
1

Implementing Erasure Policies
Using Taint Analysis

Filippo Del Tedesco, Alejandro Russo, and David Sands

Chalmers University of Technology, Göteborg, Sweden
{tedesco,russo,dave}@chalmers.se

Abstract. Security or privacy-critical applications often require access to sensi-
tive information in order to function. But in accordance with the principle of least
privilege – or perhaps simply for legal compliance – such applications should
not retain said information once it has served its purpose. In such scenarios the
timely disposal of data is known as an information erasure policy. This paper
studies software-level information erasure policies for the data manipulated by
programs. The paper presents a new approach to the enforcement of such policies.
We adapt ideas from dynamic taint analysis to track how sensitive data sources
propagate through a program and erase them on demand. The method is imple-
mented for Python as a library, with no modifications to the runtime system. The
library is easy to use, and allows programmers to indicate information-erasure
policies with only minor modifications to their code.

1 Introduction
Sensitive or personal information is routinely required by computer systems for various
legitimate tasks: online credit card transaction may handle a card number and related
verification data, or a biometric-based authentication system may process a fingerprint.
Such systems often operate under informal constraints concerning the handling of sen-
sitive data: once the data has served its purpose, it must not be retained by the system.

The notion of erasure studied in this paper is much higher-level than the system-
level and physical notions of data erasure which might involve, e.g. ensuring that caches
are flushed and that hard-drives are overwritten sufficiently often to eradicate magnetic
traces of data. The approach to program-based high-level erasure stems from the work
of Chong and Myers [3]. That work and its subsequent developments deal with a notion
of erasure which is relative to a multilevel security lattice [7]. For the purpose of this
paper we will not consider this extra dimension – so we view data as either available or
erased.

In this paper, we present a new approach to the enforcement of information-erasure
policies on programs which adapts concepts from dynamic taint analysis.

1.1 Language-based Erasure

Our approach for information-erasure has several key features:

• it is a purely dynamic mechanism,
• it is based on taint analysis, and
• it is realised completely as a Python library.

Draft submitted for review.

2 Filippo Del Tedesco, Alejandro Russo, and David Sands

To see the benefits of these features, it is useful to consider previous work on erasure
in the context of a simple erasure scenario (one which we will further elaborate upon
in Section 3): a fingerprint-activated left-luggage locker of the kind that is increasingly
common at US airports and amusement parks. When depositing a bag, a fingerprint
scan is recorded. The locker can only be opened with the same fingerprint that locked
it. From a privacy perspective, there is a clear motivation for an erasure policy: the
fingerprint (and any information derived from it) should be erased once a locker has
been reopened.

Hunt and Sands [12] described the first approach to the enforcement of Chong-
Myers-style erasure properties, reemphasizing two key features missing from [3]: the
ability to associate erasure policies with IO (clearly needed in our erasure scenario),
and a way to verify that a program correctly erases data by a purely static analysis
(a type system). There are two key limitations in Hunt & Sands’s approach. Firstly,
in order to obtain a clean semantic model, the authors consider a restricted form of
erasure policy which is specified in the code in the form: “the value received at this
input statement must be erased by the end of the code block which follows it”. This
is suitable for the simple locker scenario (which is problematic for other reasons) but
unsuitable for more complex conditional policies of the kind discussed by Chong and
Myers. Secondly, the idea is only elaborated for a toy language. Scaling up to a real
language is a nontrivial task for such a static analysis, and would require, among other
things, a full alias analysis.

Chong and Myers [5] independently considered the problem of enforcing erasure
policies and developed a hybrid static-dynamic approach. In their approach, data is
associated with conditional erasure properties which state that data must be erased at
the point when some (in principle arbitrary) condition becomes true. An implementation
extending the Jif system uses a simple form of condition variables for this purpose [4].
To support such rich policies, they assume a combination of a static analysis and a
runtime monitor. The static analysis ensures that all program variables are labeled with
consistent policies. For example, if variable x is copied to y and x’s policy says that
it should be erased at some condition c, then the policy for y should be at least as
demanding. It is then the job of the run-time system to detect when conditions become
true, and implement the erasure on the behalf of the programmer (by overwriting all
variables with a dummy value).

Neither of these approaches can satisfactorily handle the simple lock scenario (and
certainly not the more complex variants we will consider later in this paper). The ap-
proach described in [5, 4] does not consider input at all, but only one-time erasure of
variables – although this is arguably not a fundamental limitation. More fundamentally,
both approaches use a semantic notion of erasure which is based on a strict information-
flow property. In this example (and many others), there is a small amount of information
which is inevitably “retained” by the system, namely the fact that the fingerprint used to
unlock matches the fingerprint used to lock. Although the Chong-Myers approach in-
cludes declassification, declassification is not what is needed here, but an erasure dual:
we need the ability to selectively ignore some information. One might call delimited
retention to such dual by analogy with delimited release.

Erasure Policies - Taint Analysis 3

1.2 Overview

In the remainder of this paper we outline our alternative approach. We adopt the idea of
dynamic taint tracking which is familiar from languages like Perl [1] and a number of
recent pragmatic information-flow analysis tools [10, 13, 14, 8, 21]: a specific piece of
data which is scheduled for erasure is labeled (“tainted”). As computation proceeds, the
labels are tracked through the system (“taint propagation”). When it is time to erase the
data, we can locate all the places to which the data has propagated and thereby erase all
of them.

