
Lazy Memo-functions
John Hughes

Programming Methodology Group
Department of Computer Science

Chalmers University of Technology
S-412 96 G~teborg, Sweden

uucp: ..!mcvax!enea!chalmers!john

I. I n t r o d u e t l o n

In this paper we introduce a slight variation on the old idea of a memo-function. We

call our variant "lazy memo-functions" since they are suitable for use in systems

with lazy evaluation. Lazy memo-functions are much more useful than the conventional

kind. They can be used to define functions on cyclic structures in a natural way, and

to allow modular versions of algorithms to be used when the only efficient alterna-

tive is to destroy the algorithm's structure. They can be implemented more effi-

ciently than ordinary memo-functions, and can be used to define ordinary memo-

functions if these are really required.

Memo-functions were originally invented by Michie [14]. The idea behind them is very

simple: a memo-function is like an ordinary function, but it remembers all the argu-

ments it is applied to, together with the results computed from them. If it is ever

re-applied to an argument the memo-function does not recompute the result, it just

re-uses the result computed earlier. "Memolsation" is an optimisation which replaces

a potentially expensive computation by a simple table look-up.

The classic example of a function which can be improved by memoisation is the

Fibonacci function.

fib n = I, if n<2

fib n = fib(n-l) + fib(n-2), otherwise

Since each call of fib generates two rec~sive calls with smaller arguments, the cost

of computing the nth Fibonacci n~ber in this way is exponential in n. Yet if fib is

memoised, so that (fib n) is computed only once for each value of n, then the nth

Fibonacci number can be computed in linear time. We will indicate memoisation by pre-

fixing the equations defining a function by the keyword memo.

memo fib n = I, if n<2
memo fib n = flb(n-1) + fib(n-2), otherwise

Memolsation can make an enormous difference to the efficiency of an algorithm. As in

this case, the difference can be so large that it is impractical to use the algorithm

without it. Indeed, Turner has remarked that memoisation is a generally useful tool

for developing programs: often an elegant algorithm with exponentially bad perfor-

mance can be converted into an efficient one by memolsation [20]. Bird reports that

program development by transformation often results in an algorithm that would be

efficient if it were memoised [3]. Keller and Lindstrom argue that "mathematical

elegance in problem specifications can invite [needless function recomputation]"

130

[12]. Yet memoisation is rarely used in practice. Instead, such algorithms are

transformed further so that the need for memoisation disappears. This involves the

programmer in more work, and often destroys the modular structure of the algorithm,

making it hard to understand and hard to modify.

Why are memo-functions so rarely used in practice? One reason is that they are hard

to implement efficiently when the argument to the memo-function is a compound data-

structure. The memo-function must compare each argument against the arguments in its

memo-table, and comparing data-structures for equality is expensive (a recursive pro-

cedure is required). It is difficult to apply sophisticated techniques such as hash-

ing to find equal structures. The alternative of storing all data-structures uniquely

(using a hashing cons, see section 5) so that equality can be tested by a simple

pointer comparison is even less attractive because it imposes an overhead on the

creation of all data-structures, whether they are ever passed as arguments to memo-

f~mctions or not. In a language with lazy evaluation this problem is aggravated:

since verifying that two data-structures are equal requires that each be completely

evaluated, all memoised functions are completely strict. This means they cannot be

applied to circular or infinite arguments, or to arguments which (for one reason or

another) cannot yet be completely evaluated. Therefore memo-functions cannot be com-

bined with the most powerful features of lazy languages. Finally, memo-functions can

interfere with garbage collection and cause otherwise harmless programs to run out of

space. This is because the memo-table in which arguments and results are stored

always grows. Even if an argument will never be passed to a memo-function again, it

and the associated result remain in the memo-table taking up space. The implementa-

tion cannot know when it is safe to delete such entries from the memo-table.

2. Lazy Memo-f~tlons

Our variant, lazy memo-functions, is intended to be used with lazy evaluation. It

addresses all the problems discussed above to a greater or lesser extent. The basic

idea is to weaken the requirement a memo-function must satisfy. Ordinary memo-

functions are required to re-use previously computed results if applied to arguments

equal to previous ones. Lazy memo-functions need only do so if applied to arguments

identical to previous ones - that is, arguments stored in the same place in memory.

In Lisp terms, we are using EQ to test for repeated arguments, rather than EQUAL. Two

objects are tested for identity as follows:

(i)

(2)

(3)

If they are stored at the same address, they are identical.
Return true.
If they are atomic values (such as numbers, booleans, characters)
they are identical if they are equal.
Otherwise they are not identical. Return false.

(We test atomic values for equality because, not being data-structures, they have no

address to compare. Even if atoms are stored as data-structures it is essential that

equal atoms be ~dentical to provide a base-case for unique, defined in section 5).

131

This is much more efficient than a potentially recursive equality test. In addition,

memo-tables can be indexed by a hash value computed from the address of the stored

argument, making memo-lookup more efficient. Hash techniques are hard to use with

conventional memo-functions because equal structures must have the same hash value.

