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Abstract—This paper seeks to answer fundamental questions
about trade-offs between static and dynamic security analysis. It
has been previously shown that flow-sensitive static information-
flow analysis is a natural generalization of flow-insensitive static
analysis, which allows accepting more secure programs. It has
been also shown that sound purely dynamic information-flow
enforcement is more permissive than static analysis in the flow-
insensitive case. We argue that the step from flow-insensitive
to flow-sensitive is fundamentally limited for purely dynamic
information-flow controls. We prove impossibility of a sound
purely dynamic information-flow monitor that accepts programs
certified by a classical flow-sensitive static analysis. A side
implication is impossibility of permissive dynamic instrumented
security semantics for information flow, which guides us to
uncover an unsound semantics from the literature. We present a
general framework for hybrid mechanisms that is parameterized
in the static part and in the reaction method of the enforcement
(stop, suppress, or rewrite) and give security guarantees with
respect to termination-insensitive noninterference for a simple
language with output.

I. INTRODUCTION

Information-flow controls offer a promising approach to
security enforcement, where the goal is to prevent disclosure
of sensitive data by applications [42]. Several information-
flow tools have been developed for mainstream languages, e.g.,
Java-based Jif [35], Caml-based FlowCaml [46], and Ada-
based SPARK Examiner [8], [11], as well as case studies
[46], [3], [23], [13], [12], [15], [38]. Information-flow anal-
ysis is becoming particularly attractive for web applications
(e.g, [13], [12], [49], [30]), where the challenge is to secure
the manipulation of secret and public data on both server and
client side.

Information-flow controls focus on preventing leaks of
information from secret (or high) to public (or low) data. The
desirable baseline policy is noninterference [16], [21], which
demands that there is no dependence of public outputs on
secret inputs.

Two basic kinds of information flows through program
constructs are explicit and implicit flows. Information is
passed explicitly from right-hand to left-hand side of an
assignment in a explicit flow. Assume variables secret and
public have high and low security levels, respectively. For
example, program public := secret exhibits an explicit flow
from secret to public. Information is passed via control-
flow structure in an implicit flow [18]. For example, program
if secret then public := 1 has an implicit flow. Whether the
assignment to the public variable is performed depends on
a secret. Let us call a conditional or loop high if its guard
involves a high variable. Implicit flows are based on low

computation (which might be secure by itself, as assignment
public := 1 in the program above) in high conditionals and
loops. Information-flow controls concentrate on preventing ex-
plicit and implicit flows in order to guarantee noninterference.

One alternative to prevent explicit and implicit flows is
purely static Denning-style enforcement [18], [52], [42]. For
example, each assignment is checked for the following prop-
erty: the level of the assigned variable must be high in case
there is a high variable on the right-hand side of the assignment
(tracking explicit flows) or in case the assignment appears
inside of a high conditional or loop (tracking implicit flows).
This mechanism guarantees that no low computation occurs
in high context, i.e., in the branches of high conditionals and
loops. Static techniques offer benefits of reducing runtime
overhead since the security checks are performed before
running the program.

Another alternative is purely dynamic enforcement
(e.g., [20], [50], [43], [4]), that performs dynamic security
checks similar to the ones done by static analysis. For
example, whenever there is a high variable on the right-hand
side of an assignment (tracking explicit flows) or in case
the assignment appears inside of a high conditional or while
loop (tracking implicit flows), then the assignment is only
allowed in case the assigned variable is high. This mechanism
dynamically keeps a simple invariant of no assignment to low
variables in high context.

It is known that noninterference is not a safety property [33],
[47]. Precise characterizations of what can be enforced by
monitoring have been studied in the literature (e.g., [44], [22]),
where noninterference is discussed as an example of a policy
that cannot be enforced precisely by dynamic mechanisms.
However, the focus of this paper is on enforcing permissive
yet safe approximations of noninterference. The exact policies
that are enforced might just as well be safety properties (or
not), but, importantly, they must guarantee noninterference.

Recently, it has been shown (e.g., [43], [5], [4], [39], [6])
that purely dynamic monitors can enforce the same security
policy as Denning-style static analysis: termination-insensitive
noninterference. In addition, Sabelfeld and Russo [43] prove
that sound purely dynamic information-flow enforcement is
more permissive than static analysis in the flow-insensitive case
(where variables are assigned security levels at the beginning
of the execution and this assignment is kept unchanged during
the execution).

Fusion of static and dynamic techniques is becoming in-
creasingly popular [28], [45], [27], [49]. These techniques
offer benefits of increasing permissiveness because more in-
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formation on the actual execution trace is available at runtime,
while keeping runtime overhead moderate as some static
information can be gathered before the execution.

This paper seeks to answer fundamental questions about
trade-offs between static and dynamic security analysis. In
particular, we turn attention to flow sensitivity of the analysis,
i.e., possibilities for variables to store values of different
sensitivity (low and high) over the course of computation.
Flow sensitivity is a useful feature for any practical enforce-
ment mechanism. It is particularly important for inferring the
security labels of local variables and allowing efficient register
reuse for low-level languages. The goal is to accept more
programs without jeopardizing security. Consider, for example,
program: secret := 0; if secret then public := 1. It is
intuitively secure since the initial secret has been overridden
by constant 0. However, a flow-insensitive analysis (e.g., [52])
rejects this program because it has an insecure subprogram. On
the other hand, this program is accepted by a flow-sensitive
analysis (e.g., [25]) because the level of variable secret is
relabeled to low after the first assignment.

Hunt and Sands [25] have shown that flow-sensitive static
information-flow analysis is a natural generalization of flow-
insensitive static analysis, which allows accepting more secure
programs. We argue that the step from flow-insensitive to
flow-sensitive is fundamentally limited for purely dynamic
information-flow controls.

Recall that Sabelfeld and Russo [43] have shown that while
a purely dynamic information-flow monitor is more permissive
than a Denning-style static information-flow analysis [52],
both the monitor and the static analysis guarantee the same
security property: termination-insensitive noninterference [52],
[42], i.e., noninterference that ignores information flow related
to the (non)termination behavior of the program.

It might seem natural to expect that these results
carry over to flow-sensitive monitors since they fea-
ture additional dynamism, and hence have potential for
more permissiveness. It turns out that this intuition is

public := 1; temp := 0;
if secret then temp := 1;
if temp 6= 1 then public := 0

Fig. 1. Flow-sensitivity attack

misleading. Flow-
sensitivity opens up a
channel, which can be
exploited by the attacker.
We illustrate the problem
with the example in
Figure 1, where secret
is a high variable containing a boolean secret (either 0
or 1). Observe that the example is rejected by canonical
flow-sensitive type systems (e.g., [25]) because variable
temp is given a high security level after inspecting the first
branching instruction.

Imagine a simple purely dynamic monitor that keeps track
of security levels of variables and updates them on each
assignment in the following way. The monitor sets the level of
the assigned variable to high in case there is a high variable on
the right-hand side of the assignment or in case the assignment
appears inside of a high context. The level of the variable is
set to low in case there are no high variables in the right-hand

side of the assignment and the assignment does not appear in
high context. Otherwise, the monitor does not update the level
of the assigned variable. This is a straightforward extension of
a dynamic flow-insensitive enforcement (e.g., [43]) with flow
sensitivity.

