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ABSTRACT
This paper considers random testing of a compiler, using
randomly generated programs as inputs, and comparing their
behaviour with and without optimisation. Since the gen-
erated programs must compile, then we need to take into
account syntax, scope rules, and type checking during our
random generation. Doing so, while attaining a good dis-
tribution of test data, proves surprisingly subtle; the main
contribution of this paper is a workable solution to this prob-
lem. We used it to generate typed functions on lists, which
we compiled using the Glasgow Haskell compiler, a mature
production quality Haskell compiler. After around 20,000
tests we triggered an optimiser failure, and automatically
simplified it to a program with just a few constructs.

Categories and Subject Descriptors
D.1.1 [Programming Techniques]: Applicative (Func-
tional) Programming; D.2.5 [Software Engineering]: Test-
ing and Debugging—Testing tools

General Terms
Verification

Keywords
Software Testing, Random Testing

1. INTRODUCTION
Testing a compiler traditionally relies on running it on a

suite of hand-written test programs. This approach is prob-
lematic for two reasons. Firstly, because collecting a large
number of suitable programs is difficult and such programs
rarely cover all interesting cases of code [7, 10]. Secondly,
because the compiler is tested against the same set of pro-
grams over and over again, which means that if a bug is not
triggered by any of them, then it will never be found. Using
random property-based testing is an alternative that could
remedy both of these problems. However, this alternative
requires automatic generation of test programs.
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Generating good test programs is not an easy task, since
these programs should have a structure that is accepted by
the compiler. As compilers often employ multi-stage pro-
cessing before producing compiled code, in order to test later
stages, earlier ones must be completed without error. The
requirements for passing a compilation stage can be as basic
as a program having the correct syntax, or more complex
such as a program being type-correct in a statically-typed
programming language.

In this paper, we study the problem of generating ran-
dom, type-correct programs. We chose a simple, yet rich,
statically typed programming language, namely the simply-
typed lambda calculus [13]. The lambda calculus (λ-calculus)
is very simple — it basically only contains anonymous func-
tions, a feature found in many contemporary programming
languages, such as Haskell, Scheme, Python, C], Visual Ba-
sic, and so on. However, the λ-calculus still captures the two
main aspects that makes generating random programs hard:
variable binding and type-correctness. While it is quite easy
to ensure that generated programs only refer to variables in
scope, we found that satisfying the type-checker is much
more subtle, and this is the main focus of this paper.

Note that, even when testing compilers for dynamically-
typed languages, it makes sense to use statically type-correct
programs, since these programs are far more likely to be
runnable without crashing immediately.

For our experiments, we have chosen an industrial-strength
compiler that accepts expressions from λ-calculus directly,
namely the Glasgow Haskell compiler [15] (GHC). This com-
piler contains a powerful optimiser, which consists of numer-
ous complex transformations operating on the GHC’s inter-
mediate Core language, such as inlining, let-floating, lambda
lifting, specialisation and common subexpression elimina-
tion [12]. Such elaborate processing could easily be a source
of intricate bugs, making it interesting to test.

The compiler was tested by compiling randomly generated
functions with different optimisation settings and comparing
the behaviour of resulting programs under the assertion that
optimisation should not change the meaning of the program.
These tests revealed actual failures in the compiler.

The remainder of the paper is structured as follows. In
the next section we explain the simply-typed λ-calculus, the
language we target. In section 3, we explain our basic ap-
proach to random generation. Section 4 makes an impor-
tant extension to type polymorphism, essential to generating
interesting Haskell programs. Section 5 describes the gener-
ation algorithm in detail, including optimisations to reduce
the need for search. Section 6 presents the results of our



Variables x, y, . . .
Constants c, d, . . . ::= head, tail, +, 0, 1, . . .
Types σ, τ , . . . ::= Int | Bool | σ → τ
Terms M , N , . . . ::= x | c | λx :σ. M | MN

Figure 1: Syntax for simply-typed λ-calculus

compiler testing using the generated λ-terms. Section 7 de-
scribes related work, and section 8 concludes.