Taint analysis has the well-known disadvantage that it does not track all information
flows; in particular the information flows which result purely from control-flow are not
captured. This makes the approach unsuitable for malicious code. See Section 2.3 for
more details on taint analysis.

By performing a dynamic analysis, we obtain a system that is able to deal with
complex conditional-erasure conditions. Furthermore, the information-flow shortcom-
ings of taint analysis can be turned to our advantage: when implicit information flows
[7] are ignored, then the need for yet-more-complex policy languages including some
form of delimited retention seem to be unnecessary.

Finally, by building on [6], we are able to implement erasure enforcement for an
existing widely-used programming language (Python) simply by providing a library,
with no modification of the language runtime system and no special purpose compiler
needed.

The programmer interface to the library does not require the program to be written
in a particular style or using particular data structures, so in principle, it can be applied
to existing code with minimal modifications.

The API for the library is particularly simple (Section 2) and its implementation
builds on two well-known techniques from object-oriented programming and security,
namely delegation [15] (Section 2.1) and taint analysis (Section 2.3). To use the library
the programmer must identify erasure sources – in the case of the simple locker exam-
ple, it is the input function which returns the fingerprint. Then, the programmer must
mark in the code the point at which a given value must be erased. This allows the library
to trace the origins of a given value and erase all its destination values (Section 2.4).

Section 3 illustrates the use of the library with an extended example based on the
locker scenario, but with more involved policies.

In addition, we explore a new lazy form of erasure (Section 4). This form of erasure
is triggered “just in time” at the points where data would otherwise escape the system
and observably break the intended erasure policy. The advantage of lazy erasure is that
it is able to easily express rich conditional-erasure policies, including those involving
time constraints (e.g. “erase credit card numbers more than one week old”). Additional
related work is described in Section 5.

2 The Erasure Library
This section presents the library to introduce information erasure policies into pro-
grams. Both its source code and the examples we are using in this paper are publicly
available at http://www.cse.chalmers.se/˜russo/erasure.

The library API essentially consists of three functions:

4 Filippo Del Tedesco, Alejandro Russo, and David Sands

erasure_source(f) is used to mark that values produced by function f might
eventually be erased. Henceforth, we will say that such values are erasure-aware.

In the locker scenario, suppose that a fingerprint data is returned by the function call
getFingerprint(). Then, the programmer might declare (prior to any computation):
getFingerprint = erasure_source(getFingerprint)

As an alternative, if the code for the definition of getFingerprint() is available
Python’s decorator syntax can be used to obtain the same effect:
@erasure_source
def getFingerprint() :
body of definition ...

erasure(v) erases all erasure-aware data which was directly used in the computa-
tion of value v. The effect is to overwrite the data with a default value. For example, if a
locker is locked with a fingerprint stored in a variable of the same name, then the code
for the locked state might be:
while locked
tryprint = getFingerprint() # get attempt
locked = not(match(tryprint,fingerprint)) # unlock?
erasure(tryprint) # erase attempt

erasure(fingerprint) # now unlock

A simple variant erasure() erases all erasure-aware data (strings and numbers), and
any data computed from them.

retain(f) provides an escape-hatch for erasure. It declares that the result of func-
tion f does not need to be erased. We say that f is a retainer. It corresponds to declaring
an escape hatch in delimited release, or a sanitisation function in a taint analysis. In the
example above, we might declare match as a retainer:
match = retain(match)

We illustrate the effect of the library with the Python commands executed in an
interactive session1 in the left hand display of Figure 1. Here, the symbol >>> is the
interpreter prompt, and raw_input is the built-in function that reads a line from the
standard input.

In the session to the left, line 1 gets the string ’A’ as an input and stores it in variable
x. Then, variable x is used in two elements of list y. Naturally, when printing the list,
we can observe that the second element is x and the third one is some data derived from
x, i.e. x concatenated with itself.

Now, let us consider a replay of this session in which the programmer wants to
delete the information related to the input x after list y is printed once, which consti-
tutes an information erasure policy. To achieve that, the programmer needs to import our
library, indicate that function raw_input returns erase-aware values, and call function
erasure before printing the list for the second time. This revised session is illustrated
on the right of Figure 1. Observe that erasure removes data related to x. It is worth

1 We use Python 2.7 for this work. However, our techniques can also be applied to previous
releases.

Erasure Policies - Taint Analysis 5

1 >>> x=raw_input()
2 A
3 >>> y=[’E’,x, x+x]
4 >>> y
5 [’E’,’A’,’AA’]

1 >>> from erasure import *
2 >>> raw_input=erasure_source(raw_input)
3 >>> x=raw_input()
4 A
5 >>> y=[’E’,x,x+x]
6 >>> y
7 [’E’,’A’,’AA’]
8 >>> erasure(x)
9 >>> y
10 [’E’,’’,’’]

Fig. 1. Example interactive sessions, without and with erasure

noting that the core part of the program has not drastically changed in order to intro-
duce an information erasure policy. The next subsections provide some insights into the
implementation of the library.

