

A New Fixed-Priority Assignment Algorithm for

Global Multiprocessor Scheduling

RISAT MAHMUD PATHAN
JAN JONSSON

Technical Report No. 2012:10
ISSN 1652-926X

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY/
UNIVERSITY OF GOTHENBURG

A New Fixed-Priority Assignment Algorithm for Global Multip rocessor Scheduling

Risat Mahmud Pathan and Jan Jonsson
Chalmers University of Technology, Sweden

{risat, janjo}@chalmers.se

Abstract—Global fixed-priority scheduling of constrained-
deadline sporadic tasks systems is important not only for
CPU scheduling but also in other domains, for example,
scheduling real-time flows in WirelessHART networks designed
for industrial process control and monitoring. In this paper, we
propose a novel priority assignment scheme for scheduling such
task systems on multiprocessors and demonstrate, using proof
and simulation, that the scheme is superior to prior schemes.

I. I NTRODUCTION

We address the following problem in this paper: Given
a collection ofn constrained-deadline sporadic tasks, is it
possible to meet all the task deadlines when the tasks are
executed onm unit-capacity processors using global fixed-
priority scheduling?

Single chip multiprocessors are viewed as serious con-
tenders for many hard real-time systems in order to to meet
the growing demand of computing power. Many hard real-
time applications, e.g., control and monitoring, are often
modeled as a collection of recurrent real-time tasks where
the instances or jobs of each recurrent task havehard
deadlines. The fixed-priority (FP) scheduling policy to meet
the deadlines of application tasks is the preferred scheduling
approach in industry due to its flexibility, ease of debugging
and predictability. Considering the trend towards adopting
chip multiprocessors for many safety-critical and real-time
applications, the study of FP scheduling algorithm and its
analysis on multiprocessors is important.

Real-time task scheduling on multiprocessors is primarily
based on either theglobal or the partitioned approach.
In global scheduling, a task is allowed to execute on any
processor even when it is resumed after preemption. In parti-
tioned scheduling, each task is assigned to a fixed processor
on which the task is allowed to run. A recent survey on
various global and partitioned scheduling methods can be
found in [12]. We focus on global FP scheduling in this
paper. The global FP scheduling of hard real-time systems
can be thought of as a 2-phase process: theassignment of
priorities to the tasks, followed byschedulability analysis
to determine whether all deadlines will be met under the
priority assignment. The major conceptual contribution in
this paper is a novel insight that allows us to bound the
amount of interference that higher-priority tasks may have
on the lower-priority tasks. Based on this insight, we propose
a novel priority-assignment algorithm and a corresponding
schedulability test, the Fixed-Priority Test (FPT), for global
FP scheduling.

Context of this research.The adoption of global sched-
uler in actual multicore systems is becoming more likely
as various mechanisms (e.g., inter-core prefetching [16],
locked-cache [20]) are being proposed to reduce migration
overhead in the design of recent multicore technology. The
analysis of global FP scheduling has also been applied to
the end-to-end delay analysis and priority assignment of the
periodic real-time flow scheduling on multiple communica-
tion channels of WirelessHART networks [18], [19]. Wire-
lessHART is an open wireless sensor-actuator network stan-
dard specifically designed for industrial process control to
avoid severe economic loss or environmental threats, reduce
production inefficiency, enhance equipment monitoring and
maintenance [3]. Improvement of global FP schedulability
analysis and the priority assignment policy would result
in less pessimistic end-to-end delay calculation and would
enhance the schedulability of the real-time flows transmitted
over multiple communication channels in WirelessHART
networks; and consequently, better control and monitoring
of industrial processes can be attained.

To achieve economic advantage by hosting multiple
avionics functions on a single processor, aviation industry
is contemplating integrated modular avionics (IMA) [1].
Similarly, the growing complexity and increased safety
requirements in automotive systems have led to the devel-
opment of AUTOSAR framework focusing composability
of components [2]. Version 4.0 of AUTOSAR provides the
specification for multicore OS architecture. When multiple
functions/components are integrated on the same multicore
chip, the tasks/runnables of each function/component can be
globally FP scheduled on a (dedicated) subset of the pro-
cessing cores. This scheduling approach requires no explicit
task/runnable assignment algorithm, and more importantly,
the temporal behavior of each function can be restricted
only to its dedicated cores. Such restriction is necessary and
beneficial for function/component upgrade, modification and
incremental certification.

In many real-time systems, e.g., avionics, spacecraft and
automotive, it is important to efficiently use the processing
resources due to size, weight and power constraints. Reduc-
ing the resource requirement (e.g., number of processors)
of such systems would significantly cut costs for mass pro-
duction of, for example, cars, trucks or aircrafts. However,
if the pessimism in schedulability analysis for such systems
is large, then a relatively-higher number of processors is
required to meet all the deadlines of the tasks. Our endeavor

in this paper is to reduce such pessimism by proposing better
schedulability tests for global FP scheduling.

Since the optimal priority assignment for global
FP scheduling on a multiprocessor system (at present
time) is unknown, the quality (e.g., minimum number of
processors required) of many previously proposed global
FP schedulability tests depends on the actual priority or-
dering of the tasks. Therefore,determining a good priority
ordering is as important as deriving a good schedulability
test. TheFPT test proposed in this paper is based on a novel
fixed-priority assignment policy.

We make the following contributions in this paper. First,
we propose a new criterion for reducing the pessimism in es-
timating the interference inflicted by higher-priority tasks on
a lower-priority task. Second, we propose a novel priority-
assignment algorithm for global FP scheduling based on
this criterion. We prove that if all the tasks are successfully
assigned priorities using our proposed priority-assignment
policy, then all deadlines of the tasks are met (theFPT test).
Third, we prove that theFPT test strictly dominates the
HPDALC test [17] (the best global FP schedulability test
at present time). Fourth, we empirically show that the
schedulability of theFPT test is noticeably better than that
of the theHPDALC test. One of the major findings of our
empirical study is thattask-set cardinality, not considered in
many previous works, has a significant impact on the global
FP schedulability of a task set.

The rest of the paper is organized as follows. Section II
presents system models and related work. Building blocks
upon which theFPT test is built are presented in Section III.
Our new priority-assignment policy and theFPT test are
presented in Section IV. Simulation results are presented in
Section V. Finally, we conclude the paper in Section VI.

II. M ODEL AND RELATED WORK

Task Model. We consider a set ofn independent, sporadic
tasks inΓ ={τ1, τ2, . . . τn} to be scheduled onm identical
processors. Each sporadic taskτi is characterized by a triple
(Ci, Di, Ti) where:Ci represents the worst-case execution
time (WCET);Di is the relative deadline, which is the length
of the scheduling window of each job;Ti is a lower bound on
the separation between release times of the jobs of the task.
Each job of taskτi requires at mostCi units of execution
time between its release time and deadline which isDi time
units after its release time. The utilization and density of
taskτi areCi/Ti andCi/Di, respectively.