2. LANGUAGE
The formal language that we choose to develop our ideas

is essentially the simply-typed λ-calculus [13] extended with
constants and basic types. The calculus allows programs
to define and manipulate variables and functions. Specifi-
cally, programs are constructed from four different kinds of
terms: variables (x), constants (c), function applications,
and anonymous functions. Terms of the form λx : σ. M ,
referred to as lambda expressions (λ-expressions), represent
functions with argument x of type σ and body M . Types
are discussed in the next section; they include, for example,
traditional built-in types denoting integers or strings. Terms
of the shape M N represent application of functions, i.e. the
first term M , which is a function, is given the second term
N as an argument. Originally a feature of functional pro-
gramming languages such as LISP, Scheme and Haskell, λ-
expressions are now found in many contemporary program-
ming languages, including Python, Ruby, JavaScript, C],
Visual Basic, and Visual C++.

Although minimalistic, simply-typed λ-calculus can rep-
resent a wide range of programs. For example, there are
no infix operators, but they can be represented as constant
functions. λ-expressions define functions taking a single ar-
gument, but multi-argument functions can be represented
as functions returning functions. Thus 2 × 3 is represented
as (* 2) 3, where (* 2) is the constant function * applied to
2, returning a function of one remaining argument (3) that
doubles it, returning 6. Correspondingly, multi-argument
functions are defined using nested λs; the C function int f

(int x, int y) return 2 * x + y; can be represented
by the λ-expression f = λx : Int.λy : Int.+ (* 2 x) y Func-
tion application brackets to the left, so (* 2 x) just means
((* 2) x), as above. The variables x and y in the function
body of f are said to be bound by the λ-expressions; vari-
ables which are not bound are said to be free. For simplicity,
we consider constants such as +, * and 2 to be free variables
defined in a scope enclosing the entire program. Figure 1
shows the formal syntax of the simply-typed λ-calculus.

In simply-typed λ-calculus, variables and expressions have
only base or function types. A base type can be, for instance,
Int or Bool. Function types, on the other hand, are of the
shape σ → τ , representing a function which takes a value of
type σ as argument and returns a value of type τ as result.
Observe that σ and τ can be any type—functions can take
functions as arguments, and return them as results.

Functions taking many arguments are represented by func-
tions whose result type is a functional type. For example,
the function *, shown above, has type Int → (Int → Int),
i.e. a function that, after being applied to an argument of
type Int, returns a function that can be applied again to
another Int in order to return their product. It is common
to treat → as a right-associative operator and thus write
Int→ Int→ Int instead.

In addition to syntactic restrictions, terms must be well-

Typing judgements Γ `M :σ
Environment Γ ::= {x1 :σ1, x2 :σ2, c1 :σ3 . . .}

(Var)
x :σ ∈ Γ

Γ ` x :σ
(Lam)

x :σ,Γ `M :τ

Γ ` λx :σ.M :σ → τ

(App)
Γ `M :σ → τ Γ ` N :σ

Γ `MN :τ

Figure 2: Typing rules

typed, i.e. functions must only be applied to correctly typed
arguments. For instance, the function * must be applied to
arguments of type Int, i.e. numbers, and not to arguments
of type Bool. Well-typed terms are defined using assertions
of the form Γ ` M : σ (typing judgements), meaning that
term M has type σ provided that the types of free variables
in M are as specified in Γ. The environment Γ is just a list
of elements of the form x :σ (c :σ), indicating that variable
x (constant c) has type σ. Figure 2 formally describes Γ.

The rules defining valid typing judgements are shown in
Figure 2. These rules have zero or more premises placed
above a horizontal bar, with their consequence below it. The
rule (Var) indicates that x has type σ (Γ ` x : σ) if x is
associated with σ in Γ (x : σ ∈ Γ). Rule (Lam) is used
for typing functions. To determine that a function takes
an argument of type σ and returns a result of type τ (Γ `
λx : σ.M : σ → τ), the rule requires that the body of the
function has type τ (x :σ,Γ ` M : τ) when the argument of
the function is assumed to have type σ; this assumption is
captured by the expression x :σ,Γ. Rule (App) makes sure
that the function’s actual argument (N) has a type matching
the one in the function’s type, i.e. σ.

