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Abstract

This paper addresses global rate-monotonic scheduling
of implicit-deadline periodic real-time tasks on uniform
multiprocessor platforms. In particular, we propose new
schedulability conditions that include a set of easily com-
putable task-set parameters for achieving better system uti-
lization while meeting the deadlines of all the tasks. First,
an individual sufficient schedulability condition is derived
for each task. Then, the collection of schedulability con-
ditions for the tasks are condensed to provide two differ-
ent simple sufficient schedulability conditions for the entire
task system — one for uniform multiprocessors, and one
for unit-capacity multiprocessors, respectively. Finally, we
show that our proposed simple rate-monotonic schedula-
bility conditions for uniform and unit-capacity multiproces-
sors have higher worst-case system utilization than all other
state-of-the-art simple schedulability conditions for global
rate-monotonic scheduling of implicit-deadline tasks.

1 Introduction

Real-time system applications are often represented us-
ing a finite collection of independent recurring processes,
for example, in control and monitoring applications. Such
recurrent processes are typically modeled using the preemp-
tive periodic task modelin which each periodic task’s rela-
tive deadline is equal to its period (implicit-deadline) [18].
One of the main challenges for such a task model is de-
signing fixed-priority scheduling algorithm that ensures that
all the deadlines of the tasks are met during runtime. The
fixed-priority Rate-Monotonic (RM) scheduling algorithm
[18] is widely used in industry because of its simplicity,
flexibility and its ease of implementation [22]. Even though
the RM scheduling is optimal for uniprocessor platform, its
schedulability performance is poor on multiprocessor plat-
form [13]. Our endeavor in this paper is the design and
analysis of RM scheduling to achieve higher system uti-
lization on multiprocessor platform in which the processors
may have different speeds (uniform multiprocessors).

Real-time multiprocessor systems use eitherglobal
scheduling orpartitionedscheduling. In global scheduling,
a task is allowed to execute onanyprocessor even when it
is resumed after preemption. This is done by keeping all
the ready tasks in a global queue from which the highest-
priority tasks are dispatched to the processors for execution.
In partitioned scheduling, the task set is grouped in differ-
ent task partitions during design time and each partition has
a fixed processor onto which only the tasks of that parti-
tion are allowed to execute. Many policies for the global
[2, 20, 4, 5, 8, 6, 1, 9] and partitioned [13, 21, 7, 3, 19, 17]
approaches exist for fixed-priority multiprocessor schedul-
ing. To this end, much research has focused on finding an
efficient schedulability conditionthat, if satisfied, implies
that all the deadlines of the tasks are met. In this paper,
we present a schedulability analysis (sufficient schedula-
bility condition) for global preemptive RM scheduling for
implicit-deadline tasks on uniform multiprocessors and its
specialization on unit-capacity multiprocessors.

A system consisting of multiple processors having dif-
ferent computing capacity (speed) is called auniform mul-
tiprocessor platform[15]. On such a platform, a processor
with speeds completess× t units of execution when a task
executes fort time units on the processor. If the speed of
each processor is one, then it is aunit-capacity multiproces-
sor platform. The importance of multiprocessor scheduling
on uniform processors has already been pointed out in [14].
In addition, we find two more reasons to study scheduling
on uniform multiprocessors. First, when the frequency of
different processors’ clocks are lowered to save power, the
schedulability of the tasks on such a platform can be an-
alyzed using uniform multiprocessor theory. Second, it is
very likely that chip multiprocessors [11] will have cores
with different speeds in the future.

The quality of many multiprocessor scheduling algo-
rithms is measured in terms of theworst-case system uti-
lization (also known asutilization bound). The worst-case
system utilization of a scheduling algorithm is used to pro-
vide asufficient schedulability conditionfor that algorithm.
This is because any set of tasks is guaranteed to be schedu-



lable (i.e. meet all the deadlines) using a particular schedul-
ing algorithm whenever thetotal utilization (computation
load) of the task set is no larger than the worst-case system
utilization. This fact motivates us to design and analyze the
RM scheduling algorithm for the multiprocessor platform
in order to achieve a high worst-case system utilization.

The main reason for using the total utilization of a task
set in a sufficient schedulability condition is that this metric
is easy to compute and also represents a simple and con-
densedtask-set parameterin the schedulability condition.
In this paper, we introduce three new task-set parameters
(formally defined later) that can be easily computed for any
task set —the minimum period ratio, the maximum period
ratio, andthe sum of squares of individual task utilization.
Using these parameters, we derive a sufficient schedulabil-
ity condition for global RM scheduling of implicit-deadline
periodic task sets that has a higher worst-case system uti-
lization compared to that of all other similar conditions for
global RM scheduling. To this end, we make the following
major contributions in this paper:

1. Using the three new task-set parameters (mentioned
above), an individual sufficient RM schedulability con-
dition for each task is derived for uniform multiproces-
sors (i.e. all the sufficient conditions are checked iter-
atively for all the tasks). These individual conditions
are then condensed into two simple (i.e. non-iterative)
sufficient RM schedulability conditions for the entire
task set — one for uniform multiprocessors and one
for unit-capacity multiprocessors.

2. To the best of our knowledge, our simple schedulabil-
ity conditions for the uniform and unit-capacity multi-
processors dominateall such simple RM schedulabil-
ity conditions proposed by others for implicit-deadline
task systems1. However, for other simple fixed-priority
schedulability conditions that our simple conditions do
not dominate, it is also true that those conditions do not
dominate ours either.

3. The three new task-set parameters have an important
implication for the system designer in that there exist
certain strategies for selecting these task-set parame-
ters so as to achieve a good system performance.

The rest of the paper is organized as follows. First, in Sec-
tion 2, other works related to multiprocessor scheduling are
discussed. In Section 3, the task model used in this work
is presented. The model of the multiprocessor platform and
some related theory is discussed in Section 4. Then, we
present our schedulability analysis for uniform and unit-
capacity multiprocessors in Section 5. In Section 6, we
compare the performance of our schedulability condition
with other works. Finally, Section 7 concludes this paper.

1By domination we mean that all task sets that satisfy other schedula-
bility conditions must also satisfy our condition, and not vice versa.

2 Related Work

Fixed-priority multiprocessor scheduling with non-zero
worst-case system utilization was first proposed in [2] us-
ing a concept calledutilization separation. TheRM-US al-
gorithm in [2] assigns the highest priority to the tasks hav-
ing individual task’s utilization greater thanm

3m−2 (m is
the number of processors) while the rest of the tasks
are assigned priorities according to RM. It is proved that
the worst-case system utilization of algorithmRM-US is

m2

3m−2 ≈ 33.33% on m processors (asm → ∞). The
worst-case system utilization of hybrid priority-assignment
algorithms such asRM-US has been shown to be as high
as approximately 37.48m ≈ 37.48% [20]. Hybrid priority-
assignment based on the slack (i.e. task’s period minus the
task’s execution time) of each task was proposed in [1]. The
worst-case system utilization of theSM-US algorithm in
[1] is approximately 2m

3+
√

5
≈ 38.19% for implicit deadline

tasks. Recently, a new fixed-priority assignment scheme
for global scheduling was proposed [12], which has been
shown (using simulation) to have better performance than
other fixed-priority scheduling algorithm.