In this paper, all time values (e.g, WCET, deadline, and
interval length) are assumed to be positive integer. This is
a reasonable assumption since all the events in the system
happen only at clock ticks. The cost of different kinds
of overhead, for example, context switch, preemption and
migration, are assumed to be included in the WCET of each
task. Although we do not address such issues in this paper,
one can rely on experimental studies (similar to [11]) to

measure these overhead costs considering the application,
operating system and the target hardware platform.

Related Works. FP schedulability tests can broadly be
categorized in two flavors:utilization-bound testsand iter-
ative tests. Several utilization-based tests exist for global
FP scheduling [5], [7], [4], [17]. The idea behind such tests
is to compare the total utilization of a taskset against a given
bound; if the total utilization does not exceed the bound, then
the tasks are guaranteed to meet their deadlines. These tests
are very time efficient (linear in the number of tasks) but
are not exact (if the total utilization exceeds the utilization
bound, the task set may or may not meet all deadlines).

The basic idea of iterative schedulability test is that
one condition is tested for each lower-priority task. Sev-
eral iterative tests exist for global FP scheduling of
constrained-deadline sporadic tasks [7], [9], [10], [15],[13],
[17]. Empirical investigations in [7], [10], [13], [17] show
that such tests are highly efficient in determining the schedu-
lability of task sets having a total utilization beyond the
state-of-the-art utilization bound. TheFPT test proposed in
this paper is of the iterative type.

Based on Baker’s seminal work in [7], several works
[10], [9], [15] have proposed iterative schedulability tests
for constrained-deadline sporadic task systems. In [10], [9],
[15], the work done by a job of a higher-priority taskτi is
considered as “carry-in” work within the scheduling window
of a lower-priority taskτk if a job of task τi is released
before the beginning of the window and executes (partially
or fully) within the window. If a higher-priority task is
considered to constitute carry-in work, then its worst-case
interference on the lower-priority task is higher than thatof
its non-carry-in counterpart [15], [13].

Many global FP schedulability analyses of a lower-
priority taskτk considers all the higher-priority tasks to have
carry-in work [10], [9]. Baruah’s global EDF schedulability
analysis in [8] limits the number of higher-priority tasks
considered to have carry-in work to(m − 1), wherem is
the number of processors. The test proposed by Guan et
al. [15], here called theRTA-LC test (“LC” stands for
“limited carry”), employs the same carry-in task limitation
as the analysis in [8] to improve the response-time analysis
proposed in [9] for global FP scheduling of constrained-
deadline sporadic tasks. Recently, inspired by the works in
[9], [8], [15], Davis and Burns [13] proposed a test (the
DA-LC test) that also considers(m−1) tasks having carry-
in work to improve the schedulability analysis in [10] for
global FP scheduling of constrained-deadline sporadic tasks.

TheRTA-LC test dominates theDA-LC test for any given
fixed-priority ordering of the constrained-deadline tasks[13].
However, Davis and Burns [13] also addressed the problem
of finding an effective priority assignment by combining
Audsley’s optimal priority assignment (OPA) algorithm [6]
with the DA-LC test. It is empirically shown that OPA
combined withDA-LC is better than anRTA-LC test that

uses some other (for example, deadline-monotonic) heuristic
priority assignment [13].

Pathan and Jonsson recently proposed a new priority-
assignment policy and a corresponding schedulability test,
called theHPDALC test [17]. TheHPDALC test uses a mech-
anism, called the hybrid-priority assignment (HPA) policy
(to be presented shortly), to improve the priority-assignment
policy for the combination of OPA algorithm and the
DA-LC test proposed by Davis and Burns in [13]. The
HPDALC test considers(m − 1 − m′) carry-in tasks for
the schedulability analysis of each lower-priority task where
0 ≤ m′ < m. The HPDALC test is the state-of-the-art
iterative test for global FP multiprocessor scheduling. We
will show that our proposedFPT schedulability test strictly
dominates theHPDALC test.

III. B UILDING BLOCKS OF THEFPT TEST

The priority-assignment policy and the corresponding
FPT test proposed in this paper are based on three different
building blocks: (i) theDA-LC test [13] (ii) the basic idea
of the OPA algorithm [13], and (iii) the HPA policy [17].
In this section, we present these three building blocks upon
which theFPT test in Section IV is built.

A. TheDA-LC Test

Given a setΓ of constrained-deadline sporadic tasks and
a priority assignment on the tasks, theDA-LC test [13]
determines the schedulability of each taskτk ∈ Γ based
on two factors: (i) the upper bound on interference due to
the higher-priority tasks on any job of taskτk, and (ii) the
WCET of taskτk. If the sum of these two factors does not
exceedDk, then the deadline of any job ofτk is met.

In the remainder of the paper, we call the higher priority
taskτi a “carry-in task”(CI) if it is considered to have carry-
in work within the scheduling window of a lower priority
taskτk; otherwise,τi is called a “non-carry-in task”(NC).

In order to understand theDA-LC test, we need to
know how theworkload, interfering workload (IW), total
interfering workload (TIW), and interference within the
scheduling window of any job of taskτk are calculated in
[13]. Note that the length of the scheduling window of any
job of task τk is Dk. Assume thatζ is the set of all the
higher-priority tasks of taskτk.

Workload: The workload of taskτi within the scheduling
window of lengthDk is the cumulative length of intervals
during which taskτi executes in that window. We denote by
WCI

i,k andWNC
i,k the upper bounds on the workload of task

τi ∈ ζ within any interval of lengthDk wheneverτi is a
CI task andNC task, respectively. The values ofWCI

i,k and
WNC

i,k are given as follows [13]:

WCI
i,k = Nk

i · Ci +min(Ci, Dk +Di − Ci −Nk
i · Ti) (1)

WNC
i,k = ⌊Dk/Ti⌋ · Ci +min(Ci, Dk − ⌊Dk/Ti⌋ · Ti) (2)

whereNk
i = ⌊(Dk +Di − Ci)/Ti⌋ in Eq. (1).

Interfering Workload (IW): The IW of task τi ∈ ζ
is the cumulative length of the intervals during which jobs
of task τi execute and a job of taskτk is ready but not
executing within its scheduling window of lengthDk. We
denote byICI

i,k and INC
i,k the upper bounds on theIW of

task τi ∈ ζ on any job of taskτk wheneverτi is a CI task
andNC task, respectively. The values ofICI

i,k and INC
i,k are

given as follows [13]:
here

ICI
i,k = min(WCI

i,k , Dk − Ck + 1) (3)

INC
i,k = min(WNC

i,k , Dk − Ck + 1) (4)

The difference between the carry-in and non-carry-in
IW of taskτi is denoted byIDIFF

i,k and is given as:

IDIFF
i,k = ICI

i,k − INC
i,k (5)

Total Interfering Workload (TIW): TheTIW is the sum
of IW of all the tasks inζ. We denote byIk(ζ) the upper
bound onTIW due to all the higher-priority tasks in setζ.
The value ofIk(ζ) is calculated as follows [13]:

Ik(ζ) =
∑

τi∈ζ

INC
i,k +

∑

τi∈Max(ζ,m−1)

IDIFF
i,k (6)

whereMax(ζ,m − 1) is the set of(m − 1) tasks from
setζ that have the largest values ofIDIFF

i,k .

