ′, e′〉,

holds for the case where toLabeled is executed k times. With this
assumption, the simulation of

〈Σ, e〉 −→∗ 〈Σ′, e′〉,

with k + 1 toLabeled executions, follows in a similar manner to
the base case. Specifically, searching for the first toLabeled and
expanding, we have:

first big-step
︷ ︸︸ ︷

〈Σ, e〉 −→∗ 〈Σ0, E[

second big-step
︷ ︸︸ ︷

toLabeled l e0]〉 −→
∗ 〈Σ′, e′〉

where at most k toLabeleds could have been executed in the first
big-step, the inner computation e0, or the second big-step. The
simulation of all these execution steps follows by application of
the inductive hypothesis.

Figure 8 L-equivalence for expressions.

e ≈L e′ l ⊑ L

Lb l e ≈L Lb l e′
l 6⊑ L

Lb l e ≈L Lb l e′

We define L-equivalence between expressions. Intuitively, two
expressions are L-equivalent if they are syntactically equal, modulo
labeled values whose labels are above L. We use ≈L to represent
L-equivalence for expressions. Figure 8 shows the definition for
labeled values. Considering the simple lattice: L ⊑ M ⊑ H and an
attacker at level L, it holds that Lb H 8 ≈L Lb H 9, but it does not
hold that Lb L 2 ≈L Lb L 3 or Lb H 8 ≈L Lb M 8. Recall that labels
are protected by the current label, and thus (usually) observable by
an attacker — unlike the expressions they protect, labels must be
the same even if they are above L. The rest of ≈L is defined as syn-
tactic equality between constants (e.g., true ≈L true) or homo-
morphisms (e.g., if e then e1 else e2 ≈L if e′ then e′1 else e

′
2

if e ≈L e′, e1 ≈L e′1, and e2 ≈L e′2).
Since our language encompasses side-effecting expressions,

it is also necessary to define L-equivalence between memory
stores. Specifically, we say that two run-time environments are
L-equivalent if an attacker at level L cannot distinguish them:

Definition 3 (L-equivalence for stores).

l ⊑ L ∨ l′ ⊑ L ∀a.Σ.φ(a) = Lb l e ≈L Σ′.φ(a) = Lb l′ e′

Σ.φ ≈L Σ′.φ

Note that the L-equivalence ignores the store references with labels
above L. Similarly, we define L-equivalence for configurations.

Definition 4 (L-equivalence for configurations).

e ≈L e′ Σ.φ ≈L Σ′.φ
Σ.lbl = Σ′.lbl Σ.clr = Σ′.clr Σ.lbl ⊑ L

〈Σ, e〉 ≈L 〈Σ′, e′〉

Σ.φ ≈L Σ′.φ Σ.lbl 6⊑ L Σ′.lbl 6⊑ L

〈Σ, e〉 ≈L 〈Σ′, e′〉

In the above definition, it is worth remarking that we do not
require ≈L for expressions when the current label is not below L.
This omission comes from the fact that e and e′ would be reduced
to • when applying our simulation between −→∗ and −→∗

L (recall
Figure 7).

The next theorem shows the non-interference policy. It essen-
tially states that given two inputs with possibly secret information,
the result of the computation is indistinguishable to an attacker. In
other words, there is no information-flow from confidential data to
outputs observable by the attacker.

Theorem 1 (Non-interference). Given a computation e (with no •,
()LIO, or Lb) where Γ ⊢ e : Labeled ℓ τ → LIO ℓ (Labeled ℓ τ ′),
environments Σ1 and Σ2 where Σ1.φ = Σ2.φ = ∅, security label
l, an attacker at level L such that l ⊑ L, then

∀e1e2.(Γ ⊢ ei : Labeled ℓ τ)i=1,2

∧ (ei = Lb l e′i)i=1,2 ∧ 〈Σ1, e1〉 ≈L 〈Σ2, e2〉

∧ 〈Σ1, e e1〉 −→
∗ 〈Σ′

1, (Lb l1 e′′1)
LIO〉

∧ 〈Σ2, e e2〉 −→
∗ 〈Σ′

2, (Lb l2 e′′2)
LIO〉

⇒ 〈Σ′
1, Lb l1 e′′1〉 ≈L 〈Σ′

2, Lb l2 e′′2〉

Observe that even though we assume that the input labeled values
e1 and e2 are observable by the attacker (l ⊑ L), they might
contain confidential data. For instance, e1 could be of the form
Lb l (Lb l′ true) where l′ 6⊑ L.

