Erlang/QuickCheck

Thomas Arts, IT University
John Hughes, Chalmers University
Gothenburg

A little set theory...

 Recall that X UY =Y U X?




A little set theory...

e Recalthat X UY =Y U X?
 Erlang has a sets library. Does this hold?

A little set theory...

e Recalthat X UY =Y U X?
 Erlang has a sets library. Does this hold?
* Property: XUY=YUX




A little set theory...

e Recalthat X UY =Y U X?
 Erlang has a sets library. Does this hold?
 Property: VX.VY.XUY=YUX

A little set theory...

e Recalthat X UY =Y U X?
 Erlang has a sets library. Does this hold?
e Property: VX:Set.VY:Set. XUY =Y UX




A little set theory...

Recall that X UY =Y U X?

Erlang has a sets library. Does this hold?
Property: VX:Se&t.VY:Sat. XUY =Y UX
In Erlang/QuickCheck:

?FORALL(X,set(),
?FORALL(Y,set(),
sets:union(X,Y) == sets:union(Y,X)))

A little set theory...

Recall that X UY =Y U X?

Erlang has a sets library. Does this hold?
Property: VX:S&t.VY:Set. XUY =Y UX
In Erlang/QuickCheck:

prop_union_commutes() ->
?FORALL (X, set(),
?FORALL(Y,set(),
sets:union(X,Y) == sets:union(Y,X))).




Verifying the property

12> qc:quickcheck(
setsspec:prop_union_commutes()).

Verifying the property

12> qc:quickcheck(
setsspec:prop_union_commutes()).

Falsifiable, after 45 successful tests:
{'@",sets,from_1list,[[-6,7,11,10,2]]}

{'@',sets,from_11ist,[[7,7,1,-4,11,-7]1]}
ok

"function call”

These setsare a

counterexample.




Fixing the Property

» Setsare not represented uniquely by the sets library

» union builds two different representations of the
same set

equal(sl,s2) ->
Tists:sort(sets:to_list(sl)) ==
Tists:sort(sets:to_list(s2)).

prop_union_commutes() ->
?FORALL(X,set(),
?FORALL(Y,set(),
equal (sets:union(X,Y),sets:union(Y,X)))).

Checking the fixed property

15> gc:quickcheck(
setsspec:prop_union_commutes()).

OK, passed 100 tests
ok




What is QuickCheck?

A language for stating properties of
programs (implemented as a library of
functions and macros).

A tool for testing propertiesin randomly
generated cases.

Properties
» Boolean expressions + ?FORALL + ?IMPLIES.

prop_positive_squares() ->
?FORALL(X,int(),X*Xx>=0).

prop_larger_squares() ->
?FORALL(X,int(),

?IMPLIES(X>1, _r A precondition ::]

X*X>X)) .




What are int() and set()?

e Types?

What are int() and set()?

e Types? NO!!!

» Test datagenerators.
— Define a set of values for test data. ..
— ...plus a probability distribution over that set.

» Test data generators are defined by the
programmer.




Defining generators

« We often want to define one generator in
terms of another, e.g. squares of ints.

« But we cannot do this by writing
N = int(), N*N

Returns atest
data generator,
not an integer.

Result should be
agenerator, not
an integer.

Defining generators

« We often want to define one generator in
terms of another, e.g. squares of ints.
« But we cannot do this by writing
N = 1int(), N*N
» We define a generator language to handle

generators as an ADT.
?LET(N,int(),return(N*N))

Bind anameto the Convert avalueto a
value generated. constant generator.




How can we generate sets?

« An ADT can only be generated using the
ADT operations.

» Choose randomly between all ways of
creating a Set.

A generator for sets

set() -> frequency([

{6,?2LET(L, 1ist(int()),
return({'@',sets,from_list,[L]}))},

{6,?LET(S,set(),?LET(E,int(),
return({'@',sets,add_element, [E,S]1})))},

{1,?LET(P, function(bool()),?LET(S,set(),
return({'@',sets,filter, [P,S]1})))},

~1)

?FORALL performsacall
when it sees ' @'

10



A problem with random generation

* How do we know we tested a reasonable
range of cases, when we don’t see them?

A problem with random generation

» How do we know we tested a reasonable
range of cases, when we don’t see them?

« Simple approach: collect statistics on test
cases, SO we see a summary of the test data.

» (A simple way to measure test coverage,
which isatangled topic in its own right).

11



An instrumented property

prop_union_commutes() ->
?FORALL(X,set(),
?FORALL(Y,set(),
collect(sets:size(sets:union(X,Y)),
equal (sets:union(X,Y),
sets:union(Y,X))))).