Interference: The interference on a job of taskτk is
the cumulative length of the intervals during which the job
of task τk within its scheduling window is ready but not
executing. Because interference is an integer and all the
m processors are busy executing tasks fromζ while task
τk is interfered, the upper bound on interference due to the
tasks inζ on any job of taskτk is ⌊ Ik(ζ)

m
⌋. TheDA-LC test

for each lower-priority taskτk ∈ Γ is given as follows:

Dk ≥ Ck +

⌊

Ik(ζ)

m

⌋

(7)

whereζ is the set of higher priority tasks of taskτk and
m is the number of processors.

B. The OPA Algorithm

Audsley’s OPA algorithm, originally proposed for unipro-
cessors in [6], is extended by Davis and Burns for priority
assignment in global FP multiprocessor scheduling [13]. The
OPA algorithm given in Figure 1 assigns fixed priorities to
the tasks in setA to be scheduled on̂m processors based
on some global FP schedulability testS.

Algorithm OPA(Taskset A, number of processorsm̂, Test S)
1. for each priority levelPL, lowest first
2. for each priority-unassigned taskτ ∈ A
3. If τ is schedulable on̂m processors at priority levelPL
4. according to schedulability testS with all other priority-
5. unassigned tasks assumed to have higher priorities, Then
6. assignτ to priority PL
7. break (continue outer loop)
8. return “unschedulable”
9. return “schedulable”

Figure 1. Audsley’s OPA algorithm for multiprocessors [13].

The OPA algorithm assigns priority to each task in set
A starting from the lowest-priority level. In order to be
used, the FP schedulability testS has to be OPA-compatible
[13] which requires thatthe relative priority ordering of the
higher priority tasks must be irrelevant toS. It is proved in
[13] that theDA-LC test is OPA-compatible.

If the function call OPA(Γ, m, DA-LC) returns “schedu-
lable”, then all deadlines of the tasks inΓ are met on
m processors according to the priorities assigned by the OPA
algorithm in Figure 1. Whether or not a (priority-unassigned)
task, say taskτ , can be assigned the particular priority level
PL is determined by applying theDA-LC test to taskτ
assuming higher priorities for all other (priority-unassigned)
tasks. It is proved in [13] that the combination of OPA and
DA-LC is the optimal fixed-priority assignment policy when
using theDA-LC test.

C. Hybrid Priority Assignment (HPA) Policy

Pathan and Jonsson recently observed in [17] that, if
not all the higher-priority tasks and all the processors are
included when applying theDA-LC test to a lower-priority
task, the pessimism in the estimation of interference due to
the higher-priority tasks may be reduced. Based on this find-
ing, a new priority-assignment policy and a corresponding
schedulability test, theHPDALC test, is proposed in [17].

The priority assignment for theHPDALC test is based
on the HPA policy.The basic idea of theHPA policy is
to keep some tasks and processors “separate” from the
schedulability analysis of a lower priority task.The priority-
assignment policy of theHPDALC test works as follows [17]:
(i) a total of m′ highest-densitytasks are given the highest
fixed priority, and (ii) the priority ordering of the remaining
(n −m′) lowest-density tasks are determined based on the
combination of the OPA algorithm in Figure 1 and the
DA-LC test using(m − m′) processors,0 ≤ m′ < m. A
task setΓ passes theHPDALC test, if and only if, all the
tasks are assigned priority using this scheme.

Notice that theHPDALC test “separates” a total ofm′

highest-density tasks, here referred to as “separated tasks”,
and “separates” a total ofm′ processors, here referred to as
“separated processors”, from the schedulability analysis of
the remaining(n−m′) lowest-density tasks. The separated
tasks and separated processors are not considered while eval-
uating theDA-LC test for a lower-priority task. Therefore,
the number ofCI tasks when applying theDA-LC test
to each of the(n − m′) lower-priority tasks is limited to
(m−1−m′). At present time theHPDALC test is the state-of-
the-art iterative test for global FP multiprocessor scheduling.

In this paper, we have developed a new criterion to
determine the set of tasks that are separated when analyzing
the schedulability of a lower-priority task. Our proposed
criterion is special in the sense that it isnot based on
“highest density” and separatesdifferent set of tasks for
each lower priority tasks. The “separation” of tasks and

processors has nothing to do with partitioned multiprocessor
scheduling —the separation only exists as a means for
reducing the pessimism of interference due to the higher-
priority tasks on a lower-priority task.

IV. PRIORITY ASSIGNMENT AND THE FPT TEST

In this section, we present our proposed priority-
assignment algorithm and the correspondingFPT test. First,
we present an overview of our proposed priority-assignment
policy in subsection IV-A. Then, in subsection IV-B, we
present a new and elegant criterion for finding the set of
separated tasks for a lower-priority task. Finally, the details
of our novel priority-assignment policy, based on the new
separation criterion, is proposed in subsection IV-C.

A. Overview ofFPT Test

Our proposed priority-assignment policy assigns priorities
to the tasks starting1 from lowest-priority levelPL=1 to the
highest priority levelPL=n. At each priority levelPL, all
tasks that are not yet assigned any priority are called the
priority-unassigned tasks. Our objective is to assign priority
to one of the priority-unassigned tasks at each priority level.

Each of the priority-unassigned tasks when selected as a
candidate for priority assignment is called thetarget task.
Given a target task at priority levelPL, we temporarily
separatem′ processors and separatem′ tasks from the set of
other priority-unassigned tasks where0 ≤ m′ < m. Unlike
theHPDALC test, them′ separated tasks arenot assigned any
priority when separated, and more importantly, the criterion
for selecting the separated tasks isnot based on the “highest
density”. We have proposed a new criterion for selecting the
tasks for separation for each target task at each priority level
(the criterion will be presented in subsection IV-B).

After separatingm′ tasks for a particular target task
at priority level PL, we check (using theDA-LC test)
whether or not the target task can be assigned priority level
PL. The separated tasks and separated processors are not
considered while evaluating theDA-LC test for the target
task. If the target task passes theDA-LC test at priority
level PL, then the task is assigned priority levelPL. If
the target task does not pass theDA-LC test at priority
level PL, then another priority-unassigned task is selected
as the target for priority assignment at priority levelPL. If
no priority-unassigned task can be assigned priority level
PL, the priority assignmentfails. If all tasks are assigned
priorities, then the priority assignmentsucceeds.

When a target task can not be assigned priority levelPL,
the corresponding separated tasks and separated processors
are no more considered “separated”. These tasks along with
other priority-unassigned tasks are considered as candidates
for selecting the next target task at priority levelPL. Simi-
larly, if a target task is assigned priority levelPL, then the

1In this paper, we assume without loss of generality that a taskhaving
priority level 1 (n) has the lowest (highest) fixed priority.

corresponding separated tasks and separated processors are
no more considered “separated”. And, these tasks are also
considered as candidates for target tasks at next priority
level. Thus, the separated tasks and separated processors
for each target task are temporary in the sense thatpriority
assignment for each new target task always starts with all
m processors and all the priority-unassigned tasks.