Proof. From Lemma 3, for i = 1, 2, we have

εL(〈Σi, e (Lb l e′i)〉) −→
∗
L εL(〈Σ

′
i, (Lb li e

′′
i)

LIO〉)

First we highlight the observation that εL(〈Σ, e〉) = εL(〈Σ
′, e′〉) ⇒

〈Σ, e〉 ≈L 〈Σ′, e′〉. Note that the converse is not necessarily
true, since the stores may differ in the references with labels
above L. Then, from the determinacy of −→L, given in Propo-
sition 2, and since the starting environment configurations are the
same (observe that 〈Σ1, e (Lb l e′1)〉 ≈L 〈Σ2, e (Lb l e′2)〉 ⇒
εL(〈Σ1, e (Lb l e′1)〉) = εL(〈Σ2, e (Lb l e′2)〉) since Σ1.φ =
Σ2.φ = ∅), it must be that the end environment configurations also
be the same, i.e., εL(〈Σ

′
1, (Lb l1 e

′′
1)

LIO〉) = εL(〈Σ
′
2, (Lb l2 e

′′
2)

LIO〉).
The L-equivalence directly follows from the above observation.

For completeness, we detail the following cases:

◮ Case Σi.lbl 6⊑ L: We have

εL(〈Σi, e (Lb l e′i)〉) = 〈εL(Σi), •〉

−→∗
L 〈εL(Σ

′
i), •〉 = εL(〈Σ

′
i, (Lb li e

′′
i)

LIO〉).

From the determinacy of −→L, it must be that the end environ-
ment configurations are the same, from which it directly follows
that 〈Σ′

1, (Lb l1 e′′1)
LIO〉 ≈L 〈Σ′

2, (Lb l2 e′′2)
LIO〉.

◮ Case Σi.lbl ⊑ L ∧ Σ′
i.lbl 6⊑ L: We have

εL(〈Σi, e (Lb l e′i)〉) = 〈εL(Σi), εL(e) (Lb l εL(e
′
i))〉

−→∗
L 〈εL(Σ

′
i), •〉 = εL(〈Σ

′
i, (Lb li e

′′
i)

LIO〉).

As before, since the initial environment configurations are the
same, from the determinacy of −→L we end with the same
configuration, which directly corresponds to L-equivalence.

◮ Case Σi.lbl ⊑ L ∧ Σ′
i.lbl ⊑ L: We have

εL(〈Σi, e (Lb l e′i)〉) = 〈εL(Σi), εL(e) (Lb l εL(e
′
i))〉

−→∗
L 〈εL(Σ

′
i), (εL(Lb li e

′′
i))

LIO〉.

Regardless of whether li ⊑ L holds, from the determinacy of
−→L, it must be that εL(Σ

′
1) = εL(Σ

′
2) and εL(Lb l′ e′′1) =

εL(Lb l′ e′′2), for l′ = l1 = l2. If l′ ⊑ L then εL(Lb l′ e′′i) =
Lb l′ εL(e

′′
i), which implies εL(e

′′
1) = εL(e

′′
2) and therefore

〈Σ′
1, (Lb l1 e′′1)

LIO〉 ≈L 〈Σ′
2, (Lb l2 e′′2)

LIO〉. The L-equivalence
similarly holds if l′ 6⊑ L, in which case εL(Lb l′ e′′i) = Lb l′ •.

5.2 Confinement

In this section we present the formal guarantees that LIO computa-
tions cannot modify data below their current label and manipulate
information above their current clearance. These kind of properties
are similar to the ones found in [4, 24].

We start by proving that the current label of a LIO computation
does not decrease.

Proposition 4 (Monotonicity of the current label). If Γ ⊢ e : τ
and 〈Σ, e〉 −→∗ 〈Σ′, e′〉, then Σ.lbl ⊑ Σ′.lbl.

Proof. By induction on expressions, evaluation contexts, and re-
duction rules. Note that the premises of the rules in Figure 4, which
modify the current label, restrict the new current label to be at least
as great as the old current label.

Similarly, we show that the current clearance of a LIO computation
never increases.