Also we can see from the definition that the components of a compound object (such as

a CONS cell) are not involved when the object is tested for identity. Thus in a lazy

language it is possible to test partially evaluated objects for identity. The argu-

ments to a lazy memo-function must be evaluated far enough to discover which object

they refer to, but the components of that object need not be evaluated. Thus lazy

memo-functions are strict only to one level. They combine well with lazy evaluation.

Finally, it is possible to delete some entries from lazy memo-tables without risking

repeating computations. When an argument stored in a memo-table is reclaimed by the

garbage collector it can also be deleted from the memo-table, since it can never

reappear as an argument to any function. Implementing this requires some care,

though, since references from memo-tables themselves must not be counted. We will

return to this in section 6.

Lazy memo-functions can be implemented in terms of an identity test, hash tables, and

assi~ament. Morris has suggested adding an identity test and hash tables directly to

a functional language [15]. Unfortunately this compromises referential transparency,

since equal structures cannot be substituted for equals in identity tests without

changing the meaning. For example

(lambda x. identical x x) (cons I 2)

evaluates to true, but the supposedly equivalent

identical (cons 1 2) (cons 1 2)

evaluates to false, since the two calls of cons construct cells at different

addresses. Lazy memo-functions provide some of the same power as Morris' primitives,

and do not compromise referential transparency at all.

3. F u n c t i o n s on C y o l l o S t r u c t u r e s

The most striking application of lazy memo-functions is to the manipulation of cyclic

structures. These are used to represent infinite objects in a compact and efficient

way. For example, the infinite list of ones can be represented by the cyclic struc-

ture

+----+------+

+ 11101
I +___÷_ --÷

÷ +

The programmer creates cyclic structures using recursive declarations. For example,

the structure above would be created by the declaration

132

ones = 1:ones

(where ":" is the "cons" operator which adds an element to the front of a list. Our

notation in this paper is based on Turner's language KRC [21] with a few liberties

taken here and there).

Unfortunately cyclic structures are not "first-class citizens", in the sense that any

manipulation of a cyclic structure is likely to result in an infinite one. For exam-

ple, one might try to define the infinite list of twos by

twos = map double ones
double x = 2*x

where map returns the llst obtained by applying double to each element of ones. This

definition makes twos a non-cycllc, infinite llst of twos. Essentially this is

because there is no way for a f~ction to distinnguish a cyclic representation from a

truly infinite one of the same data-structure, and therefore (map double) must return

the same result whichever it is applied to. When it is applied to a truly infinite

list, it cannot possibly predict that ali the elements of the llst will be one, and

so it cannot possibly return a cyclic structure. Therefore it must return an infinite

result even when its argument is cyclic.

This means that cyclic structures must be manipulated with great care if they are not

to become infinite. It is important to keep structures cyclic, not only because

cyclic structures are much more compact than infinite ones, but because finite struc-

tures take only a finite amount of work to build. Once completed they can be accessed

freely. An infinite structure, on the other hand, consumes more and more computer

time as more and more of it is created.

Lazy memo-functions can help keep structures cyclic. To see why, let us return

(map double ones). The definition of map is

map f [] = []
map f (a:x) = f a:map f x

(In KRC lists are written down by enclosing their elements in square brackets, so

represents the empty list), and so

map double ones = map double (1:ones)
= double 1:map double ones
= 2:map double ones

(since ones=1:ones)

So (map double ones) evaluates to the structure

+------+------+

map double ones >I 2 I o > map double ones
+------+------+

to

[]

The arguments of the recursiw call of map are identical to the arguments of the

first call. Therefore if map is memoised, the original result will be re-used, pro-

ducing the structure

133

+------+------+

m a p d o u b l e o n e s > l 2 I o > m a p d o u b l e o n e s
+--> +---+---+

, I
+ . +

Since the recursive call forms part of the result of the first call, a cyclic struc-

ture is created. (Cycles of length one are recognised and treated in the same way in

Daisy [22]). The new definition of map is

memo map f [] : []
memo map f (a:x) = f a:map f x

So simply by writing the keyword memo in front of the equations defining map we can

convert it into a function which produces cyclic results from cyclic arguments. (We

adopt the convention that memo memoises a function with respect to all the arguments

appearing in the memoised equation, so this definition of map is memoised with

respect to both arguments. Map and (map f) are both memo-functlons. We do not con-

sider whether any meaning can be given to definitions in which some equations are

prefixed with memo and others are not).

