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Abstract

Timeout mechanisms are a useful feature for web
applications. However, these mechanisms need to be
used with care because, if used as-is, they are vulner-
able to timing attacks. This paper focuses on internal
timing attacks, a particularly dangerous class of timing
attacks, where the attacker needs no access to a
clock. In the context of client-side web application
security, we present JavaScript-based exploits against
the timeout mechanism of the DOM (document object
model), supported by the modern browsers. Our exper-
imental findings reveal rather liberal choices for the
timeout semantics by different browsers and motivate
the need for a general security solution. We propose
a foundation for such a solution in the form of a
runtime monitor. We illustrate for a simple language
that, while being more permissive than a typical static
analysis, the monitor enforces termination-insensitive
noninterference.

1. Introduction

Timeout mechanisms provide a useful feature for
web applications. For example, they are helpful for
many client-side scenarios, ranging from providing
handlers when there is a network problem to control-
ling the timing of slide shows, automatically closing a
window after a given period of time, etc.

However, these mechanisms need to be used with
care because, if used as-is, they are vulnerable to
timing attacks. These attacks exploit the information
flow from secrets to the execution time. Internal timing
attacks [54] go one step further and exploit the flow
from execution time to publicly observable events.
These attacks are particularly dangerous because the
attacker needs no access to a clock to learn the
complete secrets in linear time [36].

While external timing leaks have been explored in
the context of web applications (e.g., [17]), we turn
our attention to internal timing leaks for web clients.

We are particularly interested in protecting the timeout
model that is available via the API of the DOM
(document object model), as supported by modern
browsers.

To demonstrate the problem, we present JavaScript-
based exploits against the timeout mechanism of the
DOM for a collection of modern browsers. The ex-
ploits also succeed against an information-flow en-
hanced extension of Firefox by Vogt et al. [52], whose
information-flow tracking is not sufficient against tim-
ing attacks.

Our experimental findings reveal rather liberal
choices for the timeout semantics by the different
browsers, which motivates the need for a general
security solution. We propose a foundation for such a
solution in the form of a runtime monitor. The intention
for this kind of monitor is to be deployed in a browser
to track manipulation of sensitive data such as form
input, cookies, browsing history, etc. to make sure this
data is not leaked to the attacker (for example, by
encoding it into the URL of an embedded image from
a third-party web site).

The paper works out the idea of tracking information
flow in the presence of timeouts for a simple imperative
language. The monitor keeps track of security levels
(in a simple setting, secret and public) for variables.
The monitor prevents insecure flow of information
via assignments to public variables, making sure (i)
expressions on the right hand side of assignments do
not depend on secrets (explicit flows) and (ii) these
assignments are not made in a secret context, i.e.,
inside of a conditional or a loop with a secret guard.
The latter corresponds to implicit flows [16].

In addition to checking these flows, the monitor
keeps track of the commands in the timeout queue.
These commands are not allowed to assign to public
variables if their respective timeouts were set in a
secret context or the time depended on secrets. In
addition, whenever the main computation branches on
secret data, the commands in the queue are “tainted”:
their future attempts of performing a publicly observ-
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able assignment will be stopped. Also, when a tainted
timeout executes, timeouts to be created in the future
are also tainted. We show that this simple mechanism,
together with preventing timeout setting by commands
that were tainted while in the timeout queue, is suffi-
cient to guarantee information-flow security.

We show that, while being more permissive than a
typical static analysis, the monitor prevents insecure
information flow. More precisely, we show that the
monitor enforces termination-insensitive noninterfer-
ence [5]. The permissiveness of the monitor is par-
ticularly important in the context of web applications,
where freshly generated code is often dynamically
evaluated. Clearly, it is quite a challenge to avoid a
significant loss of precision when analyzing such code
statically.

The paper is organized as follows. In Section 2,
we reflect on static vs. dynamic information-flow
enforcement. We present JavaScript-based attacks in
Section 3. Section 4 formalizes the semantics of a
simple language with timeouts. Section 5 presents the
monitor. Section 7 proves the security of the monitor.
Section 6 evaluates how a full version of our monitor
for JavaScript would behave for some common uses of
timeouts. Section 8 discusses related work. The paper
concludes with Section 9.

2. Static vs. dynamic enforcement

Before getting into the specifics of the timeout
issues, we would like to offer some reflections on a
general discussion on static vs. dynamic enforcement
for information-flow control. A separate paper elabo-
rates on these reflections and formalizes them for a
simple imperative language [42].

Historically, dynamic techniques are the pioneers of
the area of information flow in the 70’s (e.g., [18]).
They prevent explicit flows (as in public := secret)
in program runs. They also address implicit flows
(as in if secret then public := 1 ) by enforcing a
simple invariant of no public side effects in secret
context, i.e., in the branches of conditionals and loops
with secret guards. These techniques, however, come
without soundness arguments.

In their seminal paper, Denning and Denning [16]
suggest a static alternative for information-flow anal-
ysis. They argue that static analysis removes runtime
overhead for security checks. This analysis prevents
both explicit and implicit flows statically. The invariant
of no public side effects in secret context is ensured by
a syntactic check: no assignments to public variables
are allowed in secret context. Denning and Denning
do not discuss soundness, but Volpano et al. [55] show

soundness by proving termination-insensitive noninter-
ference, when they cast Denning and Denning’s anal-
ysis as a security type system. Denning-style analysis
is by now the core for information-flow tools Jif [28],
FlowCaml [45], and the SPARK Examiner [9], [14].

The 90’s see the domination of static techniques for
information flow [41]. The common wisdom appears to
be that dynamic approaches are not a good match for
security since monitoring a single path misses public
side effects that could have happened in other paths.

For example, Myers and Liskov [27] discuss:
. . . static checking allows precise, fine-
grained analysis of information flows, and
can capture implicit flows properly, whereas
dynamic label checks create information
channels that must be controlled through
additional static checking. . .

It is, in effect, suggested that dynamic checking alone
is insufficient for security.

In this light, it might be surprising that it is pos-
sible for purely dynamic enforcement to be as se-
cure as Denning-style static analysis [42]. The key
factor is termination. Denning-style static analysis
are typically termination-insensitive (i.e., they ignore
leaks via the termination behavior of the program).
Thus, they satisfy termination-insensitive noninterfer-
ence [55], which ignores the channel for signals via
the (non)termination of the program. If the monitor,
by stopping the underlying program, can introduce
nontermination, this feature can be used for collapsing
information channels into the termination channel. The
implicit-flow channel is one example: stopping the
execution at an attempt of a public assignment in secret
context (note the similarities to the techniques from
the 70’s!) is in fact sufficient for termination-sensitive
security.

Static techniques have benefits of reducing run-
time overhead, and dynamic techniques have the
benefits of permissiveness, which is of particular
importance in dynamic applications, where freshly
generated code is evaluated. For example, it is
difficult to statically determine if the program
eval(http : //www.dynamic.com/script.js) is se-
cure without being too conservative (command eval
is used here to retrieve and execute a script un-
der a given URL). The difficulty arises from the
fact that the code retrieved and executed from
http : //www.dynamic.com/script.js might change
over time. Moreover, in a heterogeneous environment
as the web, it is also difficult to assume proper-
ties about third-parties scripts. Another example to
illustrate permissiveness of dynamic techniques is the
program if l < 0 then l := 1 else l := h, where
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l and h are variables that store public and secret
values, respectively. Static analysis, as traditional type
systems [55], reject this program as insecure due to
the presence of the explicit flow l := h. In contrast,
some dynamic techniques, as the monitor introduced
in Section 5, are able to accept executions of the
program when l < 0 holds. On the security side,
however, both Denning-style analysis and dynamic
enforcement have the same guarantees: termination-
insensitive noninterference.