Proposition 5 (Monotonicity of the current clearance). If Γ ⊢ e : τ
and 〈Σ, e〉 −→∗ 〈Σ′, e′〉, then Σ′.clr ⊑ Σ.clr.

Proof. The proof follows in a similar manner as that of Proposi-
tion 4. However, for the current clearance, we highlight that only
lowerClr modifies the clearance and its premise requires that the
new current clearance be at most equal to the old clearance.

Proposition 4 and 5 are crucial to assert that once a LIO com-
putation reads confidential data, it cannot lower its current label to
leak it. Similarly, a computation should not be able to arbitrarily in-
crease its clearance; doing so would allow it to read any data with
no access restrictions.

Before delving into the containment theorems, we first define a
store modifier that removes all store elements with a label above a
given label l:

Definition 5 (Label-based reference-cell removal).

(Σ.φ)↓l = Σ.φ \ {(a, Lb l′ e) : a ∈ dom (Σ.φ) ∧ l ⊑ l′}

(Σ.φ)↓l

In other words, this retains all the labeled references with a label
below l, usually the current label.

The first theorem states that LIO computations cannot create
labeled values, new locations or modify memory cells below their
current label (no-write down).

Theorem 2 (Containment imposed by the current label). Given
labels l, lc, and lv , a computation e (with no •, ()LIO, or Lb) where
Γ ⊢ e : Labeled ℓ τ → LIO ℓ (Labeled ℓ τ), environment
Σ[lbl 7→ l, clr 7→ lc] such that l ⊑ lc, and l 6⊑ lv .

Γ ⊢ e1 : Labeled ℓ τ

∧ e1 = Lb lv e′1 ∧ 〈Σ, e e1〉 −→
∗ 〈Σ′, (Lb lv e′′1)

LIO〉

⇒ (Σ.φ)↓l = (Σ′.φ)↓l ∧ e′1 = e′′1

Proof. From Proposition 4 and induction on expressions, evalua-
tion contexts and reduction rules. We stress the observation that
the computation terminates and thus all IFC restrictions posed as
premises to the reduction rules must be satisfied. Hence, if the com-
putation modifies the store by creating or writing to references la-
beled l′, it must be that l ⊑ l′ (recall (NREF) and (WREF)). Sim-
ilarly, if the computation includes a step that constructs a labeled
value with label l′ it must be that l ⊑ l′ (enforces by the (LAB) rule
which introduces labeled values). Moreover, we note that e′1 = e′′1
holds since the protecting label lv is below the current label l 6⊑ lv
and e cannot produce a labeled value having lv as the protecting
label.

The theorem simply states that the computation cannot allocate or
modify the store below l. Moreover the computation should only
be able to return a labeled value below its current label that was
provided as input, or by capture.

Dual to Theorem 2, the next theorem captures the fact that
LIO computations cannot compute on labeled values above their
clearance. In other words, LIO computations cannot create, read,
and write references or read and create contents for labeled val-
ues above the clearance (recall that references store labeled val-
ues). Again, we first define a store modifier; in this case, one that
removes all store elements below a given clearance as follows:

Definition 6 (Clearance-based reference-cell removal).

(Σ.φ)↑l = Σ.φ \ {(a, Lb l′ e) : a ∈ dom (Σ.φ) ∧ l′ ⊑ l}

(Σ.φ)↑l

In other words, this retains all the labeled references with a label
above l, usually the current clearance.

Theorem 3 (Containment imposed by clearance). Given labels
l, lc, and lv , a computation e (with no •, ()LIO, or Lb) where

Γ ⊢ e : Labeled ℓ τ → LIO ℓ (Labeled ℓ τ), environment
Σ[lbl 7→ l, clr 7→ lc] such that l ⊑ lc and lv 6⊑ lc,

Γ ⊢ e1 : Labeled ℓ τ

∧ e1 = Lb lv e′1 ∧ 〈Σ, e e1〉 −→
∗ 〈Σ′, (Lb lv e′′1)

LIO〉

⇒ (Σ.φ)↑lc = (Σ′.φ)↑lc ∧ e′1 = e′′1

Proof. From Proposition 5 and induction on expressions, evalua-
tion contexts and reduction rules. The proof follows in a manner
similar to the proof of Theorem 2. In this case, however, we high-
light that the premise of each rule that modifies the store or creates
labeled values with label l′ requires that l′ ⊑ lc, which is satis-
fied in every case since the computation does not get stuck. Dual
to Theorem 2, we note that e′1 = e′′1 holds because the protecting
label lv is above the current clearance lv 6⊑ lc and e cannot produce
a labeled value with lv .