Another interesting example is the function zip, which takes two lists and constructs

a list of pairs of corresponding elements. For example, (zip [a,b,c] [1,2,3]) is

[[a,1],[b,2],[e,3]]. Zip can be defined by

memo zip [] [] = []
memo zip (a:x) (b:y) = [a,b]:zip x y

Now consider the cyclic lists

ab = a: b: ab
abc = a:b:c:abc

Zipping these together gives

zip ab abc= zip (a:b:ab) (a:b:c:abc)
= [a,a]:zip (b:ab) (b:c:abc)
= [a,a]:[b,b]:zlp ab (c:abc)
= [a,a]:[b,b]:[a,c]:zip (b:ab) abc
= [a,a]:Eb,b]:[a,c]:Eb,a]:zip ab (b:c:abc)
= [a,a]:[b,b]:[a,c]:[b,a]:[a,b]:zip (b:ab) (c:abc)
= [a,a]:[b,b]:[a,c]:[b,a]:[a,b]:[b,c]:zip ab abc

At this point zip is applied to arguments identical to those of the first call, and a

cyclic structure is constructed. This structure could also be defined by

z = [a,a]:[b,b]:[a,c]:[b,a]:[a,b]:[b,c]:z

Six llst cells are required to represent it (not counting cells used to represent

pairs [a,a] etc.). This is the product of the number of cells used to represent each

argument.

1 3 4

On the other hand, if ab is zipped together with itself, we get

zip ab ao = [a,a]:zip (b:ab) (o:ab)
= [a,a]:[b,b]:zip ab ab

and so a cyclic structure with only two cells is created. In fact, the n~nber of

cells in zip's result is the least common multiple of the number of cells in each

argument. This behaviour is not trivial to predict, but the memo-mechanism automati-

cally makes the results as small as possible.

4. S t r u e t u s - t n s F u n e t t o n s o n T r e e s

4.1 A Simple E]c~eple

Lazy memo-functions can also be used to make modular versions of algorltb~s effi-

cient. As a very simple example of this, consider the problem of finding the deepest

leaves in a tree. Since there may be many leaves at the same depth, the result must

be a list of leaves. Assuming that nodes in the tree are either (leaf x) or (node i

r), we can define

deepest (leaf x) = [x]
deepest (node i r) = deepest i, i_~f depth l>depth r

= deepest r, i_~f depth l<depth r
= deepest 1 ++ deepest r, otherwise

(where +÷ appends two lists together). We must also define the function depth:

depth (leaf x) = 0
depth (node i r) = I + max (depth i) (depth r)

As it is written this algorithm is very inefficient, because the depth of each node

is computed many times. The deepest parts of the tree have their depth computed as

many times as there are levels in the tree. This makes the total cost of the algo-

rithm quadratic in the size of the tree. All that is necessary to make it efficient

is to memoise the function depth. Then the depth of each node is computed only once,

and the whole algorithm requires time linear in the size of the tree.

Deepest can be computed efficiently in other ways. For example, an extra component

could be added to every node to hold the depth of the subtree below it. This tech-

nique of storing additional data in trees is commonly used in imperative programs.

However, it's rather unsatisfactory here. Because f~ctions are written using pat-

tern matching, every function on trees must ,'know about" the extra component, even

though it is often irrelevant. Responsibility for maintaining the depth information

is divided among all the functions that construct trees, instead of localised in one

place (depth). There is therefore greater scope for error. Finally, trees with added

depth information are a different type from ordinary trees, so functions that are

common to both types must be duplicated. Me~oising depth can be thought of as adding

a "depth" field to those trees that need one, and in fact it has very similar space

requirements. However, this is achieved in a transparent way and so the accompanying

problems are avoided.

135

An alternative method is to combine the functions depth and deepest into one function

wlth two results. This is the conventional "functional" solution, and it is equally

efficient. However, the resulting function is large and complex compared to the ori-

ginal two. Memoising depth is a simpler, more modular solution.

Adding extra fields to data structures to hold derived values, and combining several

functions into one with several results, are both common programming techniques. As

in this simple example, memoisation can often offer a more elegant alternative.

4.2 An I n t e r p r e t e r f o r t h e Lambda-ca lculus

Compilers and interpreters provide many examples where lazy memo-functions can be

applied. They manipulate syntax trees, and often need to attach derived information

to the nodes. We will discuss several examples of this type. The first is an inter-

preter for the lambda-calculus. Lambda-expressions are represented by syntax trees

with three different kinds of node,

<exp> ::= id <string> Iapp <exp> <exp> I lam <string> <exp>

The interpreter is a function called eval which takes a lambda-expression and reduces

it to head normal form (HNF). An expression is in head normal form if it is not an

application of a lambda-expression. There is no requirement that the parts of an

expression in HNF be in HNF themselves. It follows that an expression in HNF must be

either a lambda-expresslon (whose body may be in any form), or an application of an

identifier to zero or more arguments (which may be in any form). Reduction to HNF is

akin to lazy evaluation of functional programs, because the "components" of a result

are not evaluated when the result is.