2.1 Delegation

In Python, numbers and strings are immutable. Consequently, values of that type cannot
be changed in-place after their creation. For instance, every string operation is defined
to produce a new string as a result. Having immutable strings goes against the nature of
erasure, since removing information stored in a string implies in-place overwriting of
its contents by, for instance, the empty string. By using a coding pattern usually known
as delegation, the library carefully implements a mechanisms that allows the value of a
string to be changed as shown by lines 6 and 9 in Figure 1.

1 >>> x=Erasure(’A’)
2 >>> type(x)
3 <type ’instance’>
4 >>> x
5 ’A’
6 >>> y=x+x
7 >>> type(y)
8 <type ’instance’>
9 >>> y

10 ’AA’
11 >>> x.erase()
12 >>> y.erase()
13 >>> (x,y)
14 (’’, ’’)

Fig. 2. Mutable strings

Delegation is a composite-based structure that man-
ages a wrapped object and propagates method calls to it.
In our library, it is implemented by the class Erasure

, which wraps an immutable object. Most of the method
calls on that class are forwarded to the wrapped object. The
forwarding mechanism assures that the results of methods
calls are also wrapped by the class Erasure. By doing so,
the only reference to the wrapped immutable object is done
by a field on the class Erasure. As a result, it is possible
to encode mutable strings by simply using delegation. To
illustrate how it works, we present an example in Figure 2.
Line 1 creates an object of the class Erasure that contains
the immutable string ’A’. Observe that line 3 indicates that
it is indeed an object and not a string. Line 6 calls the con-
catenation method on the object x, which is forwarded to
the concatenation method of the string ’A’. The result of

that, the immutable string ’AA’, is wrapped by a new object of the class Erasure and
stored in y. Class Erasure provides the method erase to perform the concrete action
of overwriting, with a default value, the class field where the immutable object is stored
(see Lines 11–12). Consequently, the wrapped objects have now become the empty
strings. The previous immutable objects, ’A’ and ’AA’, are no longer referenced and
thus will be garbage collected on due course. Programmers are not supposed to deal

6 Filippo Del Tedesco, Alejandro Russo, and David Sands

with the class Erasure directly (observe that it is not in the interface of the library).
Determining what data must be wrapped by the class Erasure is tightly connected to
what information must be erasure-aware. The next two subsections describe the internal
use of Erasure by the different mechanisms of the library.

2.2 The primitive erasure_source

Erasure policies are expected to be only applied on a data source (i.e. an input) [12].
In fact, it does not make too much sense to erase information known at compile-time
(e.g. global constants, function declarations, etc). In this light, the library provides the
primitive erasure_source to indicate those sources of erase-aware values. More tech-
nically, the argument of erasure_source is a function, and the effect is to wrap the
immutable values returned by function using the class Erasure. As an example, we
have the following sequence of commands:

1 >>> from erasure import *
2 >>> raw_input=erasure_source(raw_input)
3 >>> x=raw_input()
4 A
5 >>> type(x)
6 <type ’instance’>

Note that lines 1–3 are the
same as the ones in Figure 1.
In this case, the string ’A’, re-
turned by calling raw_input

, is wrapped into an object of
the class Erasure. As shown
in Figure 1, users might want

to delete a given input value as well as information computed from it. Therefore, the
library must be able to automatically call the method erase on a given input as well as
any piece of data computed from it. In order to do that, the library keeps track of how
erasure-aware values flow inside programs by using taint analysis.

2.3 Taint analysis

Taint analysis is an automatic approach to find vulnerabilities in applications. Intu-
itively, taint analysis keeps track how tainted (untrustworthy) data flow inside programs
in order to constrain data to be untainted (trustworthy), or sanitised, when reaching
sensitive sinks (i.e. security critical operations). Perl was the first scripting language
to provide taint analysis as an special mode of the interpreter called taint mode [2].
Similar to Perl, some interpreters for Ruby [23], PHP [17], and Python [14] have been
carefully modified to provide taint modes. Rather than modifying the interpreter, Conti
and Russo [6] show how to provide a taint mode via a library in Python.

There is a clear connection between the use of taint analysis for finding vulnerabili-
ties and the problem of implementing an erasure policy. In taint analysis, data computed
from untrustworthy values is tainted. In our library, data that is computed from erasure-
aware values is erasure-aware. With this in mind, and inspired by Conti and Russo’s
work, we implement a mechanism to perform taint propagation, i.e. how to mark as
erasure-aware data that is computed from other erasure-aware values. From now on, we
use taint and erasure-aware as interchangeable terms.

As described in the motivating example, erasure policies intrinsically refer to some
input in the program. Consequently, to enforce erasure policies, it is necessary to iden-
tify specific inputs. Our library associates a timestamp to each input, representing the
date and time at which the data was provided. Timestamps are stored in the attribute
tstamps of the class Erasure. Thus, the assignment f = erasure_source(f)makes

Erasure Policies - Taint Analysis 7

the result of f erasure aware, and in addition it ensures that each value produced by f

is (uniquely) timestamped. As an example, consider the following session:

1 >>> raw_input=erasure_source(raw_input)
2 >>> x=raw_input()
3 A
4 >>> x.tstamps
5 set([datetime.datetime(2010, 7, 3, 14, 13, 49, 21585)])

Lines 1–3 are the same as in Figure 1. Line 5 shows the timestamps corresponding to
the input that variable x depends on. The content of x.tstamps is the date and time
when the input in line 3 was provided (2010–7–3 at 14:13:49 and some microseconds).