This monitor labels public and temp as low after the first
two assignments because the variables receive low information
(constants). If secret is nonzero, variable temp becomes high
after the first conditional. In this case the guard in the second
conditional is false, and so the then branch with the assignment
public := 0 is not taken. Therefore, the monitor allows this
execution. If secret is zero, then temp is not relabeled to high,
and so the second if is also allowed by the monitor even though
the then branch is taken: because it branches on an expression
that does not involve high variables. As a result, the value of
secret is leaked into public, which is missed by the monitor.

While similar examples have appeared in the literature [20],
[17], [49], [10], the contribution of this paper is to formally pin
down the essence of the problem: We prove impossibility of a
sound purely dynamic information-flow monitor that accepts
programs certified by Hunt and Sands’ classical flow-sensitive
static analysis [25].

The implication of the result is illustrated by set inclusions
for programs in a simple imperative language with output
in Figure 2. We refer to static analyses realized by security
type systems and dynamic analysis realized by monitors.
Figure 2(a) depicts the set inclusion for programs accepted by
flow-insensitive mechanisms: a Denning-style type system [1]
and a simple monitor flow-insensitive monitor [43]. Both are
sound [1], [43], and the monitor accepts the runs of a set
of programs that is strictly larger than the set of typable
programs [43]. So, the monitor is sound and more permissive
than the type system. Figure 2(b) depicts the set inclusion for
programs accepted by flow-sensitive mechanisms that are dis-
cussed in this paper: a Hunt-Sands-style type system [25] and
any sound purely dynamic flow-sensitive monitor. The paper
shows impossibility of a sound purely dynamic information-
flow monitor that accepts the set of typable programs without
modification. One implication of this result is that any sound
purely dynamic monitor fails to be more permissive than the
type system: there are always programs that are typable but
whose runs will not be accepted without modification by the
monitor.

Another implication is impossibility of permissive dynamic
instrumented security semantics for information flow. Instru-
mented security semantics (e.g., [2], [34], [7], [37]) defines
information flows in programs by instrumenting standard
semantics with security operations. Variables are instrumented
with security labels, which are propagated by the semantics
along with ordinary values. We observe that it is impossible
to define permissive dynamic instrumented security semantics:
either the semantics over-approximates flows (with respect to
the set of Hunt-Sands-typable programs)—and thus is over-
restrictive, or under-approximates flows—and thus is unsound.

An unsoundness in the security semantics by Ørbæk [37],
which we have uncovered as a consequence of our findings,
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(a) Flow-insensitive analysis (b) Flow-sensitive analysis (c) Flow-sensitive analysis, hybrid
monitors

Fig. 2. Relation between programs accepted by type systems and monitors

is an indication that the paper sheds light on the phenomenon
that has not been fully understood previously.

The second contribution of the paper is a general framework
for hybrid mechanisms that is parameterized in the static
analysis part and in the reaction method of the enforcement
(stop, suppress, or rewrite). The framework is capable of
expressing a range of monitors, including one by Le Guernic
et al. [28].

The third contribution is a soundness proof that monitors
expressed in the framework guarantee termination-insensitive
noninterference for programs with output. Besides the general
benefits of a single proof for multiple instantiations (for the
static analysis part and for the reaction method of the enforce-
ment), one consequence is a proof of a stronger (and arguably
more adequate) security property for one of the instantiations:
a monitor by Le Guernic et al. [28] for a language with output.
The original proof [28] is with respect to a batch-job style
security where all diverging runs (which might simply output
all secrets on a public channel before diverging) are considered
secure. Our result implies a proof against a stronger version of
termination-insensitive noninterference [1], designed to reason
about programs with output, where leaks due to (lack of)
progress in the computation are ignored.

The fourth contribution is the proof that we are able to
retrieve the permissiveness of monitors by enabling static
analysis. Figure 2(c) illustrates the result that we can construct
hybrid monitors that combine dynamic and static analysis that
guarantee security and accept more programs than the Hunt-
Sands-style type system.

To the best of our knowledge, there are no prior im-
possibility results on permissive purely dynamic monitoring
of information-flow policies. There are possibility results
(e.g., [43]) on being more permissive than a standard flow-
insensitive security type system [52], but there are no results
we are aware of on comparing purely dynamic monitors to
flow-sensitive type systems.

II. SEMANTICS

We consider a simple imperative language with outputs (see
Figure 3). Expressions e consist of integers v, variables x, and
composite expressions e⊕ e (where ⊕ is a binary operation).
Commands, denoted by c, consist of standard imperative
instructions: skip, sequential composition, conditionals, and
loops. The language contains an additional command stop

e ::= v | x | e⊕ e
c ::= skip | x := e | c; c | if e then c else c |

while e do c |stop | output`(e)

Fig. 3. Simple imperative language

〈skip,m〉 S−→〈stop,m〉
m(e) = v

〈x := e,m〉 S−→〈stop,m[x 7→ v]〉

〈c1,m〉
S−→α〈stop,m′〉

〈c1; c2,m〉
S−→α〈c2,m′〉

〈c1,m〉
S−→α〈c′1,m′〉 c′1 6= stop

〈c1; c2,m〉
S−→α〈c′1; c2,m

′〉

m(e) 6= 0

〈if e then c1 else c2,m〉
S−→〈c1,m〉

m(e) = 0

〈if e then c1 else c2,m〉
S−→〈c2,m〉

m(e) 6= 0

〈while e do c,m〉 S−→〈c; while e do c,m〉

m(e) = 0

〈while e do c,m〉 S−→〈stop,m〉

m(e) = v

〈output`(e),m〉
S−→o`(v)〈stop,m〉

Fig. 4. Command semantics

that cannot be used in initial configurations since it signifies
termination. The language also includes a primitive for output.

Configurations have the form 〈c,m〉, where c is a command
and m is a memory mapping variables to values (see Fig-
ure 4). The semantics for expressions is given by structurally
extending the memory mapping from variables to arbitrary
expressions, i.e., m(e1⊕e2) is defined as m(e1)⊕m(e2). Se-
mantic rules for commands have the form 〈c,m〉 S−→α〈c′,m′〉,
which corresponds to a small step between configurations
where α is an output event. If a transition leads to a con-
figuration with the special command stop and some memory
m, then we say the execution terminates in m. We write
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pc ` Γ {skip} Γ
Γ ` e : t

pc ` Γ {x := e} Γ[x→ pc t t]

pc ` Γ {c1} Γ′ pc ` Γ′ {c2} Γ′′

pc ` Γ {c1; c2} Γ′′

Γ ` e : t pc t t ` Γ {ci} Γ′ i = 1, 2

pc ` Γ {if e then c1 else c2} Γ′′

Γ ` e : t pc t t ` Γ {c} Γ

pc ` Γ {while e do c} Γ

Γ ` e : t pc t t v `
pc ` Γ {output`(e)} Γ

pc1 ` Γ1 {c} Γ2

pc2 ` Γ′1 {c} Γ′2

Γ′1 v Γ1

Γ2 v Γ′2
pc2 v pc1

Fig. 5. Flow-sensitive type system

m[x 7→ v] when updating variable x with value v in memory
m. The semantic rules are mostly standard [53]. For exam-
ple, command if e then c1 else c2 reduces to c1, when
expression e evaluates to a nonzero integer under memory
m (〈if e then c1 else c2,m〉

S−→〈c1,m〉 when m(e) 6= 0).
The rule for outputs deserves some explanation. An output
produces a labeled transition to reflect its observational effect.
Thus, the rule for command output`(e) for outputting the
value of expression e on channel with security level ` (for
simplicity, we have one channel per security level) triggers the
output event o`(v), where v is the value of e in the current
memory.

