THESIS FOR THEDEGREE OFLICENTIATE OF ENGINEERING

Scheduling Algorithms For Fault-Tolerant
Real-Time Systems

RISAT MAHMUD PATHAN

Division of Networks and Systems
Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
Goteborg, Sweden 2010

Scheduling Algorithms For Fault-Tolerant Real-Time Systems
Risat Mahmud Pathan

Copyright(© Risat Mahmud Pathan, 2010.

Technical Report No. 65L

ISSN 1652-876X

Department of Computer Science and Engineering
Dependable Real-Time Systems Group

Contact Information:

Department of Computer Science and Engineering
Chalmers University of Technology

SE-412 96 Goteborg, Sweden

Phone: +46 (0)31-772 52 16

Fax: +46 (0)31-772 36 63

E-mail:ri sat @hal mers. se

Printed by Chalmers Reproservice
Goteborg, Sweden 2010

Scheduling Algorithms For Fault-Tolerant Real-Time Systens

Risat Mahmud Pathan
Department of Computer Science and Engineering
Chalmers University of Technology

Abstract
This thesis deals with the problem of designing efficienttfealerant real-time
scheduling algorithms for independent periodic tasks dnamd multiproces-
sor platforms. The well-known Rate-Monotonic (RM) schéaulalgorithm is
assumed as it is widely used in many commercial systems dtggimnplicity
and ease of implementation. First, a uniprocessor RM sdimgdalgorithm is
analyzed to derive an efficient and exact feasibility canditonsidering fault-
tolerance. Second, a multiprocessor scheduling algoightasigned to achieve
efficient utilization of the processors while meeting thektdeadlines. The goal
of the former algorithm is to achieve reliability while theaj of the latter algo-
rithm is to achieve a high performance. In this thesis, iti$® @iscussed how
to blend these two metrics into the same scheduling framewor

The uniprocessor RM scheduling algorithm is analyzed uaingvel com-
posability technique considering occurrences of multfpldts. Based on this
analysis, the exact feasibility of the fault-tolerant sile of a task set can be
determined efficiently in terms of time complexity. Thisalghm exploits time
redundancy as a cost-efficient means to tolerate faultsfaithemodel consid-
ered is very general in the sense that faults can occur ineekyeind at any time
(even during recovery), and covers a variety of hardwaresaftvare faults.

The multiprocessor RM scheduling algorithm is designecttieve a high
average utilization of the processors while meeting ak tesadlines. The al-
gorithm uses a task-splitting technique, in which a boundedber of tasks are
allowed to migrate their execution from one processor tdfsero It is proved
that, using the algorithm, all tasks can meet their deasllihat most 55.2% of
the processor capacity is requested. The load on the pmses® regulated to
enable the design of an efficient admission controller fdinerscheduling that
scales very well with an increasing number of processors.

Keywords: Real-Time Systems, Periodic Task Scheduling, Rate-Monotonic Schedul-
ing, Uniprocessor, Multiprocessors, Fault-Tolerant Schedulinditidaed Scheduling,
Task-Splitting Algorithms, Online Scheduling

List of Publications

This thesis is based on and extends the results in the faltpworks:

>

Risat Mahmud Pathan and Jan Jonsson, “Load Regulating Algo-
rithm for Static-Priority Task Scheduling on Multiprocess,” to
appear in Proceedings of the 24th IEEE International Pagbdind
Distributed Processing Symposium (IPDPS 20X)anta, USA,
19-23 Apr, 2010.

Risat Mahmud Pathan, Jan Jonsson and Johan Karlsson, “Sche-
dulability of Real-Time Fault-Tolerant Systems Using Nhalbre,”
presented at the 6th HIPEAC Industrial Workshbfassy, France,

26 Nov, 2008.

Risat Mahmud Pathan, “Fault-Tolerant Real-Time Schedulis-

ing Chip Multiprocessors,” irProceedings Supplemental volume
of the 7th European Dependable Computing Conference (EDCC
2008) Kaunas, Lithuania, 7-9 May, 2008.

Risat Mahmud Pathan, “Recovery of Fault-Tolerant Real€r8a-
heduling Algorithm for Tolerating Multiple Transient Fasil' in
Proceedings of the 10th International Conference of Coepartd
Information Technology (ICCIT 2007/[phaka, Bangladesh, 27-29
Dec, 2007.

Risat Mahmud Pathan, “Probabilistic Analysis of Real-Ti®e
heduling of Systems Tolerating Multiple Transient Fallts,Pro-
ceedings of the 9th International Conference of Computerlan
formation Technology (ICCIT 2006phaka, Bangladesh, 21-23
Dec, 2006.

Risat Mahmud Pathan, “Fault-tolerant Real-Time Scheduk
gorithm for Tolerating Multiple Transient Faults,” ifroceedings
of the 4th International Conference on Electrical and Cotepu
Engineering (ICECE 2006PDhaka, Bangladesh, 19-21 Dec, 2006.

Acknowledgments

First of all, |1 would like to thank my supervisor Docent Jamsson for his
excellent comments, invaluable ideas, and most impoytdnigl confidence in
me to carry out this research. His knowledge, feedback andhgoe have
provided me the inspiration to work as a PhD student in rigad-systems.

Special thanks and gratitude to Professor Johan Karlssoshfring with
me his knowledge about fault-tolerant computer systems.

| would also like to take the opportunity to thank ProfessanjBy Baruah
who gave me some insights regarding my work on multiprogessioeduling
when | met him last year at the ARTIST Summer School in France.

| also thank Professor Per Stenstérm and Professor Phslipgigas for their
helpful discussion about the direction of my research aathésory committee
meeting.

Many thanks to my colleagues at the Department of Computen&e and
Engineering for creating such a friendly and stimulatingkirng environment.
| especially thank Dr. Raul Barbosa and Daniel Skarin whereffl me valuable
discussion, comments, and also helped me with issuesdetatIeX.

| want to express my deepest gratitude and thanks to my gandrd have
been encouraging me in pursuing my study. Finally, | thankwifg Nashita
Moona and our son Mahir Samran Pathan for their patiencecumed |

Risat Mahmud Pathan

This research has been funded by the Swedish Agency fordtim\Bystems
(VINNOVA) under the funding IDs P30619-2 (TIMMO) and S420FKP-4).

Contents

[Abstract ii
[Siof Publicationd |
[Acknowledgments iii
[1__Introductionl 1
[2__Preliminaries 5
2.1 Real-TimeSysteMms 5
[2.1.1 _Periodic Task Systems 6
[2.1.2 Taskindependefice 6
213 ReadyTasks 7
214 TaskPriority 7
[2.1.5 Preemptive Schedullng 7
[2.1.6 _Work-Conserving Schedullng 8
[2.1.7 Feasibility and Optimality of Scheduling 8
[2.1.8 Minimum Achievable Utilization 9
[2.1.9 Scheduling Algorithrhs 10
[2.1.10 Offline and Online Scheduling 12
2.2 Fault-Tolerant Systefnso i i 13
[2.2.1 Failure Error,and Fadlts 13
[2.2.2 Error Detection Technigiies 16
|3_G_Qa.ls and CQDI[ibuIiQnsI; 17
[4_Model$ 21
1 TaskMod®l oo 21
42 SystemModel 23
4.3 FaultModél 23

Vi

CONTENTS

o idue Task Assignment: CAT-0 81
idue Task Assignment: CAT-1 82

Introduction

Computer systems are ubiquitous. Examples of versatile abeomputers
range from playing computer games to diagnosing a shutdpace. Many of
these computer systems are knowrres-time systemthat have timing con-
straints. One of the most important timing constraints af-tane systems is
meeting the deadlinesf the application tasks. Consequently, the correctness
of the real-time systems depend not only on their logicalfandtional output,
but also depend on the tinmhenthe output is generated. One class of real-
time systems that have stringent timing constraints areddlrd real-time
systems. If the timing constraints of hard real-time systeme not satisfied,
then the consequences may be catastrophic, like threatarhlives or signif-
icant economic loss. So, it is of utmost importance for hal-time systems
designers to ensure that all timing constraints will be nmetecthe system is in
mission.

In addition to satisfying the timing constraints of hardl+éime system, the
functional correctness of the application ought to be guaed. Having timely
output of the real-time application is of no use if the systdmiates from its
specified output. The cause of such deviated behavior of aangystem is
the occurrences daultsin the system. For example, after the computer system
failed in the London Stock Exchange on September 8, 2008tttk trading
halted for several hours. Hard real-time systems must tishg all the timing

1

2 CHAPTER 1. INTRODUCTION

constraints of the applications and have to be fault-toleirathe presence of
faults. The timing constraints of the real-time applicai@an be satisfied using
appropriatgask schedulingnd the required level of reliability can be achieved
by means ofault-tolerance

Achieving fault-tolerance in computer systems requirepleging redun-
dancy either in space or in time. Space redundancy is prdigieadditional
hardware, for example, using extra processors. Howevertagost, volume
and weight considerations providing space redundancy roape always vi-
able, for example, in space, automotive or avionics apidina. To achieve
fault-tolerance in such systems, time redundancy is us#tiform of taske-
covery(re-execution of the original task or execution of a differeersion of
the task) when faults occur. Fault-tolerance using timeimedncy cannot be
addressed independently of task scheduling issues. Thécause time redun-
dant execution as a means for tolerating faults may have atimegmpact on
the schedule of the tasks in the sense that it might lead teeahideadlines for
one or more of the tasks. Consequentlyere is a need for the design of fault-
tolerant scheduling algorithms that minimize such intresimpact resulting
from the recovery operations to tolerate faults.

The recent trend in the processor industry for developing Gkultipro-
cessors (CMPs) enables many embedded applications to luyelépn CMPs.
Whereas the uniprocessor real-time task scheduling theagrisidered very
mature, a comprehensive multiprocessor scheduling tHesyet to be devel-
oped. Since many of the well-understood uniprocessor stingdalgorithms
perform very poorly (in terms of hard real-time schedul&ilon multipro-
cessors, developing new multiprocessor scheduling dlgos has recently re-
ceived considerable attention. Due to the trend of an isedaise of CMPs
in embedded systemthere is a need for the design of efficient multiprocessor
scheduling algorithms and their extension toward faulétance.

Many real-time systems are dynamic in nature, that is, epfiin tasks
arrive and leave the system dynamically (for example, inneniultimedia,
video conferencing or distance learning applications)suoh rapidly chang-
ing workloads, whether or not to accept a task into the systéen it arrives
is decided by amdmission controller If a task is accepted by the admission
controller, then the scheduling algorithm has to degitiento execute the task.
If there are multiple processorshere(tha is, on which processor) to execute
the new task adds one more dimension to the scheduling decidbwever, all
such online decisions have to be made very fast so that thediniess of other
already-admitted tasks into the system is not jeopardiZedsidering the trend
in developing CMPs with many cores and the diverse rangeslofeapplica-

tions, there is a need for the design of efficient online admissiorothers and
online scheduling algorithms for multiprocessors.

This thesis addresses the problem of designing efficieftirea schedul-
ing algorithms for independent periodic tasks on uni- andtirpuocessor plat-
forms. The RM scheduling algorithm is assumed because itdslywused in
many commercial and safety-critical systems due to its baiypand ease of
implementation. The first main contribution of the thesialdewith real-time
task-scheduling analysis on uniprocessor systems undecahsideration of
multiple occurrences of faults. A uniprocessor fault-taté scheduling algo-
rithm, calledFTRM is proposed. The algorithiiTRMis based on a necessary
and sufficient (exact) feasibility condition that ensufest &ll task deadlines are
met if, and only if, this exact condition is satisfieiTRMcan tolerate transient
faults in hardware as well as a variety of software faultse Tdult model con-
sidered in this thesis is very general in the sense thatfaah occur in any task
and at any time, even during the execution of a recovery tipersaFTRMcan
precisely determine whether or not a total fofaults can be tolerated within
any time interval equal to the maximum period of any task egkriodic task
set. As will be discussed in the thesis, the exact feasitgtindition used by
FTRMis directly applicable to partitioned multiprocessor stiing, that is,
where tasks are pre-assigned to processors and neverenigrat

The second main contribution of this thesis deals with tregieof an ef-
ficient online real-time task-scheduling algorithm for tiprdocessor systems.
The basis of the design is an offline partitioned multipreoescheduling al-
gorithm, called Interval-Based-Partitioned-Schedu(inBPS), that pre-assigns
tasks to processors. To achieve higher performance thanafigrachievable
with partitioned scheduling, a bounded number of taskdedablit tasks are
allowed to migrate exactly once from one processor to amothie proved that
| BPS can meet the deadlines of all task if at most 55.2% capacitiemul-
tiprocessor platform is requested. Based on this suffiéessibility condition,
an online version of the algorithm, called Online InterBalsed-Partitioned-
Scheduling © | BPS), is derived. The algorithm maintains a load regulation
policy that guarantees th& | BPS scales well with higher number of pro-
cessors (for example, CMPs with many cores). Due to the &itypbf the
feasibility condition, the admission controller & | BPS can also determine
very fast (in linear time) whether or not to accept a newlyvarg task. If ad-
mission controller accepts the new task, then no task mitsdsadline. If the
sufficient condition is not satisfied and if the new task isiticad task, then
the admission controller @ | BPS can evict a less critical task and can admit
the new task into the system. As will be discussed in the shést scheduling

4 CHAPTER 1. INTRODUCTION

algorithmO- | BPS can be used to make a trade-off between performance and
reliability by modeling a recovery operation as a newly\ang task when fault
occurs in an already admitted task.

The rest of this thesis is organized as follows: Chalpter 2rimss the re-
lated background of real-time and fault-tolerant systefie major goals and
contributions of this thesis are discussed in Chdgter 3n;T@haptel ¥ presents
the necessary models (that is, task, system and fault madsedd in this work.
The analysis of the uniprocessor fault-tolerant schedudilgorithmFTRM is
presented in ChaptEl 5 and its applicability to multiprecescheduling is dis-
cussed. In Chaptéi 6, the sufficient feasibility conditidrthe offline multi-
processor scheduling algorithnBPS is analyzed and then its extension to the
corresponding online algorith®@ | BPS is presented. Finally, Chapter 7 con-
cludes this thesis with a discussion on the applicability extendability of the
proposed algorithms.

Preliminaries

In this chapter, the related background of this work is preesi by discussing
the basic concepts of real-time scheduling followed by audision of related
concepts regarding fault-tolerant systems.