Collect statisticson
the sizes of the
resulting sets.

Output: the distribution of set sizes

27> qc:quickcheck(
setsspec:prop_union_commutes()).

OK, passed 100 tests

16% 3 7% 7 3% 16 2% 9 1% 21
11% 4 6% 12 3% 14 2% O 1% 18
9% 2 5% 13 3% 11 1% 20 ok

8% 6 4% 8 3% 5 1% 10

8% 1 3% 17 2% 24 1% 22

12



Testing concurrent programs

A simple resource allocator:
. start() — startsthe server
. claim() — claimsthe resource . .
} in the client
. free() —releases the resource

These functions are called for their effect, not
their result. How can we write QuickCheck
properties for them?

Traces

« Concurrent programs generate traces of
events.

» We can write properties of traces—they are
lists!

13



Testing the resource allocator

client() -> claim(), free(), client().

clients(N) — Spawnsn clients.
system(N) -> start(), clients(N).

?FORALL(N,nat(),
?FORALL(T,?TRACE(3,system(N)),
.. property of T ..))

The trace recorder

Running

system

» What should the recorded events be?

» How should we capture them?

14



Random traces: aproblem
» What does this print?

test_spawn() ->
spawn(io, format, ["a"]),
spawn(io, format, ["b"]).

Random traces: aproblem
» What does this print?

test_spawn() ->
spawn(io, format, ["a"]),
spawn(io, format, ["b"]).

. ab —every time!

15



Random traces. aproblem
What does this print?

test_spawn() ->
spawn(io, format, ["a"]),
spawn(io, format, ["b"]).

ab —every timel
But ba should also be a possible trace — the
Erlang scheduler istoo predictable!

Solution: ssimulate a random
schedul er

Insert calls of event(Event) in code under
test.

— Sends Event to trace recorder

— Waits for areply, sent in random order

Allows the trace recorder to ssmulate a
random scheduler.

Answers guestion: which events should be
recorded?

16



Simple example revisited

do(E) -> event(spawned), event(E).

?FORALL (T,

?TRACE(3,begin spawn(?MODULE,do, [a]),
spawn (?MODULE, do, [b])

end),

collect(rename_pids(nowaits(T)),true)))

Simple example revisited

OK, passed 100 tests
18% [{exit,{pid,1},normal}, 18% [{exit,{pid,1l},normal},

{event,{pid,2},spawned},
{event, {pid, 3}, spawned},
{event, {pid,2},a},
{exit,{pid,2},normal},
{event, {pid, 3},b},
{exit,{pid,3},normal},
timeout]

{event, {pid,2},spawned},
{event, {pid, 3}, spawned},
{event, {pid, 3},b},
{exit,{pid,3},normal},
{event, {pid,2},a},
{exit,{pid,2},normal},
timeout]

17



Simple example revisited

OK, passed 100 tests

18% [{exit,{pid,1},normal},

{event,{pid,2},spawned},
{event,{pid, 3}, spawned},
{event, {pid,2},a},
{exit,{pid,2},normal},
{event, {pid, 3},b},
{exit,{pid,3},normal},
timeout]

Pids are renamed

for collecting
statistics

18% [{exit,{pid,1},normal},
{event, {pid,2},spawned},
{event, {pid, 3}, spawned},
{event, {pid, 3},b},
{exit,{pid,3},normal},
{event, {pid,2},a},
{exit,{pid,2},normal},
timeout]

Trace recorder times
out if no events happen
for awhile

A surprise!

Pid=spawn(fun()->
event(spawned),
event(ok) end),

event(spawn),

exit(Pid,kill),
event(kill)

1% [{event,{pid,1l},spawn},

{event, {pid, 2}, spawned},
{event, {pid, 2}, ok},
{event, {pid,1},kill},
{exit, {pid,2},killed},
{exit, {pid,2},noproc},
{exit, {pid,1},normal},
timeout]

No doubt thereis a good reason...

18



Trace properties

» Theresource allocator guarantees exclusion
* Instrumented code:

client() ->
event(request),
claimQ),
event(claimed),
event(freeing),
free(),
client().

Trace properties

» Theresource allocator guarantees exclusion

?FORALL(N,nat(),
?FORALL(T,?TRACE(3,system(N)),
satisfies(T,
always(timplies(?MATCHES({event,_,claimed}),
next(until (?MATCHES({event,_, freeing}),
thot (?MATCHES({event,_,claimed})))))))))

19



Trace properties

» Theresource allocator guarantees exclusion

?FORALL(N,nat(),

?FORALL (T, ?TRACE(3,system(N)),

satisfies(T,
(timplies(?MATCHES({event,_,claimed}),
until (?MATCHES ({event,_, freeing}),
(?MATCHES({event,_,claimed})))))))))

Thetrace T satisfies...