6. Related Work

Heintze and Riecke [18] consider security for lambda-calculus
where lambda-terms are explicitly annotated with security labels,
for a type-system that guarantees non-interference. One of the
key aspects of their work consists of an operator which raises the
security annotation of a term in a similar manner to our raise of the
current label when manipulating labeled values. Similar ideas of
floating labels have been used by many operating systems, dating
back to the High-Water-Mark security model [22] of the ADEPT-
50 in the late 1960s. Asbestos [13] first combined floating labels
with the Decentralized label model [28].

Abadi et al. [1] develop the dependency core calculus (DCC)
based on a hierarchy of monads to guarantee non-interference. In
their calculus, they define a monadic type that “protects” (the con-
fidentiality of) side-effect-free values at different security levels.
Though not a monad, our Labeled type similarly protects pure
values at various security levels. To manipulate such values, DCC
uses a non-standard typing rule for the bind operator; the essence of
this operator, in a dynamic setting with side-effectful computations,
is captured in our library through the interaction of of Labeled,
unlabel, and LIO.

Tse and Zdancewic [36] translate DCC to System F and show
that non-interference can be stated using the parametricity the-
orem for System F. The authors also provide a Haskell imple-
mentation for a two-point lattice. Their implementation encodes
each security level as an abstract data type constructed from func-
tions and binding operations to compose computations with per-
mitted flows. Since they consider the same non-standard features
for the bind operation as in DCC, they provide as many defini-
tions for bind as different type of values produced by it. More-
over, their implementation needs to be compiled with the flag
-fallow-undecidable-instances, in GHC. Our work, in con-
trast, defines only one bind operation for LIO, without the need for
such compiler extensions.

Harrison and Hook show how to implement an abstract oper-
ating system called separation kernel [16]. Programs running un-
der this multi-threading operating system satisfy non-interference.
To achieve this, the authors rely on the state monad to represent
threads, monad transformers to present parallel composition, and
the resumption monad to achieve communication between threads.
Non-interference is then enforced by the scheduler implementation,
which only allow signaling threads at the same, or higher, security
level as the thread that issued the signal. The authors use mon-
ads differently from us; their goal is to construct secure kernels
rather than provide information-flow security as a library. Our li-
brary is simpler and more suitable for writing sequential programs
in Haskell. Extending our library to include concurrency is stated
as a future work.

Crary et al. [8] design a monadic calculus for non-interference
for programs with mutable state. Similar to our work, their lan-
guage distinguishes between term and expressions, where terms are
pure and expressions are (possibly) effectful computations. Their
calculus mainly tracks information flow by statically approximat-
ing the security levels of effects produced by expressions. Com-
pared to their work, we only need to make approximations of the
side-effects of a given computation when using toLabeled; the
state of LIO keeps track of the dynamic security level upper bound
of observed data. Overall, our dynamic approach is more flexible
and permissive than their proposed type-system.

Pottier and Simonet [30, 35] designed FlowCaml, a compiler to
enforce non-interference for OCaml programs. Rather than imple-
menting a compiler from scratch, and more similar to our approach,
the seminal work by Li and Zdancewic [25] presents an implemen-
tation of information-flow security as a library, in Haskell, using a
generalization of monads called Arrows [19]. Extending their work,
Tsai et al. [7] further consider side-effects and concurrency. Con-
tributing to library-based approaches, Russo et al. [31] eliminate
the need for Arrows by showing an IFC library based solely on
monads. Their library defines monadic types to track information-
flow in pure and side-effectful computations. Compared to our dy-
namic IFC library, Russo et al.’s library is slightly less permis-
sive and leverages Haskell’s type-system to statically enforce non-
interference. However, we note that our library has similar (though
dynamic) functions provided by their SecIO library; similar to
unlabel, they provide a function that maps pure labeled values
into side-effectful computations; similar to toLabeled, they pro-
vide a function that allows reading/writing secret files into compu-
tations related to public data.