When termination-sensitive noninterference is de-
sired, the absence of side effects of traces not taken
becomes indeed hard to guarantee dynamically.

But which policy should be the one of choice,
termination-insensitive noninterference or termination-
sensitive noninterference? Termination-sensitive non-
interference is attractive, but rather difficult to guar-
antee. Typically, strong restrictions (such as no loops
with secret guards [53]) are enforced. Program errors
exacerbate the problem. Even in languages like Agda
[30], where it is impossible to write nonterminating
programs, it is possible to write programs that ter-
minate abnormally: for example, with stack overflow.
Generally, abnormal termination due to resource ex-
haustion, is a channel for leaks that can be hard to
counter.

The above-mentioned information-flow tools Jif
[28], FlowCaml [45], and the SPARK Examiner [9],
[14] avoid these problems by targeting termination-
insensitive noninterference. The price is that the at-
tacker may leak secrets by brute-force attacks via the
termination channel. But there is formal assurance that
that these are the only possible attacks. Askarov et
al. [5] show that if a program satisfies termination-
insensitive noninterference, then the attacker may not
learn the secret in polynomial running time in the size
of the secret; and, for uniformly-distributed secrets,
the probability of guessing the secret in polynomial
running time is negligible.

Having outlined the space of choices, we chose
termination-insensitive noninterference as the target
security policy, similarly to Jif, FlowCaml, and SPARK
Examiner. Further, we chose dynamic enforcement
for our enforcement method, driven by the need for
permissiveness (especially important for web applica-
tions).

3. Attacks

This presents the attacker model and providing
examples of client-side JavaScript-based attacks that
involve internal timing leaks.

Attacker model The attacker’s target is user-
sensitive data that is available to the browser in the
context of a given web page or data stored at the
server that might be accessible in the context of user
sessions. This data includes browser cookies, form
input, browsing history, etc. (cf. the list of sensitive
sources used by Netscape Navigator 3 [29]). Client-
side scripts have full access to such data. In that way,
scripts can perform useful computations on the client-
side before sending requests to the server. An example
is data validation, where scripts check, for example,
that bank account numbers have the proper length and
clearing numbers. It is important to guarantee that
scripts preserve confidentiality properties, i.e., they do
not leak information by transferring secret data into
public sinks. We assume that public sinks are observ-
able by the attacker, which includes communications
to attacker-observable web sites. Note that requesting
information from the attacker’s web site is sufficient
to transfer information as the information may be
encoded in the URL of the request. We adopt the
worst-case assumption that the attacker has full control
over client-side code independently of the origin. This
captures a wide range of attackers, including those that
succeed in taking over the control of the client-side
code by cross-site scripting (XSS).

Timeouts According to [2], timeouts execute
code snippets, or functions, after a specified delay. This
feature is commonly used to address possible failing
XMLHTTP requests in web applications. However, it
is also used for other purposes: animations, web slide
shows, etc. Timeouts are provided by the DOM API.
Although timeouts are present in most web browsers,
this feature is not yet part of any standard. As of now,
it has only been considered in drafts for the HTML
5 standard. We found different implementations of the
API in different browsers. Some of these discrepancies
can indeed be exploited to leak secrets, as discussed
below. For the rest of the section, we assume that
JavaScript is the language to interact with the DOM
API.

Timeouts can be used to leak sensitive data. Before
illustrating it, we describe in more detail how timeouts
are handled by modern web browsers. As a piece of
JavaScript runs, it may set timeouts. The first timeout is
triggered after finishing the execution of the JavaScript
present in the web page. The next timeout, if there
is more than one, is triggered after the first timeout
completes its execution. In other words, JavaScripts
included in web pages cannot be interrupted by time-
outs as well as timeouts cannot be interrupted by other
timeouts. With this in mind, in Figure 3, we present
a JavaScript attack based on timeouts. We consider
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function l0() { l = 0 ; } function l1() { l = 1 ; }

function attack() {
setTimeout(function()l0(),50);
setTimeout(function()f(),1);
setTimeout(function()leak(),500); }

function f() {
var z = 0 ;
if (form.secret > 0)

{do {z++;} while( z < 900000);}
else {};
setTimeout(function(){l1();},1); }

function leak { new Image().src="http://www.evil.com/leak="+encodeURI(l); }
attack();

Fig. 1. Internal timing leak

one-bit secret represented by form.secret, a local
secret variable z, and a public variable l. Observe
that l is only assigned to constant values. One of the
peculiarities of this attack is the absence of explicit
and implicit flows [16]. Nevertheless, it does produce
a leak by transferring secret information into l. The
attack starts by running function attack and setting
up three timeouts: a timeout for calling l0(), which
sets l to zero, a timeouts that inspect the value of the
secret (function f), and a timeout that sends l to the
attacker’s site (function leak), which we assume is
placed in a different origin from the one where the
script runs. After that, the function associated with the
minimum delay is run, in this case, function f. Re-
member that we still have the timeout that runs l0()
scheduled to run after 50 millisecond since it was set.
Then, function f inspects the value of form.secret.
If form.secret > 0, then it performs some dummy
computations that take around 100 milliseconds (see
the loop in the code) 1. Otherwise, no computations
are performed at all. After that, f sets a timeout to
execute function l1() after 1 millisecond. On one
hand, if form.secret > 0, function l1() is exe-
cuted after l0() since 50 milliseconds already passed
since the timeout for l0() was set. On the other
hand, if form.secret ≤ 0, l1() is executed first
because less than 50 millisecond passed since setting
the timeout for l0(). Observe that depending on the
value of form.secret, which affects the timing
behavior of function f, the race to assign a value to l
is resolved in different manners. More fundamentally,
our attack produces an internal timing leak: a leak that
is created by exploiting timing behavior of programs
without needing access to a stopwatch. It is possible
to magnify the attack in Figure 3 to leak the complete
value of secrets [36]. Observe that it is usually enough
two conditions to perform this attack on a given web

1. The scripts have been run in the following computers: AMD
Athlon 64 3200+, 1GB RAM with the Gentoo Linux distribution,
and Intel P4 2,6GHz, 1GB RAM with Microsoft Windows XP.

site. Firstly, JavaScript, and particularly timeouts, must
be allowed to run. Secondly, the code in Figure 3
should be somehow present in the website. It could
be the case that the code was placed by a malicious
programmer or injected by an attacker [4]. To the best
of our knowledge, this work is the first one to address
this kind of attacks in web applications.

In Figure 3, we present another example where
timeouts exploit a different covert channel: termina-
tion. Variable nonexist is a non-declared variable.
As a consequence of that, when running the line
nonexist = 0, the execution of the JavaScript
will be aborted. However, timeouts set to run will be
triggered anyway. The program essentially terminates
successfully when form.secret ≤ 0 and abnor-
mally otherwise. Then, by inspecting the value of l, it
is possible to distinguish between these two cases. As
for the example in Figure 3, it is possible to magnify
this termination attack to leak complete secret values
[36].