When erasure-aware values are involved in computations, taint information (i.e.
timestamps) gets propagated. More specifically, newly created erasure-aware objects
are associated to the set of timestamps obtained by merging the timestamps found in the
different objects involved in the computation. Taint propagation is implemented inside
the delegation mechanism of the class Erasure and it is performed after forwarding
method calls for a given object. To illustrate how the mechanism works, we present the
following example:

1 >>> raw_input=erasure_source(raw_input)
2 >>> x=raw_input()
3 A
4 >>> x.tstamps
5 set([datetime.datetime(2010, 7, 3, 14, 13, 49, 21585)])
6 >>> y=raw_input()
7 B
8 >>> y.tstamps
9 set([datetime.datetime(2010, 7, 3, 14, 13, 56, 324137)])

10 >>> z=x+y
11 >>> z.tstamps
12 set([datetime.datetime(2010, 7, 3, 14, 13, 49, 21585), datetime.

datetime(2010, 7, 3, 14, 13, 56, 324137)])

Lines 1–9 show how two different inputs are assigned to different timestamps. Line 10
combines two inputs (x and y) in order to create a new value, which is stored in z.
Line 11–12 illustrates that taint propagation is performed and that the set of timestamps
associated to z are those corresponding to the inputs x and y. At this point, the reader
might wonder why timestamps are used rather than a simple input-event counter. By
using timestamps, we will be able to program temporal erasure policies (Section 4).

Explicit and implicit flows On most situations, taint analysis propagates taint informa-
tion on assignments. Intuitively, when the right-hand side of an assignment uses tainted
values, the variable appearing on the left-hand side becomes tainted. In fact, taint anal-
ysis is just a mechanism to track explicit flows, i.e. direct flows of information from one
variable to another. Taint analysis tends to ignore implicit flows [7], i.e. flows through
the control-flow constructs of the language.

Figure 3 presents an implicit flow where variable x is erasure-aware.

8 Filippo Del Tedesco, Alejandro Russo, and David Sands

1 if x == ’A’:
2 isA=True
3 else:
4 isA=False
5 erasure(x)

Fig. 3. An implicit flow

Observe that variable isA is not erasure-aware. In fact, it is
built from untainted Boolean constants. Although the value
of x is erased (Line 5), information about x is still present
in the program, i.e. the program knows if x referred to
’A’. It is not difficult to imagine programs that circumvent
the taint analysis by copying the content of erasure-aware
strings into regular strings by using implicit flows[19]. In
scenarios where attackers have full control over the code

(e.g. when the code is potentially malicious), implicit flows present an effective way to
circumvent the taint analysis. There is a large body of literature on the area of language-
based security regarding how to track implicit flows [20]. In this work, we only track
explicit flows, and thus our method is only useful for code which is written without
malice. Despite the good intentions and experience of programmers, some pieces of
code might not perform erasure of information as expected. For example, a program-
mer might forget to overwrite a variable that is used to temporarily store some sensitive
information. In this case, taint analysis certainly helps to repair such errors or omissions.
How much information are implicit flows able to retain in non-malicious code? As it has
been argued for taint analysis [19], we argue that implicit flows are unlikely to account
for a large volume of unintended data retention. The reason is that data retention relies
on the non-malicious programmer writing more involved and rather unnatural code in
order to, for instance, copy tainted (erasure-aware) strings into untainted ones [19]. In
contrast, to produce explicit flows, programmers simply need to forget to remove the
content of a variable.

2.4 Erasing data

The taint analysis described above allows the library to determine, given a value, which
erasure-aware inputs were used to create it. These inputs are identified by a set of time-
stamps. To perform erasure, however, the library must take these timestamps and track
down all primitive values which are built from those inputs (c.f. line 8 in Figure 1). To
track which erasure-aware values depend on which inputs, the library internally main-
tains a dependency table. The table maps each timestamp to the set of (references to)
erasure-aware values – i.e. objects of the class Erasure. If timestamp t is mapped to
objects a and b, it means that the only values in the program created by the input value
provided at time t are a and b. The dependency table is extended each time an erasure-
aware input value is generated. It is updated when erasure-aware values are formed from
already existing ones. Primitive erasure_source and the taint propagation mecha-
nism are responsible for properly updating the dependency table. Primitive erasure(
v), which performs the actual erasure of data, can be then easily implemented. More

precisely, calling erasure(v) triggers the method erase (recall Figure 2) on all the
objects which depend on the timestamps associated to v. As a result, erasure-aware val-
ues derived from the same inputs as v are erased from the program. Similarly, calling
erasure() triggers the method erase on every object in the dependency table.

3 Extended Example
In this section, we present an elaboration of the fingerprint-based locker scenario de-
scribed in the introduction.