III. FLOW-SENSITIVE TYPE SYSTEM

Recall from Section I that flow-sensitive type systems have
the characteristic of allowing the confidentiality level, i.e.,
security type, of variables to change along the typing of the
program. For simplicity, we consider two security levels, low
L and high H , as elements of a security lattice, where L v H
and H 6v L. The lattice join operator t returns the least upper
bound over two given levels. We assume that the attacker only
observes the public information produced by programs (and
ignore covert channels [26]).

We consider an extension of Hunt and Sands’ flow-sensitive
type system [25] that consider outputs (see Figure 5). The
type system defines judgments of the form: pc ` Γ {c} Γ′

where pc is a security level, whereas Γ and Γ′ are functions
from variables to security levels. Assume Var is the set of
all variables. Formally, pc ∈ {L,H }, whereas Γ and Γ′ are
functions of type Var → {L,H }. Intuitively, the judgment
expresses that the security levels of variables are determined
by Γ before executing command c, and Γ′ describes the
security levels of variables after the execution of c. The
security level pc represents a program counter level recording
the level of the context in order to avoid illegal implicit
flows [18].

The type system uses judgments of the form Γ ` e : t to
determine that the security level of expression e is t. This
judgment is simply defined as the join of security levels asso-
ciated with variables that appear in the expression. Formally:
Γ ` e : t, where t =

⊔
x∈FV (e) Γ(x).

The rule for assignments captures the essence of flow-
sensitive security types. An assignment always type checks,
but the security level of the variable changes to the join
of the pc and the security level of the expression. Recall
that programs may operate on two output channels: secret
and public. Only the latter is visible by the attacker. Hence,
the rule for outputs demands that the security level of the
channel must be an upper bound of the confidentiality level
of the expression to output and the given pc. In this manner,
malicious programs as outputL(secret) and the implicit flow
if secret then outputL(42) else skip are rejected.

In terms of expressiveness, Hunt and Sands show that for
any typable program in a flow-sensitive type system (like
the one in Section III), there exists an equivalent program
which is typable in a simple flow-insensitive type system [52].
They present an automatic code transformation from a typable
program in the flow-sensitive type system to an equivalent
typable program in the flow-insensitive type system (which
they argue might be useful in a proof-carrying-code scenario
to enable the code producer to use a more permissive system
and code consumer to use a simpler one for checking).
Clearly, the transformation needs the code to be transformed at
compile time. Consequently, it seems difficult to extend their
results regarding noninterference to scenarios where dynamic
code evaluation is involved, e.g., in web applications. On the
other hand, monitoring execution of programs turns out to be
appropriate to deal with such a feature [4].

IV. DYNAMIC FLOW-SENSITIVE MONITORING

This section formally characterizes what it means for mon-
itors to be purely dynamic, sound, and permissive.

We describe monitored configurations and monitored
execution. Monitored configurations have the form
〈〈c,m〉 |µ cfgm〉, where 〈c,m〉 is a program configuration
and cfgm is a monitor configuration of monitor µ. The
impossibility results in this section hold independently of
how monitor configurations are defined. Hence, there is
no need to instantiate µ until Section VI. We denote a
single monitored step as −→. When the step produces
an output, we write −→α instead, where α has the form
o`(v) for some security level ` and value v. We denote a
(possible empty) sequence of monitored steps as −→~α

∗,
where ~α is the list of outputs produced during the execution.
When the outputs are not important, we just write −→∗.
We use a similar convention for unmonitored executions
underlined by S−→α transitions. Monitors might have different
countermeasures when an unsafe instruction is executed.
Nevertheless, it is possible to model them using monitored
executions. Stopping the execution when reaching an unsafe
instruction corresponds to monitored configurations that are
unable to make progress. In other scenarios, monitors may
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suppress outputs or print default values as countermeasures
when confidentiality is compromised. We model these cases
by monitored configurations that either produce unlabeled
transitions or trigger events as oL(d) for a given default value
d.

Intuitively, for a monitor to be purely dynamic, it needs
to satisfy two properties related to how it determines if an
instruction is safe to execute. The first property requires that
the monitor should not decide if an instruction is secure based
on the instructions that are “ahead” of the running command.
Formally, we have:

Property 1 (Not look ahead). If 〈〈c,m〉 |µ cfgm〉
−→~α

∗〈〈stop,m′〉 |µ cfgm ′〉, then it holds that
〈〈c; c′,m〉 |µ cfgm〉−→~α

∗〈〈c′,m′〉 |µ cfgm ′〉 for any com-
mand c′. If 〈〈c; c′,m〉 |µ cfgm〉 −→~α

∗〈〈stop,m′〉 |µ cfgm ′〉,
then ∃cfgm ′′,m′′, ~α1, ~α2 such that 〈〈c,m〉 |µ cfgm〉−→ ~α1

∗

〈〈stop,m′′〉 |µ cfg ′′〉 and 〈〈c′,m′′〉 |µ cfgm ′′〉−→ ~α2
∗

〈〈stop,m′〉 |µ Γ′, s′〉, where ~α = ~α1 ++ ~α2.

On the one hand, the property establishes that command c′,
which is ahead of c in their sequential composition c; c′, does
not affect the decisions carried out by the monitor regarding c.
On the other hand, the property also demands that a monitor
cannot skip or rewrite instructions ahead of time. For instance,
if the monitored execution of c; c′ finishes, it is the case that the
monitor at some point has analyzed command c′. Moreover,
the concatenation of events generated by running c and c′

( ~α1 ++ ~α2) is the same as the events generated by running
c; c′.

The other property refers to branching instructions. It de-
mands that the monitor does not inspect the instructions in
the branches that are not taken. The property expresses that
the state reached by the monitor is the same no matter what
command occurs in the branch that is not taken. In this manner,
the state of the monitor is only influenced by the guard and
the instructions of the taken branch. Formally, we have:

Property 2 (Not look aside). If m(e) 6= 0
and 〈〈if e then c1 else c2,m〉 |µ cfgm〉−→~α

∗

〈〈c′,m′〉 |µ cfgm ′〉, then it holds that
〈〈if e then c1 else c′2,m〉 |µ cfgm〉−→~α

∗

〈〈c′,m′〉 |µ cfgm ′〉 for any command c′2. If
m(e) = 0 and 〈〈if e then c1 else c2,m〉 |µ
cfgm〉 −→~α

∗ 〈〈c′,m′〉 |µ cfgm ′〉, then it holds
〈〈if e then c′1 else c2,m〉 |µ cfgm〉 −→~α

∗ 〈〈c′,m′〉 |µ
cfgm ′〉 for any command c′1. If m(e) = 0 and
〈〈while e do c,m〉 |µ cfgm〉 −→~α

∗ 〈〈c′,m′〉 |µ cfgm ′〉,
then 〈〈while e do c′,m〉 |µ cfgm〉 −→~α

∗ 〈〈c′,m′〉 |µ
cfgm ′〉 for any command c′.