2.1 Real-Time Systems

Real-time systems are computerized systems with timingtcaints. Real-time
systems can be classified laard real-time systemandsoft real-time systems
In hard real-time systems, the consequences of missind aéaslline may be
catastrophic. In soft real-time systems, the consequesfaesssing a deadline
are relatively milder. Examples of hard real-time systemesspace applica-
tions, fly-by-wire aircraft, radar for tracking missiledce Examples of soft
real-time systems are on-line transaction used in airlggenvation systems,
multimedia systems, etc. This thesis deals with schedafmqgriodic tasks in
hard real-time systems. Applications of many hard reaétgystems are often
modeled using recurrent tasks. For example, real-timestasknany control
and monitoring applications are implemented as recurreribgic tasks. This
is because periodic execution of recurrent tasks is welkrstdod and pre-
dictable [CLL73[PM98, ABD 95, SAAT™04,BF97]. The most relevant real-time

5

6 CHAPTER 2. PRELIMINARIES

task scheduling concepts in this thesis are: periodic tesiesn, ready (active)
task, task priority, preemptive scheduling algorithm,sibdity condition of a
scheduling algorithm, offline and online scheduling.

2.1.1 Periodic Task Systems

The basic component of scheduling isaak A task is unit of work such as a
program or code block that when executed provides somecseofian appli-
cation. Examples of task are reading sensor data, a unittafpitacessing and
transmission, etc. Averiodic task systeris a set of tasks in which each task is
characterized by period deadlineandworst-case execution time (WCET)

Period: Each task in periodic task system has an inter-arrival tihweour-
rence, called thperiod of the task. In each period,jab of the task is released.
A job is ready to execute at the beginning of each periodedathereleased
time, of the job.

Deadline: Each job of a task has rlative deadlinethat is the time by
which the job must finish its execution relative to its rebzhme. The relative
deadlines of all the jobs of a particular periodic task amaesa Theabsolute
deadlineof a job is the time instant equal to released time plus thativel
deadline.

WCET: Each periodic task has a WCET that is the maximum execution
time that that each job of the task requires between itssettme and absolute
deadline.

If the relative deadline of each task in a task set is less ¢inaqual to its
period, then the task set is calleddanstraineddeadline periodic task system.

If the relative deadline of each task in a constrained deadhsk set is exactly
equal to its period, then the task set is calledmplicit deadline periodic task
system. If a periodic task system is neither constrainedmplicit, then it is
called anarbitrary deadline periodic task system. In this thesis, schedulfing o
implicit deadline periodic task system is considered.

2.1.2 Task Independence

The tasks of a real-time application may be dependent on oother, for ex-
ample, due to resource or precedence constraints. If anesmushared among
multiple tasks, then some tasks may be blocked from beinguteé until the
shared resource is free. Similarly, if tasks have precezleanstraints, then one
task may need to wait until another task finishes its exeoutiothis thesis, all

2.1. REAL-TIME SYSTEMS 7

tasks are assumed to be independent, that is, there exideppadency of one
tasks on another. The only resource the tasks share is thegsar platform.

2.1.3 Ready Tasks

For a periodic task system, a job of a task is released in eadbhdpof the task.
All jobs that are released but have not completed their iddad execution by
a time instant are in the set ofeady (active) taskat timet¢. Note that, there
may be no job in the set of ready tasks at one time instant oe thay be a job
of all the tasks in the set of ready tasks at another timerihsta

2.1.4 Task Priority

When two or more ready tasks compete for the use of the pracessoe rules
must be applied to allocate the use of processor(s). Thie seles is governed
by the priority discipline. The selection (by the runtimspttcher) of the ready
task for execution is determined by the priorities of thé&s$ad he priority of a
task can bestaticor dynamic

Static Priority: In static (fixed) priority discipline, each task has a ptipri
that never changes during run time. The different jobs ofsthme task have
the same priority relative to any other tasks. For exammgeo@ling to Liu and
Layland, the well known RM scheduling algorithm assigngistariorities to
tasks such thahe shorter the period of the task, the higher the priofiith/73].

Dynamic Priority: In dynamic priority discipline, different jobs of a task
may have different priorities relative to other tasks in #ystem. In other
words, if the priority of jobs of the task change from one exam to another,
then the priority discipline is dynamic. For example, thdl\waown Earliest-
Deadline-First (EDF) scheduling algorithm assigns dyrapmiorities to tasks
such thata ready task whose absolute deadline is the nearest has dghedti
priority [LL73].

2.1.5 Preemptive Scheduling

A scheduling algorithm igpreemptivef the release of a new job of a higher
priority task can preempt the job of a currently running lovpeority task.
During runtime, task scheduling is essentially deterngrtime highest priority
active tasks and executing them in the free processor(sexample, RM and
EDF are examples of preemptive scheduling algorithm.

8 CHAPTER 2. PRELIMINARIES

Under non-preemptive scheme, a currently executing taskyal completes
its execution before another ready task starts executidmerefore, in non-
preemptive scheduling a higher priority ready task may needit in the ready
queue until the currently executing task (may be of lowesnityl) completes its
execution. This will result in worse schedulability perfance than for the pre-
emptive case. In this thesis, preemptive scheduling onand-multiprocessor
platforms is considered.

2.1.6 Work-Conserving Scheduling

A scheduling algorithm is work conserving if it never idleprcessor when-
ever there is a ready task awaiting execution on that procegswork con-
serving scheduler guarantees that whenever a job is readyamrocessor for
executing the job is available, the job will be dispatchedeiecution. For ex-
ample, scheduling algorithms RM and EDF are work-consegriayndefinition.

A non work-conserving algorithm may decide not to executetask even
if there is a ready task awaiting execution. If the procestmuld be idled
when there is a ready task awaiting execution, then the nak-eanserving
scheduling algorithm requires information about all tapsameters in order
to make the decision when to idle the processor. Online sdimgdalgorithms
typically do not have clairvoyant information about all tharameters of all
future tasks, which means such algorithms are generallk-wonserving. In
this thesis, the work-conserving RM scheduling algoritsmansidered.

2.1.7 Feasibility and Optimality of Scheduling

To predict the temporal behavior and to determine whethertithing con-
straints of an application tasks will be met during runtifeasibility analysis
of scheduling algorithm is conducted. If a scheduling atham can generate
a schedule for a given set of tasks such that all tasks medtides, then the
schedule of the task setfisasible If the schedule of a task set is feasible using
a scheduling algorithm, we say that the task setAsschedulable

A scheduling algorithm is said to kaptimal if it can feasibly schedule a
task set whenever some other algorithm can schedule thetsalset under
the same scheduling policy (with respect to for examplegrityi assignment,
preemptivity, migration, etc.). For example, Liu and LaydgLL73] showed
that the RM and EDF are optimal uniprocessor schedulingrigifigpo for static
and dynamic priority, respectively.

2.1. REAL-TIME SYSTEMS 9

Feasibility Condition (FC)

For a given a task set, it is computationally impractical rtowdate the exe-
cution of tasks at all time instants to see in offline whetlner task set will
be schedulable during runtime. To address this problensjiididy conditions
for scheduling algorithms are derived. A feasibility cdiat is a (set of) con-
dition(s) that are used to determine whether a task set &hieafor a given
scheduling algorithm. The feasibility condition canrmecessary and sufficient
(exact)or it can besufficientonly.

Necessary and Sufficient FC (Exact test):A task set will meet all its
deadlines if, and only if, it passes the exact test. If theek& of a scheduling
algorithm A is satisfied, then the task setdsschedulable. Conversely, if the
task set isd-schedulable, then the exact FC of algorithnis satisfied. There-
fore, if the exact FC of a task set is not satisfied, then it & atue that the
scheduling algorithm can nétasibly schedule the task set.

Sufficient FC: A task set will meet all its deadlines if it passes the suffitie
test. If the sufficient FC of a scheduling algorithnis satisfied, then the task
set isA-schedulable. However, the converse is not necessarady Trherefore,
if the sufficient FC of a task set is not satisfied, then the sa&tknay or may not
be schedulable using the scheduling algorithm.

In this thesis, an exact and a sufficient feasibility cowdisi are derived for
RM scheduling on uniprocessor and multiprocessors, réispgc

2.1.8 Minimum Achievable Utilization

A processor platform is said to be fully utilized when an gase in the compu-
tation time of any of the tasks in a task set will make the t&tkiaschedulable
on the platform. The least upper bound of the total utilzdltiis the mini-
mum of all total utilizations over all sets of tasks that yulitilize the processor
platform. This least upper bound of a scheduling algoritbrodlled themin-
imum achievable utilizatioor utilization boundof the scheduling algorithm.
A scheduling algorithm can feasibly schedule any set ofsaska processor
platform if the total utilization of the tasks is less thanemual to the mini-
mum achievable utilization of the scheduling algorithm. this thesis, mini-
mum achievable utilization bound for the proposed multigssor scheduling
algorithm is derived.

1Utilization of one task is the ratio between WCET and its peiridotal utilization is the sum
of all tasks’ utilization (formally defined later) of a tasktse

10 CHAPTER 2. PRELIMINARIES

2.1.9 Scheduling Algorithms

Scheduling algorithms execute tasks on a particular psocgdatform which
can be classified as either uniprocessor or multiproces#drscheduling al-
gorithms in this thesis are based on the RM scheduling pgmadlor implicit
deadline periodic task system.

Uniprocessor Scheduling

Uniprocessor scheduling algorithm executes tasks on desprgcessor. The
schedulability of a given set of tasks on uniprocessor ptatfcan be deter-
mined using feasibility condition of the algorithm.

Liu and Layland in [[LL73] derived a sufficient feasibility odition for
RM scheduling on uniprocessor based on minimum achievditileation. Nec-
essary and sufficient (exact) feasibility conditions foipnocessor RM schedul-
ing have been derived in [LSDB9, JP36, ABS3].

It is worth mentioning at this point that the RM algorithm isdely used
in industry because of its simplicity, flexibility and its s of implementa-
tion [SLR86,LSD89]. It can be used to satisfy the stringenirtg constraints
of tasks while at the same time can also support executiopefi@ic tasks
to meet the deadlines of the periodic tasks. RM can be mod#gsily, for
example, to implement priority inheritance protocol fonskironization pur-
pose [SRL90D]. The conclusion of the study iin [SLIR86] is that. “the rate
monotonic algorithm is a simple algorithm which is not ordgs to implement
but also very versatile

Multiprocessor Scheduling

In multiprocessor scheduling, tasks can be scheduled asiagf the two ba-
sic multiprocessor scheduling principlegiobal scheduling andgartitioned
scheduling. In global scheduling, a task is allowed to eteecm any proces-
sor even when it is resumed after preemption. This is donedapikg all
tasks in a global queue from which tasks are dispatched torteessors based
on priority (possibly by preempting some lower prioritykals In partitioned
scheduling, the task set is grouped in different task pamstand each parti-
tion has a fixed processor onto which all the tasks of thattfmartare assigned.
A task assignment algorithmpartitions the task set and assigns the tasks in
the local queues of each processor. In partitioned schregjuleady tasks as-
signed in one processor are not allowed to execute in anptioeessor even
if the other processor is idle. Evidently, tasks can migmtglobal schedul-
ing while no migration is allowed in partitioned schedulinthe advantage of

2.1. REAL-TIME SYSTEMS 11

partitioned scheduling is that once tasks are assignedotzepsors, each pro-
cessor can execute tasks based on mature uniprocessoul#nfpedgorithms.
Many static-priority scheduling policies for both globaBJO1,Lun02|, Bak06,
BGO3,[LLOS,[BCLO5/ And0B] and partitioned [DLF78, DD86. AJUBBBOE,
LMM98] LBOS95, LDG04,/LGDGO0OB| OB2S8. OSH5] approaches hagerb
well studied.

It has already been proved that there exists some task setoai slightly
greater than 50% of the capacity of a multiprocessor platfon which a dead-
line miss must occur for both global and partitioned statiority scheduling
[ABJO1,/0B98]. Therefore, the minimum achievable utiliaatbound for both
global and partitioned multiprocessor scheduling caneogteater than 50%.
Moreover, it is also well-known that applying the unipree@sRM scheme to
multiprocessor global scheduling can lead to missed deesllof tasks even
when the workload of a task set is close to 0% of the capacitthefmul-
tiprocessor platform. This effect is known Bdall’s effect[DL78], [Dha77].
Technique to avoid Dhall’s effect for static-priotity isqmosed in[[ABJO1] and
is further improved in[[Lun0Z, And08]. LuckiNphall's effectis absent in par-
titioned scheduling. The main challenge for partitionelgesiuling is instead to
develop an efficient task assignment algorithm for partitig a task set. How-
ever, since the problem of determining whether a schecdeilpbitition exists
is an NP-complete problem [GJ79], different heuristic hbgen proposed for
assigning tasks to multiprocessors using partitioneddidivey. The majority
of the heuristics for partitioned scheduling are based &fardnt bin-packing
algorithms (such as First-Fit or Next-Fit [LDG04, GJ79]).n®bin-packing
heuristic relevant for this thesis is the First-Fit (FF) hstic.

First-Fit (FF) Heuristic: With the FF heuristic, all processors (e.g. proces-
sor one, processor two, and so on) and tasks (task one, taskvso on) are
indexed. Starting with the task with lowest index (task on&gks are feasibly
assigned to the lowest-indexed processor, always stasfitigthe first proces-
sor (processor one). To determine if a non-assigned tashevichedulable on
a particular processor with the already-assigned taskspaacessor feasibility
condition is used. If a task cannot be assigned to the firstgssmor, then this
task is considered to assign in the second processor and dbalhthe tasks
are assigned to the processors, then the partitioning aagikeset is successful.
If some task cannot be assigned to any processor, then thegtisan not be
partitioned using FF.

Tasks may be indexed based on some ordering of the task paranffer
example, sort the task set based on period or utilizatiomparsimply follow
any arbitrary ordering for indexing. For example, Dhall drid in [DL78]

12 CHAPTER 2. PRELIMINARIES

proposed partitioned scheduling for RM based on FF hecnigtiere tasks are
sorted based on increasing period. Bakel in [OB98] anal{&ddusing FF in
which tasks are assigned to processors according to the igipat order of the
tasks (without any sorting). In this thesis, FF heuristfergto task assignment
to processors without any sorting.

Task-Splitting Algorithms: The different degrees of migration freedom
for tasks in the global and partitioned scheduling can beidened as two ex-
tremes of multiprocessor scheduling. While in global schiaduno restriction
is placed for task migration from one processor to anotratjtipned schedul-
ing disallows migration completely. This strict non-mitgnyy characteristic
of partitioned multiprocessor scheduling is relaxed ugingromising concept
calledtask-splittingin which some tasks, callesplit-tasks are allowed to mi-
grate to a different processor. Task splitting does not ntidading the code of
the tasks; rather it is migration of execution of the splkafrom one proces-
sor to another. Recent research has shown that task gpliiim provide bet-
ter performance in terms of schedulability and can overctiradimitations of
minimum achievable utilization for pure partitioned schly [AT06,/ABOS,
ABBO08, [KY08a, KY08h/ KYO7| KY09h, ABDO5, LRLOY, KLLO9]. Thd the-
sis presents a multiprocessor scheduling algorithm, d¢&lBPS, based on a
task-splitting technique.