Erasure Policies - Taint Analysis 9

1 def lockerSystem():
2 while(True):
3 print ’Welcome to the locker system’
4 fingerprint=getFingerprint()
5 ts=datetime.today()
6 if fingerprint in ADM:
7 log.add(’MEMORY DUMP -->’+fingerprint+’: ’+str(ts))
8 dump(log.getLog())
9 else:

10 suspect=local_police.check(fingerprint)
11 h = hash(fingerprint)
12 if locker.isFree():
13 key = h
14 locker.occupied()
15 print ’Please, do not forget to retrive your goods’
16 log.add(’LOCKED -->’+fingerprint+’: ’+str(ts))
17 else:
18 if key == h:
19 locker.free()
20 print ’Thanks for using the service’
21 log.add(’UNLOCKED -->’+fingerprint+’: ’+str(ts))
22 else:
23 print ’You are not the right owner’
24 log.add(’INVALID ACCESS -->’+fingerprint+’: ’+str(ts))

Fig. 4. Locker system

To give a fuller illustration of the capabilities of our approach, we add some extra
functionalities to the locker system which are likely to be found in a real implementa-
tion. Firstly, the system is able to keep track of events in a log that a group of special
users, called administrators, can fetch using their fingerprints. Secondly, since such
lockers are typically found in security-critical public infrastructures, we anticipate that
there will be communication with some external authority in order to cross-check the
input fingerprints with the ones contained in special records (terrorist suspects, wanted
criminals etc.). For simplicity, and without loosing generality, we consider a system
connected to just a single locker rather than several ones.

The code in Figure 4 shows an implementation of the locker system. As before,
function getFingerprint reads a fingerprint. Function datetime.today returns a
timestamp representing the current date and time. Object log implements logging fa-
cilities. Method log.add inserts a line into the log and method log.getLog provides
the log back inside a container.

When the fingerprint matches one of the administrator’s fingerprints stored in the
container ADM, the dump function is executed using log.getLog as argument, and
the log is output (lines 7-8). Object local_police represents a connection to the ex-
ternal authority. Method local_police.check cross-checks the fingerprint given as
an argument against a database of suspects.

In all other cases (i.e. for locking and opening purposes), the locker only needs a
hash of the fingerprint, which is assigned to variable h. The object locker represents

10 Filippo Del Tedesco, Alejandro Russo, and David Sands

the state of the locker, which is initially “free” and could become “occupied” during the
execution. If the fingerprint does not belong to an administrator, the locker is tested with
the isFree method. If the answer is positive, the user can store luggage; the hash is
then saved in key and the locker state is set to occupied (lines 13-16). Otherwise,
the locker is full and it is released only if the current hash matches with the one used to
lock it. In this case the method free makes the locker available for the next user (lines
19-21).

When it comes to logging, it is crucial to define what we want and is allowed to
log. The program logs four different responses corresponding to the system usage: ’
LOCKED’, ’UNLOCKED’, ’INVALID ACCESS’, and ’MEMORY DUMP’. Naturally, it is

important to register the actions performed by the systems as well as the time when
they occur. Clearly, information erasure emerges as a desirable property when it comes
to handle fingerprints. On one hand, fingerprints corresponding to regular users must
be removed from the system after they are used for the intended purpose, which con-
stitutes the information erasure policy of the locker system (observe the hash of the
fingerprint is stored in the system for the authentication purpose, and for the purposes
of this example is considered to be OK to store). Fingerprints corresponding to sus-
pects, on the other hand, can be logged as evidence in case of a police investigation.
In order to give credit for his or her work, fingerprints from administrators can also be
logged. In other words, fingerprints from regular users must be erased after using them,
while fingerprints from suspects and administrators can remain in the system. The code
shown in Figure 4 does not fulfill the information erasure policy described before. It
actually logs the fingerprints of any user, which violates citizens privacy. Although it
is relatively simple to detect the violation of the information erasure policy in this ex-
ample, the same task could be very challenging in a more complex system where, for
example, there are multiple sources of sensitive information in several thousands lines
of codes.

1 from erasure import erasure_source, retain, erasure
2

3 # Erasure-aware sources
4 getFingerprint=erasure_source(getFingerprint)
5

6 # Retention statement
7 hash=retain(hash)
8

9 def lockerSystem():
10 ...
11 suspect=local_police.check(fingerprint)
12 h = hash(fingerprint)
13 if not(suspect):
14 erasure(fingerprint)
15 ...

Fig. 5. Locker system patched to fulfill the erasure policy regarding fingerprints

Erasure Policies - Taint Analysis 11

Figure 5 shows how programmers can use the library to make the code fulfill the
erasure policy regarding fingerprints. Line 1 imports our library. Line 4 identifies that
fingerprints are subjected to erasure policies, i.e. they are erasure-aware values. Line 7
states that hash is properly written, namely its outputs cannot be related to its input,
and therefore they are not considered to violate any erasure policy. Then, the implemen-
tation of function lockerSystem is only changed to call erasure when the user of
the locker is not a suspect (lines 13-14). The rest of the code remains unchanged.

4 Lazy Erasure
The notion of erasure presented in the previous section is very intuitive. To remove all
erasure-aware inputs used to compute a given value v, it is enough to call erasure(v
). When calling erasure, the library immediately triggers the mechanism to perform

erasure over the current state of the program. Due to that fact, we call eager erasure2 to
the mechanism implemented by the API in Section 2.

Eager erasure does not easily capture some classes of erasure policies without major
encoding overhead, which might drastically modify the code of the program. In particu-
lar, let us consider conditional policies that cannot be immediately decided, e.g. certain
value can only remain in the system for a period of time, after which it has to be erased.
Clearly, it is not possible to trigger the erasure mechanism straight away, but the need
for erasure has to be remembered in the system and triggered at the right time. To deal
with such policies without any additional major runtime infrastructure, the library pro-
vides lazy erasure as a mechanism to perform erasure at the latest possible moment, i.e.
when needed.