B. New Criterion for Separation

In this subsection, we propose an elegant criterion for
separating the tasks for each target taskτk. Remember that
HPDALC test separatesm′ highest-densitytasks fromΓ and
then applies the combination of OPA andDA-LC test to
the remaining(n−m′) lowest density tasks using(m−m′)
processors for somem′, 0 ≤ m′ < m. However, by studying
the details of theHPDALC test, we find a very interesting
fact: it is not necessarily the pessimism of the interference
estimation of the highest-density tasks that may cause some
lower priority taskτk to fail the DA-LC test. To see why,
consider the following example:
Example 1: Consider four tasks inΓ = {τ1, . . . τ4} to be
scheduled onm = 3 processors using global FP scheduling.
The parameters(Ci, Di, Ti) of the four tasks are as follows:
(26, 51, 54), (11, 14, 25), (32, 33, 37), and(19, 25, 29). The den-
sities of the tasks areC1/D1 = 0.509, C2/D2 = 0.785,
C3/D3 = 0.967, andC4/D4 = 0.760.
The tasksetΓ does not pass theHPDALC test. In particular, none
of the tasks inΓ can be assigned the lowest priority levelPL=1
by separatingm′ highest-density tasks for anym′ = 0, 1, 2.
However, there exits a valid priority assignment forΓ. We sepa-
rate the two tasks{τ3, τ4} and also separatem′ = 2 processors.
The other two tasks{τ1, τ2} are schedulable on(m −m′) = 1
processor by assigning priority levelsPL=1 andPL=2 to tasks
τ1 andτ2, respectively. Then, the two separated tasksτ3 andτ4
are assigned priority levelsPL=3 andPL=4, respectively. These
two highest priority tasksτ3 andτ4 are trivially schedulable since
we havem = 3 processors; and these two highest priority tasks
uses at most two processors at any time. Consequently, the entire
taskset is global FP schedulable.Note that the two separated
tasks τ3 and τ4 are not the two highest density tasks.

The lesson learned from this example is that “separation”
based on the HPA policy is effective; however, the best
criterion to separate the tasks from the schedulability anal-
ysis of the lower priority tasks is not necessarily based on
“highest density”. The crucial observations we make is that
the (constant) set of m′ highest-density tasks may not be
the bestset of separated tasks for the schedulability of the
lower-priority tasks. As will be evident nowour proposed
criterion separates different sets of tasks for each possible
target task at each priority level.

Proposed Separation Criterion. Consider a target task
τk at priority levelPL such thatξ is the set of all higher-
priority tasks ofτk. Assume that taskτk does not pass the
DA-LC test when considering all the tasks fromξ and all the
m processors in theDA-LC test. So, according to Eq. (7),
the upper bound on interference, i.e.,⌊ Ik(ξ)

m
⌋, that taskτk

suffers due to the tasks inξ is greater than(Dk − Ck).

Now, separatingm′ tasks from setξ and separatingm′

processors may able taskτk to pass theDA-LC test. Our
objective is to separate thosem′ tasks fromξ such that the
interference⌊ Ik(ξ)

m
⌋ is maximallyreduced. We also separate

m′ processors. IfSEP is the set ofm′ separated tasks
selected from setξ, then the value of (new) interference on
any job of taskτk (after separation) is⌊ Ik(ξ−SEP)

m−m′
⌋ where

Ik(ξ − SEP) considers(m − 1 − m′) carry-in tasks from
set(ξ−SEP). In other words, the problem we are trying to
solve is the following:What is the best way to separatem′

tasks from setξ (i.e., finding setSEP) such that the value
of Ik(ξ) is maximally reduced form′ > 0?

Note that when taskτk fails to pass theDA-LC test before
separation of any task fromξ, the value ofIk(ξ) depends
on (m − 1) carry-in tasks from setξ. We denote bycis
and ncs, respectively, the sets ofCI tasks andNC tasks
from set ξ such thatξ = (cis ∪ ncs). According to
Eq. (6), we havecis = Max(ξ,m−1), and then obviously
ncs = (ξ − cis). Separating each of them′ tasks fromξ
is equivalent to separating the task either fromcis or ncs.

We first develop the criterion for separating exactlyone
task fromξ, particularly, separating one task either from set
cis or ncs. Then, based on the criterion of separating one
task, the criteria for separating subsequent tasks is presented.

(Separation of one task)When m′ = 1, we separate
either oneCI-task or oneNC-task that needs to be selected
either from setcis or ncs, respectively. Remember that
we also separatem′ = 1 processor. Thus, the number of
CI tasks after separation is at most(m−1−m′) = (m−2)
when applying theDA-LC test to taskτk considering the
non-separated tasks fromξ using (m−m′) processors.

When separating aCI-task τi whereτi ∈ cis ⊆ ξ, the
value of Ik(ξ) is reduced byICI

i,k (i.e., the carry-inIW of
taskτi) according to Eq. (6). In order to maximally reduce
Ik(ξ) by separating exactly oneCI task fromcis, the best
criterion is to select the task fromcis that has thelargest
value of carry-inIW. The largest value of carry-inIW of
any task incis is max

τi∈cis
ICI
i,k .

Separating aNC-task τj where τj ∈ ncs ⊆ ξ has two
effects. First, separating theNC task τj from ncs reduces
the value ofIk(ξ) by INC

j,k (i.e., the non carry-inIW of
τj). Second, one of theCI tasks fromcis becomes a new
NC task since, after separation, we have at most(m − 2)
carry-in tasks. TheCI task fromcis that becomes aNC task
is the one with theminimumvalue of the difference between
its carry-in and non carry-inIW among all the tasks incis.
This is because, after separation, theMax function in Eq. (6)
considers(m−2) carry-in tasks that have the largest values
of the difference between the carry-in and non carry-inIW.
Thus, separating aNC-task τj from ncs reduces the value
of Ik(ξ) by (INC

j,k + min
τd∈cis

IDIFF
d,k) where min

τd∈cis
IDIFF
d,k

is theminimumvalue of the difference between the carry-in
and non carry-inIW for any task incis.

Note that the value of min
τd∈cis

IDIFF
d,k is completely

independentof theNC taskτj that is selected for separation
from ncs. Thus, in order to maximally reduceIk(ξ) by
separating exactly oneNC task fromncs, the best criterion
is to select theNC task fromncs that has thelargestvalue
of non carry-inIW. The largest value of non carry-inIW of
any task inncs is max

τj∈ncs
ICI
j,k . Whether to separate aCI task

or a NC task, whenm′ = 1, is determined as follows.
Criterion For Separating One Task: The taskτa ∈ cis

that satisfiesICI
a,k = max

τi∈cis
ICI
i,k is selected for separation if

max
τi∈cis

ICI
i,k > max

τj∈ncs
INC
j,k + min

τd∈cis
IDIFF
d,k (8)

otherwise, taskτb ∈ ncs satisfyingINC
b,k = max

τj∈ncs
INC
j,k is

selected for separation.
(Separation of more than one task)If m′ > 1, we

first separate one task from setξ = (cis ∪ ncs) using the
criterion in Eq. (8). Then, this separated task, say taskτs,
is removedfrom eithercis or ncs depending on whether
τs ∈ cis or τs ∈ ncs, respectively. Now separating the
next task is the same as separating one task from the updated
set (cis ∪ ncs) = ξ − {τs} using Eq. (8).