2.1.10 Offline and Online Scheduling

When the complete schedulability analysis of a task systembeadone be-
fore the system is put in mission, the scheduling is conemtlasoffline (static)
scheduling. In order to predict feasibility of a task seflimé scheduling analy-
sis requires the availability of all static task parametkke periods, execution
time, and deadlines. If all task parameters rmoeknown before the system is
put in mission, then complete schedulability analysis ispussible to predict
the feasibility of the newly arriving tasks and such systemsidersonline (dy-
namic)scheduling. Since a newly arriving task can interfere whith éxecution
of already existing tasks in the system, aamission controlleiis needed to
determine whether to accept a new task that arrives online.

The feasibility condition of a scheduling algorithm can Ised as the basis
for designing an admission controller for dynamic systefdswever, evalu-
ating the feasibility condition when a new task arrives nmttake too long
time. This is because using processing capacity to checketiwbility con-
dition could detrimentally affect the timing constraintstioe existing tasks in
the system. Moreover, after accepting a task using the amigontroller,

2.2. FAULT-TOLERANT SYSTEMS 13

the task assignment algorithm for partitioned multiprecescheduling must
neither take too long time nor disturb the existing schesliiea large number
of processors to assign the newly accepted task (for exartasle assignment
algorithms that require sorting).

Evaluating the exact feasibility test for uniprocessor Ritlexluling derived
in [LSD89, ABR"93,[JP85] usually takes long time and thus may not be ade-
quate for online admission controller if the system hasgelaumber of tasks.
Moreover none of the partitioned scheduling algorithmg thquire sorting of
the tasks before assignment to processors are suitablenioe ascheduling.
This is because, whenever a new task arrived online, sasfitige tasks would
require reassignment of all tasks to the processors (fampka RM first-fit
in [DL78] requires sorting).

In contrast, a sufficient feasibility condition (closedrfgrthat can be de-
rived offline provides an efficient way to reason about theafof chang-
ing workload in online systems. Interesting approachesdéreloping effi-
cient uniprocessor RM feasibility conditions for onlindneduling can be found
in [BBBO3,[LLWS08&/SH98]. In this thesis, the design of an édfit admission
controller for online multiprocessor systems is proposed.

2.2 Fault-Tolerant Systems

A system is something that provides some service. A systenbeatandalone
or can be part of a bigger system. The service a system powdg be used
by another system to provide another service. For exampdememory of a
computer system provides service to the applications ngnain the computers
and the applications in turn provides service to the usdr@tbmputer system.

A fault-tolerant system is one that continues to perforngjitscified service
in the presence of hardware and/or software faults. In dégigfault-tolerant
systems, mechanisms must be provided to ensure the cassctfi the ex-
pected service even in the presence of faults. Due to thdimealnature of
many fault-tolerant systems, it is essential that the fanlirance mechanisms
provided in such systems do not compromise the timing caimé$r of the real-
time applications. In this section, the basic concepts oltfalerant systems
under the umbrella of real-time systems are discussed.

2.2.1 Failure, Error, and Faults

Avizienis and others define the terriaslure, error andfaultsin [ALRLOA4].

14 CHAPTER 2. PRELIMINARIES

Failure A systemfailure occurs when the service provided by the system de-
viates from the specified service. For example, when a usencgread
his stored file from computer memory, then the expected cerigi not
provided by the system.

Error An error is a perturbation of internal state of the system that mag lea
to failure. A failure occurs when the erroneous state caasdsacorrect
service to be delivered, for example, when certain portiadhecomputer
memory is corrupted or broken and stored files therefore atams read
by the user.

Fault The cause of the error is calledault. An active fault leads to an error;
otherwise the fault is dormant. For example, impuritieshia $emicon-
ductor devices may cause computer memory in the long run havse
unpredictably.

If a fault remains dormant during system operation, theretieno error. If
the fault leads to an error, then the fault must be toleradatiat the error does
not lead to system failure. To tolerate faults, errors mestibtected in any
fault-tolerant system. ldentifying the characteristi€the faults that are mani-
fested as errors is an important issue to design effectivie tialerant systems.
Faults in systems may be introduced during developmeneffample, design
and production faults) or due to the interaction with thesaxal environment
(for example, faults entering via user interface or due tiunad process such
as radiation). To that end, faults are grouped as: developmRysical and in-
teraction faults{JALRLO#4]. Based on persistence faults feather be classified
as permanent, intermittent, and transieént [JOh88]. Faaltsoccur in hardware
or/and software.

Hardware Faults: A permanent or hard fault in hardware is an erroneous
state that is continuous and stable. Permanent faults ohaae are caused
by the failure of the computing unit. Transient faults anmperary malfunc-
tioning of the computing unit or any other associated coneptswhich causes
incorrect results to be computed. Intermittent faults epeated occurrences of
transient faults.

Transient faults and intermittent faults manifest themsglin a similar
manner. They happen for a short time and then disappear writausing a
permanent damage. As will be evident later, the proposdttfalerance tech-
nigues to tolerate transient faults are also equally agplécfor tolerating inter-
mittent faults.

2.2. FAULT-TOLERANT SYSTEMS 15

Software Faults: All software faults, known as software bugs, are perma-
nent. However, the way software faults are manifested asleads to cate-
gorize the effect as: permanent and transient errors. Wectegize the effect
of software faults that are always manifested as permamerse For example,
initializing some global variable with incorrect value ths always used dur-
ing any execution and producing the output of the softwaemisxample of a
permanent error. We characterize the effects of the saftfeaits that are not
always manifested as transient errors. Such transiemsarray be manifested
in one particular execution of the software and may not neshihemselves at
all in another execution. For example, when the executidh pha software
varies based on the input (for example, sensor values) oertigonment, a
fault that is present in one particular execution path mayifest itself as an
transient error only when certain input values are useds féhilt may remain
dormant when a different execution path is taken, for exapthle to a change
in the input values or environment.

Sources of Hardware Transient Faults: The main sources of transient
faults in hardware are environmental disturbances likegrdiuctuations, elec-
tromagnetic interference and ionization particles. Tiemsaults are the most
common, and their number is continuously increasing dueigh bomplex-
ity, smaller transistor sizes and low operating voltagedomputer electron-
ics [BauO5].

Rate of Transient Faults: It has been shown that transient faults are sig-
nificantly more frequent than permanent faults [SKE8, [CMS82,[TRHS8B,
CMR9Z,[Bau0b, SABR04]. Siewiorek and others|in [SKF8B] observed that
transient faults are 30 times more frequent than permaseitsf Similar re-
sult is also observed by Castillo, McConnel and SiewioreJORIS82]. In an
experiment, lyer and others found that 83% of all faults wkreermined to be
transient or intermittenf [IRH86]. The results of theselgts show the need to
design fault-tolerant system to tolerate transient faults

Experiments by Campbell, McDonald, and Ray using an owpisiatellite
containing a microelectronics test system found that, iwithsmall time in-
terval (~ 15 minutes), the number of errors due to transient faultsuiseq
high [CMR92]. The result of this study shows that in spaceliagfions, the
rate of transient faults could be quite high and a mecharssneéded to toler-
ate multiple transient faults within a particular time irva.

The fault-tolerant scheduling algorithm proposed in thissis considers
tolerating multiple faults within a time interval equal teetmaximum period of
the tasks in a periodic task set.

16 CHAPTER 2. PRELIMINARIES

2.2.2 Error Detection Techniques

An active fault leads to an error. To tolerate a fault thatifet an error, fault-
tolerant systems rely on effective error detection medrasi Similarly, the de-
sign of many fault-tolerant scheduling algorithm relieseffiective mechanisms
to detect errors. Error detection mechanisms and theirrageedetermine the
effectiveness of the fault-tolerant scheduling algorishm

Error detection can be implemented in hardware or softwatardware
implemented error detection can be achieved by executiagéime task on
two processors and compare their outputs for discrepaifdigdication and
comparison technique using hardware redundanénother cost-efficient ap-
proach based on hardware is to use a watchdog processor ¢mibra the
control flow or performs reasonableness checks on the oafgbhe main pro-
cessor[[MCS91]. Control flow checks are done by verifyinggtered signa-
ture of the program control flow with the actual program cohtiow during
runtime. In addition, today’s modern microprocessors trag@ay built-in error
detection capabilities like, error detection in memorytes registers, illegal
op-code detection, and so on [MBS07, WEMRO04, SKI8].

There are many software-implemented error-detection am@sms: for ex-
ample, executable assertions, time or information reducyd@ased checks,
timing and control flow checks, and etc. Executable assesrtaze small code
in the program that checks the reasonableness of the outpalue of the vari-
ables during program execution based on the system sp#oifiddHCS02].
In time redundancy, an instruction, a function or a task iscexed twice and
the results are compared to allow errors to be detectedlication and com-
parison technique used in softwufAFKO5]. Additional data (for example,
error-detecting codes or duplicated variables) are usdetexct occurrences of
an error using information redundancy [Pra96].

In summary, there are numerous ways to detect the errors anthplete
discussion is beyond the scope of this thesis. The fawdtaot scheduling al-
gorithms proposed in this thesis rely on effective errcedgon mechanisms.

Goals and Contributions

The complexity of hardware and software in computerizetesyss increasing
due to the “push-pull” effect between development of nevivearfe for exist-
ing hardware and advancement in hardware technology ftlmdoming soft-
ware. On the one hand, high-speed processors pull the geneld of new soft-
ware with more functionalities (possibly with added comxjiles) and on the
other hand, new software push the advancement of new haedwith added
complexities). The increasing frequency of occurrencesasfsient faults in
increasingly-complex hardware and the increasing likeldh of having more
bugs in increasingly-complex software require effectind aost-efficient fault-
tolerant mechanisms in today’s computerized systems.

The overall goal of this thesis is to design efficient faoletant real-time
scheduling algorithms for both uniprocessor and multipssors. First, the
uniprocessor scheduling algorithfiTRMis developed using an exact feasibil-
ity condition considering occurrences of multiple fauBhéptefb). This thesis
also suggests how this uniprocessor scheduling algoritmmbe extended to-
wards multiprocessor platforms. Second, based on a tdstirgpparadigm, a
multiprocessor scheduling algorithhBPS is designed considering some im-
portant practical features, such as ease of debugging,\‘evhead of splitting
and scalability (Chaptéi 6). The schedulability of the n#flalgorithml BPS is
analyzed and an efficient online scheduling version, caetlBPS, is pro-

17

18 CHAPTER 3. GOALS AND CONTRIBUTIONS

posed. In addition, this thesis suggests how this onlineduling algorithm
can be extended towards fault-tolerance.

Traditionally, redundant hardware is used as a means ferathg faults.
However, due to cost, weight, and space considerationse systems may
instead require that faults are tolerated using time rednoyl Simple re-
execution or execution of recovery block (ta is, differemplementation of
the task) are two viable approaches to exploit time redundsmachieve fault-
tolerance. However, exploitation of time redundancy comssi processor ca-
pacity in the schedule which may cause task deadlines to $sechi To address
this problem, this thesis proposes an efficient uniprocesgeeduling algorithm
that can tolerate multiple transient faults using time rethnt execution of ap-
plication tasks. In addition, the recent trend in processchitecture design
to have many cores in one chip [KAOO05] motivates the desigarpéfficient
multiprocessor scheduling algorithm. The major contiimg of this work are
as follows:

C1 Uniprocessor scheduling (Chaptel 5)-necessary and sufficient feasi-
bility condition is derived for RM uniprocessor fault-toéat scheduling
to tolerate multiple faults. The exact RM feasibility cotoln of each
task is derived based on the maximum total workload reqdesithin
the released time and deadline of the task. To calculateriaidmum
total workload considering the occurrences of faults, aehtechnique
to compose the execution time of the higher priority jobssedi The
proposed method considers a very general fault model saththitiple
faults can occur in any task and at any time (even during g9y The
analysis considers a maximum g¢ffaults that can occur within a time
interval equal to the maximum period, denoted’ as .., of the tasks in a
periodic task set. The feasibility condition and the congtilty opera-
tions are implemented in an algorithm, callEdRM

The proposed composition technique is very efficient bex#usan ex-
ploit knowledge about the critical instant (identificatioithe worst-case
workload scenario). To that end, the run time complexityFdRM is
O(n - N - f?), whereN is the maximum number of task jobs (of the
n periodic tasks) released within any time interval of len@h,.. To
the best of my knowledge, no other previous work has deriveéxa
act fault-tolerant uniprocessor feasibility conditiomttmas a lower time
complexity than that is presented in this thesis for the mgsligeneral
fault model. The proposed fault-tolerant uniprocessoedahng analy-
sis can easily be extended to partitioned multiprocessosBivduling.

19

C2 Multiprocessor scheduling (Chapfér 6)partitioned multiprocessor sch-
eduling algorithm, called BPS, is proposed based on a task-splitting
technique. It is proved that the offline scheduling algonithBPS has a
minimum achievable utilization bound of 55.2%. This al¢fum is one
of the first work8 to overcome the fundamental limitation of a 50% mini-
mum achievable utiliation bound of the traditional, noskisplitting par-
titioned multiprocessor scheduling for static-prioriagks.

In | BPS, the load in each processor is regulated in such a way that at
most four processors in the system may have an individudllkss than
55.2%. This regulation enables an efficient design of a spmeding on-
line scheduling algorithm, calle@ | BPS. More specifically, finding the
best processor to which an accepted online task should nedsre-
quires searching at most four (underloaded) processanslagly, when
a task leaves the system, some of the remaining tasks maytodes
reassigned on at most five processors to regulate the loddttoe ad-
mittance of new tasks. The task assignment algoritlB®S runs in
linear time, which means that reassignment of tasks on ademlinum-
ber of processors for the purpose of load regulation will &gy efficient.
Since tasks only need to be (re-)assigned on a bounded nwhpes-
cessors, the algorithi® | BPS will be very efficient and scale well for
systems with a large number of processors (for example, Chédrig
many cores). The only other work solving the same problenL 9} is
not suitable as an online scheduler because reassignmeasksfmay in
the worst case involve all processors.

One useful application of thé | BPS algorithm is in fault-tolerant real
time systems. When a fault occurs in such a system, the relusoev-

ery operation to tolerate faults can be considered as a sefprea new

online task. Based on the available capacity of the procesubthe crit-

icality of the existing tasks in the system, it is thus pokestb design a
fault-tolerant online scheduler. To that end, this thesippses three dif-
ferent approaches to achieve fault-tolerance for the emtinltiprocessor
scheduling.

1The development of our algorithm took place in parallel with tevelopment of a competing
task-splitting technique_[LRL0O9], but the latter work washfished first and also had a higher
utilization bound.

Models

The design of fault-tolerant scheduling algorithms is galyaddressed based
on the models of the target systems. Task systemandfault models used in
this thesis are presented in this chapter.