Implementation in web browsers As mentioned
previously, timeouts are not yet part of any standard.
However, most browsers support them. In this light,
we experiment with several browsers to try to find
similarities and differences between them. In Figure
3, we present a JavaScript program with two meta-
variables d1 and d2 to represent delays for the given
timeouts. We assume that the total time to run func-
tion foo is 200 milliseconds. We also assume that
d1 > d2. It turns out that how much d1 and d2 are
different does not matter. Figure 4 presents a table
that reveals, depending on the values of d1, d2, and
the web browser, different behaviors when running
foo(). For instance, the first column indicates that,
in Firefox, when d1 and d2 are strictly less than 11
milliseconds, function f runs first. The second column
indicates that when d1 and d2 are bigger than the total
time that takes to run foo(), function g runs first
in most of the browsers except for Konqueror. The
choice of Konqueror is somewhat anomalous because
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function attack() {
setTimeout(function()leak(),1);

if (form.secret > 0) nonexist = 0 ;

l = 0 ;}
function leak { new Image().src=

"http://www.evil.com/leak="+encodeURI(l); }
l = 1; attack();

Fig. 2. Termination leak

function foo() {
setTimeout(function()f(),d1);
setTimeout(function()g(),d2);
// Some code
}
foo() ;

Fig. 3. Controversial timeout example
Browser d1, d2 di > 200ms
Chrome 1.0.154.43 <10ms, f g
Firefox 3.0.3 <11ms, f g
Konqueror 3.5.9 <5ms, f f
Explorer 7.0.5730.11 g g
Opera 9.62 g g

Fig. 4. Which function runs first?

function attack() {
var z = 0;

setTimeout(function()l0(),80);

setTimeout(function()l1(),50);

if (form.secret > 0) ;

{do {z++;} while( z < 900000);}
else {};

}
setTimeout(function()leak(),500) ;

attack();

Fig. 5. Attack for Konqueror

e ::= n | x | e⊕ e

c ::= skip | x := e | c; c | if b then c else c
| while b do c | end | setTimeout(c, e) | stop

Fig. 6. Language

expired timeouts are ordered not according to the
time parameters but according to order of creation.
One could argue that we might not bother about
this anomalous semantics, but we nevertheless discuss
how to model and secure this choice by adapting
our approach. Konqueror’s apparently innocent choice
leads to the possibility to create another attack that
uses the internal timing covert channel. We show such
an attack in Figure 5. Functions l0, l1, and leak
are the same as the ones described in Figure 3. When
form.secret > 0, function attack takes at least
100 millisecond due to the while-loop in the code,
which produces function l0 to run first. Otherwise,
function l1 executes first due to the running time
of attack is less that 50 milliseconds. In the code,
the interesting feature of this attack is the absence of
public observable events after branching on secrets.
Observe that the branching in function f is followed by
no instructions. Some type systems [12], [13] prevent
internal timing leaks by restricting instructions after
branching on secrets. Unfortunately, these type systems
miss this attack because there are no instructions after
branchings. However, our proposed solution in Section
5 can be easily adapted to prevent it.

4. Semantics

Language Figure 6 presents a simple imperative
language with a timeout primitive. Expressions e con-
sist of integers n, variables x, and composite expres-
sions e⊕e (where ⊕ is a binary operation). Commands,
denoted by c, consist of standard imperative instruc-
tions and setTimeout. Instruction setTimeout(c, e)
establishes a code snippet that will run after e units
of time. The language contains additional commands
signifying an end of a structure block (end ) and
termination (stop), explained below. These additional
commands can be generated during the execution
but they are not used in initial configurations (this
restriction is formalized in Section 7). A command
c, memory m, current time t, and a list of timeouts
p form a command configuration 〈c,m, t, p〉. Lists
of timeouts are composed by elements of the form
(c, t) where c is a snippet to be run at time t. We
only consider lists of timeouts in ascending order of
time. Small-step semantics is described by transitions
of the form 〈c,m, t, p〉 α−→γ 〈c′,m′, t′, p′〉, where α
is an internal event triggered by the transition. The
internal event label serves the purpose of conveying
information about program execution to an execution
monitor. As we explain in Section 5, the monitor uses
this information in order to determine if the execution
can proceed. On the other hand, γ is an external event.
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t′ = t + T (skip)

〈skip,m, t, p〉 s−→ 〈stop,m, t′, p〉

m(e) = n t′ = t + T (x := e)

〈x := e,m, t, p〉 a(x,e)−→ (x,n) 〈stop,m[x 7→ n], t′, p〉

〈c1,m, t, p〉 α−→γ 〈stop,m′, t′, p′〉
〈c1; c2,m, t, p〉 α−→γ 〈c2,m

′, t′, p′〉

〈c1,m, t, p〉 α−→γ 〈c′1,m′, t′, p′〉 c1, c
′
1 6= stop

〈c1; c2,m, t, p〉 α−→γ 〈c′1; c2,m
′, t′, p′〉

m(e) 6= 0 t′ = t + T (e)

〈if e then c1 else c2,m, t, p〉 b(e)−→ 〈c1; end ,m, t′, p〉

m(e) = 0 t′ = t + T (e)

〈if e then c1 else c2,m, t, p〉 b(e)−→ 〈c2; end ,m, t′, p〉

t′ = t + T (end)

〈end ,m, t, p〉 f−→ 〈stop,m, t′, p〉

m(e) 6= 0 t′ = t + T (e)

〈while e do c,m, t, p〉 b(e)−→〈c; end ; while e do c,m, t′, p〉

m(e) = 0 t′ = t + T (e)

〈while e do c,m, t, p〉 b(e)−→ 〈end ,m, t′, p〉

t′ = t + T (setTimeout(c, e))
t′′ = t + m(e) p′ = inSorted((c, t′′), p)

〈setTimeout(c, e),m, t, p〉 tin(t′′,e)−→ 〈stop,m, t′, p′〉

t′′ = max (t + T (timeout), t′)

〈stop,m, t, (c, t′).p〉 tout−→ 〈c; end ,m, t′′, p〉

Fig. 7. Semantics

External events record the effects of assignments, and
are helpful for representing strong attackers that may
observe changes in the public part of the memory. This
accommodates smooth extension to the model of inputs
and outputs by streams (which is an appropriate model
of communication in deterministic programs [15]).
Although we do not consider interactions with the
outside world, we still use this formalism to minimize
the impact of incorporating input and outputs to the
language in future work.

Events Figure 7 presents the semantics for com-
mand configurations. Function T returns how many
units of time takes to run a command or evaluate a
given expression. We assume that T (x) is constant for
any variable x and that T (e1) = T (e′1) where e′1 is
an expression obtaining from renaming any variable
in e1. Events s and a(x, e) are triggered by commands
skip and x := e, respectively. The semantic rules
for these commands are self-explanatory. The rules for
sequential composition are mostly standard except for
requiring that c1 6= stop, which is related to timeouts
and it will be explained in due course. Event b(e),
triggered by branching commands, indicates that the
program branches on the expression e and is about to
enter one of the branches. Expression e is a part of
the event label so that if e involves secret data, the
monitor will prevent any publicly observable behavior
in the taken branch. The end command is added after
the corresponding branch and triggers the event f ,
which informs the monitor that the block structure
of a conditional has finished its execution. Similar
to conditional branches, the semantic rule for loops
also triggers event b(e). When the loop’s guard is
non-zero, the command end executes after the body
of the loop, i.e., while e do c is transformed into
c; end ; while e do c.