The pseudocode for selecting them′ tasks from set
ξ for separation is given in Figure 2. The algorithm
Select(ξ,m′, τk) returns m′ separated tasks selected
from setξ considering the target taskτk.
Algorithm Select(ξ, m′, τk)
1. cis = Max(ξ,m− 1)
2. ncs = ξ − cis
3. For g = 1 to m′ // each iteration separates one task
4. Find the taskτa ∈ cis whereICI

a,k =max
τi∈cis

ICI
i,k

5. Find the taskτb ∈ ncs whereICI
b,k = max

τj∈ncs
ICI
j,k

6. Find the taskτc ∈ cis whereIDIFF
c,k = max

τd∈cis
IDIFF
d,k

7. If (ICI
a,k > INC

b,k + IDIFF
c,k) Then

8. cis = cis− {τa}
9. Else
10. cis = cis− {τc}
11. ncs = (ncs ∪ {τc})− {τb}
12. End If
13. End For
14. Returnξ − (ncs ∪ cis)

Figure 2. Algorithm for selecting the tasks for separation

We determine the set ofCI tasks andNC tasks from setξ
in line 1–2 of Figure 2 where setMax(ξ,m− 1) is defined
in Eq. (6). Each iteration of the loop in line 3–13 selects
one task from(cis ∪ ncs) for separation. TheCI task
τa ∈ cis having thelargest carry-in IW is determined in
line 4. TheNC taskτb ∈ ncs having thelargestnon carry-
in IW is determined in line 5. TheCI taskτc ∈ cis having
the smallestvalue of the difference between its carry-in and
non carry-inIW is determined in line 6.

The condition in line 7 (based on the criterion in Eq. (8))
determines whether separation of theCI taskτa or separa-
tion of theNC taskτb would maximally reduce the value of

Ik(ξ). If CI taskτa is separated, i.e., condition in line 7 is
true, thenτa is removed from setcis in line 8. If NC taskτb
is separated, i.e., condition in line 7 is false, then theCI task
τc determined in line 6 becomes aNC task, and thus taskτc
is first removed from setcis in line 10. Then, taskτc is
included in setncs, and finally, theNC taskτb is removed
from setncs in line 11. Separation of the subsequent task
in next iteration uses these updated sets ofCI andNC tasks.
When the for loop exits, the set of totalm′ separated tasks
in ξ − (cis ∪ ncs) is returned in line 14.

Now we will show in Lemma 1 that our proposed sepa-
ration criterion isbetter than the separation criterion that is
based on the “highest-density”.
Lemma 1. If task τk passes theDA-LC test by separating
m′ highest-density tasks from setξ of higher priority tasks,
thenτk also passes theDA-LC test by separating the tasks
returned by algorithmSelect(ξ,m′, τk) from setξ, where
DA-LC test in both cases after separation uses(m − m′)
processors and the non-separated tasks from setξ.

Proof: Let SEPdensity is the set ofm′ highest density
from set ξ andHdensity = (ξ − SEPdensity). Let SEPour

is the set ofm′ tasks returned bySelect(ξ,m′, τk)
and Hour = (ξ − SEPour). If task τk passes the
DA-LC test by separating the tasks inSEPdensity from ξ,
then according toDA-LC test in Eq. (7), we must have
⌊
Ik(Hdensity)

m−m′
⌋ ≤ (Dk − Ck).

Since our separation criterion maximally reduces the
value of Ik(ξ) by separatingm′ tasks from set ξ,
we have Ik(Hour) ≤ Ik(Hdensity). Consequently,
⌊ Ik(Hour)

m−m′
⌋ ≤ (Dk − Ck) which implies thatτk also passes

theDA-LC test whenm′ tasks are separated using algorithm
Select(ξ,m′, τk) from setξ.

The two tasks (i.e.,τ3 andτ4), separation of which makes
the taskset in Example 1 schedulable, can be determined
using our separation criterion; but can not be determined
using the “highest-density” based separation criterion. Thus,
our proposed separation criterion isbetter. We now present
the details of our priority assignment policy for global
FP scheduling based on this new separation criterion.

C. New Fixed-Priority Assignment Algorithm

The development of our priority assignment algorithm
takes the advantage of the HPA policy, applies the
DA-LC test to each target task and uses the basic idea
of OPA algorithm. The priority assignment to the tasks in
Γ starts from the lowest priority levelPL = 1 ends at the
highest priority levelPL = n. The pseudocode of the priority
assignment policy of theFPT test is presented in Figure 3.

Initially, all tasks are considered as potential target tasks
for priority assignment at the lowest priority levelPL=1. All
the tasks in setΓ are stored in variableΓU (set of priority-
unassigned tasks) in line 1. Each iteration of the loop in line
2–22 represents one priority level starting from the lowest
priority level PL=1 to the highest priority levelPL=n.

At each priority levelPL, the loop in line 3–20 considers
one-by-one priority-unassigned task inΓU until one such
task is assigned the priority levelPL. During each iteration
of the loop in line 3–20, a new taskτk ∈ ΓU is selected as
a target task in line 3. The set of other priority-unassigned
tasksξ = (ΓU − {τk}) is determined in line 4. If the target
taskτk is eventually assigned the priority levelPL, then the
tasks inξ will have higher priorities than taskτk.

For a given target taskτk, we (temporarily) separatem′

tasks from setξ and we also separatem′ processors. During
each iteration (using the variablem′ = 0, . . . (m−1)) of the
loop in line 5–19 a total ofm′ tasks from setξ are separated
in line 6 by calling algorithmSelect(ξ,m′, τk). The other
non-separated, priority-unassigned tasks are stored in set H
in line 6 whereH = (ξ − Select(ξ,m′, τk)). Notice that
the separated tasks for each target task may bedifferent.
Next theDA-LC test is applied in line 7 to determine if the
target taskτk can be assigned priority levelPL by assuming
the higher priorities of the tasks in setH. In such case, the
DA-LC test uses(m−m′) processors.

If the DA-LC test in line 7 is satisfied, then taskτk is
assigned priority levelPL in line 8 and removed from the set
of priority-unassigned tasks in line 9. If the current priority
levelPL is equal to(n−m), i.e., condition in line 10 is true,
then there are exactlym (priority-unassigned) tasks inΓU

after τk is removed fromΓU in line 9. And, each of these
m priority-unassigned tasks inΓU is assigned one unique
priority level betweenPL=(n-m+1) andPL=n in line 12–
13 (note that these are them highest priority tasks and are
always schedulable). At this point, all tasks are assigned
priorities and the algorithm returns “schedulable” in line14.
If the current priority levelPL is less than(n−m), i.e., the
condition in line 10 is false, then the priority assignment for
next priority level starts (jumping from line 16 to line 2).