4.1 Task Model

To model the recurrent tasks of real-time applicationsptiyeularperiodic task
modelis used in this thesis [LL73]. The basic notations and songoitant
concepts used for a periodic task set is presented next.

Periodic Task Set: In this thesis, scheduling of implicit-deadline peri-
odic tasks in sef'= {r, 79, ...,7,} is considered. Each of the tasksin set
{m1,72,..., 7o} is characterized by a paiC{, T;), whereC; represents the
WCET andT; is the period of task;. Each taskr; is released and ready for
execution at the beginning of each peribdand requires at most; units of
execution time before next period. The relative deadline wafskr; is equal to
its periodT;, that is,I" is an implicit deadline task system.

RM priority: The priority of taskr; is greater than the priority of task
7; if T; < Tj. This is the priority assignment governed by the RM scheduli

21

22 CHAPTER 4. MODELS

policy, in which a task with smaller period has higher ptiprin case, two tasks
have equal periods they have the same priority and the nu@-dispatcher can
arbitrarily break the tie.

Utilization: Theload or utilization of a taskr; is denoted by; = C;/T;.
Thetotal load or total utilizationof any task setl is U(A) = > , u;. For
example, the total utilization of the task deis U (T"), which is the total load of
the task sef'.

Jobs of Tasks: A job of a taskr; is released in each peridd. All the
tasks in sef are released at the same time and it is assirtret this time
is zero. Thej'" job of taskr; is denoted byr; ; for j = 1,2,...00. Jobr; ;
is released at timéj — 1) - 7; and has an absolute deadfire timej - T; .
Formally, the released timeg ; and deadlinel; ; of job 7, ; fori =1,2,...n
andj = 1,2,... o0 are defined as follows:

rij =0 —=1-T (4.1)
dij =j-T; (4.2)

Critical Instant: The critical instant of a task is the released time at which
the interference on the task from the higher priority taskenaximized. Liu
and Layland (without considering faults) have proved that ¢ritical instant
of uniprocessor RM scheduling for any task occurs when thk imreleased
simultaneously with the release of all of its higher priptasks [LL73].

The uniprocessor schedulability analysis of algoritRifRMin this thesis
must consider the critical instant of each task. Moreovecesthe multiproces-
sor scheduling algorithrhBPS proposed in this thesis is based on partitioned
scheduling, the RM schedulability analysis on each prardssthe multipro-
cessor system must also consider the critical instant fon éask assigned to
that particular processor.

Under fault-tolerant scheduling, there is one job of eask ta which the
occurrence of faults have the greatest impact. In such ¢hsefaults may
occur in that particular job of the task and/or in any job sfhigher priority
tasks. Ghostet al. showed that, when faults occur and time redundancy is
used to tolerate faults in uniprocessor RM scheduling, tiitecal instant is
when all tasks are released simultaneously [GMM$98a]. €asaning is as
follows: if the completion of jobJ of a task is delayed byA time units due to

1This latter assumption is only for convenience in our woestecschedulability analysis.
2n the rest of this document ‘deadline’ refers to the absadie@dline of a job if not mentioned
otherwise.

4.2. SYSTEM MODEL 23

the occurrence of some faults jhor its higher-priority jobs, then some other
lower priority jobJ’ of some other task will be delayed by at mdstime unit
if both .J and.J’ are released simultaneously.

4.2 System Model

The system model considered in this thesis is either a ucgssor or a mul-
tiprocessor platforﬁ1 The multiprocessor platform consists of a number of
uniprocessors connected by some interconnection netwidré&.expected ser-
vice in each uniprocessor is delivered by executing a nurobersks assigned
to the processor.

In partitioned multiprocessor scheduling, the tasks t@eteon a processor
are assigned by some task assignment algorithm. The rurstistem in each
processor is a RM uniprocessor scheduler. Each processautes a number of
real-time tasks using RM prioritization. Tasks are assutodak independent,
that is, there is no resource sharing except for the procesdue cost of a
preemption and context-switch is assumed to be negligible.

4.3 Fault Model

Designing fault-tolerant scheduling algorithm needs targuatee that all tasks
deadlines are met when faults occur even under the worstioad condition.
No fault-tolerant system can, however, tolerate an anyitramber of faults
within a particular time interval. The scheduling guaranie fault-tolerant
system is thus given under the assumption of a certain faadetn

In this thesis, the fault model mainly assumes toleratirgfttults due to
which the error is transient either in hardware or softwdre addition, per-
manent software errdfsare also considered in the fault model when diverse
implementation of the software is available. It is assunied transient faults
are short lived and would not reappear when re-executingdhee task. This
is a reasonable assumption since it can be implementedysbypesetting the
processor before re-execution. Our fault-tolerant meicharcan also tolerate
certain class of software faults. If the effect of faults afteare is manifested
as transient error that would not re-appear upon re-exagutiien such faults
can be tolerated using simple re-execution of the task. kamele, due to
changes in the environment or changes in the input paraspeter execution

3By ‘processor’ we also mean an individual processing coreNtPg.
4permanent software faults means bugs that are always pregeeeanent in nature.

24 CHAPTER 4. MODELS

path a software takes could be different from one execut@mbther. In such
case, it is expected that the same error would not occurgsirdifferent exe-
cution path is taken) if the software is simply re-executéthe effect of faults
in a software is manifested as a permanent error, then @+8®a of the same
software can not mitigate such faulty behavior. In such eadiferent version
of the software (that is called, a recovery block) can be eteztwhen error is
detected.

Time redundancy is considered in this thesis for toleratingtiple faults.
Faults are assumed to be detected at the end of executioaskK.althis assump-
tion is must for the worst-case schedulability analysissgsointed in[[PM98].
When fault occurs during execution of a task and error is dete®ither the
faulty task is simplyre-executear arecovery bloclcorresponding to the faulty
task is executed. The recovery block of a task is a differapiémentation of
the same task to achieve diversity as is used in N-versiagranoming [Avi85].
The recovery block of a task has the same period as the drigisia but may
have a different WCET than that of the original task. When a tagixecuted
for the first time, it is called therimary copyof the task. After an error is de-
tected, the re-execution or execution of the recovery bicklled therecovery
copyof the task.

The re-execution of the task or execution of the recoverglbls activated
when an error is detected. We assume that a combination tfaref and
hardware error-detection mechanisms are available taid#te occurrences
of faults. There are many software and hardware based @etection mecha-
nisms as is discussed in Section 2.2.2. It is also assumethéherror-detection
and fault-tolerance mechanisms are themselves faulatuie

Perfect error detection coverage is assumed for simplafitthe schedu-
lability analysis. However, a probabilistic analysis otifatolerant schedu-
lability with imperfect error detection coverage can be radded similar to
[BPSW99| AHO6| Pat06] and such an analysis is not the addtésghis the-
sis. The error detection overhead is considered as pare MBET of the task.
There is no fault propagation, that is, faults affect onlg tlesults produced
by the executing task. This no-fault-propagation assurngs reasonable and
is a requirement in the design of many safety-critical ajgions, for exam-
ple, in Integrated Modular Avionics (IMA) systems, as isadissed in[[Bar(8].
Permanent processor failure is assumed to be tolerateg sigstem level fault
tolerance[[Bar08] and not considered in this thesis.

In summary, the fault model considered in this thesis hasoreble repre-
sentativity and very general to tolerate a variety of faultsardware/software.

Uniprocessor Scheduling

This chapter presents the analysis of RM scheduling on aogssor for tolerat-
ing multiple faults. The outcome of the analysis is the ddron of a necessary
and sufficient feasibility condition for fault-tolerant R&¢heduling of periodic
tasks on a uniprocessor. An algorithm, calletRM is presented based on this
necessary and sufficient feasibility condition. Using alfpon FTRM the fea-
sibility of a set of periodic tasks on uniprocessor can bermeined efficiently
considering multiple occurrences of faults.

5.1 Introduction

The importance of dependability is increasing as computersaking a more
active role in everyday control applications. Fault-taleze in such systems is
an important aspect to guarantee the correctness of theagiuh even in the
event of faults. In many safety-critical systems, use o&tm@dundancy is con-
sidered as a cost-efficient means to achieve fault-toleraht such systems,
when an error is detected tasks are simply re-executed dfeediit version,
called recovery block, of the task is executed. Due to théiaddl real-time re-
quirements of such systems, it is essential that exploitadf time redundancy
as a means for tolerating faults must not compromise thditiess guarantee

25

26 CHAPTER 5. UNIPROCESSOR SCHEDULING

of the other tasks in the system.

To guarantee both correctness and timeliness behaviofatfszitical real-
time systems it is necessary to design a fault-tolerantdsdhmg algorithm.
To that end, an offline uniprocessor schedulability analisspresented in this
chapter. The objective of the analysis is to find the conditieeded to verify
that a set of, static-priority periodic tasks will meet the deadlinesrevenen
faults occur in the system. The outcome of the analysis islénation of a
necessary and sufficient (exact) feasibility conditionRdf scheduling consid-
ering occurrences of multiple faults on a uniprocessoreBam this exact fea-
sibility condition, a fault-tolerant uniprocessor schiuly algorithm FTRMis
proposed for scheduling periodic tasks in task sét

Th exact feasibility condition of the task sEtis derived in terms of the
the exact RM feasibility condition of each task based on tleimum total
workload requested within the released time and deadlitteeofask. To calcu-
late this maximum total workload considering the occuresnaf faults, a novel
technique to compose the execution time of the higher pyimbs is used. The
main important characteristic of the proposed compogghligichnique is that
it is not only applicable for tasks with implicit deadlinechRM priority, but
also for tasks with constrained deadlines and any fixeddpripolicy. There-
fore, the proposed feasibility analysis technique in thiapter would enable
the derivation of an exact feasibility condition for any fixpriority scheduling
of constrained or implicit deadline task systems (for exi@mnin fault-tolerant
deadline-monotonic). However, in this thesis, the compitisamechanism is
described for uniprocessor RM scheduling.

The scheduling analysis 6fTRMconsiders occurrences of a maximum of
f faults within any time interval of lengtf,,, ., whereT,, .. is the largest pe-
riod of any task in the periodic task det The run-time complexity oFTRMis
shown to beO(n - N - f2) wheren is the number of tasks in a periodic task
set, N is the maximum number of jobs released within any intervekafith
Thaz- TO the best of my knowledge, this the first fault-tolerant Réhedul-
ing algorithm that considers such a general fault model asrdeed in Section
[43. A similar work exists for EDF considering the same fandtdel [Ayd07].
Compared to that work our proposed algorithm is more efftcfgnterms of
time complexity) due to a new way to calculate the impact ghkr-priority
tasks on the schedulability of a particular task.

The uniprocessor analysis presented in this chapter iscapjg to parti-
tioned multiprocessor scheduling, where each processmugas tasks using
uniprocessor scheduling algorithm. A task assignmentrilgn assigns the
tasks from sef” to the processors of a multiprocessor platform. To detezmin

5.2. BACKGROUND 27

whether an unassigned task can be feasibly assigned to esgarcthe pro-
posed exact fault-tolerant RM feasibility condition for miprocessor can be
used, which guarantees that each processor can toleraie uqputnber of faults

within any time interval equal to the maximum length of theipds of the tasks
assigned to that particular processor.

The rest of the chapter is organized as follows: the necgssadels and
theories used for uniprocessor fault-tolerant schediitigbinalysis is presented
in Section[5.P. Then, related work in fault-tolerant scHedpis presented
in Section 5.B. The problem statement is formally given ist®a[5.4. The
fault-tolerant RM schedulability analysis for one indival task is presented in
Section[5.b. Then, in Sectidn 5.6, the necessary and suffitaelt-tolerant
RM feasibility condition for a complete task set is derived@he algorithm
FTRMis presented in Sectidn 5.7 and its applicability to the iprdtessor
setting is discussed. Section]5.8 concludes this chapter.

5.2 Background

5.2.1 Task Model

The task model used for the uniprocessor schedulabilityysisais same as
the one presented in Sectibnl4.1. The task model we conssdemes a set
of n implicit deadline periodic taskB ={ry, 72, ...,7,}. Each taskr, € T'is
characterized by WCET; and periodl;. Thej*" job of taskr; is denoted by
7i,j. The jobr; ; is released at time; ; and has an absolute deadline by time
d; ; as is defined in Eq[{4.1). We defiff§,,, to be the maximum period of
any task in the task s€&t={ry, 72, ..., 7.}, thatis,

Tmax = mzllx {Tz}

Without loss of generality we assume that tasks are sortedtini in order of
decreasing priority, that s, all tasks in set {7, . . . 7,1} are of higher-priority
than the priority of task;. Moreover, we denote the maximum number of jobs
released within any time interval of lendih, ., by V.

5.2.2 Fault Model

The fault model presented in Sectionl4.3 is extended herexact RM feasi-
bility analysis on a uniprocessor. A number pfaults that may occur within
any time interval of length equal t6,,,.. is considered. The faults can occur

28 CHAPTER 5. UNIPROCESSOR SCHEDULING

during the execution of any primary and/or recovery copy ¢dsk. A new
recovery copy is activated when an error is detected at tHeoEaxecution of
a primary or recovery copy of a task. The recovery copy coinply be the
re-execution of the primary copy or it could be a differenplementation of
the same task, called recovery block, in which case the WCEfnogbe same
as the WCET of the primary copy. Within any time interval ofdém7;,,,.,
the f faults may occur in the same task’s primary and recoveryesopi may
occur in different tasks. The recovery copy of a tagks executed with the
same priority as that of task.

For each task;, the primary copy executes first. If an error is detected at
the end of execution of the primary copy, the first recovenyycof the task is
ready to execute. Again an error may be detected at the enctofiton of the
recovery copy which in turn would trigger the execution oktnecovery copy
and so on. Therefore, each task must hAvecovery copies in case if all the
f faults occur in the same job of a task. If we gafaults occur in a job of task
7;,» then we mean that the first fault occurs in the primary coghefob of task
7; and each of the subsequéht— 1) faults occurs in each subsequent recovery
copy of the same job of task. Note that, when the cumulative execution
demand within an interval of length,, .., due tof faults is at its maximum,
then it is necessary that all thfefaults occur within that interval.

Remember that an error is assumed to be detected at the erdonttien
of a task’s primary or recovery copy. We assume that, durkegetion of a
particular primary or recovery copy of a task, at most ondt faould occur.
This assumption is essential for the worst-case schedityadmalysis. Because
when an error is detected at the end of execution of a tasik'sapy or recovery
copy, the overhead for executing the recovery operatios doedepend on the
number of faults affecting that particular faulty copy.