Having defined purely dynamic monitors, we turn our focus
to soundness. We specify that a monitor is sound if it satisfies
a termination-insensitive security condition. We assume the
attacker can only observe public outputs and the public part
of initial memories. With this in mind, we define L(~α) as
the projection of public outputs in the list of events ~α. Given
a typing environment Γ and two memories m1 and m2, we

define that two memories are low-equivalent if they agree on
the values of public variables (written as m1 =Γ m2). Observe
that Γ determines which variables are considered as public.
Soundness is described by the following condition: given two
low-equivalent initial memories, and the two sequences of
outputs generated by monitored executions that originate in
these memories, either the sequences are the same or one of
them is a prefix of the other, in which case the execution that
generates the shorter sequence does not produce any further
public output. This corresponds to termination-insensitive, or
progress-insensitive, noninterference [1], because leaks due to
(lack of) progress at each step are ignored. Formally, we have:

Property 3 (Soundness). Given a monitor µ,
memories m1 and m2, and a typing environments
Γ such that m1 =Γ m2, 〈〈c,m1〉 |µ cfgm〉−→ ~α1

∗

〈〈c′,m′1〉 |µ cfgm ′1〉, then ∃c′′,m′2, cfgm ′2 such that
〈〈c,m2〉 |µ cfgm〉−→ ~α2

∗〈〈c′′,m′2〉 |µ cfgm ′2〉 where
|L( ~α2)| ≤ |L( ~α1)|, and - If |L( ~α2)| = |L( ~α1)|, then L( ~α1)
= L( ~α2) - If |L( ~α2)| < |L( ~α1)|, then prefix (L( ~α2),L( ~α1))
holds and 〈〈c′′,m′2〉 |µ cfgm ′2〉 ⇒H .

The number of events in ~α is denoted by |~α|. We also define
predicate prefix (~x, ~y) to hold when list ~x is a prefix of list ~y.
〈〈c,m〉 |µ cfgm〉 ⇒H denotes a monitored execution that does
not produce any public output.

The definition above is insensitive only to attacks whose
impact is limited: the attacker cannot learn the secret in
polynomial time in the size of the secret; and, for uniformly
distributed secrets, the advantage the attacker gains when
guessing the secret after observing a polynomial amount of
output is negligible in the size of the secret [1]. Another
reason to choose a termination-insensitive security condition
comes from the fact that termination is difficult to track in
practice. Program errors make the problem even worse. Even
in languages like Agda [36], where it is impossible to write
nonterminating programs, it is possible to write programs that
terminate abnormally: for example, with a stack overflow.

It is not difficult to imagine monitors that fulfill Properties
1, 2 and 3, i.e., that are purely dynamic and sound. An
example is just a monitor that stops every execution as
soon as it starts running. Clearly, we are not interested on
this kind of monitors. It is often argued (e.g, [28], [45])
that one of the main advantages of monitors over static
analysis is permissiveness. For example, assuming that l
and h are respectively public and secret variables, program
if l then outputL(h) else outputL(1) is rejected by the
Hunt-Sands-style type system due to the presence of command
outputL(h). However, a typical monitor (like ones described
in Section VI) accepts the execution of the program when
l evaluates to false. Thus, we only consider monitors that
are at least as permissive as Hunt-Sands-style type system
that involves outputs (see Section III). The following property
establishes when a monitor is more permissive than the flow-
sensitive type system in Section III.

Property 4 (Permissiveness). Given that
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pc ` Γ {c} Γ′, and 〈c,m〉 S−→~α
∗〈c′,m′〉 then

∃Strip, cfgm ′, c′′.〈〈c,m〉 |µ cfgm0〉−→~α
∗ 〈〈c′′,m′〉 |µ

cfgm ′〉, where cfgm0 is the initial state for the monitor and
Strip(c′′) = c′ and Strip(stop) = stop.

The property essentially demands that if a program type-
checks (pc ` Γ {c} Γ′), then the monitor does not modify
its behavior. In fact, the program will run mostly as if the
monitor is not present. More specifically, if a typable program
c runs until some command c′ (〈c,m〉 S−→~α

∗〈c′,m′〉), then
the respective monitored execution runs until some command
c′′ that represents c′ modulo auxiliary commands that might
be used by the monitor (Strip(c′′) = c′). Some monitors
(e.g., [43], [4], [39], [41]) rely on auxiliary commands to
help the information-flow analysis, for example, to detect join
points. We assume that no auxiliary commands are necessary
for terminated programs (Strip(stop) = stop). Observe that
the unmonitored and monitored executions produce the same
outputs.

Not many purely dynamic information-security monitors
have been formalized, but from those few that have been
presented, we conjecture that Properties 1–4 hold for the ones
in [4], [39], [43], which corresponds to the flow-insensitive
case. For flow-sensitive monitoring [5], [6], we believe Prop-
erties 1–3 hold, but, as we discuss in Section VIII, Property 4
does not hold because it is not allowed to first relabel a
public variable in high context and then branch on it. This
is consistent with our result that having all of Properties 1–4
is impossible in a flow-sensitive setting.

We are now in a condition to present the impossibility result:
it is not possible to construct purely dynamic monitors, which
are at least as permissive as as the Hunt-Sands-style type
system, without sacrificing soundness.

Theorem 1 (Impossibility). A monitor µ cannot fulfill Prop-
erties 1–4 at the same time. Formally, it holds ¬ ( Property 1
∧ Property 2 ∧ Property 3 ∧ Property 4).

This result has several implications. First of all, it formalizes
some informal arguments presented in [49], [10]. Secondly
and more importantly, it sets a formal limit on how dynamic
a monitor can be: if flow sensitivity is a desired feature in
a monitor, then it should either include some static analysis
or be more conservative than a type system. For instance, the
monitors presented in [20], [50], [4], [43] cannot be adapted
to be dynamic and more permissive than flow-sensitive type
systems.