Recently, Morgenstern et al. [27] encoded an authorization-
and IFC-aware programming language in Agda. Their encoding,
however, does not consider computations with side-effects. More
closely related, Devriese and Piessens [12] used monad transform-
ers and parametrized monads [3] to enforce non-interference, both
dynamically and statically. However, their work focuses on modu-
larity (separating IFC enforcement from underlying user API), us-
ing type-class level tricks that make it difficult to understand errors
triggered by insecurities. Moreover, compared to our work, where
programmers write standard Haskell code, their work requires one
to firstly encode programs as values of a specific type.

Compared to other language-based works, LIO uses the notion
of clearance. Bell and La Padula [5] formalized clearance as a
bound on the current label of a particular users’ processes. In the
1980s, clearance became a requirement for high-assurance secure
systems purchased by the US Department of Defense [11]. More
recently, HiStar [39] re-cast clearance as a bound on the label of
any resource created by the process (where raising a process’s label
is but one means of creating a something with a higher label). We
adopt HiStar’s more stringent notion of clearance, which prevents
software from copying data it cannot read and facilitates bounding
the time during which possibly untrustworthy software can exploit
covert channels.

7. Conclusion

We propose a new design point for IFC systems in which most
values in lexical scope are protected by a single, mutable, current
label, yet one can also encapsulate and pass around the results of
computations with different labels. Unlike other language-based
work, our model provides a notion of clearance that imposes an
upper bound on the program label, thus providing a form of discre-
tionary access control on portions of the code.

We prove information flow and integrity properties of our de-
sign and describe LIO, an implementation of the new model in
Haskell. LIO, which can be implemented entirely as a library

(based on type safety), demonstrates both the applicability and
simplicity of the approach. Our non-interference theorem proves
the conventional property that lower-level results do not depend on
higher-level inputs – the label system prevents inappropriate flow
of information. We also prove containment theorems that show
the effect of clearance on the behavior of code. In effect, lower-
ing the clearance imposes a discretionary form of access control
by preventing subsequent code (within that scope) from accessing
higher-level information.

As an illustration of the benefits and expressive power of this
system, we describe a reviewing system that uses LIO labels to
manage integrity and confidentiality in an environment where users
and labels are added dynamically. Although we have use LIO for
the λChair API and even built a relatively large web-framework
that securely integrates untrusted third-party applications, we be-
lieve that changes in the constructs are likely to occur as the lan-
guage matures. This further supports our library-based approach to
language-based security.

An interesting future work consists on extending our library
to handle concurrency. Enforcement mechanisms for sequential
programs do not generalize naturally to multithreaded programs.
In this light, it is hardly surprising that Jif [29], the mainstream
IFC compiler, lack support for multithreading. Due to the monadic
structure of LIO programs, we believe it is possible to extend our
library to consider concurrency, that addresses termination [2] and
internal-timing leaks [38].

Acknowledgments

We thank Alex Aiken and the anonymous reviewers for their in-
sightful comments. This work was funded by DARPA (CRASH and
PROCEED), NSF (including a Cybertrust award and the TRUST
Center), the Air Force Office of Scientific Research, the Office of
Naval Research, and the Swedish research agency VR.

References
[1] M. Abadi, A. Banerjee, N. Heintze, and J. Riecke. A Core Calculus

of Dependency. In Proc. ACM Symp. on Principles of Programming

Languages, pages 147–160, January 1999.

[2] Aslan Askarov, Sebastian Hunt, Andrei Sabelfeld, and David Sands.
Termination-insensitive noninterference leaks more than just a bit. In
Proc. of the 13th European Symp. on Research in Computer Security,
pages 333–348. Springer-Verlag, 2008.

[3] Robert Atkey. Parameterised notions of computation. In Workshop

on mathematically structured functional programming, ed. Conor

McBride and Tarmo Uustalu. Electronic Workshops in Computing,
British Computer Society, pages 31–45, 2006.

[4] A. Banerjee and D.A. Naumann. Stack-based access control and
secure information flow. Journal of Functional Programming,
15(02):131–177, 2005.

[5] David E. Bell and Leonard La Padula. Secure computer system:
Unified exposition and multics interpretation. Technical Report MTR-
2997, Rev. 1, MITRE Corp., Bedford, MA, March 1976.