3. RANDOM LAMBDA-TERMS
The typing rules suggest a straightforward generation pro-

cedure for well-typed terms. Each typing rule can be inter-
preted as a generation rule by reading it backwards. To
generate a term that is in the consequence of a rule, it is
firstly necessary to generate terms that are in its premises.
Our procedure is goal-oriented and has as input the target
type, which is the type that generated terms will have, and
an environment containing all variables and constants that
can be used in the terms.

Depending on the target type, a subset of the typing rules
may be applicable. For example, the (Lam) rule is only
applicable when the target type is a function type. The
(Var) rule is only applicable when the environment contains
a variable or a constant of the given target type.

The following example illustrates how generation works.
Suppose that we have to generate a term of type Int and
that two constants are available in the initial environment
Γ, representing the number zero and the successor function.

Γ = {zero :Int, succ :Int→ Int}

We start off with the initial environment Γ and the target
type, whereas the term that we want to generate, which is
as yet unknown, is denoted by a placeholder ?.

Γ ` ? :Int (1)

Both the (Var) rule, using constant zero, and the (App)
rule can be applied at this point to obtain a term of type Int.
Choosing the former immediately terminates the generation,
since a variable has no subterms, and the generated term



would be complete. Choosing the latter, on the other hand,
requires generating two subterms, i.e. a function returning
an Int and its argument. Type σ in the (App) rule is neither
determined by the environment nor by the target type and,
as a consequence, can be freely chosen. We arbitrarily decide
to select the (App) rule and to fix the σ type to Int. Since
both σ and τ from the (App) rule are determined to be
Int, to finish the generation it is necessary to generate two
subterms, denoted by ?1 and ?2, with the following types.

Γ ` ?1 :Int→ Int Γ ` ?2 :Int

To generate the first subterm, any of the three rules might
be used. In particular, the (Lam) rule is permitted by the
fact that Int → Int is a functional type. Nevertheless, we
opt for the simple alternative of using the (Var) rule and
therefore ?1 is replaced by succ.

Γ ` succ :Int→ Int

To generate ?2, we choose simply to use the constant zero
from the environment exercising the (Var) rule.

Γ ` zero :Int

Observe that the term ?2 is generated under the same en-
vironment and the target type as the main term ? from
equation 1, which means that the generator could proceed
in exactly the same ways here as at that point.

To finish the generation, our procedure constructs the
main term from equation ? = ?1 ?2, since the (App) rule
was invoked in the first step, which gives us the final term.

Γ ` succ zero :Int

3.1 Naïve Approach
The generation procedure derived from the typing rules is

non-deterministic in that more than one rule may be appli-
cable at any given point, and a single rule may be applied
in many different ways. Thus, in order to implement the
procedure, we must supply a way of choosing the rule to
apply whenever this ambiguity occurs. Unfortunately, not
all choices are equally good and some of them might lead
to a dead end or to non-terminating generation. A simple
remedy is to impose a size limit on generated terms and al-
low the procedure to backtrack and choose another option
whenever it goes astray.

Once the size limit and backtracking are in place, we can
choose any strategy for selecting the rule to apply without
compromising the strength of the generator, since it will
be able to backtrack from any bad choice. Therefore, it is
reasonable to adopt a very simple strategy of choosing the
rules at random.

Although this simple approach is capable of generating
every well-typed term smaller than a given size limit, it has
a serious shortcoming. Whenever the (App) rule is used, the
type of the argument is neither determined by the target
type nor the environment, and thus any type can appear
there. This yields too many possibilities even if the size of
types could be restricted.

A bad choice at this point can be a serious problem, as of-
ten only a very specific choice of types will allow the search
to progress. For example, suppose that the target type is
Int and the constant f :String → Bool → Int is available.
Constant f might be used to construct the required term
by applying it to two arguments, of types String and Bool

respectively. However, for that to happen, the (App) rule
must be invoked twice, and the argument types guessed to
be Bool and String respectively at the two invocations. Un-
fortunately, guessing these types correctly is very unlikely to
occur, and on average, a large number of backtracking steps
will be needed. This makes the generation of terms very in-
efficient, and moreover, hard-to-guess terms (like this one)
will occur very rarely in the results of the generator.