Timeouts The semantic rule for
setTimeout(c, e) establishes a new timeout by
inserting the pair (c, t′′) into the list of timeouts p.
The insertion of the pair preserves the order in p.
To achieve that, we utilize inSorted((c, t′′), p) in
the hypothesis of the rule. Time t′′ indicates what
is the time for command c to be run. In order to
calculate that, the rule adds to the current time t
the delay indicated by e (t′′ = t + m(e)). The
new current time is determined by considering how
long it took to run the setTimeout instruction
(t′ = t + T (setTimeout(c, e)). Event tin(t ′′, e)
is triggered when setting timeouts. The reasons to
include t′′ and e as part of the event are explained
in Section 7. When the list of timeouts is not empty,
the rule for command stop triggers event tout , which
indicates that a given timeout takes place. Observe
that by triggering timeouts after reaching command
stop implies that code snippets are only run after
the source program or another code snippet finish its
execution (as in JavaScript). The rule simply executes
the first code snippet given in the list of timeouts p.
We note (c, t).p to the list of timeouts which first
element is (c, t) and has a tail p. An end instruction
is added after the code of the snippet. This addition
is related to the monitor and it will be explained in
Section 5. The new current time (t′′) is determined by
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the maximum time between the time that it takes to
trigger a timeout (T (timeout)) and the time that the
first snippet is scheduled to run (t′). In this way, in the
case that t′ > t + T (timeout), we do not need a rule
in the semantics to wait until the current time is set
to t′. On the other hand, when t′ < t + T (timeout),
the snippet to be run at time t′ is then run as soon as
possible, i.e., at time t + T (timeout).

We are now in a condition to explain the reason to
require c1 6= stop in one of the rules for sequential
composition. In a standard semantics, the command
stop; c makes no progress since stop cannot make any
transition. However, in our semantics, if we did not
require that c1 6= stop, it would be possible for stop; c
to make some progress since stop commands could
make transitions by executing code snippets associated
with timeouts. Clearly, this behavior is not the expected
one.

For simplicity, we present a semantics that models
the scheduling strategies found in Explorer and Opera.
To model timeouts in Firefox, it is enough to change
the definition of inSorted, while more involved changes
are needed to model the behavior of Konqueror, where
the execution time of scripts affect the semantics for
timeouts (again, one can argue that Konqueror’s choice
might be too anomalous to worry about). However,
the principles of our enforcement mechanism remain
unchanged independently of the browser’s semantics.

clearTimeout, setInterval, and clearInterval
The DOM API presents more primitives related to
timeouts that we do not consider here. For exam-
ple, primitive clearTimeout removes a given time-
out. Although useful for programmers, considering
this primitive would have complicated the language
presented in Figure 7. The reason for that comes
from the fact that the primitive operates on timeout
handlers. More importantly, restricting the use of this
primitive to be secure presents no novelty from the
security point of view (see discussion in Section 5)
and therefore, we omit it. Primitive setInterval
works similarly to setTimeout except that it contin-
ues calling the function given as an argument until
primitive clearInterval is executed. Thanks to the
generality of the solution presented in the next section,
setInterval can be handled in the same way as
setTimeout, which again presents no novelty from the
security point of view. We also omit clearInterval
for the same reasons as for clearTimeout.

5. Enforcement

This section describes a runtime security enforce-
ment mechanism for monitoring executions. A monitor

〈c,m, t, p〉 α−→γ 〈c′,m′, t′, p′〉 〈st , π, µ〉 α−→ 〈st ′, π′, µ′〉
〈 c,m, t, p | st , π, µ 〉 α−→γ 〈 c′,m′, t′, p′ | st ′, π′, µ′ 〉

Fig. 8. Monitored executions

〈st , π, µ〉 s−→ 〈st , π, µ〉

lev(e) v Γ(x) lev(st) v Γ(x)

〈st , π, µ〉 a(x,e)−→ 〈st , π, µ〉

π′ = lift(lev(e), π)

〈st , π, µ〉 b(e)−→ 〈lev(e).st , π′, µ〉

〈`.st , π, µ〉 f−→ 〈st , π, µ〉

Fig. 9. Monitor rules I

`′ = lev(st) t lev(e)
µ v `′ π′ = inSorted((`′, t), π)

〈st , π, µ〉 tin(t,e)−→ 〈st , π′, µ〉

〈st , (`, t).π, µ〉 tout−→ 〈`.st , π, µ t `〉

Fig. 10. Monitor rules II

configuration has the form 〈st , π, µ〉 for a given stack
of security levels st , a security context list π, and a
security context for setting timeouts µ. For the moment,
we ignore the purpose of the elements in the configu-
ration (to be explained below). The monitor performs
transitions of the form 〈st , π, µ〉 α−→ 〈st ′, π′, µ′〉
where event α ranges over the events triggered by
commands (see Figure 7). Intuitively, every time that
a command triggers an event α, the monitor allows
execution to proceed if it is also able to perform the
labeled transition α. The rule for monitored execution
in Figure 8 formalizes this intuition: every triggered
event α is synchronized with the monitor. The monitor
might disallow execution by stopping it (whenever it
is unable to perform an α transition).

Monitoring basic commands The semantics for
the monitor is described in Figures 9 and 10. Figure
9 describes the behavior of the monitor for events
associated to the part of the language unrelated to
timeouts. For the moment, we ignore the parts of
these rules marked with gray since they are related to
timeouts, to be explained below. Event s, originated by
skip, is always accepted without changing the monitor

7



configuration. The stack of security levels st , which
initially is empty (denoted by ε), keeps track of the
dynamic security context [18], [26]: the security levels
of the expressions appearing in the guards of branching
commands (i.e., conditionals and loops). Intuitively,
the security stack plays a similar role as program coun-
ters in security type systems [16][55]. Typing environ-
ment Γ associates every variable in the program with a
security level. Since our approach is flow-insensitive,
Γ is constant during the monitored execution of a
program, and therefore we omit mentioning it in the
monitor. It is also possible to provide a flow-sensitive
monitor. However, in a purely dynamic enforcement
mechanism, the flow sensitivity needs to be restricted
to variables that are not part of commands that branch
on secrets. For convenience, we only consider two
security levels, low L and high H , as elements of a
security lattice, where L v H and use the lattice join
operator t that returns the least upper bound over two
given levels. Function lev(e) returns the least upper
bound of the security levels of variables encountered
in expression e. Similarly, function lev(st) returns the
least upper bound of the security levels on the stack st .
For the two-element lattice, the function returns H if
there exists an element H in st , and L otherwise. Event
a(x, e), originated by x := e, is accepted without
changes in the monitor state under two conditions.
On the one hand, the security level of expression e is
bounded from above by the security level of variable
x (lev(e) v Γ(x)), which prevents explicit flows of the
form l := h for a low variable l and a high variable
h. On the other hand, the highest level of the security
stack st is bounded from above by the security level of
variable x (lev(st) v Γ(x)), which prevents implicit
flows [16] of the form if h then l := 0 else l := 1.