[6] K. J. Biba. Integrity considerations for secure computer systems. ESD-
TR-76-372, 1977.

[7] Ta chung Tsai, A. Russo, and J. Hughes. A library for secure multi-
threaded information flow in Haskell, July 2007.

[8] Karl Crary, Aleksey Kliger, and Frank Pfenning. A monadic analysis
of information flow security with mutable state. Journal of Functional

Programming, 15:249–291, March 2005.

[9] Dorothy E. Denning. A lattice model of secure information flow.
Communications of the ACM, 19(5):236–243, May 1976.

[10] Dorothy E. Denning and Peter J. Denning. Certification of programs
for secure information flow. Communications of the ACM, 20(7):504–
513, 1977.

[11] Department of Defense. Trusted Computer System Evaluation Criteria

(Orange Book), DoD 5200.28-STD edition, December 1985.

[12] Dominique Devriese and Frank Piessens. Information flow enforce-
ment in monadic libraries. In Proc. of the 7th ACM SIGPLAN Work-

shop on Types in Language Design and Implementation, New York,
NY, USA, 2011. ACM.

[13] Petros Efstathopoulos, Maxwell Krohn, Steve VanDeBogart, Cliff
Frey, David Ziegler, Eddie Kohler, David Mazières, Frans Kaashoek,
and Robert Morris. Labels and event processes in the Asbestos oper-
ating system, October 2005.

[14] Mattias Felleisen. The theory and practice of first-class prompts. In
Proc. of the 15th ACM SIGPLAN-SIGACT Symp. on Principles of

programming languages, pages 180–190. ACM, 1988.

[15] J.A. Goguen and J. Meseguer. Security policies and security models,
April 1982.

[16] William L. Harrison. Achieving information flow security through
precise control of effects. In In 18th IEEE Computer Security Foun-

dations Workshop, pages 16–30. IEEE Computer Society, 2005.

[17] D. Hedin and David Sands. Noninterference in the presence of non-
opaque pointers. In Proc. of the 19th IEEE Computer Security Foun-
dations Workshop. IEEE Computer Society Press, 2006.

[18] N. Heintze and J. G. Riecke. The SLam calculus: programming
with secrecy and integrity. In Proc. ACM Symp. on Principles of
Programming Languages, pages 365–377, January 1998.

[19] J. Hughes. Generalising monads to arrows. Science of Computer

Programming, 37(1–3):67–111, 2000.

[20] Sebastian Hunt and David Sands. On flow-sensitive security types.
In Conference record of the 33rd ACM SIGPLAN-SIGACT Symp. on

Principles of programming languages, POPL ’06, pages 79–90. ACM,
2006.

[21] Maxwell Krohn, Alexander Yip, Micah Brodsky, Natan Cliffer,
M. Frans Kaashoek, Eddie Kohler, and Robert Morris. Information
flow control for standard OS abstractions, October 2007.

[22] Carl E. Landwehr. Formal models for computer security. Computing

Survels, 13(3):247–278, September 1981.

[23] J. Launchbury. A natural semantics for lazy evaluation. In Proc. of the

20th ACM SIGPLAN-SIGACT Symp. on Principles of programming

languages, pages 144–154. ACM, 1993.

[24] X. Leroy and F. Rouaix. Security properties of typed applets. In
Proc. of the 25th ACM SIGPLAN-SIGACT Symp. on Principles of

programming languages, pages 391–403. ACM, 1998.

[25] P. Li and S. Zdancewic. Encoding Information Flow in Haskell. In
CSFW ’06: Proc. of the 19th IEEE Workshop on Computer Security

Foundations. IEEE Computer Society, 2006.

[26] P. Li and S. Zdancewic. Arrows for secure information flow. Theoret-
ical Computer Science, 411(19):1974–1994, 2010.

[27] Jamie Morgenstern and Daniel R. Licata. Security-typed program-
ming within dependently typed programming. In Proc. of the 15th

ACM SIGPLAN International Conference on Functional Program-

ming, ICFP ’10. ACM, 2010.

[28] Andrew C. Myers and Barbara Liskov. A decentralized model for in-
formation flow control. In Proc. of the 16th ACM Symp. on Operating

Systems Principles, pages 129–142, 1997.