3.2 Refined Approach
In order to address the problem of guessing argument

types, we introduce another typing rule (inspired by the
proof synthesis method from [18]).

f : . . . ,Γ `M1 :σ1 · · · f : . . . ,Γ `Mn :σn
(Indir)

f :σ1 → . . .→ σn → τ,Γ ` f M1 . . .Mn :τ

This rule is logically unnecessary, as it follows from the other
typing rules, but as a generation rule it is far superior to the
(App) rule. It creates a term that is a variable (or constant)
from the environment applied to a number of recursively
generated argument terms. What is important here is that
even though the resulting term contains a number of term
applications, no types have to be guessed as they are de-
termined by the type of the function. Since no guessing
is involved, the search is no longer so erratic and genera-
tion is much more efficient. However, if we were to replace
the (App) rule by this one, then we would no longer be
able to generate all λ-terms—in particular, terms such as
(λx : Int.x) 1, in which a λ-expression is applied directly,
could no longer be generated. Therefore, we choose to keep
both rules just to make it possible to generate λ-expressions
that are directly applied to arguments.

4. POLYMORPHISM
Parametric polymorphism refers to the use of the same

code at several different types. First introduced by Damas
and Milner in ML [4], it has become a standard feature of
functional languages such as Miranda and Haskell, and is
now also found in mainstream languages via, for example,
Java generics [19]. Opportunities for polymorphism arise
when the same underlying term can be typed in several dif-
ferent ways. For instance, the identity function λx : ?.x,
which takes an argument and returns it, can be assigned
either of the types Int → Int or Bool → Bool choice of
?. Rather than use question marks as types, we introduce
type variables α, β, . . . , and say that λx : α.x has the type
α → α for any type α, where α might take the value Int,
Bool, or any other type. To express the fact that α can
be arbitrarily chosen, we assign to the identity function the
type ∀α. α→ α, a polymorphic type where ∀α. indicates the
changing type variable.

Polymorphism is heavily used in conjunction with parame-
trised datatypes. For example, let List α be the type of lists
with elements of type α. Two useful functions on lists are
head, which returns the first element of the list, and tail,
which returns all the elements except for the first one. The
types of these functions are naturally polymorphic:

head : ∀α.List α→ α tail : ∀α.List α→ List α

When these functions are used, then α may be instantiated
to any type, allowing the same code to manipulate lists with
any type of element.



Variables x, y, . . .
Constants c, d, . . . ::= head, tail, +, 0, 1, . . .
Types σ, τ , . . . ::= Int | Bool | σ → τ

| α | List α
Polymorphic types Σ, Υ, . . . ::= ∀αβγ · · · .σ
Terms M , N , . . . ::= x | c | λx :σ. M | MN

Figure 3: A simple λ-calculus with polymorphism

Figure 3 shows the formal syntax for a simple polymorphic
λ-calculus. The syntax for terms is exactly the same as for
simply-typed λ-calculus (see Figure 1). The only changes are
to the syntax for types, where we introduce type variables
(α) and polymorphic lists (List α).

4.1 Generation of Terms
The approach described in Section 3 generates terms with

monomorphic types such as Int, Bool, and Int → Int, i.e.
types that do not involve type variables. In this paper,
we only consider generating terms with monomorphic types.
However, we allow the use of polymorphic constants, such as
head and tail, in the terms we generate. This allows us to
generate programs that make use of Haskell’s list-processing
library functions.

Generation of random terms using polymorphic constants
introduces the problem of instantiating a polymorphic type
to a monomorphic one when the constant is used. In some
cases, instantiating a polymorphic type is straightforward.
For example, suppose that we want to generate a term of
type List Int, and we have available an environment Γ con-
taining the constants lst : List Int, and tail : ∀α.List α→
List α. Clearly, if we choose to generate a call of tail with
type List Int, then we must instantiate α to Int, and gen-
erate an argument which also has the type List Int. We
could now choose lst : List Int to be the argument, and
generate the term tail lst.

However, suppose the environment contains the constants

map : ∀αβ.(α→ β)→ List α→ List β
lst : List Int lst2 : List Bool

where map f l returns the list of type List β obtained by ap-
plying the function f , of type α→ β, to every element of the
list l, of type List α. If we choose to generate a term of type
List Int which is a call of map, then as subgoals we must
generate an f of type α→ Int and an l of type List α—but
α is not determined, and can be chosen freely. This leads
to similar problems to those described in Section 3.1 with
the rule (App). In this particular example, α can be chosen
to be at least Int or Bool, since we have a list of integers
(lst : Int) and booleans (lst2 : Bool) in the context, but
in general the choice of α is difficult.