If the DA-LC test for taskτk in line 7 is never satisfied
for any m′, 0 ≤ m′ < m, then the for loop in line 5–19
exits; and the loop in line 3–20 begins by selecting another
new target task. If no new task can be selected as a target
task at line 3, then the for loop in line 3–20 exits. Since at
this stage there isno task that is assigned the current priority
level PL, the algorithm returns “unschedulable” in line 21.

Notice that if a target task can not be assigned prior-
ity level PL, the corresponding separated processors and
separated tasks areno more considered “separated”. And,
these tasks along with other priority-unassigned tasks are
considered as candidates for selecting the next target task
at the current priority level. Similarly, if a target task is
assigned priority levelPL, the separated tasks along with
other priority-unassigned tasks are considered as candidates
for selecting the target tasks at next priority level. In other
words,the priority assignment for each new target task starts
with all the priority-unassigned tasks, i.e., setΓU , and all
the m processors. It is not difficult to see that the time
complexity of algorithmFPT is polynomial.

Algorithm FPT(Γ , m)
1. ΓU= Γ
2. ForPL = 1 to (n−m)
3. For eachτk ∈ ΓU //a new task is selected as target task
4. ξ=ΓU−{τk}
5. Form′ = 0 to (m− 1) //m′ tasks fromξ will be separated
6. H = ξ − Select(ξ,m′, τk)

7. If (⌊ Ik(H)
m−m′ ⌋+ Ck ≤ Dk) Then

8. Taskτk is assigned priority levelPL
9. ΓU = ΓU − {τk}
10. If (PL= n−m) Then
11. //there arem tasks left inΓU

12. Each task inΓU is assigned one unique
13. priority level between(n−m+ 1) to n
14. Return “Schedulable”
15. Else
16. Break and Go to next priority level (line 2)
17. End If
18. End If
19. End For
20. End For
21. Return “Unschedulable”
22. End For

Figure 3. TheFPT test

Correctness ofFPT: We now prove the correctness of the
priority assignment policy of theFPT test in Theorem 1.

Theorem 1. If algorithm FPT in Figure 3 returns “schedu-
lable”, then all the tasks in setΓ meet deadlines using global
FP scheduling onm processors according to the priorities
assigned byFPT.

Proof: If algorithm FPT in Figure 3 returns “schedula-
ble”, then each of the tasks inΓ is assigned a unique priority
level between1 to n. We prove that each task that is assigned
a priority level using algorithmFPT meets all the deadlines.

If a task τk is assigned any priority levelPL between
(n − m + 1) and n in line 12–13 of Figure 3, then task
τk is one of them highest-priority tasks. Since we have
m processors, each task assigned any priority level between
(n−m+ 1) andn meets all its deadlines.

Now consider a taskτk that is assigned priority levelPL
wherePL < (n −m + 1). We show that taskτk meets all
the deadlines. SincePL < (n−m+ 1), taskτk is assigned
priority in line 8 of theFPT algorithm in Figure 3. This
implies that the condition in line 7 is true, and we have:

⌊

Ik(H)

m−m′

⌋

+ Ck ≤ Dk (9)

whereH = ξ − Select(ξ,m′, τk) and the setξ (de-
termined in line 4) is the set of all tasks that are assigned
higher priorities than that of taskτk.

Since Eq. (9) holds, the maximum interference that
any job of task τk suffers due to the higher pri-
ority tasks in H is ⌊ Ik(H)

m−m′
⌋. Eq. (9) holds, if and

only if, Ik(H) ≤ [(m−m′) · (Dk − Ck + 1)− 1]. There-
fore, the upper bound on theTIW due to the tasks in
H within the scheduling window of any job of taskτk is
[(m−m′) · (Dk − Ck + 1)− 1].

Notice that after taskτk is assigned priority levelPL, its
corresponding separated tasks are considered as target tasks
at next priority level, and hence assigned higher priority
levels. Thus, taskτk suffers interference not only from the
tasks in setH but also from the “separated” tasks returned by
Select(ξ,m′, τk). The upper bound onIW due to each of
the tasks inSelect(ξ,m′, τk) is (Dk − Ck + 1) according
to Eq. (3) and Eq. (4). Thus, theTIW due to all them′

tasks inSelect(ξ,m′, τk) is at most[m′ · (Dk − Ck + 1)].
Consequently, theTIW due to all the higher priority tasks
in ξ = H ∪ Select(ξ,m′, τk) on any job of taskτk is:

[(m−m′) · (Dk − Ck + 1)− 1] + [m′ · (Dk − Ck + 1)]

= m · (Dk − Ck) + (m− 1)

Because interference is an integer and all them processors
are simultaneously busy executing the tasks inξ when
task τk is interfered, the interference that any job of task
τk suffers is at most⌊m(Dk−Ck)+(m−1)

m
⌋ = (Dk − Ck).

Consequently, any job of taskτk meets its deadline.

Domination of FPT: Now we will prove in Theorem 2
that theFPT test dominates the state-of-the-artHPDALC test.
Remember thatHPDALC test assigns the highest fixed
priority to the m′ highest-density tasks and the remaining
(n−m′) lowest-density tasks are assigned priorities based on
the OPA andDA-LC test, for somem′ where0 ≤ m′ < m.
Theorem 2. If taskset Γ is schedulable using the
HPDALC test, thenΓ is also schedulable using theFPT test,
and not conversely.

Proof: Assume a contradiction that tasksetΓ does not
pass theFPT test but passes theHPDALC test. Note that
FPT test can not fail to assign priorities between priority
levels (n − m + 1) and n because theFPT algorithm in
Figure 3 assigns thesem highest priority levels in line 11–12
and returns “schedulable” in line 13.

Therefore, theFPT test can fail to assign priority only at
some priority level between1 and(n−m). Let theFPT test
first fails to assign priority at some priority levelPL, where
1 ≤ PL ≤ (n − m). Thus, whenFPT test fails at priority
level PL, there are total(PL-1) priority-assigned tasks
and there are total(n − PL + 1) priority-unassigned tasks.
Consequently, theminimumnumber of priority-unassigned
tasks whenFPT fails is (m+ 1) since1 ≤ PL ≤ (n−m).
We denoteF as the set of all priority-unassigned tasks when
FPT fails and we have|F| ≥ (m+ 1).

SinceΓ passes theHPDALC test, there are(n−m′) lowest-
density tasks that are successfully assigned priorities using
the combination of OPA and theDA-LC test for somem′,
0 ≤ m′ < m. In other words, each of the(n−m′) lowest-
density tasks passes theDA-LC test (because algorithm OPA
in Figure 1 and theDA-LC test is applied). We denoteP as
the set of these(n−m′) lowest-density tasks and we have
|P| ≥ (n−m+ 1) since0 ≤ m′ < m.