Based on the minimum amount of interference in an in-
terval that can cause a task’s deadline to be missed, a fixed-
priority schedulability analysis is given in [4], showing a
worst-case system utilization ofm(1−umax)

2 +umin for RM
scheduling onm processors, whereumax and umin are
the maximum and minimum utilization of any task, respec-
tively. RM scheduling on uniform multiprocessors is stud-
ied in [5], and it is shown (using a schedulability analysis
similar to that of [2]) that the worst-case system utilization
is m

3 for RM scheduling onm unit-capacity processors.

The work in [8] derives a simple (i.e. non-iterative) suf-
ficient RM schedulability condition that dominates the sim-
ple schedulability conditions in [2, 4, 5] for implicit dead-
line tasks. Using an analysis of the worst-case workload in
an interval, the analysis in [8] shows that, if the total uti-
lization of a task set is no larger thanm(1−umax)

2 + umax,
then all the tasks deadlines will be met during run time. The
work in [8] is further extended and improved in [9], where
an iterative algorithm for testing the schedulability of each
task separately is proposed. Iterative sufficient scheduling
conditions are also derived in [6] for fixed-priority tasks
with arbitrary deadlines. Our objective in this paper is to
derive simple (i.e. non-iterative) sufficient schedulability
conditions, where only one condition has to be verified for
the complete task set to determine the RM schedulability on
a uniform or unit-capacity multiprocessor platform. Also
note that we analyze the schedulability of task sets having
traditional RM priority. However, our schedulability anal-
ysis can be easily extended to hybrid priority-assignment
(similar to [16]) using the concept of utilization-separation.



3 Task Model and Related Definitions

In this paper, we consider the scheduling ofn peri-
odic tasks in the set{τ1, τ2, . . . τn}. Each taskτi in set
{τ1, τ2, . . . τn} is characterized by a pair (Ci, Ti), where
Ci represents the worst-case execution time (WCET) and
Ti is the period (inter-arrival time) of taskτi. Since the task
set is periodic, an instance of each task, calledjob, is re-
leased at each periodTi and requires at mostCi units of
execution time before the next period. Thus, the relative
deadline of a taskτi is equal to its periodTi, that is, the set
{τ1, τ2, . . . τn} is animplicit-deadlineperiodic task system.

The fixed priority of the tasks are given according to the
RM discipline. In other words, the shorter the task period,
the higher the task priority. Without loss of generality, we
assume that taskτi has higher priority than that of taskτi+1,
for all i, 1 ≤ i < n. Therefore, we haveTi ≤ Tj for all i
andj such that1 ≤ i ≤ j ≤ n.

Since the execution of a taskτk can be interfered only by
the higher-priority tasks using preemptive RM scheduling,
whether taskτk meets its deadline or not depends on the
tasks in{τ1, τ2, . . . τk} (but are completely unaffected by
the tasks in{τk+1, τk+2, . . . τn}.) We find it useful to define

the task setΓk def
= {τ1, τ2, . . . τk} for k = 1, 2 . . . n. Note

that Γn ={τ1, τ2, . . . τn}. The collection of all the jobs of
all thek tasks in setΓk constitute an implicit-deadline task
setΓk. We sometimes, hereafter, also use the notationΓk to
denote the collection of all the jobs inΓk.

Next, we define a couple of task-set parameters, and
some important properties of these parameters, that we will
use later in this paper.

We define the load or utilization of a task τi as
ui = Ci/Ti and thetotal utilization of the task setΓk as
Uk =

∑k

i=1 ui for k = 1, 2 . . . n. Note thatUn is the total
utilization of the task setΓn.

We define themaximum utilizationuk
max of a periodic

task systemΓk to be the largest utilization of any task in

Γk such thatuk
max

def
= maxτi ∈Γk ui.

Similarly, we define theminimum utilizationuk
minof a

periodic task systemΓk to be the smallest utilization of any

task inΓk such thatuk
min

def
= minτi ∈Γk ui.

Note that, fork ≤ n, we must have

un
min ≤ uk

min ≤ uk
max ≤ un

max (1)

We define theminimum period ratior′k of a task setΓk to
be the minimum of the ratios of periods of any two tasks
τi ∈ Γk and τj ∈ Γk such thatTi ≤ Tj and i 6= j.
Formally,

r′k
def
= min

1≤i<j≤k
{Ti/Tj} (2)

Similarly, we define themaximum period ratior′′k of a
task setΓk to be the maximum of the ratios of periods of

any two tasksτi ∈ Γk andτj ∈ Γk such thatTi ≤ Tj and
i 6= j. Formally,

r′′k
def
= max

1≤i<j≤k
{Ti/Tj} (3)

Note that, using Eq. (3) for any two tasksτi ∈ Γk and
τj ∈ Γk such thatTi ≤ Tj andi 6= j, we have

Ti

Tj

≤ r′′k ≡ Ti

r′′k
≤ Tj (4)

Also note that, for task systemsΓk andΓn such thatk ≤ n,
we also have

r′n ≤ r′k ≤ r′′k ≤ r′′n ≤ 1 (5)

We, furthermore, define Qk as thesum of squares of indi-
vidual task utilizationof the tasks in a task setΓk excluding
the task with maximum utilization inΓk by

Qk def
=

k
∑

i=1

u2
i − (uk

max)
2

=

k
∑

i=1
i6=max index(k)

u2
i (6)

such thatmax index(k) is the index of the task that has the
maximum utilization in the task setΓk for k = 1, 2, . . . n.
Since(uk

max)2 is not included in Qk, we must have

Qk ≤
k−1
∑

i=1

u2
i (7)

And, for n, we have the following:

Un − un
max − Qn ≥ 0 (8)

≡
n

∑

i=1
i6=max index(n)

ui − Qn ≥ 0

≡
n

∑

i=1
i6=max index(n)

ui −
n

∑

i=1
i6=max index(n)

u2
i ≥ 0

⇐ (From Eq. (6) and the fact thatu2
i ≤ ui ≤ 1 for anyτi)

From Eq. (5), we have(r′n ≤ r′′n) ⇒
( r′

n

r′′

n
≤ 1

)

. Therefore
from Eq. (8) we have,

Un − un
max − r′n

r′′n
· Qn ≥ 0 (9)

and sinceun
max ≥ un

min from Eq. (1), we also have,

Un − un
min − r′n

r′′n
· Qn ≥ 0 (10)

4 System Model and Related Theory

The periodic task system defined in Section 3 is to be
scheduled on a multiprocessor system. The following three
definitions (Definition 1, 2, 3) from [5] are the key concepts,
regarding scheduling on uniform multiprocessor platform,
that we will use in this paper.



Definition 1 (from [5]). Let π denote a uniform multipro-
cessor platform.

• The number of processors inπ is denoted bym(π)

• For all i, 1 ≤ i ≤ m(π), the speed of theith fastest
processor inπ is denoted bysi(π), i.e., the speed are
indexed in a non-increasing order.

• The total computing capacity of all the processors inπ

is denoted byS(π)
def
=

∑m(π)
i=1 si(π).