Lazy erasure deletes information “just in time” at the points where data would other-
wise escape the system and observably break the intended erasure policy. Programmers
only need to state what is supposed to be erased and it is up to the library to trigger
the erasure mechanisms at certain output points, i.e. when information is leaving the
system.

4.1 The Lazy Erasure API

Lazy erasure adds some additional functions to the API of the library. The other primi-
tives such as erasure_source have the same semantics as before.
erasure_escape(f) This function is used syntactically in the same manner as
erasure_source – i.e. as a function wrapper. It is used to identify the functions which
are to be considered as “outputs” for the system. These are the functions where an era-
sure policy could be observable violated – for example writing to a file or communicat-
ing with the outside world in some other manner. The lazy erasure policies are enforced
by inspecting the arguments to the functions which have been wrapped by the primitive
erasure_escape.
lazy_erasure(v,p) Primitive lazy_erasure introduces an erasure policy into

the program, but does not perform any actual erasure of information. It receives as ar-
guments a value v and a policy function p. The policy function (henceforth an erasure

2 In functional languages, eager and lazy evaluation are commonly used terms to indicate when
evaluation is performed. We use the same terminology for erasure of data rather than evaluation
of terms.

12 Filippo Del Tedesco, Alejandro Russo, and David Sands

1 from datetime import datetime, timedelta
2 from erasure import *
3

4 getFingerprint=erasure_source(getFingerprint)
5

6 hash=retain(hash)
7

8 dump=erasure_escape(dump)
9

10 lazy_erasure(fivedays_policy)
11

12 def lockerSystem():
13 ...

Fig. 6. Locker system with a lazy erasure policy

policy) is a function from timestamps (i.e. timestamps of inputs) to Boolean values.
Internally, a policy can use any of the program state, together with the timestamp ar-
gument (representing the timestamp of the value to be erased) to make judgment on
whether the value should be erased or not. Thus, declaring lazy_erasure(v,p) in-
dicates that any input values (and values computed from them) which were used in the
creation of v should be erased if policy p holds for their timestamps. Erasure is then
enforced at the output functions indicated by erasure_escape

Two abbreviations are supported: lazy_erasure(v), which is equivalent to
lazy_erasure(v,(lambda t:True)) and thus unconditionally enforces erasure at
the erasure-escape points, and lazy_erasure(p), which is an abbreviation for calling
lazy_erasure with the policy p applied to every erasure-aware value in the system.

4.2 Lazy Erasure Examples

To illustrate how lazy erasure works, we start by encoding a temporal erasure policy that
allows to only keep fingerprints (administrators and suspects’ ones) for a limited time
of five days. The following piece of code implements the condition for such a policy:

1 def fivedays_policy(time):
2 return (datetime.today()-time)>timedelta(days=5)

Policy fivedays_policy takes a timestamp as input and returns whether the times-
tamp is more than five days old. In Figure 6, we show how to apply the policy in our
locker system. Line 8 indicates that before extracting the log from the system, erasure
must be performed. Line 10 introduces the erasure policy fivedays_policy into the
system. As a result, dumping the log triggers erasure on each of its entries which are
older than 5 days.

Lazy erasure is particularly useful to express policies that cannot be immediately
decided when input data enters the system. To illustrate this point, we extend the locker
scenario a little bit further.

A common experience with network connections is the loss of connectivity. To han-
dle this situation properly, we introduce constant ’no_connection’ to be returned by
method local_police.check when the connection with the police department can-

Erasure Policies - Taint Analysis 13

1 def lockerSystem():
2 global police_mode
3 police_mode=False
4 ...
5 if fingerprint in ADM:
6 log.add(’MEMORY DUMP -->’+fingerprint+’: ’+str(ts))
7 if fingerprint==’police’:
8 police_mode=True
9 dump(log.getLog())

10 police_mode=False
11 else:
12 suspect=local_police.check(fingerprint)
13 h = hash(fingerprint)
14 if suspect==False:
15 lazy_erasure(fingerprint)
16 elif r==’no_connection’:
17 lazy_erasure(fingerprint,role_policy)
18 else:
19 pass
20 ...

Fig. 7. lockerSystem reimplemented for lazy erasure

not be established. Enforcing an erasure policy that depends on the connection to the
police department is not as simple as the policies considered previously. On one hand,
we would like to have in the log the fingerprints which got the ’no_connection’ an-
swer since they could belong to suspects. On the other hand, fingerprints that got the
’no_connection’ answer and do not belong to suspects must be erased in order to
avoid violating users privacy when administrators dump the log.

As a trade-off between preserving fingerprints of suspects and privacy of regular
citizens, it is to enforce a erasure policy which depends on the person doing the dumping
of the log. If a police agent is included in the set of administrators, then he or she
can dump the log if necessary. Since a police agent represents the public authority,
the agent has full access to the fingerprints stored in the log. Therefore, all the entries
are included in the log, including those ones with the ’no_connection’ answer. In
contrast, if the dumper is a regular administrator, the entries with ’no_connection’

are removed from the log. In this way, suspect-related data may get lost but privacy is
not compromised. Clearly, the erasure policy is more involved than the ones that we
have been considered so far. However, we show that it can be easily encoded by our
library.