The rule for event b(e) pushes the security level
of e onto the security stack, which helps preventing
implicit flows. For example, runs of the program
if h then l := 0 else l := 1 are stopped before
performing the assignments to l because the security
stack contains H at the time of the assignments. For
example, when running l := 0, the requirement of the
rule for assignments lev(st) v Γ(x) does not hold
since lev(st) = H and Γ(l) = L. The stack structure
avoids over-restrictive enforcement. For instance, runs
of the program (if h then h′ := 0 else h′ := 1); l :=
0 are allowed since, by the time the assignment to
l is reached, H has been removed from the stack in
response to the event f , which is generated on exiting
the scope of the conditional (recall Figure 6).

Monitoring timeouts To preserve confidentiality
in the presence of timeouts, the monitor keeps track of
more than just a simple stack of security levels. This

additional information is represented in the monitor
by a security context list π, and a security context
for setting timeouts µ, which constitutes one of the
novelties in our approach.

A security context list, which is initially set to empty,
is a list of elements of the form (`, t) for a given
security level ` and time t. We only consider lists in
an ascending order of time in the monitor. Intuitively,
the monitor restricts a snippet to be run at time t to
affect locations with confidentiality level ` or higher.
To achieve that, the monitor rule for event tout places
` into the security stack st . In Figure 7, the reason
to include an end command in the semantic rule for
tout is just for removing ` from the security stack
after the snippet finishes its execution. Intuitively, it is
valid to think that every ` in the security context list
is a program counter [16], [55] for a code snippet in
a given timeout.

The security context list together with branching
instructions play an important role to prevent internal
timing attacks. For example, the attack presented in
Figure 3 is no longer possible under monitored execu-
tions. Going back to the rules for branching commands
in Figure 9, we observe that the security levels in the
security context list π are lifted to the security level
of the branching expression (π′ = lift(lev(e), π)).
In that way, when branching on form.secret in
function f, code snippets l0 and leak cannot per-
form observable events. As a result, the monitor stops
the execution of function l0 when assigning to the
public variable l and thus preventing the leak. For
similar reasons, the attacks in Figures 3 and 5 are
also prevented. Although this mechanism avoids the
attacks shown previously, the fact that code snippets
can set timeouts still leaves open possibilities for leaks.
In particular, code snippets might leak information by
setting timeouts that affect public locations when the
current time has been affected by secrets. To illustrate
this point, we have the following example:

if h then setTimeout(skip; skip; skip, 3)
else setTimeout(skip, 3);

setTimeout(setTimeout(l := 0, 1), 2);
setTimeout(l := 1, 7);

(1)
Considering that every step of the semantics takes a
unit of time, we assume that the execution of the then
and else branches take the same amount of time.
Therefore, the current time at the first setTimeout
instruction is the same regardless of the value of h.
The snippets setTimeout(l := 0, 1) and l := 1 are
thus respectively associated to the times 5 and 11 when
assuming a starting time 0. In the case that h = 0,
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the first snippet to be run is skip; skip; skip at time
6. After that, snippet setTimeout(l := 0, 1) runs
and sets the snippet l := 0 to be run at time 12.
As a result, the final value of l is 0. On the other
hand, if h 6= 0, the first snippet to be run is skip
at time 6. Then, snippet setTimeout(l := 0, 1) runs
and sets l := 0 to be run at time 10. In this case,
the final value of l is 1, which clearly produces a
leak! The key observation here is that the time to run
snippet l := 0 is influenced by running first other
snippets that were created under a branch on secrets,
which consequently affects the current time. With this
vulnerability in mind, we introduce the security context
for setting timeouts µ as a security level to restrict
setting timeouts. Before explaining the purpose of
µ, we firstly need to describe how setTimeout in-
structions are monitored. When setting timeouts (event
tin), the monitor will restrict the locations affected by
the code snippet to be as restrictive as the security
context where the setTimeout instruction is executed
as well as the confidentiality level of the indicated
delay. This is achieved in the monitor by associating,
to the recently created timeout, the security context
`′ = lev(st)t lev(e) in π′ (π′ = inSorted((`′, t), π)).
Then, when a snippet associated with a security context
` is run, the security context for setting timemouts µ is
updated by µt ` (see the monitor rule for event tout).
In this way, µ is set to H as soon as a snippet created
under a branching on secrets is executed. By restricting
that µ v `′ when executing setTimeout, timeouts that
set timeouts that affect public locations, like example
(1), are not allowed to run till completion and therefore
the vulnerability mentioned before is prevented.

clearTimeout, setInterval, and clearInterval
To monitor clearTimeout, it is enough to restrict
the elimination of timeouts created in contexts that
are lower than the contexts where the elimination
is carried out. In other words, the monitor needs to
enforce that every time that a timeout associated to
` in π is eliminated, it is the case that st v `.
Since setInterval can be thought as a timeout that
always set another timeout, the monitor rule for this
instruction is the same as for setTimeout. Finally,
the restrictions for clearInterval are the same as
for clearTimeout.

6. Examples

This section evaluates how a full version of our
monitor for JavaScript would behave for some common
uses of timeouts. Timeouts are used for two common
purposes: addressing possible failing XMLHTTP re-
quests as well as for some interface issues as, for

instance, animations. With this in mind, we show here
running examples for these uses. We firstly need to
describe the scenario considered for the examples. We
assume that a user is connected to some origin O
that involves some manipulation of secret information.
For example, the user is connected to Gmail and a
cookie in his (her) web browser contains the session
ID for such connection, which is clearly secret data.
Information that is sent to and received from the origin
O is considered secret as well as everything that the
user observes in his (her) display. We consider public
sinks to any other origin different from the one where
the user is connected. The following example, written
using AJAX, shows the use of timeouts for addressing
failing XMLHTTP requests.

[code lang="javascript"]
function callInProgress(xmlhttp) {
switch ( xmlhttp.readyState ) {
case 1, 2, 3: return true; break;
default : return false; break;
} } [/code]

[code lang="javascript"]
var timeoutId = window.setTimeout(
function() { if (callInProgress(xmlhttp))

{ xmlhttp.abort(); }
}, 5000 ); [/code]

The code is self-explanatory. Observe that all the in-
formation handled by the code is secret. Consequently,
the monitor would accept every execution of this script.
Similarly, the next example would be also accepted by
the monitor.

<script language="javascript">
var t;
function animBall(){
t=setTimeout(’animBall()’, 80);
moveRight(); doOtherThings(); }
</script>

<a href="javascript:animBall()">
Start Animation</a>
<a href="javascript:clearTimeout(t)">
Stop Animation</a>

In this case, the script produces an animation on the
screen, i.e., a ball moving to the right.

At first glance, it seems reasonable to say that the
techniques from our monitor is permissive enough
to not “break” web pages due to the simply use of
timeouts. However, more studies need to be performed
in order to validate this claim.