The f faults may occur in one job or might occur in different jobsdif
ferent tasks released within a time interval of len@if,.. The fault-tolerant
scheduling algorithm must guarantee that, for any comizinadf the occur-
rences of thef faults in the jobs released within any interval of len@th,.,
the schedule has to be fault-tolerant. Remember that weresthat there are
maximumN jobs released within any interval of length, ... There are differ-
ent possibilities of the occurrences of théaults in theN jobs. One possibility
is that all thef faults occur in one of thév jobs. Another possibility is that a
different number of faults occur in different jobs. Eachlspossibility of fault
occurrence is called fault pattern[Ayd07,[LMMOQ]. Given a set of jobs iM
we denote any possible combinationkofaults that can occur in the jobs in set
A by k-fault-patternk = 0,1,2... f. For example, ift = 0, no fault occurs

5.2. BACKGROUND 29

within the jobs in set4.

To achieve fault-tolerance, it has to be ensured that aljabe released
within any interval of lengthr;,, ... will meet the deadlines for any possible
f-fault pattern. The question that arises at this pointibat are the different
possible fault patterns that one must consider for RM felitsitanalysis of
N jobs released within a time interval of lendth,...? In other words, in how
many ways thef faults could occur inV jobs that are released within any time
interval of lengthT,, ... According to combinatorial theory, there are a total
of (¥ +ff 1) different ways thef faults could occur inV jobs. As is already
pointed out in[[Ayd07], number of different fault patterrigen by the binomial
coefficient(™ */) is equal to

f
(N +ff 'l> - Q((Z;)f> — O(NY) (5.1)

according to[[CLRS01].

The RM feasibility analysis on uniprocessor considering txponential
number of fault patterns may not be computationally pratiic N and f are
large. To overcome this problem, a dynamic programing tegfnis used in
this thesis to find an exact RM feasibility condition for aka®et considering
f faults that could occur in any interval of lendih,,... The time complexity
of this technique for evaluating the exact feasibility cibiod is O(n - N - f?).

5.2.3 RM Schedulability

RM scheduling is widely used in many real-time systems beeau its sim-
plicity and ease of implementation. The analysis of unipssor RM schedul-
ing for an implicit deadline periodic task system is addeelslsy Liu and Lay-
land in [LL73]. Liu and Layland proved that RM is an optimaldokpriority
scheduling algorithm on a uniprocessor. They derived acserffi feasibil-
ity condition (without considering fault-tolerance) thaan check RM feasi-
bility of a set ofn periodic tasks irO(n) time. Necessary and sufficient (ex-
act) feasibility conditions for uniprocessor RM schedglimve been derived
in [CSD89,[JP86, ABR 93].

Liu and Layland in[[LL73] proved that if the first job of eaclskacan meet
its deadline when all tasks are simultaneously releasealfras a critical in-
stant), then all the jobs of a task set are RM schedulable.exhet RM feasi-
bility condition proposed by Lehoczky, Sha and Dinglin [L3D& derived by
assuming that all tasks are released at time 0._In [L$SD88]ctimulative exe-

30 CHAPTER 5. UNIPROCESSOR SCHEDULING

cution demand by the tasks in det;, 7, ... 7;} over an interva(0, ¢) is given
as follows:

Wit) =32y T

The necessary and sufficient condition for RM feasibilityageriodic task set
I'={r,7,..., 7} according to[[LSD89] is given in Eq. {8.2) and E.(5.3):

1. Taskr; can be scheduled using RM if and only if:

<1 (5.2)

whereQ; = {k-Tj |j=1...i,k=1... %]}
2. The task sef’ is RM schedulable if and only if:

mazr L; <1 (5.3)

1=1...n

The exact feasibility condition for a task in the task se{r,72,...,7,} is
given in Eq. [5.2). Based on the exact feasibility condifioneach one of the
tasksr; € {m,m2,...,Tn}, the exact feasibility condition of the entire task set
{m1,72,..., 7} is derived in Eq.[(EI3).

In this thesis, the fault model considers different numbdaolts in differ-
ent jobs of the same task due to various fault patterns. Tdverghe execution
time of different jobs of the same task could be different.n§muently, be-
cause the worst-case fault pattern is not known in advaheegxact analysis
as given in Eq[(5]3) is not applicable for the exact fauletaht schedulability
analysis. However, in this thesis an approach similar to(&E&) and Eq.[{5]3)
is used—in the sense that the exact fault-tolerant RM fdagibondition for
the task sef" is derived in terms of the exact fault-tolerant feasibitiyndition
of individual task.

5.3 Related Work

Many approaches exist in the literature for tolerating i task schedul-
ing algorithms. Traditionally, processor failures (peneat faults) are toler-
ated using Primary and Backup (PB) approaches in which tineapy and re-
covery copies of each task are scheduled on two differerdessors/ [BT83,
KS86,[SWG9?2, GHo, 0S9%4, GMMB7, MM98, BMR99, AOSM01, KLLS05b,

5.3. RELATED WORK 31

KLLS05¢€]. Since this thesis does not deal with permaneritsfathese works
will not be further discussed.

Ghosh, Melhem and Mossé proposed fault-tolerant unipsaceschedul-
ing of aperiodic tasks considering transient faults by iitisg enough slack
in the schedule to allow for the re-execution of tasks whereaor is de-
tected[GMM95]. They assumed that the occurrences of twitsfate separated
by a minimum distance. Pandya and Malek analyzed faultaoteRM schedul-
ing on a uniprocessor for tolerating one fault and proved tha minimum
achievable utilization bound is 50% [PM98]. The author® alemonstrated
the applicability of their scheme for tolerating multipkeutts if two faults are
separated by a minimum time distance equdl’tg,... In this thesis, the pro-
posed algorithnFTRM can toleratef faults within any time interval equal to
Tmaz @nd no restriction is placed between the time distance legtwgo con-
secutive faults withirt},, ..

Ghoshet al. derived a utilization bound for RM uniprocessor scheduling
for tolerating single and multiple transient faults usingancept of backup
utilization [GMMS98b]. To toleratef transient faults, the utilization of the
backup is set tg times the maximum utilization of any task given that a fault
model similar to the one in this thesis is used. Whereas thaveeg scheme
in [GMMS98L] allows recovery tasks to execute at a priorigher than that
of the faulty task, the recovery scheme in this thesis exsagcovery copies at
the same priority as the faulty task.

Liberto, Melhem and Mossé derived both exact and sufficieasibility
conditions for toleratingf transient faults for a set of aperiodic tasks using
EDF schedulingl[LMMO00]. They showed that for a setroéperiodic tasks in
which a maximum off faults could occur, the exact test can be evaluated in
O(n? - f) time using a dynamic programming technique. However, thiecas
of [LMMOO] consider recovery copy of a faulty task simply aseaexecution of
the primary copy and do not consider the execution of a regdseck (that is,
diverse implementation of a task with a possibly differemaition time) when
an error is detected.

Burns, Davis, and Punnekkat derived an exact fault-totdesasibility test
for any fixed priority system using recovery blocks or re@x®n [BDP96].
This work is extended in_[PBD01] to provide the exact schablility tests
employing check-pointing for fault recovery. In [MdALBQO3je A Lima and
Burns proposed an optimal fixed priority assignment to tésk$ault-tolerant
scheduling based on re-execution. The fixed priorities @téisks can be deter-
mined inO(n?) time for a set ofx periodic tasks. The schedulability analysis
in [BDP96,/MdALBO3] require the information about the minim time dis-

32 CHAPTER 5. UNIPROCESSOR SCHEDULING

tance between any two consecutive occurrences of trarfsielts within the
schedule, and only considers simple re-execution or eiecof a recovery
block when error is detected. In the latter case, the exatuiine of the re-
covery block is the same regardless of the number of exetofia particular
job. This is in contrast to our proposed method where eadabwvesg block for
a particular job may have different execution time.

Based on théast chance strateggf Chetto and Chettd [CC89] (in which
recovery tasks execute at late as possible), softwaresfardttolerated by con-
sidering two versions of each periodic tasks: a primary &t a recovery
block [HSWO03]. Recovery blocks are scheduled as late as ljesgsing a
backward RM algorithm (schedule from backward of time). i&into the work
in [MdALBO3], the work in [HSWO3] considers that there is ordpe recov-
ery block of each task and therefore do not have the provigiononsidering
different recovery blocks if more than one fault affect theng task.

Santoset al. in [SSOO05] derived a feasibility condition for determining
the combinations of faults in jobs that can be tolerated guault-tolerant
RM scheduling of periodic tasks. In order to guarantee ti@system can toler-
ate multiple transient faults for any combination of fau#td possible fault pat-
terns has to be considered in their derived condition whieasgan intractable
time complexity. Moreover, the authors assumed that a tantoccur only in
the primary copy of a job. The work ih [SSOO05] is based a notiatieds-RM
schedulable (originally proposed in [SUS004]). B\RM schedulable, the au-
thors mean that there are at leadtee time slots available between the release
time and deadline of each task. The time complexity to deterrwhether a
task set isk-RM schedule iO(n - T,,4..) Which can be significant for large
Tinaz [SUSOO4].

Aydin in [Ayd07] proposed aperiodic and periodic task salied) based
on an exact EDF feasibility analysis in which a recovery copyw task can
be different from the primary copy. Aydin considers a faulbdal in which
a maximum off transient faults could occur in any task of the aperiodi& tas
set. The schedulability analysis |n [Ayd07] is based on gssor demand anal-
ysis [BRH90]. For periodic task systems, the proposed efeadibility test
in [Ayd07] is evaluated irO(A? - B?) time, whereA is the number of jobs re-
leased within the first hyper-period (i.e. least common ipldtof all the tasks
periods) andB is the number of faults that can occur within the first hyper-
period. In this thesis, we derive an exact RM feasibilitydition for which the
run-time complexity i<D(n - N - f2) whereN is the maximum number of jobs
of then periodic tasks released within a time interval of len@th,.., andf is
the maximum number of faults that can occur within any tinterival of length

5.4. PROBLEM FORMULATION 33

T..qe. TO See the difference between the tettsand ¢ - V) exist in the time
complexity figuresD(A? - B2) andO(n - N - f2), considem = 4 tasks such
that the periods of the four tasks d@e = 3, T, = 7, T3 = 11, andTy = 13.
The length of the hyper-period iem{3 - 7 - 11 - 23} = 3003. The number
of jobs released within the hyper-period4As= 1934. On the other hand, the
number of jobs released within any interval of len@th,, =13 isN = 10. The
value of A2 and @ - N) are19342 = 3740356 and(4 - 10) = 40 in the the time
complexityO (A2 - B?) andO(n - N - f2) of the EDF algorithm in[[Ayd07] and
our proposed-TRMalgorithm, respectively. Therefore, for a given failuréeta
the time complexity of our proposed exact RM test for pexddesk set is more
efficient than that of the exact EDF test proposed in [Ayd07].

In conclusion, most of the work related to developing faalerant schedul-
ing algorithms using time redundancy consider a fault mtiulis not as gen-
eral as the fault model considered in this thesis. Only thekwo[Ayd07] for
EDF scheduling considers a fault model similar to the oneestdd in this
thesis. However, the exact EDF test in [Ayd07] is less efficie terms of
time complexity than that of ours for RM. Therefore, if botifiGency and
preciseness is required, oBTRM algorithm can provide better performance
than that of EDF scheduling in [AydD7]. However, it shouldrbentioned that,
in [Ayd07], a sufficient test (lacking preciseness in thesfbility testing) for
EDF scheduling of periodic tasks is proposed that is moreieffi than our
proposed exact RM feasibility condition.

5.4 Problem Formulation

The uniprocessor fault-tolerant scheduling algoritRifRM proposed in this
thesis is based on an exact RM feasibility condition. We waroccurrences

of a maximum off faults within any time interval of lengtfh,,, ... The f faults
could be distributed over any jobs that are eligible to ei@within any time in-
terval of lengtht’,, ... Note that a job is eligible to execute between its released
time and its deadline. The problem addressed in this th&sis i

Is the task sel” RM-schedulable if a maximum off faults occur
within any time interval of length equal td’,,,..?

The exact RM feasibility condition of the task détfor the fault-tolerant
scheduling algorithnFTRMcan be derived based on exact feasibility condition
of each task; € T, fori = 1,2,...n. If a maximum of f faults can occur
within a time interval of lengtiT;,, ..., then the maximum number of faults that

34 CHAPTER 5. UNIPROCESSOR SCHEDULING

can occur within any time interval of lengthi, fori = 1,2,3,...n, can be at
most f. Following this, the last problem statement can be re-emi#s:

Is taskr; RM-schedulable if a maximum off faults occur within
any time interval of length equal t@;, fori = 1,2,...n?

Itis clear that, if the exact feasibility condition for eadskr; € T" can be
determined, then the exact feasibility condition for thérertask sel” follows
immediately (similar to the approach [n [LSD89]).

To ensure that task; is RM-schedulable on a uniprocessor, the critical in-
stant for which the load imposed by the higher-priority task taskr; is maxi-
mized needs to be considered in the fault-tolerant schetuider our assumed
fault model, the critical instant in the uniprocessor faaolerant schedule is
when all the tasks are released at the same time (as disdusSedtio 4.1).
In this thesis, without loss of generality, we assume thiathal tasks are re-
leased simultaneously at time zero. Similarto [LSD89], idev to derive the
exact feasibility condition of task;, it is sufficient to derive the exact feasibility
condition for the first job of each tagk € I". The first job of task; become
eligible for execution at time 0 and must finish its execut{grluding any
possible recovery execution due to faults) before time Consequently, the
problem addressed can finally be re-written as:

Is the first job of taskr; RM-schedulable if a maximum off
faults occur within the time interval [0.7;), fori = 1,2,...n?

In the rest of this chapter, the exact feasibility conditadrtaskr; refers to the
exact feasibility condition of the first job of unless otherwise noted.

In next Sectiom 515, the exact feasibility analysis of taswithin [0, T;) is
presented. In order to find the exact feasibility conditite maximum total
work completed within0, T;) by the jobs of the taskér, 7 ... 7;} is calcu-
lated based on twimad factorswithin [0, ;). In subsectiof 5.511, the first load
factor that is equal to the maximum work needs to be complegetjob of task
7; is calculated. Then in subsectibn 515.2, the second loadrfétat is equal
to the maximum work completed withii0, 7;) by the higher priority jobs of
the taskgm, 72 ... 7,1} is calculated. This second load factor is calculated by
determining, for selected time points witHih 7;), the different sets of higher
priority jobs for which all jobs in each such set are releasethe same time.
Using these identified sets (note that, all the higher-ftyigobs in one such set
are released at the same time), the execution of all higherity jobs is then
abstracted by means of trwgompositiortechniques, calledertical composition
andhorizontal compositiosto find the maximum work completed by the higher
priority jobs within [0, T;) in subsection 5.5]2.