We sketch the proof (the details are found in
the full version of the paper [40]). Assuming a
purely dynamic and permissive monitor we show that

c : if h = 1 then b := 1 else skip;
if b 6= 1 then l := 1 else skip;
outputL(l)

Fig. 6. Insecure example

the insecure example in
Figure 6 (a variation
of an example from
Section I) can produce
different public outputs
under monitored execu-
tions of a monitor (which gives us a contradiction with

c1 : if h = 1 then b := 1 else skip;
if b 6= 1 then skip else skip;
outputL(l)

c2 : if h = 1 then skip else skip;
if b 6= 1 then l := 1 else skip;
outputL(l)

Fig. 7. Programs generally accepted by flow-sensitive type systems

soundness). Assume variables b and l are initially set to 0.
The security type of variable h is initially set to H , while
the confidentiality levels of variables l and b are set to L.
A purely dynamic and permissive monitor µ (i.e., a monitor
that fulfill Properties 1, 2, and 4) will run this program until
completion. To prove that, we need to consider two related but
not identical programs. Assuming that h = 1, b = 0, l = 0,
the program c1 in Figure 7 and the typing environment
Γ = {h 7→ H , b 7→ L, l 7→ L}, we have that c1 type
checks (L ` Γ {c1} Γ′1 for a given Γ′1) and terminates
producing the public output 0. Property 4 then guarantees that
the monitor accepts this execution of c1. If the monitor accepts
this execution, it also accepts the execution of c under the same
initial memory. After all, c1 and c only differ in the untaken
branch (l := 1). Recall that Property 2 indicates that the
monitor behavior does not change due to commands appearing
in untaken branches. Similarly, if h = 0, b = 0, l = 0, we have
that the program c2 in Figure 7 type checks (pc ` Γ {c2} Γ′2
for a given Γ′2) , terminates, produces the public output 1, and
the execution is accepted by the monitor. If the monitor accepts
this execution of c2, it also accepts the execution of c under
the same initial memory. After all, c2 and c only differ in the
untaken branch (b := 1). Consequently, we proved that c has
two executions accepted by the monitor but where different
public outputs are produced. The monitor is unsound, hence
the contradiction.

For showing this impossibility result, we choose a simple
imperative language: the more minimal the calculus the better.
Extensions to languages with arbitrary power make no differ-
ence: it is still impossible to enforce information-flow security
with a permissive purely dynamic monitor. The proof is then
based on the same counterexample.

V. ON INSTRUMENTED SECURITY SEMANTICS

As foreshadowed in Section I, a side implication of our
work is impossibility of permissive instrumented security
semantics for information flow. Recall that instrumented se-
curity semantics (e.g., [2], [34], [7], [37]) defines information
flows in programs by instrumenting standard semantics with
security operations. Variables are instrumented with security
labels, which are propagated by the semantics along with
ordinary values. Typically, the label of the left-hand side
of an assignment is computed by joining the labels of the
variables on the right-hand side with the label of the context.
Instrumented security semantics is similar to monitoring, but
its intention is different: in contrast to monitoring, they are
supposed to specify security, not enforce it. This is as opposed
to extensional security semantics [32], which defines security
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corrupted := distrust(e); trusted := trust(1);
while corrupted do temp := 1; corrupted := 0;
while temp 6= 1 do trusted := 0; temp := 1

Fig. 8. Attack for [37]

in terms of relations between inputs and outputs, as done in
this paper.

We observe that it is impossible to define permissive dy-
namic instrumented security semantics, which corresponds to
Properties 1 and 2. Consequently, either the semantics over-
approximates flows (with respect to the set of Hunt-Sands-
typable programs)—and thus is over-restrictive, or under-
approximates flows—and thus is unsound. In the former case,
the semantics records more flows than actually happen (which
leads to rejecting intuitively secure programs), while in the
latter case the semantics misses some actual flows (which
leads to accepting intuitively insecure programs). There is
evidence of both cases in the literature. For example, the
instrumented semantics with flow sensitivity can be found
in work by Andrews and Reitman [2], Mizuno and Olde-
hoeft [34], and Banâtre and Bryce [7]. All of these semantics
are approximate: security constraints of executing one a of
a conditional are computed based on both the branch that is
taken and the branch that is not taken (cf. Property 2 of not
looking aside). For example, the intuitively secure program
if h = h then l := 1 else l := 0 is considered to have
flow from h to l, and is rejected by Andrews and Reitman’s
semantics [2] when h is high and l is low (similar examples
can be constructed for the other work [34], [7] mentioned
above).

It turns out that the security semantics by Ørbæk [37]
suffers from unsoundness. This semantics is dynamic, which
corresponds to Properties 1 and 2. The example in Figure 8
is accepted by the semantics, but it is intuitively insecure.
This example is based on the one in Figure 1. The underlying
language [37] does not include conditionals, but it has loops.
The instrumented semantics considers integrity rather than
confidentiality. Hence, the slightly more involved example.
Variable corrupted is assigned an expression e, labeled by
distrust to indicate that it comes from the attacker. Variable
trusted , on the other hand, receives a trusted values, labeled
by trust , and should not be affected by the attacker. Although
variable trusted is still trusted at the end of execution accord-
ing to the instrumented semantics, in fact variable corrupted
overrides it with corrupted data.

VI. HYBRID FLOW-SENSITIVE MONITORING

This section presents a framework to describe sound flow-
sensitive monitors by combining static (type system) and
dynamic (monitoring) techniques.

A monitor configuration has the form 〈Γ,Γs〉 for given a
typing environment Γ and a stack of typing environments
Γs. For the moment, we ignore the purpose of Γs in the
configuration (to be explained below). As before, typing
environment Γ associates every variable in the program with

〈skip,m〉 s−→〈stop,m〉
m(e) = v

〈x := e,m〉a(x,e)−→ 〈stop,m[x 7→ v]〉

〈c1,m〉
α−→〈stop,m′〉

〈c1; c2,m〉
α−→〈c2,m′〉

〈c1,m〉
α−→〈c′1,m′〉 c′1 6= stop

〈c1; c2,m〉
α−→〈c′1; c2,m

′〉

m(e) 6= 0

〈if e then c1 else c2,m〉
b(e,c2)−→ 〈c1; end ,m〉

m(e) = 0

〈if e then c1 else c2,m〉
b(e,c1)−→ 〈c2; end ,m〉

〈end ,m〉 f−→〈stop,m〉

m(e) 6= 0

〈while e do c,m〉b(e,skip)−→ 〈c; end ; while e do c,m〉

m(e) = 0

〈while e do c,m〉b(e,c)−→ 〈end ,m〉

m(e) = v

〈output`(e),m〉
o`(e,v)−→ 〈stop,m〉

Fig. 9. Semantics with internal events

〈Γ,Γs〉
s−→〈Γ,Γs〉 〈Γ,Γs〉

a(x,e)−→ 〈Γ[x 7→ lev(e,Γ) t lev(Γs)],Γs〉

(B-LOW)
lev(e,Γ) = L

〈Γ, ε〉b(e,c)−→ 〈Γ, ε〉

(B-HIGH)
lev(e,Γ) = H ∨ Γs 6= ε

〈Γ,Γs〉
b(e,c)−→ 〈Γ, updateH (c) : Γs〉

(J-HIGH)

〈Γ,Γ′ : Γs〉
f−→〈Γ t Γ′,Γs〉

(J-LOW)

〈Γ, ε〉 f−→〈Γ, ε〉

Fig. 10. Flow-sensitive monitor

a security level. Since our approach is flow-sensitive, Γ might
change during the execution of programs and we consider it as
part of the monitor’s state. The monitor performs transitions
of the form 〈Γ,Γs〉

α−→γ 〈Γ′,Γ′s〉 where α ranges over
the internal events triggered by commands (as illustrated in
Figure 9 and explained below), and ordinary event γ can
be an output (o`(e)) or an empty event (ε). Internal events
regulate communication between the program and the monitor.
Intuitively, every time that a command triggers an internal
event α, the monitor allows the execution to safely proceed
if it is also able to perform the labeled transition α. The
rule in Figure 12 formalizes this intuition: every event α is
synchronized with the monitor and event γ is the response to
such event. In the presence of unsafe instructions, the monitor
might decide to stop or alter the execution of programs. In
the latter case, event γ might differ from α when producing
outputs. Events α and γ can be considered as the interface to
the monitor.