7. Security

This section presents formal guarantees provided by
the monitor. When showing the soundness of security
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(p1, π1, µ1, t1) =L (p2, π2, µ2, t2) ⇔
a) time(p1) = time(π1)

b) time(p2) = time(π2)

c) snippet(filterL(p1, π1)) = snippet(filterL(p2, π2))

d) µ1 = µ2 = L ∧ t1 ≥ t2⇒ time(filterL(p1, π1)) =
time(filterL(p2, π2)) + t1 − t2,

e) µ1 = µ2 = L ∧ t1 < t2⇒ time(filterL(p2, π2)) =
time(filterL(p1, π1)) + t2 − t1

where i ∈ {1, . . . , |filterL(p1, π1)|}

Fig. 11. Low equivalence for timeouts

enforcement mechanisms, an attacker’s view is often
represented by an indistinguishability relation that de-
scribes what memories the attacker may or may not
distinguish. The security soundness guarantees that
program behaviors preserve memory indistinguisha-
bility: a program that starts with indistinguishable
memories will not be able to distinguish between them
over the course of the computation. For example, for
a simple imperative language, such a relation consists
on agreement of public values appearing in memories
(e.g., [41]). In a timeout-based setting, however, we
define an additional indistinguishability relation for
timeouts (explained in Section 7.2). This relation does
not enhance the attacker’s view but rather help us to
prove indistinguishability for memories. The core of
our soundness results shows that our monitor preserves
those relations for initial memories that agree on public
values.

7.1. Security specification

We assume an attacker model, where the attacker
can only observe externally observable events and the
low part of the memories. Recall that we assume a
strong attacker who can observe the low part of the
initial memory and the effects of assignments to low
variables. Events s, b(e), f , tin(t, e), and tout are
internal internal and hence externally unobservable.
Event (x, v) is considered as high or low depending
if x is a high or low variable, respectively. We denote
a (possibly empty) sequence of monitored steps as

~α−→ ∗, where ~α is the list of triggered events. Similarly,
we denote a (possibly empty) sequence of monitored
steps, where the events are not relevant as −→ ∗.
We denote a single monitored step −→γ as L−→γ

( H−→γ), when γ is a low (high) event. We denote a
(possibly empty) sequence of monitored high steps

H−→γ as H−→
∗
~γ . The following predicate characterizes

configurations that only trigger high events.
Definition 1 (⇒H ): 〈 c,m, t, p | st , π, µ 〉 ⇒H

iff for any sequence of steps such that
〈 c,m, t, p | st , π, µ 〉 −→∗

~γ 〈 c′,m′, t′, p′ | st ′, π′, µ′ 〉,
we have that 〈 c,m, t, p | st , π, µ 〉 H−→

∗
~γ 〈 c′, m′, t′,

p′ | st ′, π′, µ′ 〉.
Observe that any monitored configuration that makes

no progress satisfies Definition 1. Configurations that
diverge without producing any public events or con-
figuration that are stopped by the monitor satisfy
Definition 1 as well.

We specify the security for programs via a
noninterference-like condition [5]. Intuitively, if a pro-
gram run is monitored, under some memory m, and
produces a sequence of low events, then the same pro-
gram under a low-equivalent memory m′ (m =L m′)
will produce a prefix of that sequence. Formally:

Definition 2 (Security condition): Given a program
c, the execution of c is secure if for any mem-
ories m1 and m2 such that m1 =L m2, and
〈 c,m1, 0, ε | ε, ε,L 〉 −→∗

~γ1
〈 c′,m′, t′, p′ | st ′, π′, µ′ 〉,

there exists c′′, t′′, p′′, st ′′, π′′, and µ′′ such that
〈 c,m2, 0, ε | ε, ε,L 〉 −→∗

~γ2
〈 c′′, m′′, t′′, p′′ | st ′′,

π′′, µ′′ 〉 where |L( ~γ2)| ≤ |L( ~γ1)| and
a) If |L( ~γ2)| = |L( ~γ1)|, then L( ~γ1) = L( ~γ2) and

m′ =L m′′.
b) If |L( ~γ2)| < |L( ~γ1)|, then prefix (L( ~γ2),L( ~γ1))

holds and 〈 c′′,m′′, t′′, p′′ | st ′′, π′′, µ′′ 〉 ⇒H .
Given a list of events ~γ, L(~γ) projects out its low
events. The number of events in ~γ is denoted by |~γ|.
We also define predicate prefix (~x, ~y) to hold when list
~x is a prefix of list ~y.

7.2. Soundness

Indistinguishability relation In Figure 11 we
present an indistinguishability relation for timeouts. It
involves the list of timeouts p1 and p2, times t1 and t2,
security context lists π1 and π2, and security contexts
for setting timeouts µ1 and µ2. Functions time() and
snippet() project out the time and snippet components
of a given list, respectively. Function filter `(p, π)
projects out elements of the form (c, t) in p which
have associated a security context ` in π. The length
of a list x is denoted by |x|. Requirements a) and b)
establish that the list of timeouts and security contexts
involved in the relation agree on the time components
of their elements. Requirement c) demands that the
low-projections of snippets from p1 and p2 must be
the same. Requirements d) and e) requires that there
is a linear relation between the times for running
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snippets that might affect some public locations. These
last two requirements help to guarantee that, when
setting timeouts that affect public locations, they will
be executed in the same order for any two executions
that agree on public values.

Having defined the indistinguishability relation for
timeouts and assuming the standard indistinguishabil-
ity relation for memories (memories are indistinguish-
able by the attacker if they agree on the values of low
variables), we then proceed to describe some lemmas
that are needed to prove our main soundness result.
We only present the main ideas and induction steps
for the lemmas and theorems. The rest of the technical
material appears in the full version of the paper [35].

We start by only considering configurations that are
reachable from programs that do not include the com-
mands end and stop, i.e., programs that are written by
programmers. Formally:

Definition 3 ( ): Given commands d and c such
that d does not contain end and stop instructions, pred-
icate d 〈 c,m, t, p | st , π, µ 〉 holds iff there exists an
initial memory mi such that 〈 d, mi, ε, 0 | ε, ε,L 〉 −→∗

〈 c,m, t, p | st , π, µ 〉.
The following lemma establishes some properties

related to predicate  .
Lemma 1 (Reachability):
• If predicate d  〈 c,m, t, p | st , π, µ 〉 holds and
〈 c, m, t, p | st , π, µ 〉 −→∗ 〈 c′, m′, t′, p′ |
st ′, π′, µ′ 〉 , then d  〈 c′, m′, t′, p′ | st ′, π′,
µ′ 〉 holds.

• If d  〈 if e then c1 else c2,m, t, p | st , π, µ 〉
holds, then c1 and c2 contain no end and stop
instructions.

• If d  〈 while e do c,m, t, p | st , π, µ 〉 holds,
then c contains no end and stop instructions.

• If d  〈 setTimeout(e, c),m, t, p | st , π, µ 〉
holds, then c contains no end and stop instruc-
tions.
Proof: By simple induction on −→∗.

From now on, unless we state it otherwise, we
only consider configurations that are reachable from
a source command d that contains no end and stop.

We firstly start by showing some lemmas related
to the behavior of monitored executions. As stated
in the following lemma, monitored executions can be
composed sequentially. Having this feature implies that
the monitor does not inspect commands to be run in
the future in order to decide if the execution of an
instruction is safe. Operation ~x ++ ~y concatenates the
list of events ~x and ~y.