[29] Andrew C. Myers and Barbara Liskov. Protecting privacy using
the decentralized label model. ACM Trans. on Computer Systems,
9(4):410–442, October 2000.

[30] F. Pottier and V. Simonet. Information flow inference for ML. In
Proc. ACM Symp. on Principles of Programming Languages, pages
319–330, January 2002.

[31] Alejandro Russo, Koen Claessen, and John Hughes. A library for
light-weight information-flow security in Haskell, 2008.

[32] Alejandro Russo and Andrei Sabelfeld. Dynamic vs. static flow-
sensitive security analysis. In Proc. of the 2010 23rd IEEE Computer

Security Foundations Symp., CSF ’10, pages 186–199. IEEE Com-
puter Society, 2010.

[33] A. Sabelfeld and A. Russo. From dynamic to static and back: Riding
the roller coaster of information-flow control research. In Proc. Andrei

Ershov International Conference on Perspectives of System Informat-

ics, June 2009.

[34] Andrei Sabelfeld and Andrew C. Myers. Language-based information-
flow security. IEEE Journal on Selected Areas in Communications,
21(1), January 2003.

[35] V. Simonet. The Flow Caml system. Software release. Located at
http://cristal.inria.fr/~simonet/soft/flowcaml/, July
2003.

[36] S. Tse and S. Zdancewic. Translating dependency into parametricity.
In Proc. of the Ninth ACM SIGPLAN International Conference on

Functional Programming. ACM, 2004.

[37] Steve VanDeBogart, Petros Efstathopoulos, Eddie Kohler, Maxwell
Krohn, Cliff Frey, David Ziegler, Frans Kaashoek, Robert Morris,
and David Mazières. Labels and event processes in the Asbestos
operating system. ACM Trans. on Computer Systems, 25(4):11:1–43,
December 2007. A version appeared in Proc. of the 20th ACM Symp.
on Operating System Principles, 2005.

[38] D. Volpano and G. Smith. Probabilistic noninterference in a concur-
rent language. J. Computer Security, 7(2–3), November 1999.

[39] Nickolai Zeldovich, Silas Boyd-Wickizer, Eddie Kohler, and David
Mazières. Making information flow explicit in HiStar, November
2006.

[40] Nickolai Zeldovich, Silas Boyd-Wickizer, and David Mazières. Se-
curing distributed systems with information flow control, April 2008.

A. Erasure function

In this section we define the erasure function εL, introduced in
Section 5 for the remaining expressions (Figure 9) and evaluation
contexts (Figure 10).

Figure 9 Erasure function for expressions.

εL(e e) = εL(e) εL(e) εL(πi e) = πi εL(e)

εL(if e then e else e) = if εL(e) then εL(e) else εL(e)

εL(let x = e in e) = let x = εL(e) in εL(e)

εL(return e) = return εL(e)

εL(e >>= e) = εL(e) >>= εL(e)

εL(label e e) = label εL(e) εL(e)

εL(unlabel e) = unlabel εL(e)

εL(toLabeled e e) = toLabeled εL(e) εL(e)

εL(newRef e e) = newRef εL(e) εL(e)

εL(readRef e) = readRef εL(e)

εL(writeRef e e) = writeRef εL(e) εL(e)

εL(lowerClr e) = lowerClr εL(e)

εL(getLabel) = getLabel

εL(getClearance) = getClearance

εL(labelOf e) = labelOf εL(e)

εL(labelOfRef e) = labelOfRef εL(e)

Figure 10 Erasure function for evaluation contexts.

εL(Lb E e) = Lb εL(E) εL(e) εL(E e) = εL(E) εL(e)

εL(πi E) = πi εL(E)

εL(if E then e else e) = if εL(E) then εL(e) else εL(e)

εL(return E) = return εL(E)

εL(E >>= e) = εL(E) >>= εL(e)

εL(label E e) = label εL(E) εL(e)

εL(unlabel E) = unlabel εL(E)

εL(toLabeled E e) = toLabeled εL(E) εL(e)

εL(newRef E e) = newRef εL(E) εL(e)

εL(readRef E) = readRef εL(E)

εL(writeRef E e) = writeRef εL(E) εL(e)

εL(lowerClr E) = lowerClr εL(E)

εL(labelOf E) = labelOf εL(E)

εL(labelOfRef E) = labelOfRef εL(E)