7



(O-FAILSTOP)
lev(Γs) t lev(e,Γ) v `

〈Γ,Γs〉
o`(e,v)−→ o`(v)〈Γ,Γs〉

(O-DEFAULT)
lev(e,Γ) v `⇒ v′ = v lev(e,Γ) 6v `⇒ v′ = D

〈Γ, ε〉o`(e,v)−→ o`(v′)〈Γ, ε〉

(O-SUPPRESS)
lev(Γs) t lev(e,Γ) v `⇒ γ = o`(v)

lev(Γs) t lev(e,Γ) 6v `⇒ γ = ε

〈Γ,Γs〉
o`(e,v)−→ γ〈Γ,Γs〉

(O-DEFAULT/SUPPRESS)
lev(Γs) t lev(e,Γ) v `⇒ γ = o`(v)

lev(Γs) v ` & lev(e,Γ) 6v `⇒ γ = o`(D)
lev(Γs) 6v `⇒ γ = ε

〈Γ,Γs〉
o`(e,v)−→ γ〈Γ,Γs〉

Fig. 11. Possible behaviors for monitors

〈c,m〉 α−→〈c′,m′〉 〈Γ,Γs〉
α−→γ〈Γ′,Γ′s〉

〈〈c,m〉 |µ Γ,Γs〉
γ−→〈〈c′,m′〉 |µ Γ′,Γ′s〉

Fig. 12. Monitored executions

Figure 9 presents a small-step semantics that generates
internal events for a simple imperative language. The language
and the semantics are standard except for the presence of
command end , which signifies the end of a structure block
(explained below). This additional command can be generated
during runtime but it is not used in initial configurations.
Events convey information about programs’ behavior to the
monitor. The monitor then uses this information to determine
if an instruction is safe to execute.

The semantics for the monitor is described in Figure 10. We
clarify the stack Γs in the monitor’s configuration, function
lev(e,Γ) and update`(c). The stack of typing environments
Γs plays a similar role as the pc in type systems. When
the stack is empty (Γs = ε), it indicates that the current
instruction is not in a high context (recall from Section I
that high context encompasses the branches of conditionals
and loops with high guards; otherwise, the context is low).
Having Γs = ε corresponds to having pc = L. On the other
hand, when Γs 6= ε, then the current instruction is in a high
context (i.e., pc = H ). Moreover, the length of Γs indicates
the branching depth and every element in the list captures
the static analysis of the untaken branches. For example,
in the program if secret then (if secret ′ then x :=
0 else skip) else skip, the length of Γs is 2 when executing
x := 0 and its content is the static analysis of commands
skip. The branching depth allows the monitor to detect the

outermost branching points whose guards involve secrets. This
information is used to provide flow sensitivity to variables
inside high contexts. Function lev(e,Γ) returns the confiden-
tiality level of expression e considering the typing environment
Γ. Function update`(c) returns a typing environment, where
every variable that might be updated by command c is as-
sociated with the security level `. Observe that the monitor
is parametric in those functions. For our simple imperative
language, we consider lev and update as simple syntactic
checks of what variables appear in an expression e and what
variables at what levels are assigned in c, respectively. Clearly,
in the presence of other language features such as references,
these analyses would be more complex.

Event s, originated by skip, is always accepted without
changing the monitor configuration. Event a(x, e), originated
from executing x := e, sets the security level of x to
lev(Γs)tlev(e,Γ). Function lev(Γs) returns H when Γs 6= ε and
L otherwise. Event b(e, c), originated from conditionals and
loops, indicates to the monitor that a branching on expression
e has occurred and that command c is the untaken branch.
For example, command if e then x := 1 else x := 2
triggers event b(e, x := 2) when e evaluates to true. Knowing
the untaken branch helps the monitor to deal with high
conditionals and loops (explained below). Rule (B-LOW) is
applied when branching in low contexts. Observe that Γs is
ε before and after the monitor’s transition. Rule (B-HIGH)
is applied when branching on high conditionals or loops
(lev(e,Γ) = H ) as well as branching inside high contexts
(Γs 6= ε). In this case, the monitor applies static analysis
to the untaken branch. Specifically, the monitor pushes onto
the stack the variables that may be updated in the untaken
branch (updateH (c)). This typing environment is then kept
by the monitor until reaching the join point of that branching,
where it is popped from the stack by Rule (J-HIGH). This
rule uses the information obtained from statically analyzing
the untaken branch (Γ′) to raise the security level of variables
in Γ (Γ t Γ′). Similarly to type systems, the monitor raises,
for both branches, the security level of variables appearing on
the left-hand side of assignments. For example, if we consider
an initial typing environment Γ = {h 7→ H , l1 7→ L, l2 7→ L}
and the program if h then l1 := h else l2 := 0 then,
the final typing environment in our monitor results in {h 7→
H , l1 7→ H , l2 7→ H }. The monitor is as conservative as
type systems regarding the treatment of high conditionals and
loops! Nevertheless, it is still more permissive with respect to
branching on low data. For instance, if we consider an initial
typing environment Γ = {h 7→ H , l1 7→ L, l2 7→ L}, then the
program if l1 then l2 := h else l2 := 0; outputL(l2) is
rejected by the type system in Section III since the security
level of l2 is pushed to H after the conditional. In contrast,
our monitor accepts that execution of the program when l1
evaluates to false. Rule (J-LOW) is applied when reaching
join points in low contexts. Observe that there is no change
in the monitor’s state.

Although the monitoring rules might appear specialized for
the low-high security lattice, the monitor naturally scales to
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lattices with more security levels than two. In a setting of
an arbitrary security lattice, low corresponds to the bottom
security level. When branching on data at the bottom level,
there is no need track possible side effects in the branches.
This corresponds to Rule (B-LOW). On the other hand, when
branching on data at a level different from the bottom, possible
side effects in the branched need to be tracked: the security
level of each variable updated in the branches needs to be
updated at the joint point with the join of the current level of
the variable and the level of the guard.