1 def role_policy(time):
2 global police_mode
3 return not(police_mode)

Fig. 8. Example of lazy policy based on roles.

We start by introducing the Boolean
global variable police_mode to repre-
sent when a police agent is dumping the
log. Then, the function lockerSystem

has to signal whether the person dump-
ing the log is the police agent. Figure 7

shows an extension to lockerSystem. In line 3, police_mode is initially set to False

14 Filippo Del Tedesco, Alejandro Russo, and David Sands

. Immediately before dumping the log (line 9), the administrator identity is checked. If
it is a police agent, police_mode is set to True (line 8). The state is then reset at line
10. If the person dumping the log is a regular administrator, the value of police_mode
does not change. Observe that line 17 associates the erasure policy role_policy to
those fingerprints received when the connection to the policy department cannot be es-
tablished. Consequently, the erasure of the fingerprint depends on the value returned by
the policy at the time of dumping the log. Figure 8 defines role_policy. This policy
only returns true when the dumping is done by a regular administrator (line 3). As a
consequence, those fingerprints associated with ’no_connection’ are erased imme-
diately before dumping the log provided that police_mode is false.

5 Related Work
As we have already explained in the introduction, application level erasure has been
studied in [3] and [12]. A simpler form of erasure for Java bytecode is discussed in
[11]. In [22], the counterpart of erasing systems (according to the definition given in
[12]) has been explored, providing some insights into the obligations of a user who
interacts with a system which promises erasure. These works all deal with an attacker
model where an attacker can in the worst case inject arbitrary code into the system
at a point in time at which erasure is supposed to have occurred. At lower levels of
abstraction, for example [9], conditions and techniques to guarantee physical erasure
on storage devices are considered. The need for physical erasure comes from a much
stronger attacker model where the attacker is not hindered by any abstraction layers.
An end-to-end view linking the high-level application level and the low level physical
views should be possible, but it has not been previously considered.

To the best of our knowledge, JifE [4] is the only system currently implementing
application-level erasure. This is based on the Jif compiler which deals with a subset
of Java extended with security labels. Unlike the very general model upon which it
is based [5], the only conditions allowed in JifE’s conditional erasure policies are a
special class of Boolean condition variables. The implementation ensures that when-
ever such a condition variable changes, any necessary erasures are triggered. It would
be straightforward to mimic this style of implementation (modulo indirect information
flows) using our primitives.

Erasure can be also related to usage control, since it is based on the idea of chang-
ing the way data is handled in the system after a certain moment. In [18], the authors
present a model to reason on usage control, based on obligations the data receiver has
to enforce through some mechanisms. The model is very general, and erasure can be
described as an obligation (actually it is explicitly mentioned as a data owner require-
ment), but its purpose does not correspond to our approach, which deals with techniques
to implement that obligation. The work in [24] extends access control with temporal and
times-consuming features, leading to what they call TUCON (Times-based Usage Con-
trol) model. This approach makes possible to reason with policies that deal with the
period of time in which a given object is available. Although it would not be very nat-
ural (policies here seem to be more user-oriented), it should be also possible to reason
about erasure in this framework as well; similar considerations about implementation
holds in this case as well. Nevertheless, concepts from the usage control literature could

Erasure Policies - Taint Analysis 15

provide inspiration for a study of the enforcement of a wider class of usage policies at
code level.

6 Conclusions and Future Work
We have presented a library-approach to enforce erasure policies. The library transpar-
ently adds taint tracking to data sources, making it easy to use and permitting program-
mers to indicate information-erasure policies with only minor modifications to their
code. To the best of our knowledge, this is the first implementation of a library that con-
nects taint analysis and information-erasure policies. From our limited experience, the
imperfections of taint analysis (the inability to track implicit flows) serve to keep the
policy specifications simple, and enable us to handle examples for which existing ap-
proaches would not be sufficiently expressive. We have also introduced the concept of
lazy erasure – an observational form of erasure which supports richer erasure policies,
including temporal policies, with a simple implementation.

There are a number of directions for further work. One challenge ahead is how to
deal with permanent storage like databases or file systems when specifying erasure poli-
cies. Policies like “user information must be erased when his or her account is closed”
are out of scope in the existing approaches [3, 12], where erasure is performed on inter-
nal data structures. User information, on the other hand, is usually placed in databases
(e.g. web application) or file systems (e.g. Unix-like operating systems). We believe
that it is possible to extend the interfaces for accessing files and databases in order to
store data as well as erasure information (timestamps). Another important aspect is the
evaluation of the overheads caused by the library – in particular, how taint propagation
and updates in the dependency table impact on performance. It would also be interest-
ing to evaluate how precise tainting [17, 8] could be exploited to obtain more precision
when erasing data. Precise tainting associates taint information to characters rather than
to whole strings. In our library, if an small part of an string contains some information
that should be erased, then the whole string is deleted. By using precise tainting, it
would be possible, in principle, to only delete those pieces of the string containing the
information to erase. Precise tainting usually requires to fully understand the semantics
of each function that manipulates erasure-aware values. As for most approaches to dy-
namic taint analysis, our approach ignores implicit flows. As a consequence programs
might retain information indirectly via their control constructs. Rather than attempting
to fix this problem, a reasonable alternative might be to bound it. Inspired by preserving
confidentiality, the work in [16] develops a mechanism to obtain bounds on the infor-
mation leaked by implicit-flows. We believe that it is feasible to adapt such mechanism
to obtain bounds on the information retained by control constructs.