Next we present two useful parameters from [5] that are
defined to measure the degree by which uniform multipro-
cessor platformπ differs from an identical or unit-capacity
multiprocessor platform.
Definition 2 (λ andµ from [5]). For any uniform multipro-
cessor platformπ, we define a parameterλ(π) as follows:

λ(π)
def
=

m(π)
max
i=1

{

∑m(π)
j=i+1 sj(π)

si(π)

}

For any uniform multiprocessor platformπ, we define a
parameterµ(π) as follows:

µ(π)
def
=

m(π)
max
i=1

{

∑m(π)
j=i

sj(π)

si(π)

}

If the speeds of the processors differs from each other
significantly, we haveλ(π) = 0 andµ(π) = 1, and if we are
considering identical or unit-capacity multiprocessor plat-
form, we haveλ(π) = (m(π)−1) andµ(π) = m(π). Note
that, the relationship betweenµ(π) andλ(π) is as follows.

µ(π) = 1 + λ(π) (11)

Scheduling algorithm on uniform multiprocessor requires a
stronger notion of work-conserving algorithm (defined be-
low), calledgreedy scheduling algorithms, that is defined
next according to [5].

Definition 3 (Greedy Scheduling Algorithm). A uniform
multiprocessor scheduling isgreedy if it satisfies all three
of the following conditions.

1. It is work conserving, that is, it never idles a processor
when there are jobs awaiting execution.

2. If it must idle some processor (fewer active jobs than
processors), then it idles the slowest processor.

3. It always executes higher priority jobs upon faster pro-
cessors. If jobJ1 and J2 are executing on theith

and jth processors fori < j, then jobJ1’s priority
is higher than the priority of jobJ2.

In rest of the paper, we consider that the global schedul-
ing algorithm RM is greedy.Our objective in this paper
is to analyze the RM schedulability of a task setΓn on a
uniform multiprocessor platformπ. To characterize the
amount of work done by any scheduling algorithmA on a
uniform multiprocessor platformπ over a time interval of
length t, we have the following well-known definition of
work [5].

Definition 4 (W (A, π,Γk, t)). Let any uniform multipro-
cessor platformπ on which the task setΓk is to be exe-
cuted using any algorithm A. For time instantt ≥ 0, let
W (A, π,Γk, t) denote the amount of work done by algo-
rithm A on jobs of the task setΓk over the interval[0, t),
while executing onπ.

The following Theorem 1 (proved in [14]) provides a
lower bound on the amount of work completed by a greedy
scheduling algorithmA on a uniform multiprocessor plat-
form π, in terms of the amount of work completed by al-
gorithmA0 on a uniform multiprocessor platformπ0, when
the inequality in Eq. (12) is satisfied for the platformsπ and
π0. We will be using Theorem 1 later in this section.
Theorem 1(From [14]). Letπ0 andπ denote uniform mul-
tiprocessor platform. LetA0 denote any uniform multi-
processor scheduling algorithm, andA any greedy uniform
multiprocessor scheduling algorithm. If the following con-
dition is satisfied by platformsπ andπ0:

S(π) ≥ S(π0) + λ(π) · s1(π0) (12)

then, for any collection of jobs of task setΓk and any time
instantt ≥ 0,

W (A, π, Γk, t) ≥ W (A0, π0, Γ
k, t) (13)

It will be evident later that the schedulability analysis
presented in Section 5 is based on the lower and upper
bounds of the amount of work completed within a partic-
ular time interval by the greedy RM scheduling on a uni-
form multiprocessor platformπ. Next we present the re-
sults of some previous works that estimate the lower and
upper bound of the amount of work completed by the RM
scheduling algorithm.

4.1 Lower Bound on Work

In this subsection we calculate the lower bound on the
amount of work done within a time interval[0, t) by the
greedy RM scheduling on jobs of the task setΓk. The fol-
lowing Lemma 1 (proved in [5]) shows that there exists a
uniform multiprocessor platformπ0 on which a task system
Γk is schedulable.

Lemma 1 (From [5]). Task systemΓk is feasible on a uni-
form multiprocessor platformπ0 satisfying the conditions:

S(π0) = Uk and s1(π0) = uk
max

The proof of Lemma 1 is based on the construction of
the uniform multiprocessor platformπ0 with k processors
with speeds1(π0), s2(π0) . . . sk(π0) such thatsi(π0) = ui

andui is the utilization of the taskτi ∈ Γk. Note that, such
a platform must satisfyS(π0) = Uk ands1(π0) = uk

max

for the task setΓk for k = 1, 2, . . . n. The task setΓk is
schedulable on the platformπ0 using the scheduling algo-
rithm, calledOPT, that exclusively executes the taskτi ∈ Γk

on the processor with speedsi.



According to the definition of uniform multiprocessor, a
taskτi executes on processor with speedsi for t time units
completest × si units of execution. Therefore, the amount
of work completed within the interval [0, t) by the schedul-
ing algorithmOPT on the jobs of the task setΓk on platform
π0 is given by Eq. (14).

W (OPT, π0, Γ
k , t) =

k
∑

i=1

t · si = t ·
k

∑

i=1

ui (14)

Recall that we want to execute a task set on uniform
multiprocessor platformπ using greedy RM scheduling.
If the uniform multiprocessor platformsπ andπ0 satisfies
the condition in Eq. (12) of Theorem 1 (whereπ0 is the
platform guaranteed to exist according to Lemma 1) and
RM is greedy scheduling, then using inequality Eq. (13) of
Theorem 1 we have

W (RM, π, Γk, t) ≥ W (OPT, π0, Γ
k, t) = t ·

k
∑

i=1

ui (15)

According to Eq. (15), the amount of work completed over
the interval[0, t) by the RM scheduling on the jobs of the
task setΓk while executing on platformπ is lower bounded
by t ·

∑k

i=1 ui if the inequality in Eq. (12) is satisfiedfor
platformsπ andπ0. It is worth mentioning at this point that
Eq. (15) is originally derived in [5] by showing that Eq. (12)
is always implied by the sufficient RM schedulability con-
dition that is proposed in [5].

4.2 Upper Bound on Work

We now derive an upper bound on the total amount of
maximum work that can be completed by the jobs of the
tasks in set{τ1, τ2, . . . τk−1} over time interval(0, t].

Over the interval[0, t), exactly⌊ t
Ti

⌋ complete jobs of
taskτi are scheduled and the(⌊ t

Ti
⌋ + 1)th job of τi may

be scheduled for at mostmin(t − ⌊ t
Ti

⌋Ti, Ci ) time units.
The maximum amount of work completed by the jobs of
task τi within any time interval[0, t), which is at most
⌊ t

Ti
⌋Ci + min(t − ⌊ t

Ti
⌋Ti , Ci ), is upper bounded using

the following Lemma 2 that is proved in [1, 10].

Lemma 2 (From [1, 10]). The maximum amount of work
⌊ t

Ti
⌋Ci + min(t − ⌊ t

Ti
⌋Ti , Ci ) that can be completed

by taskτi over an interval[0, t) is upper bounded by the
following inequality in Eq.(16)

⌊ t

Ti

⌋Ci + min(t − ⌊ t

Ti

⌋Ti , Ci )

≤ Ci + (t − Ci )
Ci

Ti

(16)

By summing the Eq. (16) overi = 1, 2, . . . (k − 1), the
maximum amount of work completed by the jobs of the
tasks in set{τ1, τ2, . . . τk−1} over the time interval(0, t]
is upper bounded by the right-hand side of the following

inequality in Eq. (17)

k−1
∑

i=1

[ ⌊ t

Ti

⌋Ci + min(t − ⌊ t

Ti

⌋Ti , Ci ) ]

≤
k−1
∑

i=1

[ Ci + (t − Ci )
Ci

Ti

] (17)

Next we present our global RM schedulability analysis on
uniform multiprocessors based on the inequalities given in
Eq. (15) and Eq. (17).