In fact, the problem of instantiating polymorphic func-
tions is a generalisation of the problem of instantiating the
(App) rule. To see this, it is enough to make rule (App)
redundant by introducing a polymorphic constant

app : ∀αβ.(α→ β)→ α→ β

that, when used in the (Indir) rule, generates the same
subterms as rule (App).

We adopted a simple solution to this problem, which is
crude, but reasonably effective. Instead of instantiating un-
determined type variables with any possible type, we use a
method for randomly generating types that avoids those for
which it is impossible to construct a term. Firstly, a set

of types is constructed, which initially consists of the types
from the environment. Then, further types are added to the
set using the rule that if both a functional type and its ar-
gument type are present, then we can also add the type of
the function’s result. This set is then used to generate ran-
dom types either by selecting them directly or by creating
a functional type based on them when instantiating. Since
polymorphic types can also be present in the environment,
this procedure sometimes involves specialising them.

5. GENERATION ALGORITHM
We describe the generation algorithm informally to avoid

overwhelming formal notation. It works by applying gen-
eration rules, which build successive parts of the generated
terms, and by backtracking when generation reaches a dead
end. The basic structure of the algorithm is as follows:

• A list of generation rules that are applicable is constructed
based on the target type and the symbols contained in
the environment. If one rule can be applied in several
different ways, for instance, with different symbols from
the environment, then it is represented several times in
the list.

• The list of rule applications is then randomly shuffled and
the first one from the randomised list is applied.

• The generation procedure is invoked recursively for the
premises of the selected rule.

• If all the recursive calls finish with success, all required
subterms are available and the term is constructed ac-
cording to the rule.

• If generating any of the premises fails, then the genera-
tor backtracks and the next rule from the list is selected
instead.

• If all rules have been tried without success, then the gen-
eration fails.

Thus, the generator first tries to exhaust all possibilities for
constructing subterms required by a generation rule, before
deciding to select another one—the search is depth-first.

An awkward special case arises when applying the (In-
dir) rule to a function whose result type is just a type
variable—for example, the identity function id :∀α.α → α.
By instantiating α to a function type with n arguments,
we can apply (Indir) to generate a call of id with n + 1
arguments, for any n, and whatever the target type! For
instance, if the target type is Int, then we can instantiate
α to String → Bool → Int and generate a call id F S B,
where subgoal F must have type String → Bool → Int, S
must have type String, and B must have type Bool. There
are thus infinitely many ways to apply the (Indir) rule to
such a function. To remove the possibility of infinite back-
tracking we only allow the (Indir) rule to consider at most
three extra parameters. This trade-off prevents the (Indir)
rule from generating some terms, however they can still be
generated using the (App) rule.

5.1 Optimisations
Sometimes we reduce backtracking by omitting rule ap-

plications which we know will fail. For example, when the
(Indir) rule using one symbol fails, we can conclude that it
will also fail with any other symbol of the same type, as the
premises for the rule application are the same. Therefore,



the generation algorithm considers one version of the (In-
dir) rule for each unique type present in the environment,
and the exact symbol is chosen at random afterwards.

We also prioritise rule applications to speed up genera-
tion and reduce backtracking. Rules with higher weights
have a higher chance of being selected before others. We use
weights to first try rules that have a high chance of success,
using other rules only occasionally, or when the preferred
ones fail. In particular, applying rules which involve guess-
ing types usually has a low probability of success—but is
necessary sometimes to produce certain terms.

Even rule prioritisation is not always enough to prevent
massive backtracking, we also limit the number of ‘danger-
ous’ rules—the ones involving guessing types—that can be
applied recursively. Undoubtedly, this rules out the gener-
ation of some complex terms, but we still generate enough
interesting terms to find compiler failures.

5.2 Distribution
The distribution of generated terms is ad-hoc, but pro-

duces an acceptable rate of terms that trigger failures—we
have tweaked it to achieve good results in our own testing.
Weights assigned to rules are respectively 4 for rules that
use locally-bound variables, 2 for rules that introduce con-
stants, 8 for the rules for introducing an application or a
λ-expression, and 6 for the seq rule.