References
1. The Perl programming language. http://www.perl.org/
2. Bekman, S., Cholet, E.: Practical mod perl. O’Reilly and Associates (2003)
3. Chong, S., Myers, A.C.: Language-based information erasure. In: Proc. IEEE Computer Se-

curity Foundations Workshop. pp. 241–254 (Jun 2005)
4. Chong, S.: Expressive and Enforceable Information Security Policies. Ph.D. thesis, Cornell

University (Aug 2008)

16 Filippo Del Tedesco, Alejandro Russo, and David Sands

5. Chong, S., Myers, A.C.: End-to-end enforcement of erasure and declassification. In: CSF
’08: Proceedings of the 2008 21st IEEE Computer Security Foundations Symposium. pp.
98–111. IEEE Computer Society, Washington, DC, USA (2008)

6. Conti, J.J., Russo, A.: A taint mode for python via a library. OWASP AppSec Research 2010
(2010)

7. Denning, D.E., Denning, P.J.: Certification of programs for secure information flow. Comm.
of the ACM 20(7), 504–513 (Jul 1977)

8. Futoransky, A., Gutesman, E., Waissbein, A.: A dynamic technique for enhancing the secu-
rity and privacy of web applications. In: Black Hat USA Briefings (Aug 2007)

9. Gutmann, P.: Data remanence in semiconductor devices. In: SSYM’01: Proceedings of the
10th conference on USENIX Security Symposium. pp. 4–4. USENIX Association, Berkeley,
CA, USA (2001)

10. Haldar, V., Chandra, D., Franz, M.: Dynamic Taint Propagation for Java. In: Proceedings of
the 21st Annual Computer Security Applications Conference. pp. 303–311 (2005)

11. Hansen, R.R., Probst, C.W.: Non-interference and erasure policies for java card bytecode.
In: 6th International Workshop on Issues in the Theory of Security (WITS ’06) (2006)

12. Hunt, S., Sands, D.: Just forget it – the semantics and enforcement of information erasure. In:
Programming Languages and Systems. 17th European Symposium on Programming, ESOP
2008. pp. 239–253. No. 4960 in LNCS, Springer Verlag (2008)

13. Jovanovic, N., Kruegel, C., Kirda, E.: Pixy: A Static Analysis Tool for Detecting Web Ap-
plication Vulnerabilities (Short Paper). In: 2006 IEEE Symposium on Security and Privacy.
pp. 258–263. IEEE Computer Society (2006)

14. Kozlov, D., Petukhov, A.: Implementation of Tainted Mode approach to finding security vul-
nerabilities for Python technology. In: Proc. of Young Researchers’ Colloquium on Software
Engineering (SYRCoSE) (Jun 2007)

15. Lutz, M.: Learning Python. O’Reilly & Associates, Inc., Sebastopol, CA, USA (2003)
16. Newsome, J., McCamant, S., Song, D.: Measuring channel capacity to distinguish undue

influence. In: PLAS ’09: Proceedings of the ACM SIGPLAN Fourth Workshop on Program-
ming Languages and Analysis for Security. pp. 73–85. ACM (2009)

17. Nguyen-Tuong, A., Guarnieri, S., Greene, D., Shirley, J., Evans, D.: Automatically Hard-
ening Web Applications Using Precise Tainting. In: In 20th IFIP International Information
Security Conference. pp. 372–382 (2005)

18. Pretschner, A., Hilty, M., Basin, D., Schaefer, C., Walter, T.: Mechanisms for usage control.
In: ASIACCS ’08: Proceedings of the 2008 ACM symposium on Information, computer and
communications security. pp. 240–244. ACM, New York, NY, USA (2008)

19. Russo, A., Sabelfeld, A., Li, K.: Implicit flows in malicious and nonmalicious code. 2009
Marktoberdorf Summer School (IOS Press) (2009)

20. Sabelfeld, A., Myers, A.C.: Language-based information-flow security. IEEE J. Selected Ar-
eas in Communications 21(1), 5–19 (Jan 2003)

21. Seo, J., Lam, M.S.: InvisiType: Object-Oriented Security Policies. In: 17th Annual Network
and Distributed System Security Symposium. Internet Society (ISOC) (Feb 2010)

22. Tedesco, F.D., Sands, D.: A user model for information erasure. In: SecCo’09, 7th Interna-
tional Workshop on Security Issues in Concurrency. Electronic Proceedings in Theoretical
Computer Science (2009), to appear

23. Thomas, D., Fowler, C., Hunt, A.: Programming Ruby. The Pragmatic Programmer’s Guide.
Pragmatic Programmers (2004)

24. Zhao, B., Sandhu, R., Zhang, X., Qin, X.: Towards a times-based usage control model. In:
Proceedings of the 21st annual IFIP WG 11.3 working conference on Data and applications
security. pp. 227–242. Springer-Verlag, Berlin, Heidelberg (2007)