5 Schedulability Analysis

In this section, we derive a sufficient schedulability con-
dition for global RM scheduling on uniform multiproces-
sor platform. First, the maximum available time for ex-
ecuting thelth job of taskτk is calculated using the dif-
ference between the upper and lower bound on work com-
pleted by the RM scheduling over time intervals (0,lTk]
and (0,(l − 1)Tk], respectively. Based on this difference,
a sufficient schedulability condition is derived for taskτk

in Subsection 5.1 fork = 1, 2 . . . n (resulting in an iter-
ative sufficient schedulability condition for the entire task
set). Then in Subsection 5.2, the schedulability conditions
of all the tasks are condensed into a simple (non-iterative)
sufficient schedulability condition for uniform multiproces-
sors. Based on the simple sufficient schedulability condi-
tion derived in Subsection 5.2 for uniform multiprocessors,
a corresponding simple suffient schedulability condition is
derived for unit-capacity multiprocessors in Subsection 5.3.

5.1 Iterative Schedulability Condition for π

In this subsection, a sufficient RM schedulability condi-
tion of the task setΓn on uniform multiprocessor platformπ
is derived using the sufficient RM schedulability condition
of each taskτk, for k = 1, 2, . . . n. The following Lemma 3
proves that all the jobs of taskτk meet their deadlines us-
ing global RM scheduling on platformπ if the conditions in
Eq. (18) and Eq. (19) are satisfied (a sufficient schedulabil-
ity condition for taskτk).

Lemma 3. All the jobs ofτk meet their deadlines when
Γk is scheduled onπ using global RM scheduling if the two
following conditions are satisfied:

S(π) ≥ Uk + λ(π) · uk
max (18)

and,
[

S(π) − µ(π) · uk

(1 + r′′k )
+ uk +

r′′k · Qk

(1 + r′′k )

]

≥ Uk (19)

Proof. Lets assume that all the(l − 1) jobs ofτk have met
their deadlines using RM. We will prove that thelth job
of τk also meets the deadline. The correctness of Lemma 3
will then follow by induction onl ≥ 1.



Since each job of taskτk is released at each periodTk,
thelth job arrives at time(l−1)Tk and requiresCk units of
execution time before its deadlinelTk . Remember that task
setΓk is schedulable using algorithm OPT on uniform mul-
tiprocessor platformπ0 (Lemma 1). The platformπ0, that is
shown to exist by construction in the discussion following
Lemma 1, must satisfyS(π0) = Uk ands1(π0) = uk

max. It
follows from Eq. (18) thatS(π) ≥ S(π0) + λ(π) · s1(π0)
is true for the uniform multiprocessor platformsπ andπ0.
Therefore, the condition in Eq. (12) of Theorem 1 is true
whenever the condition in Eq. (18) is true. Since the condi-
tion in Eq. (12) is true, using Eq. (15) we have

W (RM, π, Γk, (l − 1)Tk ) ≥ (l − 1)Tk

k
∑

i=1

ui =

(l − 1)Tk

k−1
∑

i=1

ui + (l − 1)Tkuk (20)

According to Eq. (20), the minimum amount of work
completed by RM before thelth job of τk arrives at time
(l − 1)Tk is (l − 1)Tk

∑k−1
i=1 ui + (l − 1)Tkuk. Note

that, prior to time instant(l − 1)Tk, the amount of work
generated for taskτk is exactly(l − 1)Tk uk. Since we
assume that all the(l − 1) jobs of taskτk have met their
deadlines (inductive hypothesis), the total work executedby
RM for the higher-priority tasksτ1 , τ2 , . . .τk−1 is at least
(l − 1)Tk

∑k−1
i=1 ui prior to the time instant(l − 1)Tk.

Lemma 2 ensures that the maximum amount of work
that can be completed by all the higher-priority tasks
τ1 , τ2 , . . .τk−1 over the interval[0, lTk) is bounded from
above by

∑k−1
i=1 [Ci + (lTk − Ci )Ci

Ti
]. In the previous

paragraph, we saw that at least(l − 1)Tk

∑k−1
i=1 ui of this

work is completed prior to time instant(l−1)Tk. Therefore,
at most

k−1
∑

i=1

[(Ci + (lTk − Ci )ui) − ((l − 1)Tk ui)]

=

k−1
∑

i=1

(Ci + (Tk − Ci )ui)

amount of work remains to be executed after time instant
(l − 1)Tk for all the higher priority tasksτ1, τ2, . . . τk−1.

The amount of processors capacity left unused by tasks
τ1 , τ2 , . . . τk−1 during the interval[(l−1)Tk , lTk) on the
uniform multiprocessor platformπ is therefore at least

S(π) · Tk −
k−1
∑

i=1

(Ci + (Tk − Ci )ui) (21)

Not all of this capacity is available to thelth job of τk

if several processors are available at the same time. In the
worst-case, if all them(π) processors are available at the
same time, thelth job of τk can execute only on one pro-
cessor. Since RM is greedy, if several processors are simul-
taneously available, thenτk will execute upon the fastest
available processor (Definition 3). Ifτk executes on thejth

fastest processor at some instant, then all other processors

with speedsx(π) for x < j are busy at this instant and does
not contribute to the remaining capacity given in Eq. (21).
Therefore, the fraction of total remaining capacity given in
Eq. (21) that can be used for executing thelth job of taskτk

at this instant is at least sj(π)
[sj(π)+sj+1(π)+...+sm(π)(π)] . This

reasoning is similar to that of used in [5]. According to
Definition 2, we have sj(π)

[sj(π)+sj+1(π)+...+sm(π)(π)] ≥ 1
µ(π) .

Consequently, the amount of processing capacity available
to thelth job of τk during the interval[(l − 1)Tk , lTk) on
the uniform multiprocessor platformπ is at least

1

µ(π)

[

S(π) · Tk −
k−1
∑

i=1

(Ci + (Tk − Ci )ui)

]

To guarantee that thelth job of τk meets its deadline, we
need this capacity to be at least as large as the execution
time of τk; that is, we must have,

1

µ(π)

[

S(π) · Tk −
k−1
∑

i=1

(Ci + (Tk − Ci )ui)

]

≥ Ck

≡ 1

µ(π)

[

S(π) · Tk −
k−1
∑

i=1

(Ci +
Tk Ci

Ti
− C2

i

Ti

)

]

≥ Ck

≡ 1

µ(π)

[

S(π) −
k−1
∑

i=1

(
Ci

Tk

+
Ci

Ti

− C2
i

Ti Tk

)

]

≥ Ck

Tk

≡ 1

µ(π)

[

S(π) −
k−1
∑

i=1

(
Ci

Ti

+
Ci

Tk

(1 − Ci

Ti

))

]

≥ Ck

Tk

⇐ (SinceTi ≤ Tk, using Eq. (4), we have
Ti

r′′k
≤ Tk)

1

µ(π)

[

S(π) −
k−1
∑

i=1

(
Ci

Ti

+
r′′k · Ci

Ti

(1 − Ci

Ti

))

]

≥ Ck

Tk

≡ 1

µ(π)