It is unclear what the “best” distribution would be. There
is no reason to believe, for example, that a uniform distribu-
tion over terms of a specific size would be more effective at
revealing bugs, and it might well be less so. In any case, we
do not have the goal to approximate “programs that could
be written by real programmers”, because how well the gen-
erated terms correspond to this notion is hard to determine.
So, we are pragmatic, and consider that success in finding
bugs is the most important measure of a good distribution.

6. TESTING GHC
We use the generation of random λ-terms described in

Section 3 and 4 to test the Glasgow Haskell Compiler [15]
(GHC). Haskell is a purely functional programming language
with lazy evaluation—expressions are by default compiled
as closures, and their evaluation delayed until the value is
actually required. GHC is the most popular and complex
Haskell compiler—its main part consists of approximately
120,000 lines of code. Part of its complexity comes from an
elaborate code optimiser. The optimiser transforms code in
many stages, one of which is the strictness analyser [12],
which identifies expressions whose value is always required
eventually, and which can therefore be compiled for immedi-
ate evaluation (avoiding the costly closure mechanism) with-
out changing the semantics of the program. Since Haskell
is purely functional, changing the order of evaluation in this
way does not change the program semantics.

Determining whether code has been compiled by the com-
piler correctly is, of course, difficult since the semantics of
Haskell is complex. However, one way to check the correct-
ness of optimised code is to compare it to the unoptimised
version. Optimisations should only make programs more ef-
ficient without changing their semantics. Establishing pro-
gram equivalence cannot be done automatically in general,
since the input domain of many programs is infinite, but
we can demonstrate that programs are not equivalent just
by finding one random input on which their output differs.

More formally, it should be the case that ∀x ∈ dom f :
JfKghc -O1(x) = JfKghc(x) where f is a Haskell program,
JfKghc -O1 and JfKghc represents the optimised and unopti-
mised compiled version of f , respectively. If this equation
does not hold for a program f and an input x, then opti-
misations are changing the semantics of the program. The
techniques described in Section 3 and 4 can provide us with
several f and x where the equation above does not hold,
thus showing that GHC is buggy. Although Sections 3 and
4 present techniques to generate random programs in a very
simple setting, i.e. simple-typed λ-calculus, our approach
detects failures in such a complex piece of code as GHC in
just a few minutes.

6.1 Correctness of the Strictness Analyser
To evaluate the correctness of the strictness analyser, we

decided to test compilation of functions that operate on lazy
data structures, i.e. data structures with elements or com-
ponents which are computed on demand. In particular, we
focus on testing Haskell programs manipulating lazy lists.
Such lists can contain “undefined” components, represented
as closures of expressions, that raise an exception when eval-
uated. A function operating on lists can receive such a
partially-defined list as an argument, and still yield a re-
sult, as long as it does not inspect the parts of the list that
are undefined. For example, in Haskell, a function that re-
turns the second element of a list can be successfully applied
to lists of length two even if the first element is undefined.

We automatically generate random lambda terms of type
List Int → List Int to test GHC’s strictness analyser.
Programs are compiled with GHC’s optimisations turned
on and off, respectively. Both compiled versions are then
run with a number of simple partially-defined lists as input
in order to compare their outputs. Since the results of the
compiled functions are also lazy lists, instead of just yielding
a result or failing completely, most commonly the functions
yield a partially-defined result. Clearly, if two functions are
equivalent, they should yield the same partially-defined re-
sult when applied to the same partially-defined argument.

To compare partially-defined lists, we traverse each list
from left to right, printing its value on the output. We then
compare lists by comparing the generated output. For ex-
ample, a list containing the numbers from 0 to 4 is printed as
[0,1,2,3,4]. Square brackets and commas are the Haskell
notation for lists. In contrast, if we encounter an undefined
value, then the list is printed as [0,1,2,3,*** Exception:,
where *** Exception: is appended by an exception han-
dler. Note that this approach does not guarantee to dis-
tinguish different partially-defined lists, but it works well
enough for our purposes, even though more accurate meth-
ods are available [6].