5.5. LOAD FACTORS AND COMPOSABILITY 35

It is worth mentioning at this point that the proposed conafilgty tech-
nigue is not only applicable for tasks with RM priority, bus@ for tasks with
any fixed-priority policy (for example, deadline-monotorsicheduling). The
novelty of the following composability technique enabledim schedulability
analysis that requires to find the worst-case workload withgiven time in-
terval considering occurrences of faults. In this thesis,domposability tech-
nique applied to a set of periodic tasks having RM prioritgdésnonstrated in
next section.

5.5 Load Factors and Composability

In this section, we derive the fundamental theoreticaldiog blocks for the
schedulability analysis of tagk within the time interva(0, 7;) in terms of load
factors and compositions. The taskmay not have exclusive access to the
processor within the entire time intervill T;) because jobs of higher-priority
tasks are eligible for execution within this interval. Taelenine whether the
first job of taskr; is feasible using RM, the amount of execution completed by
higher-priority jobs within[0, 7;) needs to be calculated. Note that the max-
imum amount of execution completed by the higher-prioritgg depends on
different fault patterns affecting these higher-priojjitps. By subtracting the
maximum amount of execution completed by the higher- fgsigdbs within
[0,T;) from T;, the available time for execution of task within [0,7;) can
be derived. To determine whether the available executioe for taskr; is
enough for its complete execution withjf, 7;), we need to know the maxi-
mum amount of execution required to be completed by the 6isof taskr;.
This amount of execution depends on the number of faultaisively affecting
taskr; within [0, T;).

The worst-case workloadvithin [0, T;) is the maximum amount of execu-
tion completed by the jobs of the tasks in set {r ...7;} that are released
within [0,7;). Remember that at mogtfaults could occur withirf0, 7;). To
find this worst-case workload required to be completed wiffj 7;) by the
jobs of the tasks in set{, 7 ...7;} , we have to consider (i) the occurrences
of k faults affecting the jobs of higher-priority tasks (incind their recovery
copies), and (ii) the occurrences(gf — k) faults exclusively affecting the first
job of taskr; and its recovery copies, féar=0,1,2,... f. In summary, to find
the worst-case workload withi, T;), we need to determine the following two
workload factors, fok = 0,1,2... f.

1. Load- Fact or - i : Execution time required by task when (f — k)
faults exclusively affect the first job of task fork = 0,1,2... f.

36 CHAPTER 5. UNIPROCESSOR SCHEDULING

2. Load- Fact or - HPi : Execution time required by the higher-priority
jobs (that is, jobs of tasksr{, 7 ...7;—1}) within [0, T;) whenk faults
affect these higher-priority jobs in this interval, for=0,1,2... f.

The worst-case workload withiff), ;) can now be defined as the sum of
these two load factors such that this sum is maximized foresgrh < k£ < f.
To meet the deadline of task, the complete execution of task (including
the execution of its recovery copies) must take place withénintervall0, 7).
However, parts of the execution of jobs having higher ptyoitian the prior-
ity of task 7, may take place outside the intenjal 7;). If the execution of
any higher-priority job takes place outside the interfall;), the execution
time beyond time instant; must not be accounted for in the calculation of
Load- Fact or - HPi . This is to avoid overestimating the amount of worst-
case workload within the intervi), T;).

If the maximum sum of.oad- Fact or -i andLoad- Fact or - HPi (for
somek) is less tharl;, then taskr; has enough time to finish its complete
execution within[0, T;). In such case, task is RM-schedulable. Thus, based
on the values of the two workload factors, the exact feasjtgibndition for task
7, can be derived. The calculation of the two workload facttiat(is, value
of Load- Fact or-i andLoad- Fact or - HPi) are presented in subsection
and subsectidn 5.5.2, respectively.

A necessary condition for the theories that follows is thattbtal workload
of the primary copy and the maximum number of activated regofblocks for
a particular job does not exceed the period of the task ofabeRollowing the
task model, the WCETSs of the primary copy of all the jobs of tgskre equal,
and is denoted bg;. Similarly, the WCETs of thé'" recovery copy of all the
jobs of taskr; are also equal, and is denoted BY, forb = 1,2,...f. Ifa
total of x faults occur in task; (one fault occurs in the primary copy of a job
of , and(xz — 1) faults occur in thed — 1) recovery copies of the job af),
then the total execution requirement for toleratinfaults for the job ofr; is
[C; +>,_, RY]. Consequently, the necessary condition for schedutghifi
taskr;, foralli = 1,2,...n, is that

[Ci+> RY<T; (5.4)

We assume that, for each taske I, the inequality in Eq.(5]4) holds.

5.5. LOAD FACTORS AND COMPOSABILITY 37

5.5.1 Calculation ofLoad- Fact or - i

The value ofLoad- Fact or - i is the execution time required by taskwhen

(f — k) faults exclusively affect task;, for k = 0,1,2... f. If an error is
detected after the primary copy of taskfinishes execution, then the first re-
covery copy of task; is ready for execution. If an error is detected at the end
of execution of a recovery copy of task then the next recovery copy of task
7, is ready for execution. Remember that the WCET ofiffieecovery copy of
taskr; is denoted byR?, forb = 1,2... f. We denote the total execution time
required due to théf — k) faults affecting the primary and recovery copies of
a particular job of task; by

f—k
oV =M =[c;+ > Rl
b=1

The value ofLoad- Fact or -i is equal toCi(f ~* and has to be calculated

forall k = 0,1,2,... f. The value ofC,ff ~®) can be calculated recursively
using Eq.[(5.b) as follows:

C; if (f—k)=0
cd =k = { (5.5)

RYTH o =F=1 it (f— k) >0

The value ofCi(f ~ M is set equal t@”; when(f — k) is equal to 0. When
(f — k) is equal to 0, only the execution time of the primary copy sktg is
considered in EqL(515). In the recursive part of Eq.](51%8,déxecution time of
the (f — k)'" recovery copy of task; and the execution time due to a total of
(f — k — 1) faults affecting task; are added to find the value dfff -k,

To find the worst-case workload within the intenjal T;), the value of
Ci(f’ *) need to be known for alt = 0,1,2,... f. Using Eq. [5.b), starting
fromk = f,(f—1),...0,the vaIueCff ~*) can be calculated for alf —k) =
0,1,2... f using a total ofO(f) addition operations. The task must com-
pIeteCi(f ~*) units of execution within the interva0, T;) to tolerate(f — k)
faults that exclusively affect task. The calculation of.oad- Fact or-i is
now demonstrated using an example.

Example: Consider the example task set {7, 73} given in Tabld 5.1 for
f=2. The first column in Table 8.1 represents the name of eath fEhe second
column represent the period of each task. The WCET of theapyicopy of

38 CHAPTER 5. UNIPROCESSOR SCHEDULING

each task is given in the third column. The fourth and fiftuoois represent
the WCET of the first and second (sinte- 2, at most two faults can occur in
one task) recovery copies of each task, respectively. Matettie WCET of a
recovery copy of a task may be greater or smaller than the WalETe primary
copy of the corresponding task. Using E&.3), the amount of execution time

|10 | 3 2 3
T | 15| 3 4 2
T3 |40 | 9 8 6

Table 5.1: Example task set witli=2 recovery copies for each task

required for each task; due to (f — k) faults exclusively affecting task is
calculated in Eq(5.8)for k = 0, 1, 2 as follows:

For taskr,
Y =C1=3
Ci =Rl +CY =2+C) =2+3=5
C? =R?4+C] =3+C] =3+5=8

For tasks,,
C) =Cy=3
Cl =RL+C) =4+4+0C) =443=7 (5.6)
C2 =R34+C) =5+C3 =2+7=9
For taskrs,
Cy =C3=9
Cy =R} +0CY =8+CY =8+9=17
O3 =R3+0C) =6+C3 =6+17=23 i

We will use the example task set in Tablel5.1 in the rest of¢chapter as
our running example. The calculation of the valudofad- Fact or - HPi is
presented in next subsection.

5.5.2 Calculation ofLoad- Fact or - HPi

The value ofLoad- Fact or - HPi is the maximum execution time completed
within [0, T;) by jobs having higher priority than the priority of task whenk

5.5. LOAD FACTORS AND COMPOSABILITY 39

faults affect these higher-priority jobs withjf, 7;). If the execution of some
of these higher-priority jobs takes place outs|dgeT;), then only the execu-
tion that takes place withif0, 7;) must be considered in the calculation of
Load- Fact or- HPi . This is a very crucial issue in determining the value
of Load- Fact or - HPi , as can be seen in the following example.

Example: Consider the first job of task, in Table[5.1 that is to be sched-
uled within the interval(0, 15], sinceT, = 15. The jobsr ; and o are
released within the interva0, 15) and have higher priority than the priority of
taskre. The primary copies of the jobs ; andr; , execute within the interval
[0,3) and [10, 13), respectively. Now, consider a 2-fault pattern in which the
first and the second faults occur in the primary and the firsoxwery copy of job
71,2, respectively. The detection of the second error in the fiasbvery copy
of job 7y » triggers the execution of the second recovery copy ofrjob The
first and second recovery copies of job, executes within the intervél3, 15)
and[15, 18), respectively. The schedule of the jehs and; 2 including the
execution of the recovery copies for the considered 2-faatliern is shown in
Figure[5. The total execution time required by the highgority jobs 7 ;
andry 5 is (3+ 3+ 2+ 3) = 11 time unit (including time for recovery). Notice
that, the second recovery copy of jol., executes outside the intervial 7).
The value of maximum execution time by the jabsandr; » within the inter-
val [0,T») is equal to(3 + 3 4+ 2) = 8, not11. |

When calculating the worst-case workload withiih 7;) to derive the exact
RM feasibility condition task task;, the value ofLoad- Fact or - HPi must
not be overestimated. To calculate the value@dd- Fact or - HPi , we need
to identify the jobs that are released within interf@alT;) and have higher pri-
ority than the priority of task;. The set of jobs having higher-priority than
the priority of taskr; is denoted by a sétP; such that each job in séiP; is
released within the intervdl, T;). That is, the setlP; is defined in Eq[(5]7) as
follows:

HP, = {7, 4| p < iandr, , < T;} (5.7)

According to Eq.[(5I7), if jobr, , € HP;, then taskr, has shorter period (that
is, higher priority) than task; and the released time of jab , (that is, value
of r, , defined in Eq.[(4]1)) is less thar. Each of the higher-priority jobs in
setHP; is eligible for execution at or after its released time witffi, 7;). In the
case of our running example, the sk for i = 1, 2, 3 are determined for the
three tasks in Table8.1.

40 CHAPTER 5. UNIPROCESSOR SCHEDULING

Execution time by jobs1 1
andr 2 within [0,15) is 8

))
! 1 First Second i 1
.

Fault Fault 3
11 T2 [Ti2| 712 \
[T T T T [I T T ‘ T
0 2 4 6 8 10 12 14 16 18 20 t

Figure 5.1: Schedule of jobs;,; andi,2. The downward vertical arrows denotes the
arrival time of the jobs ofr. The two faults occur in the primary copy and the first
recovery copy of jobr; 2. The maximum amount of total execution by the jobs

and 7 » due to the two faults is equal to 11. However, the amount of maximum total
execution by the jobs, ; and ;2 within the interval[0, 15) is 8, not 11.

Example: Using Eq.(5.7) for the task set in Table 5.1 we have,

HP; = 0
HPy ={ 71,712} (5.8)
HP; :{71,1171,2,71,3,71,4,72,1,7'2,2.7'2,3} I

Remember thalV is the maximum number of jobs that are released within
the time interval0, ;...). Therefore, the number of jobs having higher priority
than the priority of task; that are released withil, 7;) is at mostN. If the
released time of a higher-priority joh, , is earlier than’;, then jobT, , is
included in seHP;. Therefore, the time complexity to find the $#; is O(N).

When considering the feasibility of task, we need to calculate the value
of Load- Fact or - HPi for a k-fault pattern such that the faults affect the
jobs in setHP;, for kK = 0,1,... f. The value ofLoad- Fact or- HPi is a
measure of how much computation is completed within thenatd0, 7;) by
the higher-priority jobs in setlP; due to thek-fault pattern. The amount of
computation completed by the jobs in $4®; within [0,T;) depends on how
much workload is requested by the jobdHR; due to thek-fault pattern. Aydin
in [Ayd07] used a dynamic programming technique to complgenhaximum
workload requested by a set of aperiodic tasks duekdault pattern. Using

5.5. LOAD FACTORS AND COMPOSABILITY 41

an approach similar to that in [Ayd07], we determine the mmaxn workload
requested by a set of higher-priority jobs that are all isdeleat a particular time
instantt within the time interval0, T;).

We denote the maximum workload requested by a set of jobstid sall
released at a particular time instanby functionL(A) for a k-fault patterfl.
Note that the value of.;(A) is the maximum workload requested by the jobs
in setA, not the actual amount of execution by the jobs in4etithin [0, T;).
the The function.;(A) is defined recursively (similar to [Ayd07], but the dif-
ference being that all the jobs in séthave the same released time) in Eqg.](5.9)
and Eq.[(5.ID). The basis of the recursion is defined in [Ef) onsidering
exactly one jobr, , in setA, fork =0,1,2,... f, as follows

Li({72y}) = C; (5.9)

The value ofL ({7, ,}) represents the amount of execution time requested by
job 7, , whenk faults exclusively affect the primary and recovery copitjeb
7..4- Remember that the value 6f° is defined in Eq.[(5]5) as the maximum
amount of execution time required by the taskwhen k faults exclusively
affect a particular job of this task. The value@f in the right hand side of
Eqg. (5.9) can be calculated using Hg. {5.50)i6f) time, forallk = 0,1,2... f.

By assuming that the value df;,(A) is known, we compute the value of
Li(AU{r,,}) recursively, fork = 0,1,2... f, as follows:

Li(AU{re) = miar {Ly(4) + Licg{ra,})} (610)

In Eq. (5.10), the value of; (A U {7, ,}) is maximum for one of thé¢k + 1)

possible values of, for 0 < ¢ < k. The value ofg is selected such that, 4f
faults occur in the jobs in set and(k — ¢) faults occur exclusively in job, ,,

thenLy (A U {7, ,}) is atits maximum for some, 0 < ¢ < k. The working of
Eq. (5.10) is now demonstrated using an example.

Example: Consider the tasks; given in Tablé 5J1. The jobs, having higher
priority than the priority of taskss, that are released at time= 0 are in the set
A={1 1, 72,1} If we want to determine the maximum workload requestetidy t
higher-priority jobs in setd={r 1, 72,1} due to ak-fault pattern, then we need
to calculate the value of;(A). To calculateL,(A), we have to evaluate the
base in Eq(5.9)for each of the jobs in set considering occurrences é&ffaults

1The jobs in setA are released at time The time instant is not included in functior., (A)
and can be understood from the context. Although the valug,¢fA) can be calculated indepen-
dent of¢, the context is important for the schedulability analysis.