Because|F|+ |P| ≥ (m+ 1)+ (n−m+1) = n+2 and
|Γ| = n, there are at least two tasks that are common to both

setsF andP. Let τx be a common task both inF andP such
that no other such common task inP is assigned a priority
lower than that of taskτx in the HPDALC test. Therefore,
each of the tasks in(F − {τx}) is assigned higher priority
than that of taskτx in the HPDALC test. In other words,
(F−{τx}) ⊆ φ whereφ is the set of tasks that are assigned
higher priorities than taskτx in the HPDALC test.

Since τx ∈ P, task τx passesDA-LC when assigning
priority using theHPDALC test. Note that setφ includes
them′ highest-density tasks that are separated and assigned
the highest fixed-priority inHPDALC test. If taskτx passes
the DA-LC test, wherem′ highest-density tasks from set
φ are separated, then according to Lemma 1, taskτx must
pass theDA-LC test by separatingm′ tasks using algorithm
Select(φ,m′, τx) from setφ. Consequently, taskτx must
pass theDA-LC test by separatingm′ or lower number of
tasks from set(F − {τx}) using theSelect algorithm
since(F − {τx}) ⊆ φ. Therefore, theFPT test that uses the
Select algorithm for separation of the tasks can not fail
to assign priority to taskτx at priority levelPL if Γ passes
the HPDALC test. Therefore, any taskset that passes the
HPDALC test also passes theFPT test.

The taskset in Example 1 passes theFPT test but not the
HPDALC test.Therefore, FPT test strictly dominates the
state-of-the-art HPDALC test.

V. EXPERIMENTAL RESULTS

As shown in Theorem 2, theFPT test dominates the state-
of-the-artHPDALC test. The question is how much better the
FPT test is in comparison to theHPDALC test. To answer
this question, we conducted simulation experiments using
randomly-generated task sets.

We use the well-known metric, calledacceptance ra-
tio, to compare theFPT test with theHPDALC test. The
acceptance ratio of a schedulability test is the percentage
of the randomly generated tasksets that pass the test at a
given utilization level. One of the major findings of our
experimental evaluation is that thetaskset size(often not
considered in many simulation studies) is one of the most
important parameters to determine the schedulability of a
taskset using global FP scheduling. Before we present our
results, we present the taskset generation algorithm.

Taskset Generation Algorithm. To generate random
tasksets, we used theUUnifast-Discard algorithm [13]
proposed by Davis and Burns. TheUUnifast-Discard
algorithm with two parameters(n,U) generatesn utilization
values forn tasks with total utilization equal toU .

Once a set ofn utilizations{u1, u2, . . . un} of a taskset is
generated, the minimum inter-arrival timeTi of each taskτi
is generated from the uniform random distribution within the
range [3ms, 500ms]. The inter-arrival time of the tasks in
many practical real-time systems (e.g., robotics and control
applications) often belong to this interval. For example, the
periods of the tasks of some avionics application as used

0 %

20 %

40 %

60 %

80 %

100 %

 0.5 0.6 0.7 0.8

Ac
ce

pt
an

ce
 R

at
io

Utilization / m

FPT
HPDALC

0 %

20 %

40 %

60 %

80 %

100 %

 0.5 0.6 0.7 0.8

Ac
ce

pt
an

ce
 R

at
io

Utilization / m

FPT
HPDALC

(a) m = 4, n = 20 (b) m = 4, n = 40

0 %

20 %

40 %

60 %

80 %

100 %

 0.5 0.6 0.7 0.8

Ac
ce

pt
an

ce
 R

at
io

Utilization / m

FPT
HPDALC

0 %

20 %

40 %

60 %

80 %

100 %

 0.5 0.6 0.7 0.8

Ac
ce

pt
an

ce
 R

at
io

Utilization / m

FPT
HPDALC

(c) m = 6, n = 20 (d) m = 6, n = 80

Figure 4. Acceptance ratio of theFPT and theHPDALC tests

by Vestal in his work in [21] ranges from25ms to 200ms.
Finally, the WCET of taskτi is set toCi = ui · Ti and the
relative deadlineDi of taskτi is generated from the uniform
random distribution within the range[Ci, Ti].

Given the applicability of global FP scheduling in a wide
ranges of actual real-time systems, evaluating the perfor-
mance of theFPT test using randomly generated task sets is
reasonable as long as the effect of one parameter to generate
the random task sets is not confounded with another pa-
rameter. It has been proved that theUUnifast-Discard
algorithm generates an unbiased taskset in the sense that
the utilizations of then tasks of a task set are uniformly
distributed (Theorem 12 in [13]). Another reason for us
to use theUUnifast-Discard algorithm is to have the
ability to control the parametern when generating a taskset
at some utilization levelU .

Each of our experiments is characterized by a pair
(m,n) wherem is the number of processors andn is the
task set size. We considered 40 different utilization levels
{0.025m, 0.5m, . . . 0.975m,m} for each experiment(m,n).
We generate 1000 task sets at each of these 40 utilization
levels using theUUnifast-Discard algorithm with pa-
rametersn andU , whereU is the utilization level. Each of
the 1000 task sets generated at a particular utilization level,
sayU , has cardinalityn and total utilization equal toU .

Result Analysis. We conducted 15 experiments with
m ∈ {2, 4, 6} and n ∈ {10, 20, 40, 60, 80} to com-
pare the acceptance ratios ofFPT and HPDALC tests. We
present the acceptance ratios of the experiments with param-

eters (m = 4, n = 20), (m = 4, n = 40), (m = 6, n = 20)
and (m = 6, n = 80) in Figure 4(a)–4(d), respectively (the
results of the other experiments follow similar trends).

Each graph in Figure 4(a)–4(d) presents the acceptance
ratio for both tests. The x-axis is the system utilization
U/m for utilization level U and the y-axis represents the
acceptance ratio. The acceptance ratios of bothHPDALC and
FPT tests are around 100% at relatively low utilization level
(e.g.,U ≤ 0.5m) and 0% at very high utilization level (e.g.,
U > 0.8m). We plot the acceptance ratio in Figure 4(a)–4(d)
for the utilization levels between0.5m and0.8m.

Observation 1. The acceptance ratios forboth FPT test
andHPDALC test are higher when the task set size increases
for a given m. Notice that the acceptance ratio for both
HPDALC and FPT tests in Figure 4(b) and Figure 4(d)
are relatively “healthier” than that of in Figure 4(a) and
Figure 4(c), respectively.

A taskset with smaller cardinality having total utilization
U has relatively higher number of high-utilization tasks
in comparison to that of a taskset with larger cardinality
having total utilizationU . With higher number of high-
utilization tasks, the global FP scheduling suffers from so
called “Dhall’s effect” [14], and consequently, relatively
smaller number of (low cardinality) tasksets passes both
HPDALC andFPT tests in Figure 4(a) and Figure 4(c).