Eval can be defined by

eval (app f x) = apply (eval f) x
eval E : E, otherwise

apply (lam x e) a = eval (subst x a e)
apply f a = app f a, otherwise

where subst is a function which substitutes a for x wherever it occ~s in the syntax

tree e. This interpreter quite correctly does not try to evaluate arguments to func-

tions before substituting them into the function body. If it did so, it would risk

going into an infinite loop, since the argument might be an expression which has no

HNF and which causes eval to loop infinitely looking for it. If E is such an expres-

sion then (app (id"f") E), for example, has a HNF - itself - which eval finds. If

eval tried to evaluate the argument E it would fail to find this HNF. There is a

penalty for this: arguments which are used several times in a function are rc-

evaluated each tlme they are used. If eval is memoised this causes no problem.

Without memoisation it makes the evaluator far too inefficient to be used - some

expressions take exponentially longer to be evaluated.

In this example the memolsation mechanism mimics the ordinary lazy evaluation mechan-

ism. Just as the latter records the value of an expression the first time it is

136

computed so that subsequent evaluations do no work, so the memoised eval records the

value of a node the first tlme it is computed, and never redoes the work. One can

even add lazy memo-functions to the interpreted language by adding a new kind of

lambda-expression, (memo <string> <exp>)., and a new equation to the definition of

appl y:

apply (memo x e) a = apmemo (memo x e) (eval a)
memo apmemo (memo x e) a = eval (subst x a e)

Since apmemo is itself memoised, it never applies the same memo-function to the same

argument more than once, it just reuses the old result. The effect of this is that

the interpreted memo-functlon is itself memoised.

4.3 An Expert System ~ a l u a t ~ r

Our second example of a "compiler/interpreter" is a logical expression evaluator for

an expert system. This is a simplified version of one of the evaluators discussed

in [4] which in turn was based on the evaluator in MYCIN [17]. The logical expres-

sions are represented by syntax trees containing and, or and not nodes.

<exp> ::= and <exp> <exp> I or <exp> <exp> I not <exp> I ask <string>

At the leaves are "as~' nodes, which are evaluated by asking the user the question in

the node and using the reply (true or false) as the value. The result of a logical

expression is used to decide whether or not some hypothesis is true. For example, one

might use the expression

(or (not (ask "Will it start?")) (ask "Does it sound nasty?"))

to decide whether or not there is anything wrong with an engine. Given an association

list of questions and answers (qas), such a logical expression can be evaluated by

the function eval defined by

eval qas (ask q) = assoc qas q
eval qas (and a b) = eval qas a & eval qas b
eval qas (or a b) = eval qas a I eval qas b
eval qas (not a) = ~eval qas a

The questions which the user should be asked can be found using

tions

questions (ask q) = [q]
questions (and a b) = union (questions a) (questions b)
questions (or a b) = union (questions a) (questions b)
questions (not a) = questions a

the function ques-

where union is used to ensure that the same question is not asked more than once.

Now if the user's reply (a list of booleans) is zipped together with the llst of

questions we get the association llst of questions and answers. Therefore we can

define a function expert, which takes the user's input and a logical expression as

arguments and returns a llst of questions and a boolean result as follows:

137

expert e input = [qs, ansi
where qs = questions e

qas = zip qs input
ans= eval qas e

This "expert system" leaves a lot to be desired, because it always asks the user all

the questions in the tree. It would be far better to omit questions whose answer is

irrelevant. For example, when evaluating the expression

(or (ask "Do you drink?") (ask "Do you smoke"))

it is unnecessary to ask the user if he smokes if he has already admitted to drink-

ing, because the expression will evaluate to true in any case. Indeed, since the KRC

'I' operator does not evaluate its right argument if the left one is true, eval will

not even be applied to the second question. To take this into account, we define

questions qas (and a b) =
= union (questions qas a)

(includeif (eval qas a=true) (questions qas b))
questions qas (or a b) =

= union (questions qas a)
(inoludeif (eval qas a=false) (questions qas b))

includelf true set = set
ineludeif false set = []

(qas has to be supplied as an additional argument to questions since it now calls the

evalvator). This modification makes the next question asked depend on the answers to

the previous ones - the questions in the second branch of an or, for example, are

asked only if the first branch evaluated to false. While this certainly works without

memoisation it works very badly, since some expressions may be evaluated very many

times in order to decide which questions to ask. To make it acceptably efficient eval

must be memoised. This has the added advantage that if parts of the tree are shared

between different branches then they are only evaluated once.

4.4 Incremental Compilation

An incremental compiler stores a representation of the user's program, together with

its compiled code. It allows the user to edit his program, and recompiles as little

as possible when changes are made. Keeping track of exactly which information need be

recomputed after a change can be difficult. Memo-functions can be used to do this

automatically. If an ordinary compiler is modified by adding a structure editor to

allow the syntax tree to be edited, and memoising the main code generation functions,

then it will work as an incremental compiler. After each change the code generator

can be applied to the entire syntax tree, and new code will be generated only for

those parts that have changed.