[

S(π) − (1 + r′′k )

k−1
∑

i=1

Ci

Ti

+ r′′k

k−1
∑

i=1

C2
i

T 2
i

]

≥ Ck

Tk

≡ 1

µ(π)

[

S(π) − (1 + r′′k )

k−1
∑

i=1

ui + r′′k

k−1
∑

i=1

u2
i

]

≥ uk

≡ S(π) − (1 + r′′k )

k−1
∑

i=1

ui + r′′k

k−1
∑

i=1

u2
i ≥ µ(π) · uk

≡ S(π) − (1 + r′′k )(Uk − uk) + r′′k

k−1
∑

i=1

u2
i ≥ µ(π) · uk

≡ S(π) − µ(π) · uk + (1 + r′′k )uk + r′′k

k−1
∑

i=1

u2
i ≥ (1 + r′′k ) · Uk

≡ S(π) − µ(π) · uk

(1 + r′′k )
+ uk +

r′′k
(1 + r′′k )

k−1
∑

i=1

u2
i ≥ Uk

⇐ (Since Qk ≤
k−1
∑

i=1

u2
i using Eq. (7))

[

S(π) − µ(π) · uk

(1 + r′′k )
+ uk +

r′′k · Qk

(1 + r′′k )

]

≥ Uk

⇐ ( Premise in Eq.(19)of this Lemma)



Next the sufficient RM schedulability condition of the
entire task setΓn is given in Theorem 2 based on the suffi-
cient schedulability condition in Lemma 3.

Theorem 2. An implicit deadline periodic task setΓn is
schedulable using RM algorithm on a uniform multiproces-
sor platformπ, if the following(n + 1) conditions are sat-
isfied:

S(π) ≥ Un + λ(π) · un
max (22)

and, for all k=1,2, . . . n,
[

S(π) − µ(π) · uk

(1 + r′′k )
+ uk +

r′′k · Qk

(1 + r′′k )

]

≥ Uk (23)

Proof. If S(π) ≥ Un + λ(π) · un
max, thenS(π) ≥ Uk +

λ(π) · uk
max becauseUn ≥ Uk and un

max ≥ uk
max for

all k = 1, 2, . . . n. According to Eq. (23), we also have

that the condition
[

S(π)−µ(π)·uk

(1+r′′

k
) + uk +

r′′

k ·Qk

(1+r′′

k
)

]

≥ Uk is

true for all k = 1, 2, . . . n. Therefore, the two conditions
in Eq. (18) and Eq. (19) of Lemma 3 are true for all tasks
τk for k = 1, 2 . . . , n. Consequently, all the jobs of all the
tasks in setΓn meet their deadlines using RM scheduling on
a uniform multiprocessor platformπ using Lemma 3.

Theorem 2 provides a sufficient RM schedulability con-
dition that has to be checked iteratively for all then tasks in
task setΓn. Next we derive a simple sufficient RM schedu-
lability condition forΓn.

5.2 Simple Schedulability Condition forπ

In this subsection, we condense the set of (n + 1) con-
ditions given in Theorem 2 to derive asimple sufficient
schedulability condition in the sense that it is non-iterative
and has to be checked only once for the entire task setΓn.
We derive the simple sufficient schedulability condition in
this subsection such that it implies all the(n+1) conditions
given in Eq. (22) and Eq. (23) of Theorem 2. Hence by the
transitivity property of implication, if the simple condition
is true, then the task setΓn is RM schedulable on platform
π. The simple sufficient feasibility condition for uniform
multiprocessor will be given in Theorem 3. Before Theo-
rem 3 is presented, we need the following Lemma 4.
Lemma 4. For a non-negative constantc ≤ 1, the follow-
ing inequality holds.

Un − c · Qn ≥ Uk − c · Qk (24)

Proof. We start with the following equality using Eq. (6)

Un − c · Qn =
k

∑

i=1

ui +
n

∑

i=k+1

ui − c · [
n

∑

i=1

u2
i − (un

max)2]

Equivalently,

Un − c · Qn =

k
∑

i=1

ui +

n
∑

i=k+1

ui

− c · [
k

∑

i=1

u2
i +

n
∑

i=k+1

u2
i − (un

max)2] (25)

Since c ≤ 1, and ui ≥ u2
i , we have

∑n

i=k+1 ui ≥ c ·
∑n

i=k+1 u2
i . Therefore from Eq. (25), we

have

Un − c · Qn ≥
k

∑

i=1

ui − c · [
k

∑

i=1

u2
i − (un

max)2]

Since Qk =
∑k

i=1 u2
i − (uk

max)2 according to Eq. (6),
we have

Un − c · Qn ≥
k

∑

i=1

ui − c · [Qk + (uk
max)2 − (un

max)2]

≡ Un − c · Qn ≥
k

∑

i=1

ui − c · Qk + c · [(un
max)2 − (uk

max)2]

Since(un
max)2 ≥ (uk

max)2, we have

Un − c · Qn ≥
k

∑

i=1

ui − c · Qk

≡ Un − c · Qn ≥ Uk − c · Qk

We now derive the simple (non-iterative) sufficient con-
dition for RM schedulability of a task setΓn on a uniform
multiprocessor platformπ in Theorem 3.

Theorem 3. The task systemΓn is RM schedulable on uni-
form multiprocessor platformπ if

S(π) − µ(π) · un
max

(1 + r′′n)
+ δ +

r′n · Qn

(1 + r′′n)
≥ Un (26)

where

δ =

{

un
max if µ(π) > 1 + r′′n

un
min otherwise

Proof. We prove this theorem by showing that the condition
in Eq. (26) implies the following(n + 1) conditions:

S(π) ≥ Un + λ(π) · un
max

and, for allk = 1, 2, . . . n,
[

S(π) − µ(π) · uk

(1 + r′′k )
+ uk +

r′′k · Qk

(1 + r′′k )

]

≥ Uk

given in Theorem 2. We prove these(n + 1) conditions
of Eq. (22) and Eq. (23) below in Case (1) and Case (2),
respectively, based on Eq. (26). Then the RM schedulability
of Γn on platformπ follows from Theorem 2.

Case (1): We start with the premise of this Theorem
given in Eq. (26)

S(π) − µ(π) · un
max

(1 + r′′n)
+ δ +

r′n · Qn

(1 + r′′n)
≥ Un

Using Eq. (11), that isµ(π) = λ(π) + 1, we have



S(π) − [λ(π) + 1] · un
max

(1 + r′′n)
+ δ +

r′n · Qn

(1 + r′′n)
≥ Un

≡ S(π) − [λ(π) + 1] · un
max + δ · (1 + r′′n)

+ r′n · Qn ≥ Un · (1 + r′′n)

≡ S(π) − λ(π) · un
max − un

max + δ ≥

Un + r′′n(Un − δ − r′n
r′′n

· Qn) (27)

We have
(

Un − δ − r′

n

r′′

n
· Qn

)

≥ 0 for δ = un
max or δ =

un
min using Eq. (9) or Eq. (10), respectively. Therefore,

from Eq. (27), we have

S(π) − λ(π) · un
max − (un

max − δ) ≥ Un

Sinceδ = un
max or δ = un

min, we have(un
max − δ) ≥ 0.

Therefore,

S(π) − λ(π) · un
max ≥ Un

Since this equation is equivalent to
S(π) ≥ Un + λ(π) · un

max, the premise of this Theorem
implies the first condition Eq. (22) of Theorem 2.