Observation 2. The improvementin acceptance ratio of
the FPT test over theHPDALC test is noticeable at higher
utilization level (e.g.,0.55m ≤ U ≤ 0.75m) in all the
four cases in Figure 4(a)–4(d). Both priority assignment

policy and schedulability test play very important roles
in determining the global FP schedulability of a task set
at large utilization levels. The improvement in acceptance
ratio of theFPT test at higher utilization levels is due to
our improved priority assignment policy. For example, the
acceptance ratio of theFPT test is around 30% higher than
that ofHPDALC test at utilization level0.7m in Figure 4(d).

Observation 3. The FPT test outperforms the
HPDALC test for tasksets with relatively larger cardinality
for a given number of processors. Thedifferencebetween
the acceptance ratios of theFPT test andHPDALC test in
Figure 4(b) and Figure 4(d) is considerably larger than that
of in Figure 4(a) and Figure 4(c), respectively.

The improvement of theFPT test over theHPDALC test
increases whenboth task set cardinality and number of
processors increases. Thedifferencebetween the acceptance
ratios of the FPT test and theHPDALC test at higher
utilization level in Figure 4(d) is considerably larger than
that of in Figure 4(a).

When the number of tasks in a task set at a particular
utilization level is relatively larger, there are relatively fewer
tasks with large density. And, separating tasks based on the
“highest-density” criterion of theHPDALC test is not that
effective. Our proposed (improved) separation criterion for
FPT test reduces the pessimism of interference on a lower
priority tasks to a larger extent in comparison to the criterion
of separating “highest-density” tasks of theHPDALC test.
Thus, with increasing number of task set size, theFPT test
performs significantly better than theHPDALC test.

Summary. The task set size (i.e., parametern) in addition
to parametersm and U has significant impact on global
FP scheduling. TheFPT test outperforms theHPDALC test
for large n (i.e., where there are fewer large-density tasks
in a task set). However, the performance of theFPT test
with relatively smallern is also significant, for example, the
acceptance ratio of theFPT test is around 5% to 8% higher
than that of theHPDALC test between utilization level0.55m
and 0.7m in Figure 4(c). Any improvement in acceptance
ratio of theFPT test implies relatively lower demand on total
processing capacity which in turn could significantly cut the
cost of mass production of actual systems with relatively
fewer number of processors.

VI. CONCLUSION

In this paper, we have proposed a priority assignment
algorithm for global FP scheduling. The priority assignment
of the FPT test dominates similar tests proposed earlier
and also performs well in simulation. The priority assign-
ment algorithm uses an elegant criterion that reduces the
pessimism of the analysis of global FP scheduling. Such
reduced pessimism of theFPT test will require relatively
fewer number of processors for resource-constrained hard
real-time systems.

ACKNOWLEDGEMENT

The authors would like to thank Professor Sanjoy Baruah
for his valuable comments and suggestions.

REFERENCES

[1] ARINC Incorporated. ARINC specification 651: Design guid-
ance for integrated modular avionics, November 1997.

[2] AUTOSAR, Automotive Open System Architecture,
www.autosar.org.

[3] WirelessHART Specification, www.hartcomm.org, 2007.
[4] B. Andersson. Global Static-Priority Preemptive Multipro-

cessor Scheduling with Utilization Bound 38%. InProc.of
OPODIS, pages 73–88, 2008.

[5] B. Andersson, S. Baruah, and J. Jonsson. Static-Priority
Scheduling on Multiprocessors. InProc. of RTSS, 2001.

[6] N. C. Audsley. On Priority Assignment in Fixed Priority
Scheduling.Info. Proc. Letters, 79(1):39–44, 2001.

[7] T. P. Baker. An Analysis of Fixed-Priority Schedulability on
a Multiprocessor.Real-Time Systems, 32(1-2):49–71, 2006.

[8] S. Baruah. Techniques for multiprocessor global schedulabil-
ity analysis. InProc of RTSS, pages 119–128, 2007.

[9] M. Bertogna and M. Cirinei. Response-Time Analysis for
Globally Scheduled Symmetric Multiprocessor Platforms. In
Proc. of RTSS, pages 149–160, 2007.

[10] M. Bertogna, M. Cirinei, and G. Lipari. Schedulability
Analysis of Global Scheduling Algorithms on Multiprocessor
Platforms. IEEE Transactions on Parallel and Distributed
Systems, 20(4):553–566, 2009.

[11] B. Brandenburg, J. Calandrino, and J. Anderson. On the
Scalability of Real-Time Scheduling Algorithms on Multicore
Platforms: A Case Study.Proc. of RTSS, 2008.

[12] R. Davis and A. Burns. A Survey of Hard Real-Time
Scheduling for Multiprocessor Systems. Accepted for
publication in the ACM Computing Surveys, 2011.
http://www-users.cs.york.ac.uk/∼robdavis/papers/MPSurveyv5.0.pdf.

[13] R. Davis and A. Burns. Improved priority assignment for
global fixed priority pre-emptive scheduling in multiprocessor
real-time systems.Real-Time Systems, 47:1–40, 2011.

[14] S. K. Dhall and C. L. Liu. On a Real-Time Scheduling
Problem.Operations Research, 26(1):127–140, 1978.

[15] N. Guan, M. Stigge, W. Yi, and G. Yu. New Response Time
Bounds for Fixed Priority Multiprocessor Scheduling.Proc.
of RTSS, pages 387–397, 2009.

[16] M. Kamruzzaman, S. Swanson, and D. M. Tullsen. Inter-core
prefetching for multicore processors using migrating helper
threads. InProc. of ASPLOS, pages 393–404, 2011.

[17] R. M. Pathan and J. Jonsson. Improved Schedulability Tests
for Global Fixed-Priority Scheduling.Proc. of ECRTS, 2011.

[18] A. Saifullah, Y. Xu, C. Lu, and Y. Chen. End-to-End Delay
Analysis for Fixed Priority Scheduling in WirelessHART
Networks. InProc. of RTAS, pages 13 –22, 2011.

[19] A. Saifullah, Y. Xu, C. Lu, and Y. Chen. Priority Assignment
for Real-time Flows in WirelessHART Networks. InProc. of
ECRTS, pages 33–44, 2011.

[20] A. Sarkar, F. Mueller, and H. Ramaprasad. Predictable task
migration for locked caches in multi-core systems. InProc.
of LCTES, pages 131–140, 2011.

[21] S. Vestal. Preemptive Scheduling of Multi-criticality Systems
with Varying Degrees of Execution Time Assurance. InProc.
of RTSS, pages 239 –243, 2007.

http://www-users.cs.york.ac.uk/~robdavis/papers/MPSurveyv5.0.pdf

	Introduction
	Model and Related Work
	Building Blocks of the FPT Test
	The DA-LC Test
	The OPA Algorithm
	Hybrid Priority Assignment (HPA) Policy

	Priority Assignment and The FPT Test
	Overview of FPT Test
	New Criterion for Separation
	New Fixed-Priority Assignment Algorithm

	Experimental Results
	Conclusion
	References