4 .5 A Compiler t o Super~comblnators

Our final example is a maximal free expression abstractor due to Bird [2]. Such an

abstractor translates lambda-expressions into "super-combinators" [7]. It is based

on the principle that, if a sub-expression E of a lambda-expression does not contain

the bound variable (i.e. it is a free expression) then it can be "abstracted out".

138

(lam x ...E...) => (app (lain a (lain x ...a...)) E)

where a is a new identifier. This transformation improves the program because the

expression E is only evaluated once, rather than every time the function containing

it is called. If all the maximal free expressions are abstracted out from lambda-

expressions then the resulting program is "fully lazy" - it exhibits self-optimising

properties first observed by Turner [19]. The lambda-expressions which remain have

no free variables, and can therefore be implemented very efficiently [10]. Such

lambda-expressions are called super-combinators.

The ismbda-expresslons have the same structure as those in o~ interpreter for the

lambda-calculus, except that the strings in identifier nodes are replaced by

integers, being the nesting depth at which they are bound. Thus the most global

identifier is replaced by I, the next most global by 2 and so on. The translator can

be defined by

trans (id n) = id n
trans (app a b) = app (trans a) (trans b)
trans (lam n b) = abstract (mfes nb') nb'

where b' = trans b

Assuming that (mfes nb') returns a list of the maximal subexpressions of b' which do

not contain the variable n, abstract replaces them by new parameters of the lambda-

expression.

abstract m n b ~ mkapp m (mkcom (m++[id n]) b)
mkapp [] f = f
mkapp (a'm) f ~ mkapp m (app f a)
mkcom m b ~ corn (length m) (subst m [1..length m] b)

We have introduced a new kind of node, (com n e), to represent (super-)combinators.

(Cam n e) represents a combinator with n arguments, which are referred to be the

numbers 1..n in the body of the combinator. The combinator is constructed by the

function mkcom, which used another version of subst to replace the maximal free

expressions in the body of the combinator by integers. This version takes a llst of

expressions to replace (m) and a list of replacement values ([1..length m]). The

function mkapp constructs an application of the new combinator to the maximal free

expressions.

It only remains to define the function mfes, which identifies the maximal free

expressions. This is easily done using an auxiliary function level which finds the

maximum (most local) identifier in an expression. Then

mfes n e ~ [e], if level e<n
(that is, if the most local identifier in e is more

global than n)
mfes n (app a b) = union(mfes n a)(mfes nb), otherwise

mfes n e = [], otherwise

The first equation says that if an expression contains only identifiers more global

than n then it is itself a free expression. The second says that applications which

are not free may yet have sub-expresslons which are. Union is used so that the same

expression is not abstracted out more than once, and in effect performs common-sub-

expression optimisation. The third equation says that other nodes (identifiers and

comblnators) have no sub-expressions which might be free. The last function we need,

level, can be defined by

level (id n) = n
level (app a b) = max (level a) (level b)
level (com n b) = 0

Level is never applied to lam nodes and so does not need to be defined for them. A

combinator is taken to be level 0 - that is, more global than any identifier, or

effectively a constant. This is almost an efficient program. Strangely enough, mfes

only visits each node a constant number of times [2]. However, level may be applied

to each node many times. In fact, much better results are obtained if the mfes are

sorted into increasing order of level before being substituted for [8], and this

requires still more calls of level. If level is memoised then the algorithm presented

here works well.

In fact, it is hard to write an efficient compiler to super-combinators without the

aid of memo-functions. Other compilers (in imperative, functional and logic

languages) appear in [8]; all are much more complex than this one. The functional

version combines level, mfes, abstract and trans into one function in order to avoid

repeated computation, but this is difficult because the patterns of recurslon in each

function differ. The resulting function is much larger than the sum of the sizes of

the individual functions. Johnsson's lambda-lifting is a closely related problem: his

compiler works in a similar way and is almost as complex [11]. The alternative solu-

tion of storing level information in the nodes before compilation is hard to apply

because the easiest way to find the level of a lambda expression is to compile it.

4.6 S~mTmary

In this section we have shown that lazy memo-functions can be used to make certain

modular but inefficient algorithms efficient, where the alternatives destroy the

program's structure in one way or another. We have argued in [9] that the most

important advantage of functional languages is that they provide new forms of "glue"

for combining solutions to sub-problems, thereby allowing problems to be decomposed

in new ways and increasing modularity. These new glues are higher-order functions and

lazy evaluation. Memo-functions are a third kind of glue in this sense.

5. Hashing CONS and Full Memo-fLmetions

When we defined lazy memo-functions we relaxed the requirement that a memo-function

avoid recomputation when applied to equal arguments, requiring it only to avoid

recomputation when applied to identical ones. If "full" memo-functions (that is, the

original kind) are really required they can be defined in terms of lazy ones.

This is done using a "hashing cons" [18]. A hashing cons (hcons) is like cons, but

does not allocate a new cell if one already exists with an identical head and tail

(that was allocated by hcons). Hcons is easily defined by

140

memo hcons a b = a:b

Using hcons, we can define a function that makes a unique copy of a structure.

unique (a:b) = hcons (unique a) (unique b)
unique x = x, otherwise (x is atomic)

If a and b are two equal structures, then (unique a) and (unique b) are identical.