6.2 Generating Random Haskell Functions
To generate random functions on lists, we gave our gen-

eration algorithm an initial environment containing list op-
erations, functions from the standard Prelude module (e.g.
(+), (-), (&&), (||), map, length, and filter) and con-
stant values (e.g. 0, 1, True, and False). Having such a
rich initial environment increases the possibility of generat-
ing interesting terms.

Haskell provides programmers with a way to control lazy
evaluation, via the built-in operation seq which forces the
evaluation of terms. This operation takes two arguments



and forces the evaluation of the first one before returning
the second. We wanted to test whether GHC’s strictness
analyser accounts for this behaviour correctly.

The type of seq is ∀αβ.α → β → β. Observe that the
type of the first argument is completely unrelated to the
second one. We could just include function seq in the initial
environment like any other function, but because its type
is so general, doing so leads to overuse of seq in the gen-
erated terms—a call of seq can be inserted anywhere, with
any value as first argument. We therefore used a custom
generation rule that restricts the first argument of seq to be
a local variable.

6.3 Testing Environment
Testing was performed on GHC version 6.12.1 configured

for x86-64 systems, running on a modern laptop1. Because
starting the compiler is quite costly, at around 0.5 s, we
placed 1,000 generated functions in each module, thus amor-
tising this cost across a large number of tests. The choice
of the number 1,000 roughly balances compilation time with
the time spent on test case generation, yielding a total time
of around 20 s for generation, compilation and testing of
1,000 terms. Using a larger number of terms in a module
would not improve performance considerably.

The generated modules invoke the generated functions on
about 20 simple partially-defined lists, and print the results.
The small set of test data is sufficient, as even two partially-
defined lists are enough to uncover most compiler failures
that were found. Each generated module was compiled with
the default optimisation level (compiler flag -O1) and with
no optimisation (compiler flag -O0), the compiled code was
executed, and the outputs were compared.

6.4 Results
We limited the size of generated functions to a maximum

of 70 function applications or λ-expressions per generated
term. After generating and testing around 20,000 random
terms of type List Int → List Int, which took around 15
minutes, a failure in GHC’s strictness analyser was found.
The random functions exposing failures in GHC consisted of
terms of size between 30 and 50. These functions were then
automatically simplified by a procedure known as shrinking
(see next section), roughly halving their sizes. After this
simplification phase, the functions that triggered the com-
piler failure are the following ones2 (in Haskell syntax):

seq (id (\a -> seq a id) (undefined::Int))

seq (seq (\a -> length) (\a -> seq a seq)
(head ([]::[] Bool)))

seq (seq (\a -> null) (\a -> seq a (\b -> length))
(head ([]::[] Bool)))

(Note the first parameter of seq is not always a variable in
these examples—this is a result of the shrinking process).

We illustrate the failure using the first test case above.
The expected behaviour of that function is to raise an excep-
tion immediately, on application to any argument. The term
should be equivalent to seq (undefined :: Int), which
forces the evaluation of an undefined value before proceed-
ing with any other computation. However, this behaviour is

1The machine had a 2.4GHz Intel Core 2 CPU and 4GB of RAM.
2Readers can refer to http://www.cse.chalmers.se/~palka/
testingcompiler/ for further details

Argument -O0 -O1
[undefined] *** Exception: [*** Exception:

[1,undefined] *** Exception: [1,*** Exception:

[2,1,undefined] *** Exception: [2,1,*** Exception:

Table 1: Outputs of a bug-triggering function

not reflected by the code compiled with optimisations.
We can see in Table 1 that the function behaves as ex-

pected when compiled without optimisations (column -O0).
However, if the same function is compiled with optimisa-
tions (column -O1), the function returns a partially-defined
list instead of directly raising an exception. In fact, the func-
tion returns a list which is equal to its argument (column
Argument).

6.5 Shrinking
The randomly generated functions that provoke failures

are typically too big to be comfortably read and understood.
Clearly, it is desirable to find smaller functions that show the
presence of bugs. Fortunately, it is likely that not all parts
of a randomly generated function are needed to reveal a
bug, and that smaller, similar terms provoke the same bugs.
With this in mind, we establish a phase of shrinking [3] for
failing test cases. This phase consists of creating a number of
smaller variants of bug-triggering functions. These variants
are then tested to determine if they trigger the same failure.
If that is the case, we repeat the shrinking process to search
for an even smaller term that results in a failure. Shrinking
finishes when a minimal test case is found that provokes a
failure, which might (or not) be caused by the original bug.