42 CHAPTER 5. UNIPROCESSOR SCHEDULING

exclusively affecting that job. Singes equal to 2, the possible valuesfoare

0, 1 and 2. According to Ed5.8), the maximum execution time required for job
1118 CY =3, C{ =5 andC} =8 for k = 0, k = 1 andk = 2 faults exclusively
affecting jobr 1, respectively. The maximum execution time required for job
158 CY =3, C3 =7 andC3 =9 for k = 0, k = 1 andk = 2 faults exclusively
affecting jobr 1, respectively, according to E€5.6). Using the base of the
recursion in Eq(5.9)we have,

Lo{m1})=C? =3 Li({mi1})=Cf =5 Lo({m1})=C} =38
Lo({m1}) =C9 =3 Li({m21}) =C3 =7 Lo({m21})=C5 =9

Using Eq.(5.10) the value ofL,(A) for k = 0,1,2 and A={ry 1,721} can
be calculated as follows:

Lo({m1,1, m21}) = Tzlox {Le{m11}) + Lo—q({m21})}

= LO({TI,I}) + LO({T2,1})
=3+3=6

Li({r1,1,721}) = ﬁ]ﬁlg {Le({m1}) + Li—g({ 211}

= max { Lo({m11}) + Li({m2,1}) ,
Li({r11}) + Lo({m2,1})}
= maz {3+7,5+3} =10

Lo({11,1, 721}) = ﬁﬁlg {Le{m11}) + La—g({21})}

= max { Lo({m11}) + L2({72,1}) ,
Li({ri1}) + Li({721})
Lo({m11}) + Lo({721})}

= max {3+9,5+7,8+3} =12

The maximum amount of workload requested by the jobs in sgt;Az» 1}
is Lo(A)=6, L1(A)=10, and Ly(A)=12 for k¥ = 0,1 and 2 fault patterns,
respectively. |

5.5. LOAD FACTORS AND COMPOSABILITY 43

Time complexity to calculate Ly (A U {7, ,}): There are tota(|A| + 1)
jobs in set QU {7, ,}). For each one of thé|A| + 1) jobs, evaluating the
base case using Ef. (5.9) can be done using[EQ. (5.5)/insps for alk =
0,1,2,... f. Therefore, evaluating the base for all the jobs in skt (7, ,})
requires {|A| + 1) - O(f)]= O(J4] - f) operations.

For the recursive step, if the value bf (A) is known, then there aré + 1)
possibilities for the selection aof in Eq. (5.10) to computd (A U {7, ,})
for a givenk, 0 < k < f. Therefore, computind., (A U {r,,}) requires
O(k) operations £ + 1 additions and: comparisons) for a particuldr. Given
that the value ofL;(A) is known for allk = 0,1,2,... f, then computing
Li(AU{r,,}) requires totaD(0+1+2... f)=O(f?) operations, for alk =
0,1,...f.

Starting with one job in sed, a new jobr, , is considered when computing
the value ofL; (A U {7, ,}). By including one jolr, , in the setd at each step,
the set AU{ 7, ,}) is formed. Therefore, for all the jobs in the set({ . ,}).
the total time complexity to recursively compute the valGieg(A U {7, ,})
isequalto [|A| + 1) - O(f?)] = O(|4] - f?).

Therefore, the total time complexity for the base and reeesteps to com-
pute Ly (A U{1.,})isO(lA] - f + |A|- f)=O(A] - f?). |

As mentioned before, the value bbad- Fact or - HPi is the maximum
execution completed within the intervl, 7;) by the jobs having higher pri-
ority than the priority of task; for a k-fault pattern. The maximum execution
completed by the set of higher-priority jobs witHih 7;) may not be same as
the maximum workload requested by this set of higher-gsigobs for ak-fault
pattern. The value of(A) is calculated considering that all the jobs in det
are released at the same time, say at tin@onsider that the set contains the
jobs having higher priority than the priority of tagskand all the jobs in setl
are released at time If the value of L (A) is greater thanT; — ¢), then the
maximum amount of work completed by the higher-prioritygab setA within
the intervall0, T;) is at most T; — t) using the work-conserving algorithm RM.
If L,(A) is less than or equal td{ — ¢), then the maximum amount of work
that can be completed by the jobs in gewithin the interval[0, T;) is at most
Li(A).

In order to find the amount of execution completed by the jdltsehigher-
priority tasks within the time intervdD, T;), the higher-priority jobs released
at different time instants within the time interval 7;) arecomposedA com-
posed task is not an actual task in the system rather a wayptesent the
execution of a collection of higher-priority jobs in a conspécomposed) way.
The execution time of a composed task (formally defined Jasgresents the

44 CHAPTER 5. UNIPROCESSOR SCHEDULING

maximum amount of execution within the intery@l T;) if the jobs represented
by the composed tasks have exclusive access to the proeétsarthe interval
[0,T;). In other words, the execution time of a composed task istizuat of
maximum execution within the interv@d, T;) if only the jobs represented by
the composed task are allowed to execute within the int¢dydl).

The composition of the higher-priority tasks are done in steps: first
by vertical compositiorand then byhorizontal composition Each vertically-
composed task abstrdgtae higher-priority jobs that are all released at a partic-
ular time instant withir{0, 7;). Each horizontally-composed task abstracts the
higher-priority jobs that are abstracted by more than ongocadly-composed
task.

Vertical Composition

Consider a set of all jobs that are released at time ingtank 7; and have
higher priority than the priority of task,. To compactly represent these higher-
priority jobs, we define a vertically-composed tdgk for time instantt such
that the composed tadk; abstracts the set of higher-priority jobs that are all
released at timg such that) < ¢ < T;.

The execution time of the composed tagl (formally calculated later)
denotes the maximum amount of execution that can be condphétiein [0, ;)
by the higher-priority jobs that are released at titr&uch that only the jobs
represented by, are allowed to execute withi, 7;).

One vertically-composed task is formed for each time irtstathin [0, T;)
at which new higher-priority jobs are released.

Example: Consider the feasibility of tasks in Table[5.1. The first job
of tasks is released at time 0 and has its deadline by tifie= 40. The
taskst; and r, are the higher-priority tasks of tasks. The release of the
higher-priority jobs at different time instants within therval [0, 40) is shown
in Figure[5.2 using downward arrows. New jobs of the higheoity tasks
are released at time instants 0, 10, 15, 20 and 30. At eachesftfiive time
instants, a vertically-composed task is formed (that atzdtrthe released jobs
shown in each oval in Figure8.2). The five composed tasks emetdd by
Vior Viaop, Viasy, Vizoy and Vizgy in Figure[5.2. |

To form the vertically-composed tasks, we need to deternfiaaifferent
time points within[0, 7;) where new jobs of the higher-priority tasks are re-
leased. The set of time points, denoteddywhere jobs having higher priority

2We use this as a short form for "represents an abstractian of”

5.5. LOAD FACTORS AND COMPOSABILITY 45

'
Deadline ofrg 1
'

Vioy Vaoy Visy Vo Vizoy

RS ! ! !

T2) ! !

'HH'HH'HH'HH!HH'HH'HH“HNiN'
0 5 10 15 20 25 30 35 40 t

Figure 5.2: Five vertically-composed tasks are shown using vertically long ovals at time
instants 0, 10, 15, 20, and 30. Each vertically-composed task atitabstracts all the
newly released higher-priority jobs of tagk that are released at timewithin the time
interval [0, 40).

than the priority of task; are released within the intervél, T;) is given by
Eqg. (511) as follows:

Si:{krTj\j:1...(i—1),k:O...L%J}—{Ti} (5.11)

The time points in se$; are less thaff; and are nonnegative integer multi-
ples of the periods of the higher-priority taskfor j = 1,2,... (i — 1). Since
higher-priority jobs released at or beyond time inst&nwill not execute prior
to time instantT;, it is necessary that all the time points in $gtare less than
T; (that is, deadline of the first job of task). At each of the time points in set
S;, new higher-priority jobs are released.

Example: Consider the task set given in Table]5.1. Using &11)we
have,

S1={}
S, = {0,10} — {15} = {0, 10} (5.12)
S5 = {0,10, 15, 20,30, 40} — {40} = {0, 10,15, 20, 30} i

The jobs having higher priority than that of taskare released at each of the
time points in sefS;. Remember that there are at m@étobs released within
any interval of lengthr;,,,.. The time points inS; are integer multiples of
the periods of the higher-priority tasks. Therefore, the-time complexity to

46 CHAPTER 5. UNIPROCESSOR SCHEDULING

computeS; is O(N).

When considering the feasibility of task, at each time point in se$;
some new higher-priority jobs of task are released. For each time point
s € S;, a vertically-composed tasKs; is formed. In the case of our running
example, when considering the feasibility condition faktas, one vertically-
composed task for each time pointe S; ={0,10,15,20,30} is formed (see the
five vertically-composed tasks in Figlirels.2).

The vertically-composed tadks, at times € S; abstracts the set of higher-
priority jobs (that is, jobs from sétP;) that are released at time To find the
execution time of a vertically-composed task at time S;, we need to know
the higher-priority jobs in setlP; that are released at time instant The set
Rel ; ; denotes the higher-priority jobs of task that are released at time
The setRel ; ; is given in Eq.[[5.IB) as follows:

Rel ;s = {7pq| 7p,q € HP; andr, , = s} (5.13)

The setRel ; ; contains the jobs that are released at tistend are of higher
priority than taskr;. If job 7, , is in setRel ; ,, then jobr, , is in setHP; and
the released time of job, , is equal to time instard, that is,s is equal tory, ;.
The condition in Eq.[{5.13) is to be evaluated for each jobeinHP;. Since
there are at mosV jobs released within any time interval of lendth, ..., the
number of jobs in setP; is O(NV). The jobr, , € HP; is stored in seRel ; ;

if the released time,, , is equal tos. By selecting one by one joh, , from
setHP;, the job7, , can be stored in the appropriate &efl ; ; such that the
released time, , of job 7, , is equal tos. Therefore, the time complexity to
find Rel ; ; for all s € S; is equal toO(N).

Example: Consider the example task set in Tablg 5.1. Since there are no
higher-priority jobs of taskr, the setHP; = (). For tasksm, and 73 we have
Sy ={0, 10} and S5 ={0, 10, 15, 20, 30}, respectively, according to K5.12)
The setRel ; 5, of higher-priority jobs released at different time instanc S;
for ¢ = 2 and: = 3 are given in Eq(5.14)as follows:

Rel 50 = { 1.1}

Rel 210 = { 712}

Rel 30 = {711,721}

Rel 510 = {12} (5.14)
Rel 315 = {72,2}

Rel 500 = {71,3}

Rel 330 = {723, 71,4}

5.5. LOAD FACTORS AND COMPOSABILITY 47

The jobs in seRel ; ; are of higher priority than that of the taskand all
these higher-priority jobs are released at tin€or eacls € S;, the vertically-
composed task(s; abstracts the jobs in s&el ; ;. We now concentrate on
calculating the execution time of a vertically-composesk g, .

The execution time of the vertically-composed tagk is denoted by the
functionw(k, { s}) for ak-fault pattern affecting the jobs in siel ; 5. If no
jobs other than the jobs in sBel ; ; are allowed to execute within the interval
[0,T;), then the value oM k, { s}) represents the maximum amount of exe-
cution that can be completed by the jobs inRet ; , within the intervall0, T;)
for a k-fault pattern.

The value ofL; (Rel ; 5) is the maximum amount of workload requested by
the jobs abstracted by the vertically-composed t4gk The set of jobs released
at times can complete, using work conserving algorithm RM, at i@t s)
amount of work within[0, T;) if Ly (Rel ; ;) is greater thafT; —s). Otherwise,
the maximum amount of work completed by the set of jobs relg¢ad times
is Li(Rel ; ;). To this end, the execution time dfs; for k = 0,1,2,... fis
defined in Eq.[(5.15) as follows:

Wk, {s})=min{Ly(Rel is), (I; —s)} (5.15)

The valueMm k, { s}) represents the maximum amount of execution completed
by the jobs released at timewithin the interval[0, T;) if no jobs other than
the jobs in seRel , ; are allowed to execute within the internval 7;). The
calculation ofm k, { s}) is shown next for our running example.

Example: Consider the task set in Table_b.1. When considering the fea-
sibility of taskr;, there is no higher-priority jobs of task;. Therefore, no
vertically-composed task is formed since Sgis empty.

When considering the feasibility of task, there are higher-priority jobs
that are released withifD, 7). To find the vertical compositions of the higher-
priority jobs, we use the following information:

Sy ={0,10} from Eq. [5.12)

Tp =15 from Table[51

Rel 20 ={ m,} for s=0from Eq. [5.1%)
Rel 210 ={ m2} for s =10 fromEq. [5.14%)

Two vertically-composed tasks are formed since there agetitwe points in

48 CHAPTER 5. UNIPROCESSOR SCHEDULING

setS; = {0,10}. The two vertically-composed tasks afg, and Vj1qy. For
each vertically-composed task, the amount of executioawithin the interval
[0,T5) can be determined fot = 0, 1,2 (sincef = 2) using Eq. (&18) The
value ofw(k, { s}) for the composed tasKs; using Eq.(5.15)is calculated
in Table[5.2 fork = 0,1,2 ands = 0,10. When considering the feasibility

Fors =0andk =0 Fors =10 andk =0
w0, 0) w(0, 10)

= m’LTL{Lo(Rel 2,0)7Tz — 0} = mm{LO(ReI 2,10);Tz — 10}
= mm{LU(ReI 2,0)7 15 — 0} = mm{Lo(Rel 2,10), 15 — 10}
= mm{Lo({ 7-1,1})’ 15} = mzn{Lo({ 7'172}), 5}
=min{3,15} =3 =min{3,5} =3

Fors =0andk =1 Fors =10 andk =1

W1, 0) W(1, 10)

= mm{Ll(ReI 2,0)7Tl — 0} = mm{Ll(Rel 2,10),Tl — 10}
= mm{Ll(ReI 2,0)7 15 — 0} = mm{Ll(ReI 2,10), 15— 10}
= min{Ll ({ 7'171}), 15} = min{Ll ({ 7'172}), 5}
=min{5,15} =5 =min{5,5} =5

Fors = 0 andk = 2 Fors =10 andk = 2

w2, 0) w2, 10)

= mm{Lg(Rel 2,0)7Ti — 0} = mln{Lg(R8| 2,10),Tz — 10}
= min{Lg(Rel 2,0), 15 — 0} = min{Lg(Rel 2,10), 15 — 10}
= ’ITLZTL{LQ({ 7'171}), 15} = mm{Lg({ 7'172}), 5}
=min{8,15} =8 =min{8,5} =5

Table 5.2: Calculation ofw(k, {s}) for vertical composition at eackh € S, for

k = 0,1,2. The left column show the execution timgk, { 0}) of the vertically-
composed taskjg for k£ = 0, 1, 2 faults and the right column show the execution time
Wk, {10}) of the vertically-composed tadko, for k = 0, 1, 2 faults.

of taskrs, there are higher-priority jobs that are eligible for exdimn within
[0, T3). To find the vertical compositions of the higher-prioritp$ we use the

5.5. LOAD FACTORS AND COMPOSABILITY 49

following information:

S3 =4{0,10,15,20,30} from Eq. [5.12)

T3 =40 from Table[5.1

Rel 30 ={ 711,71} for s=0fromEq. [5.1%)
Rel 510 ={ m,2} for s=10fromEq. [5.1#)

Rel 315 ={ 12} for s =15 from Eq. [5.14)

Rel 590 ={ m3} for s=20fromEq. (5.14)

Rel 530 ={ 714, 723} for s =30 from Eq. [5.1%)

Five vertically-composed tasks are formed since there aedifine points in
Ss at each of which new higher-priority jobs are released. The fiertically-
composed tasks ar&o;, Vi, Viisy, Viooy and Vizgy. For each vertically-
composed tasks;, the value ok, {s}) for £ = 0,1,2 is given in each
row of Tabld5.B fok: = 0,1,2 ands = 0, 10, 15, 20, 30.]