This is clearly true for atoms, and therefore it is true for any structure built from

atoms using cons by structural induction. Now, to make a function f into a full

memo-function it is only necessary to apply unique to its arguments.

f x = g (unique x)

memo g x = ... body of f ...

When f is applied to equal arguments unique makes them identical, and then the lazy

memo-function g avoids recomputation of the result. Of course, full memo-functlons

defined in this way suffer from all the same disadvantages as full memo-functlons

defined in any other way - they are relatively inefficient, completely strict, and

the memo-tables keep growing.

6. Implementat ion I s s u e s

Lazy memo-functions can be implemented by maintaining a memo-table of previous argu-

ments and results. Since the test for re-occurrence of an argument is a pointer com-

parison rather than a recursive equality test the memo-table can be organised more

efficiently than the memo-table for a full memo-function. It might be organised as a

hash table or as a binary tree, for example. We won't go into such details here, but

we will examine the problem of ever growing memo-tables.

In [13] Keller and Sleep give a comprehensive discussion of the implementation of

full memo-functions. The most serious problem they raise is that memo-tables grow

constantly - the more a memo-function is used, the more arguments and results are

stored in its memo-table. Unless this growth is checked the memo-tables may become so

large that no space is left for the rest of the computation. Keller and Sleep propose

various caching strategies for deleting entries from memo-tables. Hilden compares

strategies experimentally, for a particular function [6]. Unfortunately, any such

strategy must be ad hoc, since one can never know for certain that a function will

never be applied to a particular argument again.

Are lazy memo-functions any better? There are two ways in which they can help with

this problem. Firstly, in many of the examples we discussed above the programmer

knows when the memo-table should be emptied. For example, when using map with a

cyclic argument it is vital that nothing should be deleted from the memo-table while

a particular cyclic list is being mapped, for if it were a genuinely infinite result

might be computed. However, once the mapping is over all entries for that cyclic llst

can be deleted. The programmer does not care whether or not he gets an identical

result if he maps the same function over the same list again. He only cares that he

gets a cyclic result each time he does it. It is sufficient to create a local memo-

141

table for each "top-level" application of map, which can be thrown away in its

entirety when that application of map is completed. The programmer can elicit this

behavio~ by declaring a recursive memo-function local to map as follows:

map f 1 = m 1
where memo m [] = []
- - memo m (a:x) = f a:m x

With this definition a new memo-function with its own memo-table is created each time

map is applied, and it exists just long enough to copy the cyclic argument, after

which it is deleted in the normal way by the garbage collector. By localising memo-

f~ctions in this way the programmer can go a long way towards solving the problem

himself.

Of course, there remain memo-functions which cannot be locallsed and so have long

enough lifetimes to accumulate gigantic memo-tables. Most of the memo-functions in

section 4 are of this type. Yet even here lazy memo-functions can make a contribu-

tion. Although it is impossible to predict that a function will never again be

applied to an argument equal to a previous one, it is easy to predict that a function

will never again be applied to an identical one when that argument is deleted by the

garbage collector. So the garbage collector can be used to delete entries from memo-

tables when they are no longer required. There is a difficulty here. By definition,

all arguments stored in accessible memo-tables are accessible, and so a garbage col-

lector using the normal rule that all accessible structures are preserved would not

delete them. It follows that references from memo-tables to stored arguments must not

count. The problem lles with references from memo-tables to stored results. If the

corresponding argument is preserved then the result must also be preserved, since it

must be returned should the memo-function be applied to the argument. On the other

hand, if the argument is deleted then the result can be too. Since the garbage col-

lector may find the memo-table before it has reached some of the stored arguments, it

cannot know when dealing with the memo-table which of the stored results must be

preserved. Consideration of memo-tables cannot be postponed to the end of garbage

collection because some objects (and some stored arguments) may only be accessible

via stored results of other stored arguments. We shall show how this problem can be

resolved in mark-scan and copying collectors. The technique we use was first used by

Friedman and Wise to delete entries from a scatter table [5].

6.1 Mark-scan Garbage C o l l e c t i o n

In the case of a mark-scan collector, we assume that all cells are the same size and

have room for two pointers and some type bits. We assume that memo-table entries are

stored in a cell of recognisable type

memo-entry
+ +

I a r g u m e n t >
+ +

I result, 1

+ I +
!

V

142

We assume that a memo-table is a list (or perhaps a binary tree) of memo-entries, and

that the root cell is also of a recognisable type.