Case (2):We have (premise of this theorem)

S(π) − µ(π) · un
max

(1 + r′′n)
+ δ +

r′n · Qn

(1 + r′′n)
≥ Un

⇒ (Using Eq. (5) we haver′′k ≤ r′′n)

S(π) − µ(π) · un
max

(1 + r′′k )
+ δ +

r′n · Qn

(1 + r′′k )
≥ Un

⇒ (Using Eq. (5) we haver′n ≤ r′′k , therefore)

S(π) − µ(π) · un
max

(1 + r′′k )
+ δ +

r′′k · Qn

(1 + r′′k )
≥ Un

≡ S(π) − µ(π) · un
max

(1 + r′′k )
+ δ ≥ Un − r′′k · Qn

(1 + r′′k )
(28)

Since r′′

k

(1+r′′

k
) ≤ 1, using Eq. (24) of Lemma 4 we have

[

Un − r′′k
(1 + r′′k )

· Qn
]

≥
[

Uk − r′′k
(1 + r′′k )

· Qk
]

(29)

Therefore, from Eq. (28) using Eq. (29) we have

S(π) − µ(π) · un
max

(1 + r′′k )
+ δ ≥ Uk − r′′k · Qk

(1 + r′′k )

≡ S(π)

(1 + r′′k )
+ δ − µ(π) · un

max

(1 + r′′k )
≥ Uk − r′′k · Qk

(1 + r′′k )
(30)

The sufficient schedulability condition of this Theorem de-
pends on the value ofδ which can beun

max or un
min for

µ(π) > 1 + r′′n or µ(π) ≤ 1 + r′′n, respectively. To that end,
we have Subcase (2a) and Subcase (2b).

Subcase (2a): In this subcase, we consider
µ(π) > 1 + r′′n and henceδ = un

max according to
Eq. (26). From Eq. (30), usingδ = un

max we have

S(π)

(1 + r′′k )
+ un

max[1 − µ(π)

(1 + r′′k )
] ≥ Uk − r′′k · Qk

(1 + r′′k )
(31)

Sincer′′k < r′′n according to Eq. (5), this subcase condition
µ(π) > 1 + r′′n implies µ(π) > 1 + r′′k . This means that
[1 − µ(π)

(1+r′′

k
) ] < 0. Also, using Eq. (1), we haveun

max ≥
uk

max for k ≤ n. Therefore, Eq. (31) can be rewritten as:

S(π)

(1 + r′′k )
+ uk

max[1 − µ(π)

(1 + r′′k )
] ≥ Uk − r′′k · Qk

(1 + r′′k )

≡ (By rearranging)
[

S(π) − µ(π) · uk
max

(1 + r′′k )
+ uk

max +
r′′k · Qk

(1 + r′′k )

]

≥ Uk

Therefore for Subcase (2a), the second condition of
Theorem 2 is implied by the premise of this Theorem 3.

Subcase (2b): In this subcase, we consider
µ(π) ≤ 1 + r′′n and henceδ = un

min according to
Eq. (26). From Eq. (30), usingδ = un

min we have

S(π)

(1 + r′′k )
+ un

min − µ(π) · un
max

(1 + r′′k )
≥ Uk − r′′k · Qk

(1 + r′′k )

⇒(Using Eq. (1), we haveuk
max ≥ un

min for all k ≤ n)

S(π)

(1 + r′′k )
+ uk

max − µ(π) · un
max

(1 + r′′k )
≥ Uk − r′′k · Qk

(1 + r′′k )

⇒(Using Eq. (1), we haveun
max ≥ uk

max for all k ≤ n)

S(π)

(1 + r′′k )
+ uk

max − µ(π) · uk
max

(1 + r′′k )
≥ Uk − r′′k · Qk

(1 + r′′k )

≡ (By rearranging)
[

S(π) − µ(π) · uk
max

(1 + r′′k )
+ uk

max +
r′′k · Qk

(1 + r′′k )

]

≥ Uk

Therefore for Subcase (2b), the second condition of
Theorem 2 is implied by the premise of this Theorem 3.

We have consequently shown that the first and second
condition of Theorem 2 are implied by the premise of this
Theorem in Case (1) and in the two subcases of Case (2),
respectively. Since the (iterative) sufficient schedulability
conditions of Theorem 2 are true whenever the premise of
this Theorem is true, the task setΓn is RM schedulable on
uniform multiprocessorπ.

5.3 Schedulability Condition for Unit-Capacity
Multiprocessor

Using the simple sufficient condition of Theorem 3, we
can derive a simple sufficient condition for RM schedulabil-
ity of a task set on the subclass of uniform multiprocessor
platforms, calledunit-capacity multiprocessors.

Corollary 1. A periodic task systemΓn is RM schedula-
ble on an unit-capacity multiprocessor platformπ having
m processors form ≥ 2, if

m[1 − un
max]

(1 + r′′n)
+ un

max +
r′n · Qn

(1 + r′′n)
≥ Un (32)



Proof. According to Definition 1 and Definition 2, we have
S(π) = m(π) = m and µ(π) = m(π) = m, re-
spectively, for unit-capacity multiprocessor platform having
m processors (each processor has speed one). Note that, for
any task setΓn, we also haver′′n ≤ 1 according to Eq. (5).
Therefore(1+ r′′n) ≤ 2, and we considerm ≥ 2. Hence we
have,m ≥ (1+ r′′n) which is equivalent toµ(π) ≥(1+ r′′n)
for unit-capacity multiprocessor platform. Consequently,
δ = un

max for the value ofδ in the sufficient condition in
Eq. (26) of Theorem 3. Substituting the valueS(π) = m,
µ(π) = m and δ = un

max in the sufficient condition of
Eq. (26) of Theorem 3, we have

S(π) − µ(π) · un
max

(1 + r′′n)
+ un

max +
r′n · Qn

(1 + r′′n)
≥ Un

≡ m[1 − un
max]

(1 + r′′n)
+ un

max +
r′n · Qn

(1 + r′′n)
≥ Un

6 Performance Comparison

In this section, we will now measure the improvement of
our simple sufficient schedulability conditions for implicit-
deadline tasks compared to the corresponding state-of-the-
art schedulability conditions for global RM scheduling on
uniform and unit-capacity multiprocessors.

Uniform Multiprocessors (RM Priority): Prior to this
work, the best possible simple (non-iterative) sufficient RM
schedulability condition in terms of worst-case system uti-
lization on uniform multiprocessors is derived by Goossens
and Baruah in [5] for implicit deadline task set. The schedu-
lability condition from [5] is given in Theorem 4.

Theorem 4(Goossens and Baruah [5]). A periodic implicit
deadline task systemΓn is RM schedulable on an uniform
multiprocessor platformπ if

S(π) − µ(π) · un
max

2
≥ Un (33)

The left-hand side of Eq. (33) is smaller than the left-
hand side of Eq. (26). Therefore, it is evident that any task
set satisfying Eq. (33) must also satisfy Eq. (26), and not
necessarily vice versa. In other words, there are some task
sets that satisfy Eq. (26) but do not satisfy Eq. (33). Hence,
our derived simple sufficient RM schedulability condition
given in Theorem 3 dominates the condition in Theorem 4
for uniform multiprocessors.