There are different possible behaviors for monitors when
facing unsafe instructions. In our framework, outputs are re-
sponsible for potentially revealing information. Consequently,
monitors can take the following countermeasures when con-
fidentiality is threatened: stop the execution of the program,
print a default value, or suppress the output. Rules in Figure 11
model such possibilities. Rule (O-Failstop) demands that the
security level of expression e is bounded from above by the
security level of the output channel join the security context
(lev(Γs) t lev(e,Γ) v `). By requiring that lev(e,Γ) v `,
explicit flows of the form outputL(secret) are prevented.
Implicit flows, on the other hand, are ruled out by demanding
that lev(Γs) v `. Recall that lev(Γs) is H when Γs 6= ε, i.e.,
when executing instruction inside of high contexts. Monitors
utilizing this rule do not make any progress when the restric-
tion is not fulfilled (recall Figure 12), which indicates that
execution of programs might be blocked due to insecurities. In
contrast, the hypotheses in rules (O-Default) and (O-Suppress)
are always fulfilled. Rule (O-Suppress) suppresses outputs
(γ = ε) when unsafe outputs are about to be executed. Printing
default values inside of high contexts might leak information.
To illustrate it, we assume that D = 0 in the monitored execu-
tion of program: if secret then outputL(1) else skip. If
the guard evaluates to true, the monitor will print the default
value instead of number 1. Otherwise, the program produces
no outputs at all. By simply observing if an output is produced,
it is possible to deduce information about secret . Differently
from (O-Failstop) and (O-Suppress), rule (O-Default) can only
be applied in low contexts, i.e., when the stack of typing
environments is ε, in order to avoid these kind of attacks.
Otherwise, the execution of the program is blocked.

A particularly natural combination of (O-Suppress) and
(O-Default) deserves attention. We refer to it as (O-
Default/Suppress). Whenever an output on a low channel
outputL(e) is attempted, the monitor either suppresses the
output (in case it appears in high context, i.e., lev(Γs) = H ), or
outputs a default value (in case it appears in low context, i.e.,
lev(Γs) = L, but the expression is high, i.e., lev(e,Γ) = H ).

Interestingly, the (O-Default/Suppress) reaction instantiation
corresponds to the hybrid enforcement by Le Guernic et
al. [28]. The instantiation for the static part of the analysis
is simply the set of variables occurring on the left-hand side
of assignment in c for function updateH (c); and the union
of security levels of variables occurring in expression e for
function lev(e,Γ).

To sum up, rules in Figures 10 and 11 provide a uniform

framework to describe different monitors’ reactions to deal
with unsafe instructions. Monitors that stop execution of
programs are modeled in Figure 10 by the rule (O-Failstop),
monitors that output default values are composed by the rule
(O-Default), and monitors that suppresses outputs are modeled
by the rule (O-Suppress). That the framework allows for useful
combinations of these behaviors is illustrated by the rule (O-
Default/Suppress), which is used by Le Guernic et al. [28].

VII. SOUNDNESS AND PERMISSIVENESS

This section presents formal guarantees provided by the
monitor. We also show that the monitor allows more programs
than the type system from Section III. We assume the same
attacker model as in Definition 3: the attacker can only observe
public outputs. Recall that events s, b(e, c), a(x, e) and f
are internal and hence externally unobservable. Event o`(e) is
considered high or low depending if ` is H or L, respectively.
We denote a single monitored step −→α as L−→α ( H−→α)
when α is a low (high) event. We denote a (possibly empty)
sequence of monitored steps H−→α as H−→∗. We present the
main soundness result in the next theorem (proved in [40]).

Theorem 2 (Soundness). For any memory m and com-
mand c, the execution of c starting at the configuration
〈〈c,m〉 | cfgm0〉 is secure according to Property 3.

Finally, the following corollary relates Property 3 with a
batch-job termination-insensitive security condition.

Corollary 1 (Batch-job soundness). Given a program c,
memories m1 and m2 such that m1 =cfgm0(1) m2

and two terminating monitored runs: 〈〈c,m1〉 | cfgm0〉
−→ ~α1

∗ 〈〈stop,m′1〉 | cfgm ′1〉 and 〈〈c,m2〉 | cfgm0〉 −→ ~α2
∗

〈〈stop,m′2〉 | cfgm ′2〉, then it holds that L( ~α1) = L( ~α2).

Regarding permissiveness, we prove (as detailed in [40])
that our monitor is, at least as permissive as the type system
in Section III.

Theorem 3. Given a monitor described by the rules
in Figure 10 and one of the rules in Figure 11,
if pc ` Γ {c} Γ′, and 〈c,m〉 S−→~α

∗〈c′,m′〉 then
∃Strip, cfgm ′, c′′,m′′.〈〈c,m〉 | Γ, ε〉−→~α

∗ 〈〈c′′,m′′〉 |µ
cfgm ′〉 and Strip(c′′) = c′ and Strip(stop) = stop.

The theorem corresponds to Property 4 on permissiveness.
We illustrate that monitors from our framework may be more
permissive than the type system with an example. In this
manner, we justify Figure 2(c) which describes that there are
programs accepted by flow-sensitive monitors that are rejected
by flow-sensitive type systems. One way to illustrate this
is by involving programs with dead code: l := 1; if l 6=
1 then outputL(secret) else skip where variable l is
considered public. Clearly, this program is rejected by the type
system due to the presence of the instruction outputL(secret).
In contrast, the monitor accepts all executions of this program.

Additionally, we present a more interesting example involv-
ing no dead code. Assuming that initially {x 7→ L, y 7→ L},
we consider the program in Figure 13. This program outputs
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numbers from 0 to 4 and finishes normally. Observe that
every instruction is executed at least once. The type system in
Section III (and any other standard analysis without involved
value-based tracking) rejects this program: variable x must be

y := 0;
x := 0;
while y < 10 do
outputL(x);
if y = 5 then x := secret ;

y := 10
else skip;

y := y + 1;
x := x+ 1

Fig. 13. Example

considered secret in every iter-
ation of the loop which causes
instruction outputL(x) not to
type-check! In contrast, the
monitor accepts the program.
Observe that the security levels
of variables y and x remain L
during the first four iterations
of the loop. In the fifth itera-
tion, however, the security level
of x is raised to H . After that,
the conditional of the loop does
not hold anymore (y = 10) and the program finishes normally.
The program in Figure 13 may be rewritten to be accepted
by a type-system, e.g., by replacing the while’s guard by
y < 5 and moving the assignments after the loop. However,
such rewriting is not always obvious: it cannot be automated
without nontrivial static analysis.

VIII. RELATED WORK

There is a large body of work on language-based
information-flow security. We refer to a survey [42] for gener-
ally related work and focus on immediately related approaches
to monitoring.

As mentioned in Section I, noninterference is not a safety
property [33], [47]. Precise characterizations of what can be
enforced by monitoring have been studied in the literature
(e.g., [44], [22]). Noninterference is a typical example of a pol-
icy that cannot be enforced precisely by dynamic mechanisms.
However, the focus of this paper is on enforcing permissive
yet safe approximations of noninterference. The exact policies
that are enforced might just as well be safety properties (or
not), but, importantly, they guarantee noninterference.