During the mark phase, when the garbage collector finds a memo-table it marks it, but

marks the memo-entries only if the argument is already marked or is atomic. In these

cases it also marks the result. If the argument is not yet marked, we have the struc-

ture

memo-entry
+ + + +

I argument >I head l
+ + + ÷

I result I 1 tail I

+ I + + +

I
V

The garbage collector reverses the pointers from the memo-entry to the argument, pro-

ducing the structure

memo- ant ry
+ + + +

1 head I< o 1
+ + + +

I result l l tail I
I

+ I + + +

I
V

If several memo-entries (in different memo-tables) refer to the same unmarked argu-

ment this results in a llst of unmarked memo-entries hanging from the head of the

argument.

memo-entry memo-entry
+ + + + + +

I head I< o I< o i
+ + + + + +

I result 1 I result 1 1 tail 1
i i

I I
v V

When the garbage collector marks a cell whose head refers to a memo-entry it restores

all these pointers to their original state and marks the memo-entries and their

results. (The pointer stored in the head of the argument can be tagged specially if a

bit is available so that no indirection is necessary to test whether it refers to a

memo-entry). At the end of the mark phase all memo-entries, arguments and results

that are still required have been marked. Memo-entries which are not required contain

corrupted information.

The sweep phase proceeds as normal, except that when a marked memo-table is found,

unmarked memo-entries are deleted from it and marked cells in the structure of the

memo-table that are no longer required are returned to the freelist.

143

Phil Wadler has pointed out that the garbage collector could also delete memo-entries

whose result is not pointed to from elsewhere, even if the argument is. This could

make the program less efficient, but cannot otherwise affect its behaviour. It cannot

even affect the results of future identity tests, because if the memo-entry is recom-

puted then the result can never be tested for identity against the previous result.

We have not pursued this ideaany further, as it would require a non-trivial modifi-

cation to the algorithm.

6.2 Copying Garbage Collection

Copying garbage collectors [I] use two heaps, only one of which is normally active.

When the active heap be comes full all accessible structures are copied onto the inac-

tive heap, which then becomes the active one. It is often used in virtual memory

implementations because the inactive heap costs nothing.

This kind of garbage collector can cope with variable sized nodes with no difficulty,

so we assume that memo-tables are stored as contiguous vectors organised as hash

tables. Each memo-entry consists of a pointer to the argument, a pointer to the

result, and a pointer to the beginning of the memo-table. (This last pointer is

present so that a pointer to a memo-entry also identifies a memo-table. It may not

require a whole word on some machines since it can be stored as a relatively small

offset). Since the copying process changes the addresses at which objects are stored

memo-tables must be completely reorganised during garbage collection.

When a memo-table is copied to the new heap, all the entries in the new table are

cleared and the address of the copy is stored in the header of the old one. Any

entries whose arguments have already been copied are then inserted into the new

table, and the corresponding results are copied. Entries whose arguments have not

been copied have their pointers reversed, as in the mark-scan collector. The reversed

pointer points at the memo-entry, not at the start of the memo-table. If one of these

arguments is later copied to the new heap then the pointers are restored and the

entry is inserted into the new memo-table (which can be found by following the

pointer in the entry to the start of the old memo-table, and from the header of the

old table to the new one). At the end of the garbage collection all accessible memo-

tables have been reorganised and copied into the new heap, and all inaccessible argu-

ments and results deleted.

This method neutralises one of the advantages of copying garbage collectors, that the

new heap need only be accessed sequentially. Random access is required to the new

memo-tables. This disadvantage can be minlmlsed by storing memo-tables in a separate

area of heap, so that the bulk of the new heap is still accessed sequentially. For

example, each heap might be arranged with normal data stored at low addresses and

memo-tables stored at high addresses, so that a garbage collection occurs when the

two meet.

A representation with reversed pointers proved very useful in each garbage collection

algorithm. This suggests yet another implementation of memo-functions, in which the

memo-tables are always stored in the reversed form as ,'property lists" attached to

nodes. Peyton-Jones has proposed such a representation as a way of "memolsing the

144

data" rather than the function [16]. This has the advantage that memo-tables are

likely to be small (perhaps just one or two entries), making memo-lookup very fast.

The problems of garbage collection are eased because as soon as a data-structure is

no longer required all its memo-entries automatically disappear. There is still a

difficulty, namely that of deleting memo-entries when the memo-functlon referred to

is no longer required, but this is less severe unless many different memo-functions

are created dynamically (this is true of many of the examples above). A more serious

disadvantage is that it is hard to see how functions of many arguments could be

memo-lsed in this way.

Of course, no garbage collection mechanism can delete entries with atomic arguments

from memo-tables, because an atom (such as "2") cannot be deleted in any sense.

Therefore certain lazy memo-functions (such as hashing cons) still accumulate larger

and larger memo-tables. Nevertheless, the problem is much reduced - it now arises

only when one insists on using lazy memo-functions to implement full ones. In exam-

ples such as those in section 4 these techniques should prove very effective.