Unit-Capacity Multiprocessors (RM Priority): Prior
to this work, the best possible simple (non-iterative) suf-
ficient RM schedulability condition in terms of worst-case
system utilization on unit-capacity multiprocessors is de-
rived by Bertogna, Cirinei and Lipari [8] for implicit-
deadline task sets. The schedulability condition from [8]
is given in Theorem 5.

Theorem 5 (Bertogna, Cirinei, Lipari [8]). An implicit-
deadline periodic task systemΓn is RM schedulable on a
unit-capacity multiprocessor platform havingm processors
if m[1 − un

max]

2
+ un

max ≥ Un (34)

The left-hand side of Eq. (34) is smaller than the left-
hand side of Eq. (32). Hence, our derived simple suf-
ficient RM schedulability condition given in Corollary 1
dominates the condition in Theorem 5 for unit-capacity
multiprocessors.

Other Fixed-Priority Scheduling: Prior to this work,
the best simple (non-iterative) sufficient fixed-priority
(other than RM priority) schedulability condition in terms
of worst-case system utilization on unit-capacity multipro-
cessors is derived by Andersson using theSM-US schedul-
ing algorithm [1] for implicit-deadline task sets. It is proved
in [1] that the algorithmSM-US has the worst-case system
utilization of2m/(3 +

√
5) ≈ 38.19% onm processors.

Our derived simple sufficient RM schedulability con-
dition in Corollary 1 dominates the condition derived in
[1] if un

max ≤ (
√

5 − 1)/(3 +
√

5). This is because if
un

max ≤ (
√

5 − 1)/(3 +
√

5), then the left hand-side of
Eq. (32) is at least equal to

m[1 − (
√

5 − 1)/(3 +
√

5)]

(1 + r′′n)
+ un

max +
r′n · Qn

(1 + r′′n)

≡ 2

(1 + r′′n)
· 2m

(3 +
√

5)
+ un

max +
r′n · Qn

(1 + r′′n)
≥ 2m

(3 +
√

5)

In general, we can conclude that for other simple fixed-
priority schedulability conditions that our simple RM
schedulability conditions does not dominate, it is also true
that those conditions do not dominate ours either.

Impact of Task-Set Parameters: A main contribu-
tion of this paper is the set of task-set parameters that are
visible in the schedulability conditions in Theorem 3 and
Corollary 1. By analyzing these conditions it can be ob-
served that a positive effect on schedulability occurs in the
following cases:
• The sum of squares of individual task utilization is

high (cf. parameter Qn in the numerator of the third
term in the condition of Theorem 3 and Corollary 1 ).

• The maximum ratio between periods of any higher and
any lower-priority task is small (cf. parameterr′′n in the
denominator of the first and third terms in the condition
of Theorem 3 and Corollary 1).

• The ratio between periods of the highest and the lowest
priority task is large (cf. parameterr′n in the numerator
of the third term in the condition of Theorem 3 and
Corollary 1).

A consequence of this is that, if system designers has the
freedom to select the parameters of individual tasks (guided
by these three strategies), a higher system utilization canbe



achieved compared to a less pro-active (less parameterized)
design approach.

Controllability of Task-Set Parameters: The smaller
the number of task parameters upon which a condensed
task-set parameter depends, the higher is thecontrollabil-
ity that task-set parameter provides to the system designer.
The task-set parameter minimum period ratior′n depends
only on the minimum and the maximum periods of a task
set. The maximum period ratior′′n depends on all possible
pairs of periods of a task set. And the sum of squares of in-
dividual task utilization Qn depends on the WCET and the
periods of all the tasks. Therefore,r′n provides the high-
est (and Qn the lowest) degree of controllability among the
three new task-set parameters introduced in the simple RM
schedulability conditions in Theorem 3 and in Corollary 1
for uniform and unit-capacity multiprocessors, respectively.

Sensitivity Analysis: We conducted a number of exper-
iments based on the different levels ofcontrollability of the
three new task set-parameters to measure theirimpact on
system utilization for unit-capacity multiprocessors. In
next subsection, we present our experimental results to esti-
mate the amount of improvement of our simple schedulabil-
ity test for unit-capacity processors in corollary 1 over the
simple schedulability test for that of in Theorem 5. The
conclusions from the experiments are that they not only
corroborate the performance predictions made above but
also show order-of-magnitude performance improvements
(in terms of number of scheduled task sets) for carefully-
selected (i.e. controlled) task-set parameters.

6.1 Experimental Evaluation

We have theoretically proved the dominance of our
schedulability test in Corollary 1 (we callPJ test2) over the
schedulability test in Theorem 5 (calledBCL test) for unit-
capacity-processors. To quantitatively estimate the degree
of dominance of thePJ test over theBCL test, a series of
experiments are conducted using randomly generated task
sets.

6.1.1 Simulation Setup

We run a number of 36 experiments. Each experi-
ment has five simulation parameters:m, minU , maxU ,
Tmax andTmin. Each experiment is characterized by the
value ofm, the range (minU,maxU ] and the integer set
{Tmin, . . . Tmax}. The value ofm denotes the number of
processors we consider for an experiment. Each experiment
is carried out for a number of randomly generated task sets.
The utilizationui of a randomly generated taskτi of a task
set is uniformly distributed within (minU , maxU ]. The

2The name of the test is given by concatenating the first characters of
the authors’ last names

periodTi of the taskτi is randomly selected from the set
{Tmin, . . . Tmax}. The worst case execution timeCi of task
τi is thenUi × Ti.

The number of processors we consider in our exper-
iments arem = 2, 4, 6, and 8. This parameterm
is used to measure the impact of increasing number of
processors (scalability) on schedulability test. We con-
sider three different utilization ranges (0, 0.5], (0.25, 0.75]
and (0, 1] for (minU , maxU ]. The utilization ranges
(0, 0.5], (0.25, 0.75] and (0, 1] are used to experiment with
light, mediumand mixed3 tasks, respectively. In order
to see the impact of periods of a task set on the schedu-
lability test, three different period sets{100, . . . 1000},
{500, . . . 1000} and {750, . . . 1000} are considered for
{Tmin, . . . Tmax}. The four values ofm, the threeutiliza-
tion ranges for (minU , maxU ] and thethreeperiod-sets for
{Tmin, . . . Tmax} constitute our 36 different experiments.

For each experiment, a total of 100000 task sets are ran-
domly generated such that each of the 100000 task sets pass
thePJ test in corollary 1. The 100000 task sets are gener-
ated according to the following procedure:

1. Initially, we generatem + 1 tasks.
2. Then we verify if the generated task set passes the

PJ test.
3. If the answer of thePJ test is positive, then it is

counted as one of the 100000 task sets. Then, we ver-
ify the BCL test for this task set. And,

(a) if the answer for theBCL test is positive, then this
task set passes both thePJ andBCL tests.

(b) if the answer for theBCL test is negative, then
this task set only passes thePJ test and fails to
pass theBCL test.

(c) then by adding one new task, we extend this (old)
task set to a new task set and return to Step 2.

4. If the answer of thePJ test is negative, then we discard
this task set and go to Step 1.

For each experiment, the total number of task sets (of the
100000 task sets that passPJ test) that pass theBCL test is
counted in variableBCLcount. Thedominance factorof the
PJ test, denoted by DPJ, is given using Eq. (35) for each
experiment.