Trace properties

» Theresource allocator guarantees exclusion

?FORALL(N,nat(),
?FORALL(T,?TRACE(3,system(N)),

satisfies(T,
always(timplies(?MATCHES({event,_,claimed}),
(until(?MATCHES({event,_, freeing}),
(?MATCHES({event,_,claimed})))))))))

...it' salwaystruethat... |

20



Trace properties

» Theresource allocator guarantees exclusion

?FORALL(N,nat(),
?FORALL (T, ?TRACE(3,system(N)),
satisfies(T,
always(timplies(?MATCHES({event,_,claimed}),
hext(until (?MATCHES vent,_,freeing}),
tnot (?MATCHES({eve Taimed})))))))))

\ ...if the current event is claimed...

Trace properties

» Theresource allocator guarantees exclusion

?FORALL(N,nat(),

?FORALL(T,?TRACE(3,system(N)),

satisfies(T,

always(timplies(?MATCHES({event,_,claimed}),
next(until (?MATCHES({event,_, freeing}),

tn TCHES({event,_,claimed})))))))))
...then after this event...

21



Trace properties

» Theresource allocator guarantees exclusion

?FORALL(N,nat(),

?FORALL (T, ?TRACE(3,system(N)),

satisfies(T,

always(timplies(?MATCHES({event,_,claimed}),
next(until (?MATCHES ({event,_, freeing}),

tnot (?MATCHES ({even laimed})))))))))
...until afreeing event happens...

Trace properties

» Theresource allocator guarantees exclusion

?FORALL(N,nat(),
?FORALL(T,?TRACE(3,system(N)),
satisfies(T,
always(timplies(?MATCHES({event,_,claimed}),
next(until (?MATCHES({event,_, freeing}),
thot (?MATCHES({event,_,claimed})))))))))

...there will be no further claimed event.

22



Trace property language

» Based on linear temporal logic
— Logical operations:
tand, tor, tnot, ?TIMPLIES.
— Temporal operations:

always, eventually, next, until.

— Event matching operations:
?MATCHES, ?AFTER, ?NOW.

A failing property
» Theresourceis always eventually granted.

prop_eventually_granted(N) ->
?FORALL (T, ?TRACE(3, system(2)),
satisfies(T,
always(?AFTER({event, Pid, request},
eventually(N,

tor(?Now({event, Pid2,claimed},

Pid==Pid2),
?MATCHES(more))))))).

23



A failing property

« The resource is always eventually granted. | Failing trace of 23
steps found after

80 successful tests.

prop_eventually_granted(N) ->

?FORALL(T,?TRACE(3,system(2)),

satisfies(T,
always (?AFTER({eVent%ﬂer at most N gepg
eventually(N,
tor(?Now({event, Pid2,claimed},

Pid==Pid2),

?
End of the ATCHES(more))))))) .
recorded trace

In progress

» Testing generic leader election behaviour
» Properties

— Eventually aleader is elected, even in the
presence of failures

— There is always at most one elected leader

24



Experience

* There are as many bugs in propertiesasin
programs!

— QuickCheck checks for consistency between the two,
helps improve understanding

* Random testing is effective at finding errors.

» Changes our perspective on testing
— Not "what cases should | test?’
— But "what properties ought to hold?’

QuickCheck is Fun!

Try it out!

www.cs.chalmers.se/~rjmh/ErlangQC

25



References

» Erlang/QuickCheck is based on a Haskell original
by Claessen and Hughes.

— QuickCheck: A Lightweight Tool for Random Testing of
Haskell Programs, | CFP 2000.

— Testing Monadic Code with QuickCheck, Haskell
Workshop 2002.

— Specification Based Testing with QuickCheck, in Fun of
Programming, Palgrave, 2003.

— Testing and Tracing Functional Programs, in

Advanced Functional Programming Summer School,
Springer-Verlag LNCS, 2002.

Questions?

26



Answers

(The remaining slides may be used to answer
specific questions).

Random functions are pure
functions!

1> F = gc:gen(qc:function(gc:nat()),10).
#Fun<qc.46.146

2> F(D). Invokes a generator
8

3> F(2).

9 XRandom I’eSU|tSj
4> F(3).

3

5>’E£i2;;:j:::::::£::8utcongaentones:]
8

27



Controlling sizes

» Test cases are regenerated w.r.t. asize

parameter, which increases during testing.

prop_union_commutes() ->
?SIZED(N, resize(5*N,..))

Bind N to the Reset the size
Size parameter parameter

» Set sizes now range up to 135 elements.

28