In this case, shrinking is done using three simple rules.
Firstly, a sub-term can be replaced by any of its sub-terms
as long as variable bindings and its type are preserved. Sec-
ondly, a subterm, that is not a constant, can be replaced by
any constant of the same type. And thirdly, an application
of a λ-expression (λx.M) N can be replaced by the body M ,
with x replaced by the actual parameter N—a β-reduction.
In simply-typed λ-calculus, β-reductions cannot continue in-
definitely, so the shrinking process always terminates.

7. RELATED WORK
Random testing used for finding bugs in compilers and

programming language tools has received some attention in
recent years. Lindig [10] created a tool for testing the C
function calling convention of the GCC compiler. This tool
randomly generates only the types of functions; their bodies
just checked that the parameters were received correctly.

Wrangler, a refactoring tool for Erlang has also been tested
using random program generation [7]. A rich program gen-
erator has been created, which is capable of generating full
modules. Even though Erlang is an untyped language, the
generator takes types into consideration in order to avoid ar-
gument mismatches when calling functions. Similarly, Daniel
et al. [5] exhaustively generate Java programs (up to certain
size) in order to test the refactoring engines in Eclipse and
NetBeans. Different from our approach, some of the gener-
ates programs are not valid inputs for the Java compiler.

Probably the work related most closely to ours is Klein et
al. [9], who generated random programs to test an object-
oriented library, finding a large number of bugs. Their gen-
erator is capable of producing higher-order object-oriented
programs (which override methods) and supports monitor-
ing of pre- and post-conditions. Their generation method



uses generation rules similar to ours, and backtracks occa-
sionally just as ours does. Rather than our (Indir) rule,
which generates calls of functions in the environment only
when their result type matches the target type, they use a
rule which can generate a call of any function in the environ-
ment at any time, binding its result to a fresh local variable,
which can then in turn be used in another attempt to gen-
erate a term of the target type. In a sense, we generate
terms top down, while they generate them bottom up. The
advantage of their approach is that it is easier to generate
calls of functions in the environment—the disadvantage is
that many of the local variables they create are never used,
because their types do not match the target type. Klein et
al. do not consider polymorphic types, nor do they shrink
failing test cases to minimal examples as we do.

Vytiniotis and Kennedy [16] present encoding of datatypes
into streams of bits, which can be used for their random
generation. In their approach to generate simply-typed λ-
terms, the target type is never fixed, and thus the generation
never fails, eliminating the need for backtracking.

The λ-term enumerator developed by Yakushev and Jeur-
ing [14] creates function applications in the same way as our
method, by generating a candidate type for the argument,
and trying to generate the argument afterwards.

Djinn [1] solves the type inhabitation problem for simply-
typed λ-calculus, that is, it returns any term instead of a
random one for a given type. It is based on a terminating
proof procedure for intuitionistic propositional logic [8].

Statistical properties of random untyped λ-terms have
been explored in [2], which also explores a method of gen-
erating them using Boltzmann sampling. Generation of ran-
dom untyped λ-terms is tackled in [17], which employs count-
ing of possible subterms to achieve uniform generation dis-
tribution. Correspondingly, the work in [11] examines the
proportion of simple types that are inhabited, that is, for
which it is possible to create a term of that type.

8. CONCLUSIONS
Generating random and type correct programs for com-

piler testing is quite a difficult problem, because type cor-
rectness is a global property which must be achieved by a
sequence of local choices. It is easy for a random generator
to make a bad choice early on, painting itself into a cor-
ner in which generation cannot be completed at all, or can
be completed only by generating very trivial programs (in
which, for example, variables are defined but almost never
used). We have presented a workable approach, in a simple
setting—the simply-typed λ-calculus. In contrast to earlier
work, we have considered type polymorphism, and shown
that it introduces further complications for the generator.

We show the value of our approach by applying testing the
optimiser of GHC finding surprising optimiser failures in a
few minutes on an ordinary laptop. Moreover, the generator
can be easily adapted to test other compilers by adding a
term-printing function producing the syntax of the program-
ming language and providing a suitable initial environment.
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