7. C o n c l u s i o n

We introduced a slight variation on the old idea of a memo-f~nction. Our memo-

functions combine well with lazy evaluation, and so we call them "lazy memo-

functions". Lazy memo-functions increase the expressive power of a functional

language, allowing cyclic structures to be treated as first class citizens, and

allowing many modular but unreasonably inefficient algorithms to be used directly.

Bird and Turner have observed that such algorithms are often derived during the

development of a program. Lazy memo-functions can speed up program development by

allowing it to stop at that point. The stages which are omitted thereby can destroy

the structure of a program and render it obscure. Lazy memo-functions can be imple-

mented efficiently and reduce the effect of "expanding memo-tables" considerably.

We have not discussed methods for reasoning about memo-functions. Although memoisa-

tion (of semi-strlct functions) cannot compromise correctness, it does affect space-

and tlme-efficiency. This adds an extra dimension to the analysis of efficiency which

could make it much more difficult. In this paper we have reasoned very informally

about the efficiency of such programs, but a more formal treatment must await future

work. This is probably the most serious disadvantage of lazy memo-functions.

Acknowledgements

I am very grateful to Richard Bird, who provided the original motivation for this

work; and also to Phll Wadler, Tony Hoare, Simon Peyton-Jones, and David Wise, all of

whom made useful comments. I must also thank the United Kingdom Science and Engineer-

ing Research Council for supporting me with a European Research Fellowship while this

work was carried out, and the members of the Programming Methodology Group at Chal-

mers University G~teborg for providing a stimulating environment.

145

R e f e r e n c e s

[I] N. Baker, "List Processing in Real-time on a Serial Computer", Communications
of the ACM, Vol. 21 no. 4, pp. 280-294 (April 1978).

[2] R.S. Bird, ,'Super-combinator Compilers: A Transformational Approach", Oxford
University (1984).

[3] R.S. Bird, "Private communication", 1984.

[4] M. Coutts-Smith, "Expert Systems", MSc dissertation, Oxford University (1984).

[5] D.P. Friedman and D. S. Wise, "Garbage collecting a heap that includes a
scatter table", Information Processing Letters, Vol. 5 no. 6, pp. 161-164
(December 1976).

[6] J. Hilden, "Elimination of recursive calls using a small table of 'randomly'
selected function values", BIT, Vol. 16 no. I, pp. 60-73 (1976).

[7] J. Hughes, "Super Combinators - A New Implementation Method for Applicative
Languages", pp. 1-10 in Proceedings of the 1982 ACM Symposium on Lisp and
Functional Programming, Pittsburgh (1982~-~.

[8] R.J.M. Hughes, "The Design and Implementation of Programming Languages",
Programming Research Group Technical Monograph PRG-40, Oxford University
(1983), Thesis.

[9] R.J.M. Hughes, "Why Functional Programming Matters", Memo 40, Programming
Methodology Group, Chalmers University of Technology, GDteborg (1984).

[10] T. Johnsson, ,,Efficient Cempilation of Lazy Evaluation", pp. 58-69 in Proceed-
of the SIGPLAN '84 Symposium on Compiler Construction, Montrea-T--(-~

).

[11] T. Johnsson, "Lambda Lifting", Memo 41, Programming Methodology Group, Chal-
mers University of Technology, G~teborg (1984).

[12] R. M. Keller and G. Lindstrom, "Parallelism in Functional Programming through
Applicative Loops", University of Utah, Salt Lake City ().

[13] R.M. Keller and M.R. Sleep, "Applicative caching: Programmer control of object
sharing and lifetime in distributed implementations of applicative languages",
pp. 131-140 in Proceedings of the ACM Conference on Functional Languages and
Computer Architecture, Wentw-6r~-h-(1~1).

[14] D. Michie, "'Memo' functions and machine learning", Nature, No. 218, pp. 19-22
(April 1968).

[15] F. L. Morris, "On list structures and their use in the programming of unifica-
tion", School of Computer and Information Science, Syracuse University (August
1978).

[16] S. L. Peyton-Jones, "Private communication", October 1984.

[17] E. H. Shortliffe, MYCIN: Computer-based Medical Consultations, Elsevier, New
York (1976), based--~ P~s~-~n~iversity, 1974.

[18] Spltzen and Levitt, Communications of the ACM, Vol. 21 no. 12, pp. 1064-1075
(December 1978).

[19] D. A. Turner, "A New Implementation Technique for Applicative Languages",
Software - Practice and Experience, Vol. 9, pP. 31-49 (1979).

[20] D. A. Turner, "The Semantic Elegance of Applicative Languages" in Proceedings
1981 Conference on Functional Languages and Computer Architecture, Wentwortn-
by-~e-Sea, Portsm-outh, New Hampshire (Oct--~e~.

146

[21] D. A. Turner, "Recursion Equations as a Programming Language", pp. I-I0 in
Functional Programming and its Applications, ed. D. A. Turner, Cambridge
University Press, Cambrid~--(1~8~).

[22] D. S. Wise, Abacus, Vol. 2 no. 2, pp. 20-32 (Winter 1985).