DPJ =
100000 − BCLcount

100000
× 100% (35)

The higher the value of DPJ, the higher is the dominance of
thePJ test over theBCL test. For example, if the dominance
factor DPJ= 20%, then 20% (20000 task sets) of the 100000
task sets are not schedulable by theBCL test.

3mixedtask includesheavytasks in addition tolight andmediumtasks



6.1.2 Simulation Result

The result of the 36 experiments are grouped into three cat-
egories (each category has 12 experiments) based on the
three different sets for{Tmin, . . . Tmax}. The result of the
12 experiments in each of the three categories are given in
Table 1, Table 2, and Table 3 for{Tmin, . . . Tmax} equals to
[100, . . . 1000], [500, . . . 1000] and [750, . . . 1000], respec-
tively. Each of the shaded cells in Table 1, Table 2, and

Table 1. Value of DPJ for the 12 experiments
using {Tmin . . . Tmax}={100 . . . 1000}

(minU,maxU ]
(0, 1] (0, 0.5] (0.25, 0.75]

m = 2 21.42 % 15.56 % 67.14 %
m = 4 16.94 % 11.12 % 63.48 %
m = 6 16.74 % 10.46 % 63.50 %
m = 8 16.20 % 10.30 % 63.32 %

Table 2. Value of DPJ for the 12 experiments
using {Tmin . . . Tmax}={500 . . . 1000}

(minU,maxU ]
(0, 1] (0, 0.5] (0.25, 0.75]

m = 2 20.18 % 16.92 % 63.74 %
m = 4 23.80 % 17.08 % 73.80 %
m = 6 29.56 % 21.28 % 81.24 %
m = 8 35.3 % 24.52 % 87.46 %

Table 3. Value of DPJ for the 12 experiments
using {Tmin . . . Tmax}={750 . . . 1000}

(minU,maxU ]
(0, 1] (0, 0.5] (0.25, 0.75]

m = 2 21.06 % 18.08 % 63.92 %
m = 4 27.28 % 22.08 % 79.28 %
m = 6 37.02 % 27.98 % 88.26 %
m = 8 45.48 % 31.96 % 93.46 %

Table 3 represents the value of DPJ for simulation parame-
ters — number of processors and utilization range — given
in the corresponding first column and second row of each
table, respectively.

6.1.3 Result Analysis

Observe that thePJ test in Corollary 1 provides better RM
schedulability (higher system utilization) if minimum pe-
riod ratio r′n is large, maximum period ratior′′n is small
and/or sum of square of utilization of individual task uti-
lization Qn is large.

The impact of utilization ranges(minU,maxU ] on the
dominance ofPJ test overBCL test is significant. The value
of dominance, that is DPJ, for thePJ test over theBCL test
using medium tasks (i.e.ui is within [0.25, 0.75]) is sig-
nificantly higher (see the forth columns of each Table) than
that of using light and mixed tasks. TheBCL test fails to
schedule more than 63% task sets of the 100000 task sets
that are schedulable by thePJ test. This is because of the
use of the task-set parameter sum of square (i.e. Qn) in the
PJ test. Each taskτi addsu2

i (exceptun
max

2) to the calcula-
tion of Qnaccording to Eq. (6). Since all tasks are medium,
the value ofu2

i > 0.252 = 0.0625. The higher the value of
ui, the higher is the value of Qnand the higher is the system
utilization. Consequently, the value of DPJ is comparatively
much higher using medium tasks than that of using light or
mix tasks. In summary,PJ tests significantly outperforms
BCL tests for medium tasks.

The relationship of the periods of a task set has vary-
ing impacts on the dominance factor of thePJ test over the
BCL test. Observe that, according to Eq. (2) the minimum
period ratior′n of a task set is the ratio between the mini-
mum and maximum periods (i.e. one pair of periods) of a
task set. As a result when the periods of the tasks of a task
set are randomly selected from a set of denser integer val-
ues, then the value ofr′n can be expected to be higher than
that of when the periods are selected from a set of dispersed
integer values. The values of DPJ in most of the shaded cells
in Table 3 are larger than that of the corresponding cells in
either Table 1 or Table 2 since the task periods in Table 3
are selected from a denser set{750 . . . 1000} than that of
in either Table 1 or Table 2.

The value of maximum period ratior′′n depends on
the number of tasks, number of processors and the set
{Tmin . . . Tmax} that are used for selecting the periods of
the randomly generated tasks of a task set. Recall that, ac-
cording to Eq. (3), the maximum period ratior′′n of a task
set depends on all different pairs of periods of a task set.
For a set ofn tasks, there are

(

n
2

)

= n!
(n−2)!·2! different pairs

of periods. The higher is the number of tasks in a task set,
the higher is the number of different pairs of periods. The
higher is the number of different pairs of periods, the higher
is the possibility that the values of two periods are closer.
And the closer the two periods are, the higher is the value
of maximum period ratior′′n (according to Eq. (3)). Also
note that the way tasks are generated for a task set implies
that the higher is the number of processors, the higher is the



number of tasks and hence the higher is the probability that
the value ofr′′n is larger. And according to Eq. (6), the value
of Qn increases as more tasks are included in a task set.
Therefore, as we increase the number of processors, both
the values ofr′′n and Qn increases.

Each of the 12 experimental results in Table 1 are de-
rived based on tasks’ periods that are selected from a set
of relatively dispersed integer values. Therefore, we expect
the value of minimum period periodr′n of each task set to
be relatively small. As we increase the number of proces-
sors even though the value of Qn increases (positive impact
factor on schedulability), the smaller value ofr′n and larger
value ofr′′n (negative impact factors on schedulability) re-
sult in decreasing value of dominance of thePJ test over
BCL test for all the three utilization ranges (see the decreas-
ing trend in each column of Table 1). The negative impact
factors (i.e. lowr′n and highr′′n) can not be offset by the pos-
itive impact factor (i.e. high Qn) for the simulation parame-
ters used to generate the values given in Table 1. Therefore,
as we increase the number of processors (i.e. increase in
number of tasks in a task set), the value of DPJ decreases
for all types (light, medium and mixed) of tasks.

However, the dominance factor increases as we increase
the number of processors for each of the utilization ranges
as shown in Table 2 and Table 3. This is because even
though the value ofr′′n increases (negative impact factor on
schedulability) as we increase the number of processors, the
value of Qn increases and the value ofr′n is relatively larger
for using a relatively denser set for periods. The negative
impact of the higher value ofr′′n is offset by the positive
impact of the higher value ofr′n and Qn. Consequently, as
we increase the number of processors, the value of DPJ in-
creases for all three utilization ranges for Table 2 and Ta-
ble 3. In summary, if the ratio of the minimum and maxi-
mum period of a task set are closer (value ofr′n is larger),
then thePJ test scales well with increasing number of pro-
cessors for any kind (light, medium and mix)of task sets.

7 Conclusion

In this paper we have proposed schedulability conditions
for global rate-monotonic scheduling of implicit-deadline
tasks on multiprocessors. The prominent feature of our con-
ditions is that they introduce a set of new task-set parame-
ters that are key to achieving good schedulability perfor-
mance in terms of worst-case system utilization. The two
proposed simple RM schedulability conditions for uniform
and unit-capacity processors are shown to dominate any
other known simple RM schedulability condition. For other
simple fixed-priority schedulability conditions that our con-
ditions does not dominate, it is shown that those conditions
do not dominate our schedulability condition either.
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