Fenton [20] presents a purely dynamic monitor that takes
into account program structure. It keeps track of the se-
curity context stack, similarly to monitors in Section VI.
However, Fenton does not discuss soundness with respect
to noninterference-like properties. Volpano [50] considers a
purely dynamic monitor that only checks explicit flows. Im-
plicit flows are allowed, and therefore the monitor does not
enforce noninterference. Boudol [9] revisits Fenton’s work and
observes that the intended security policy “no security error”
corresponds to a safety property, which is stronger than nonin-
terference. Boudol shows how to enforce this safety property
with a type system. In a flow-insensitive setting, Sabelfeld and
Russo [43] show that a purely dynamic information-flow moni-
tor is more permissive than a Denning-style static information-
flow analysis, while both the monitor and the static analysis
guarantee termination-insensitive noninterference. This paper
shows a fundamental difference in a flow-sensitive setting: one
has to chose between soundness and permissiveness for purely
dynamic flow-sensitive monitors.

Askarov and Sabelfeld [4] investigate dynamic track-
ing of policies for information release, or declassification,
for a language with communication primitives. Russo and
Sabelfeld [39] show how to secure programs with timeout
instructions using execution monitoring. Russo et al. [41]
investigate monitoring information flow in dynamic tree struc-
tures.

Austin and Flanagan [5], [6] suggest a purely dynamic mon-
itor for information flow with a limited form of flow sensitivity.
They discuss two disciplines: no sensitive-upgrade, where the
execution gets stuck on an attempt to assign to a public vari-
able in secret context, and permissive-upgrade, where on an at-
tempt to assign to a public variable in secret context, the public
variable is marked as one that cannot be branched on later in
the execution. Since the monitor is purely dynamic, our results
imply that it is either unsound or more restrictive than Hunt
and Sands’ static analysis. Indeed, the latter is true: for ex-
ample, program (if secret then public := 1 else public :=
−1); if public then public := 1 else public := −1 where
secret and public are originally high and low, respectively,
is accepted by the static analysis (where public is relabeled
as high as a result) but rejected by both no sensitive-upgrade
(because the low variable public is assigned in high context)
and by permissive-upgrade (because it is not allowed to first
relabel public to high and then branch on it).

Recently, Chudnov and Naumann [14] have presented an
inlining approach to monitoring information flow. They inline
a flow-sensitive hybrid monitor based on our monitoring
framework. The soundness of the inlined monitor is ensured
by bisimulation of the inlined monitor and the original monitor
from Section VI.

Magazinius et al. [31] show how to perform information-
flow monitor inlining on the fly: security checks are injected as
the computation goes along. They consider a source language
that includes dynamic code evaluation of strings whose content
might not be known until runtime. To secure this construct, the
inlining is done on the fly, at the string evaluation time, and,
just like conventional offline inlining, requires no modification
of the hosting runtime environment.

Mechanisms by Venkatakrishnan et al. [48], Le Guernic
et al. [28], [27], and Shroff et al. [45] combine dynamic
and static checks. The mechanisms by Le Guernic et al.
for sequential [28] and concurrent [27] programs are flow-
sensitive. Section VI shows how to represent the monitor [28]
for sequential programs in our framework. Ligatti et al.
[29] present a general framework for security policies that
can be enforced by monitoring and modifying programs at
runtime. The authors introduce the notion of edit automata,
i.e., monitors that can stop, suppress, and modify the behavior
of programs. Similar to edit automata, our monitor in Figure
10 can stop, suppress, or modify the behavior of outputs.
However, questions related to flow sensitivity in dynamic
monitors for noninterference are not raised by Ligatti et al.

Vogt et al. [49] and Cavallaro et al. [10] discuss examples
similar to the one in Section I and provide informal motivation
for including static analysis into monitors. We pin down the
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essence of the problem with the formal impossibility result.
Tracking information flow in web applications is becoming
increasingly important (e.g., recent highlights are a server-side
mechanism by Huang et al. [24] and a client-side mechanism
for JavaScript by Vogt et al. [49], although they do not
discuss soundness). Dynamism of web applications puts higher
demands on the permissiveness of the security mechanism:
hence the importance of dynamic analysis.

IX. CONCLUSION

Seeking to answer fundamental questions about trade-offs
between static and dynamic flow-sensitive security analysis,
the paper arrives at the following results:

Impossibility results We have proved that one is forced
to choose between soundness and permissiveness for purely
dynamic flow-sensitive monitors. Having both is impossible:
a purely dynamic flow-sensitive monitor (as, e.g., [5], [6]) will
inevitably reject programs that are typable by Hunt-Sands-
style type system. To the best of our knowledge, there are
no prior impossibility results on permissive purely dynamic
monitoring of information-flow policies. A side implication
is impossibility of permissive instrumented security semantics
for information flow.

Possibility results We have shown that both soundness and
permissiveness can be retrieved once dynamic monitors can be
combined with static analysis. We have presented a general
framework for hybrid mechanisms that is parameterized in
the static part and in the reaction method of the enforcement
(stop, suppress, or rewrite) and given a soundness proof with
respect to termination-insensitive noninterference for a simple
language with output. The parameterization part is novel,
and so are the soundness proofs with respect to termination-
insensitive noninterference. Although previous work considers
languages with output, the target policy is often batch-job style
security, where all diverging runs (that might leak all secrets
at once) are simply ignored (e.g., [28]). We show soundness
for a wide class of monitors, including one by Le Guernic et
al. [28], against a stronger version of termination-insensitive
noninterference [1], designed to reason about programs with
output.

It is known that noninterference is not a safety property [33],
[47]. This, however, does not imply that a safe approximation
of noninterference cannot be soundly enforced by a monitor
(a trivially secure monitor might simply block all executions).
The key question is whether or not noninterference can be
guaranteed by monitors without rejecting too many useful
programs. A good indicator for useful programs is the set of
programs that pass Denning-style security analysis. The find-
ings of this paper illuminate that the key question is answered
positively for hybrid monitors and for flow-insensitive purely
dynamic monitors, but not for flow-sensitive purely dynamic
monitors.

We conjecture that our results also hold for termination-
sensitive noninterference [51], [42], where the termination
behavior should not depend on secret data. The termination
behavior is hard to control dynamically—no matter if the

mechanism is flow-sensitive or insensitive—and so it is not
surprising that a purely dynamic mechanism would have
to be extremely conservative. Alternatively, the enforcement
framework can be strengthened with static analysis for ter-
mination channels. Moreover, the impossibility result holds
for termination-sensitive noninterference because the proof of
Theorem 1 does not involve loops.

While the paper answers the fundamental question of the
trade-offs between flow-sensitive dynamic and static analyses,
there are some practical questions to be investigated. For
example, how big is the set of the programs accepted by the
static analysis but rejected by dynamic monitors in practice? It
might be or not be significant enough to motivate the necessity
of heavy static analysis. Similarly, how big is the set of the
programs accepted by dynamic monitors but rejected by the
static analysis in practice? It might be or not be significant
enough to motivate runtime overhead and late error discovery.
These intriguing questions are subject of ongoing [19] and
future practical case studies. An exciting challenge in this
area is that static analysis has to be done on the fly (as in
the browser scenario, where incoming JavaScript programs
are analyzed for security), and so the overhead of performing
on-the-fly static analysis is actually often higher than that of
performing light runtime monitoring.

Future work includes investigating other channels that affect
the trade-off between static and dynamic security analysis. In
a separate line of work, we explore performance-related trade-
offs.
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