Lemma 2 (Seq. composition of monitored executions):
For any command c2, we have that

i) given the non-empty sequence of steps 〈 c1, m,
t, p | st , π, µ 〉 −→∗

~γ 〈 c′1, m′, t′, p′ | st ′,
π′, µ′ 〉, where c′1 6= stop and no tout events are
triggered, then it holds 〈 c1; c2, m, t, p | st , π,
µ 〉 −→∗

~γ 〈 c′1; c2, m′, t′, p′ | st ′, π′, µ′ 〉.
ii) given the non-empty sequence of steps 〈 c1, m,

t, p | st , π, µ 〉 −→∗
~γ 〈 stop, m′, t′, p′ | st ′,

π′, µ′ 〉 where no tout events are triggered, then
it holds 〈 c1; c2, m, t, p | st , π, µ 〉 −→∗

~γ 〈 c2,
m′, t′, p′ | st ′, π′, µ′ 〉.

iii) given the non-empty sequence of steps 〈 c1; c2,
m, t, p | st , π, µ 〉 −→∗

~γ 〈 c′, m′, t′, p′ | st ′,
π′, µ′ 〉, then it holds that c′ = c′1; c2 and 〈 c1, m,
t, p | st , π, µ 〉 −→∗

~γ 〈 c′1, m′, t′, p′ | st ′, π′,
µ′ 〉 where no tout events are generated; or it is
the case that there exists m′′, t′′, p′′, st ′′, π′′, and
µ′′ such that 〈 c1, m, t, p | st , π, µ 〉 −→∗

~γ1
〈

stop, m′′, t′′, p′′ | st ′′, π′′, µ′′ 〉 where no tout
events are triggered and then 〈 c2, m′′, t′′, p′′ |
st ′′, π′′, µ′′ 〉 −→∗

~γ2
〈 c′, m′, t′, p′ | st ′, π′, µ′

〉, where ~γ = ~γ1 ++ ~γ2.
Proof: By simple induction on −→∗.

The following lemma states that the security stack
in the monitor respects a stack structure.

Lemma 3 (Structure behavior of the security stack):
Given a command c that contains no end instructions
and given the semantics steps 〈 c, m, t, p | st , π,
µ 〉 −→∗

~γ 〈 stop, m′, t′, p′ | st ′, π′, µ′ 〉, then
st = st ′.

Proof: By induction on −→∗ and Lemma 2.
The next lemma establishes that when the security

stack in the monitor is high (lev(st) = H ), then
only high events are triggered and the low-equivalence
relation between memories is preserved. Moreover, it is
guaranteed that no timeouts that affect public locations
are introduced.

Lemma 4 (No low events): Given a command c that
contains no end instructions and given the steps
〈 c,m, t, p | st , π, µ 〉 −→∗

~γ 〈 c′,m′, t′, p′ | st ′, π′, µ′ 〉
where lev(st) = H , then it holds a) m =L

m′, b) filterL(p, π) = filterL(p′, π′), and c)
〈 c,m, t, p | st , π, µ 〉 H−→

∗
~γ 〈 c′,m′, t′, p′ | st ′, π′, µ′ 〉.

Proof: By induction on −→∗, Lemmas 2 and 3.

Similarly to the previous lemma, loops with guards
containing secrets do not trigger low events.

Lemma 5 (No low events in high loops): Given
that 〈 while e do c,m, t, p | st , π, µ 〉 −→∗

~γ

〈 c′,m′, t′, p′ | st ′, π′, µ′ 〉 where lev(e) = H
and no tout events are triggered, then it
holds: a) m =L m′, b) filterL(p′, π′) = ε,
and 〈 while e do c,m, t, p | st , π, µ 〉 H−→

∗
~γ
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〈 c′,m′, t′, p′ | st ′, π′, µ′ 〉.
Proof: By induction on −→∗, Lemmas 2 and 4.

We now present one of the most important lemmas.
Intuitively, the lemma states that given two execution
that agree in public values, they will reach the same
command and security stack before, and after, produc-
ing a low event.

Lemma 6 (Join point for low events): Given
a command c, memories m1 =L m2,
(p1, π1, µ1, t1) =L (p2, π2, µ2, t2), and configurations

• cfg1 = 〈 c,m1, t1, p1 | st , π1, µ1 〉
• cfg ′

1 = 〈 c′1,m′
1, t

′
1, p

′
1 | st ′1, π

′
1, µ

′
1 〉

• cfg ′′
1 = 〈 c′′1 ,m′′

1 , t′′1 , p′′1 | st ′′1 , π′′
1 , µ′′

1 〉
• cfg2 = 〈 c,m2, t2, p2 | st , π2, µ2 〉
• cfg ′

2 = 〈 c′2,m′
2, t

′
2, p

′
2 | st ′2, π

′
2, µ

′
2 〉

• cfg ′′
2 = 〈 c′′2 ,m′′

2 , t′′2 , p′′2 | st ′′2 , π′′
2 , µ′′

2 〉
such that cfg1

H−→
∗
~γ1

cfg ′
1

L−→γ1 cfg ′′
1 and

cfg2
H−→

∗
~γ2

cfg ′
2

L−→γ2 cfg ′′
2 , then we have that

γ1 = γ2, c′1 = c′2, c′′1 = c′′2 , m′
1 =L m′

2,
m′′

1 =L m′′
2 , (p′1, π

′
1, µ

′
1, t

′
1) =L (p′2, π

′
2, µ

′
2, t

′
2), and

(p′′1 , π′′
1 , µ′′

1 , t′′1) =L (p′′2 , π′′
2 , µ′′

2 , t′′2).
Proof: By induction on H−→

∗
~γ1

and H−→
∗
~γ2

and
Lemmas 2, 3, 4, and 5.

The following lemma establishes that two monitored
executions that agree on public values will produce
the same low events, stop, or diverge, in the latter
case without producing any observable events for the
attacker.

Lemma 7 (Backbone): Given a command c, mem-
ories m1 =L m2, (p1, π1, µ1, t1) =L (p2, π2, µ2, t2),
and configurations

• cfg1 = 〈 c,m1, t1, p1 | st , π1, µ1 〉
• cfg ′

1 = 〈 c′1,m′
1, t

′
1, p

′
1 | st ′1, π

′
1, µ

′
1 〉

• cfg ′′
1 = 〈 c′′1 ,m′′

1 , t′′1 , p′′1 | st ′′1 , π′′
1 , µ′′

1 〉
• cfg2 = 〈 c,m2, t2, p2 | st , π2, µ2 〉
• cfg ′

2 = 〈 c′1,m′
2, t

′
2, p

′
2 | st ′2, π

′
2, µ

′
2 〉

• cfg ′′
2 = 〈 c′′1 ,m′′

2 , t′′2 , p′′2 | st ′′2 , π′′
2 , µ′′

2 〉
such that cfg1

H−→
∗
~γ1

cfg ′
1

L−→γ1 cfg ′′
1 ,

then it holds that either cfg2 ⇒H or
cfg2

H−→
∗
~γ2

cfg ′
2

L−→γ2 cfg ′′
2 where m′

1 =L m′
2,

m′′
1 =L m′′

2 , (p′1, π
′
1, µ

′
1, t

′
1) =L (p′2, π

′
2, µ

′
2, t

′
2), and

(p′′1 , π′′
1 , µ′′

1 , t′′1) =L (p′′2 , π′′
2 , µ′′

2 , t′′2).
Proof: By case analysis on the veracity of 〈 c,

m2, t2, p2 | st , π2, µ2 〉 ⇒H and then applying
Lemma 6.

We present the main soundness result.
Theorem 1 (Soundness): For any memory m and

command c, the execution of c starting at the con-
figuration 〈 c,m, 0, ε | ε, ε,L 〉 is secure according to
Definition 2.

Proof: By induction on the number of low events
and application of Lemma 7.

Finally, the following corollary relates Definition 2
with a batch-job style termination-insensitive security
condition (e.g., [55]).

Corollary 1 (Batch-job soundness): Given a pro-
gram c, memories m1 and m2 such that m1 =L m2

and two terminating monitored runs : 〈 c, m1, 0, ε |
ε, ε, L 〉 −→∗

~γ1
〈 stop, m′

1, t′1, ε | ε, ε, µ1 〉 and 〈 c,
m2, 0, ε | ε, ε, L 〉 −→∗

~γ2
〈 stop, m′

2, t′2, ε | ε, ε, µ2

〉, then it holds that m′
1 =L m′

2 and L( ~γ1) = L( ~γ2).
Proof: By Theorem 1 and Definition 2.

8. Related work

We refer to Sabelfeld and Myers’ survey [41] for
general background on language-based information-
flow security. We formalize the reflections in Section 2
and prove for a simple language with output that a
purely dynamic information-flow monitor is more per-
missive than a Denning-style static information-flow
analysis, while both the monitor and the static analysis
guarantee the same security property: termination-
insensitive noninterference [42]. For similarly-spirited
work on dynamic information-flow control for systems
with declassification and DOM tree operations, we
refer to work by Askarov and Sabelfeld [8] and Russo
et al. [37], respectively. The compositional nature of
the underlying monitor enables a natural combination
of these enforcement techniques (which do not address
timing issues) with the one presented here. In the rest
of this section, we focus on related work involving
timing attacks.

Internal timing There is a body of work on
statically preventing internal timing attacks, sometimes
in combination with runtime mechanisms, for multi-
threaded programs. As discussed previously, our tech-
nique offers more permissiveness compared to static
methods and yet guarantees termination-insensitive se-
curity.

In earlier work, we have explored the interaction
between the threads and the scheduler [33] in order
to control internal timing leaks. The interaction is
modeled by hide and unhide primitives that com-
municate to the scheduler whether a thread’s timing
behavior should be “hidden”. We have shown that this
mechanism is sufficient for security in addition to static
checks for explicit and implicit flows. In collaboration
with Barthe and Rezk, we have extended this approach
to low-level languages [10]. In the latter work, there
is no need for explicit hide/unhide primitives because
scheduler is driven by the security context. If a thread
is inside of a conditional with a high guard, then it
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executes in a high security environment and thus its
timing behavior is automatically hidden from threads
that run in a low security environment.

Approaches by Volpano and Smith [48], [54], [46],
[47] to handling internal timing rely on protect(c)
which, by definition, hides the internal timing of com-
mand c. It is not clear how to implement protect()
without modifying the scheduler (unless the scheduler
is cooperative [34], [50]). It is possible to prevent
internal timing leaks by spawning dedicated threads
for computations that involve secrets and carefully
synchronizing the resulting threads [32], although with
high synchronization costs. Yet other approaches pre-
vent internal timing leaks in code by disallowing races
on public data [56], [22], [49]. However, they reject
such innocent programs as l := 0 ‖ l := 1, where ‖
is a parallel composition operator, and l is a public
variable. Still other approaches prevent internal timing
by disallowing low assignments after high branch-
ing [13], [7]. Less related work [6], [43], [39], [40],
[25] considers external timing, where an attacker can
use a stopwatch to measure computation time. A price
paid for security against this kind of more powerful
attackers is disallowing loops to branch on secrets.

Further afield, different flavors of possibilistic non-
interference have been explored in process-calculus
settings [20], [19], [38], [21], [31], but without con-
sidering the impact of scheduling. Recently, van der
Meyden and Zhang [51] have investigated how the
choice of a scheduler can affect security definitions
in an abstract automata-based setting.

Timing attacks in web applications Johns [24]
reports on the following recent work in this area.
Felten and Schneider [17] demonstrate a timing attack
that allows discovering whether the user has recently
visited a certain web page. The attack is based on time
difference between retrieving a cached and non-cached
web object. Jackson et al. [23] propose a protection
mechanism against this type of attacks by forcing
cache and history information to be inaccessible by
scripts of a different origin.

Bortz et al. [11] extend the technique to non-
cacheable web objects. They introduce cross-site tim-
ing attacks, where they exploit the difference between
the time it takes to create an object by the victim server.
This difference can be substantial: for example, the
time to look up a static object and to respond to a
request that involves database requests are likely to
be significantly different. To resolve the problem, they
propose a server-side mechanism that ensures that each
request is processed by the server in constant time.

Both of these attacks are external timing attacks;
they involve time measurement operations and have a

lower bandwidth, compared to internal timing attacks.
While external timing attacks are outside the scope of
this paper, the most straightforward way to extend our
mechanism with external time operations would be to
treat the result of accessing a clock secret [48].

9. Conclusions

We have presented a runtime enforcement mech-
anism for security information flow in applications
with timeout primitives. We show that internal timing
leaks can be secured by a simple runtime mechanism.
We believe this is a good fit for web application
security, where it is important to break away from
the traditional static approaches that are often over-
restrictive to handle dynamically generated code. On
the implementation side, we believe that is not difficult
to include the monitor as a plug-in or as part of the
web browser. Then, the browser creates an instance
of the monitor for every connection to a website that
involves secrets (i.e., cookies and session ids).

At the time of writing, there are ongoing discussions
on incorporating concurrency support in the DOM
for Firefox 3.1 [44]. In fact, threads can be already
emulated with help of generators [3] already in Firefox
2.0 [1]. We expect that our solution for timeouts can
be adopted to address concurrency. Threads can be
tracked similarly to the commands in the timeout
queue: whenever the main thread branches on secret
data, the other live threads are “tainted”, preventing
them from assigning to public variables. Also, when a
tainted thread executes, threads to be created in the
future are also tainted. We expect that this simple
mechanism, together with preventing thread creation
by threads that were tainted while in the thread pool,
is sufficient to guarantee information-flow security.

This work is a part of a larger effort (e.g., [8], [37])
on hybrid approaches to securing web applications.
Current and future work is focused on integrating the
enforcement mechanism described here with ones that
address orthogonal issues but share the basic philoso-
phy. The long-term goal is to have both a formal foun-
dation and a practical implementation for controlling
information flow in a realistic language like JavaScript
and address a substantial part of DOM API. To achieve
that, it is necessary, among other challenges, to deal
with different covert channels present in the language.
As the two lines of work evolve, we plan to perform
case studies of expressiveness and performance, which
would be crucial for evaluating our approach.
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