Vig | k=0 k=1 k=2
Vig | W0,0)=6 | W(1,0)=10 | W 2, 0)=12
Viaoy | W0, 10) =3 | W(1, 10) =5 | W(2, 10) =8
Vias) | W0, 15) =3 | (1, 15) =7 | W(2, 15) =9
Vizoy | W(0, 20) =3 | W(1, 20) =5 | W(2, 20) =8
Viay | W(0, 30) =6 | W(1, 30) =10 | W(2, 30) =10

Table 5.3: The value ofM k, {s}) for eachs € S3 and fork = 0,1, 2. Thek faults
affect the higher-priority jobs that are released at time Ss.

Run-time complexity for vertical composition: CalculatingRel ; ; for all
s € S; need totalO(NN) operations. Calculatind.(Rel ; ;) for setRel ; ,
requiresO(|Rel ; 4| - f?) operations for alk = 0,1,2,... f. There are at most
N jobs that are released within any time interval of len@th,.. Therefore,
the number of total jobs having higher priority than the ptjoof task 7; that
are released in all the time points in sktis equal toO(N). In other words,

ZsESi IRel i,s] = O(N).
Therefore, the computational complexity of all the vettimampositions in
all time pointss € S; is [O(N)+O(3_,cq.IRel i - f2)I=O(N - f2). |

For eachs € S, a vertically-composed tadks, is formed. The vertically-
composed task(sy has execution time(k, { s}) considering &-fault pattern

50 CHAPTER 5. UNIPROCESSOR SCHEDULING

for k = 0,1,2... f. Within the intervall0, T;), there may be more than one
vertically-composed task. In our running example, theee fare vertically-
composed task withifd, 73) as shown in Figure5l.2. The higher-priority jobs
represented by two or more vertically-composed tasks wécate within the
interval [0, T;). Now, we observed that the execution of the jobs represented
by two or more vertically-composed tasks may not be comigléteependent.
Some jobs in one vertically-composed task may interfereeomkerfered by
the execution of some jobs in another vertically-composs# within [0, T;).
By considering such effect of one composed task over andtmewnertically-
composed tasks can be further composed using horizontadasition so as to
calculate the value dfoad- Fact or - HPi .

Horizontal Composition

A horizontally-composed task is formed by composing two orervertically-
composed tasks. To see how this composition works, congigedifferent
time pointss; ands, in setS; such thats; < s,. For these two time points,
two vertically-composed taskk;,,; and V(,,; are formed. A horizontally-
composed task, denoted b ., .3, is formed by composing the two vertically
composed taskg,,; andV;,,;. The taskH;,, ,,; abstracts all the jobs of the
higher-priority tasks than the priority of taskthat are released at timg and
S9.

The execution time of this new horizontally-composed t&5k, s,; is de-
noted byw(k, { s1,s2}) and must not be greater tha@;(— s;). This is
because the earliest time at which the jobs representedebthéhcomposed
task Hys, 5,3 Can start execution is at timg sinces; < sp. Note that, if
0 € {s1,s2}, thenw(Kk, {s1,s2}) must not be greater thefi. The value
of WKk, { s1,s2}) represents the maximum execution exclusively by the jobs
released at time; ands, within the time interval0, T;).

When considering the feasibility of task, there are a total ofS;| time
instants at each of which a vertically-composed task is é@tmTo calculate
Load- Fact or - HPi , we have to find the final horizontally-composed task
Hg, with execution timew(k, S;) fork =0,1,2... f. The value ofM k, S;)
is the amount of execution completed by the higher-prigotys that are re-
leased within the time instants in s€f. Since setS; contains all the time
instants where jobs of higher-priority task are releadee value ofm(k, S;)
isLoad- Fact or - HPi .

To find the horizontally-composed tagks,, we need |(S;| — 1) horizontal
compositions. Starting with two vertically-composed w&aknew horizontally-
composed task is formed. This horizontally-composed &8kther composed

5.5. LOAD FACTORS AND COMPOSABILITY 51

with a third vertically-composed task into a new horizolytalomposed task.
This process continues until all the vertically-composasks are considered
in the horizontal compositions. Note that a vertically-gmsed task has no
priority associated with it. The jobs abstracted by a valtyecomposed tasks
have RM priority. Therefore, the order of execution of thieg@bstracted by a
horizontally-composed task is determined by the RM piiesitf the jobs that
are abstracted by the constituent vertically-composddtas

The first horizontally-composed task abstracts all higirésrity jobs re-
leased at two points in s&;. The last (final) horizontally-composed task ab-
stracts all the jobs that are released at all time pointstis’'sé-or example, the
five vertically-composed tasks in Figures.2 are composetiatally and the
four horizontally-composed tasks are shown in Figuré 5.3.

Vioy Vi10} Vi1s) Vi20} Vi30} Deadline ofrg i

(D
H{0,10,15,20,30}
*t T) 1

T1

H{0,10,15, 20}

T2 (+ +) 1
Hyo 10, 15}

(D

Hyp 10}

‘NHX!HNX‘XNXN'NHX!HH'HH'HH'HHM'

0 5 10 15 20 25 30 35 40t

Figure 5.3: Four horizontal compositions (horizontally longer ovals) are shown fer th
five vertically-composed tasks (vertically longer ovals). The four hotély-composed
tasks areH(o,lo}, H(o,lo‘ 15} H{O,lO, 15, 20} and H{o'10,15‘20,30) The composed taSEi{o,lo}
represents the first horizontally-composed task and the composeH @k s 20,301 p-
resents the final horizontally-composed task. The execution tirf&@f,15,20,30}iS the
value ofLoad- Fact or - HPi .

We now concentrate on finding the execution time of a horalbrtomposed
task. If there are: time points in the seb;, then we denote the s&; as
Si={s1, s2...s.}. According to Eq.[[5.11l), the se; contains the time point 0.
Without loss of generality, we assume= 0. We denote the first time points
in S; by set

p(x) ={s; |l <zands € 5;}

Therefore, the sgb(x) ={s1,s5...s,for z = 1,2...c. For example, we
havep(1) ={s:}={0}and p(c) ={s1,52...5.=5;.

52 CHAPTER 5. UNIPROCESSOR SCHEDULING

We start composing the first two vertically-composed tasiszbntally.
The horizontal composition of the first two vertically-coosed tasks/,,;
and Vi, is denoted by the composed task o) =H{,, s,3. The execution
time of Vi3 andV,,; arew(k, {s1}) andw(k, {s2}), respectively (given
by Eq.[5.I5)). The execution time diy») is denoted byw(k, p(2)) =
w(k, { s1,s2}) andis givenin Eq[{5.16), for = 0,1,2,... f, as follows:

w(k, p(2)) =mag {mm{wq.{sl}) +w(k-q, {s2})], Ti}} (5.16)

The calculation of the value of(k, p(2)) in Eq. (5.16) considers the sum
of the execution time of taskg,,; andV,,; for ¢ and(k — ¢) fault pattern,
respectively, such that the sum is maximized for sgme < ¢ < k. Since
the amount of execution within the intenv@ll, T;) by the higher-priority jobs
released at time; ands, can not be greater thafiy(— s;) = (7; — 0) = 1,
the minimum of this sum for some¢ andT; is determined to be the value of
w(k, p(2)) inEq. (5186). This is because the earliest time that higinierity
jobs can start execution is at time = 0.

By assuming that the value of k, p(x)) is known for the horizontally-
composed taskél,) , we define a new horizontally-composed tal x+1)
which is equivalent toHp(x) u{s,.,}- The execution timem k, p(x+1))
of the horizontally-composed tasi,(x+1) is given in Eq. [5.17), fork =
0,1,2,...f, as follows:

w(k, p(x+1)) =mag {mm{w A, p(x)) +w(k-0, {sa1})], Ti}} (5.17)

The execution timem k, p(x+1)) of the new horizontally-composed task
Hp(x+1y is calculated by finding the sum of the execution time of the-ho
zontally composed task,(x) and the execution time of the new vertically-
composed taski,,,;. The value of this sum is maximized by considering
faults in taskHp(x) and ¢ — g) faults in taskV,_, 3, for someg, 0 < ¢ < k.
Since the amount of execution within the inter{@IT;) can not be greater than
(T; — s1) = (T; — 0) = T;, the minimum of this sum (for som@ andT; is
determined to be the value of k, p(x+1)) in Eq. (&1T).

Using Eq. [5.1FF), we can find the execution timgk, S;) of the final
horizontally-composed tasK's,=H,(s,y for & = 0,1,2... f. The value of
w(k, S;) is the value ofLoad- Factor-HPi for k = 0,1,2... f. Before
we demonstrate the calculation of the execution time ofzomtially-composed
task using an example, we analyze the run time complexityatwiudating the
execution time of the horizontally composed tasks.

5.5. LOAD FACTORS AND COMPOSABILITY 53

Run time complexity of horizontal compositions: There are totalS;| — 1
horizontal composition fofrS;| vertically-composed tasks when considering the
feasibility of taskr;. When considering the feasibility of a task for each hori-
zontal composition, there afgé+1) possibilities forg, 0 < ¢ < k, in Eq. [B.17).
For each value of, there is one addition and one comparison operation. There-
fore, total @ - (k + 1)) operations are needed for one horizontal composition
for eachk. Forallk = 0,1,2... f, each horizontal composition requires total
[2+44+6+...2-(f +1)]=0(f?) operations. Given all thg;| vertical com-
positions, there are a total & S;| — 1) - O(f?)]= O(|S;| - f?) operations for
all the (S;| — 1) horizontal compositions. Note thgf;|=O(N) since there are
at mostN time instants where new higher-priority jobs are relea3éerefore,
finding theLoad- Fact or - HPi for one taskr; is O(N - f?).

The time complexity to find the execution time of verticatlgmposed tasks
is O(N - f%). Therefore, total time complexity for the vertical and lzori-
tal composition when considering the feasibility of tagks O(N - f2 + N -
fH=0(N - f2). i

We now present the calculation bbad- Fact or - HPi (that is, the value
of W(k, S;)) using our running example.

Example: For task 7, we haveS; = () from Eq.(G12) Therefore, no
vertical composition, and hence no horizontal composiisomeeded.

For taskr,, we haveS; = {0,10}. Using vertical composition, we have
two vertically-composed taskgo, and Vjig;. The execution timef k, { s})
of the vertically-composed task fer= 0 and k = 0, 1,2 fault patterns are
w(0, 0) =3, w(1, 0) =5, and wW(2, 0) =8 (given in the first column of Ta-
ble[5.2). Similarly, the execution tinvg k, { s}) of the vertically-composed
task fors = 10 andk = 0, 1, 2 fault patterns arem 0, 10) =3, W(1, 10) =5
andw(2, 10) =5 (given in the second column of Tablel5.2). Using(&Ed.6)
the two vertically-composed task®, and Vj;10; are horizontally-composed as
Hyo, 10y with execution timeu k, { 0, 10}) that is calculated in Table 5.4 for
k = 0,1,2. Form Tabld 5}, when considering the feasibility of taskthe
amount of execution completed by the higher-priority joiihiw [0, 15) is 6, 8
and 11 fork=0, 1 and 2 faults affecting only the jobs of the higher-pitiptask,
respectively.

For task 73, we haveS; = {0, 10, 15,20,30}. Using vertical composi-
tion, we have five vertically-composed ta$kg, Viio;, Viisy, Viooy and Vizo;.
The execution time of the vertically-composed tasks:fer 0, 1,2 are given
in Table [5.3. Using Eq(5.18) and Eq.(5.1%) we horizontally compose the
five vertically-composed taskgp;, Vo, Viisy Viooy and Vizgy. For the five

54 CHAPTER 5. UNIPROCESSOR SCHEDULING

For H{o‘ 10} andk =0

W(OO,{O, 10}) =w(0, {0} U{10})

=mag {min{w(q, {0}) +w(k-q,{10}).7; }}

= min{[w(0, {0}) +w(0,{10})].T; |

= min{[3 + 3], 15} = min{6, 15}} —6

FOI‘H{OJO} andk =1

W(11,{0, 10}) =w(1, {0} U{10})

=mag {min{vv(9, {0}) +W(1-q,{10}),T; }}

= max{min{[w(0,{0}) +w(1,{10})],7; },
min{W(1, {0}) +w(0, {10})],7: }}

= maxqmin{[3 + 5], 15}, min{[5 + 3], 15}}

= maz{min{8,15}, min{8, 15}} =8

For H{O,lO} andk = 2

W(22,{0, 10}) =w(2, {0} U{10})

=mag {min{vv(9, {0}) +W(2-q,{10}),T; }}

:maaz{min{[w(0,{0}) +w(2,{10})],T; },

min{W(1,{0}) +wW(1,{10})],7; }
min{[w(2,{0}) +w(0,{10})].T; }}
= maz{ min{[3 + 5], 15}, min{[5 + 5], 15}, min{[8 + 3], 15}}
= maz{min{8,15}, min{10, 15}, min{11, 15}} ~11

Table 5.4: Calculation ofw(k, {0, 10}) for horizontally-composed tasKyo, 10y for
k=0,1,2.

vertically-composed tasks, four horizontally-composesks are formed. We
start with composing/g; and Vj1p horizontally using Eq(5.16) The new
horizontally-composed task i0,10;. The execution time of the horizontally-
composed tasklo 10y is W(k, { 0, 10}) and calculated using Ed5.16) for

k = 0,1,2 (given in the first row of each Table 5.5-Talble]5.7). Then, the
horizontally-composed tasio, 10y and the vertically-composed ta$ls, are
composed in to a new horizontally-composed ta&k 10, 15, The execution

5.5. LOAD FACTORS AND COMPOSABILITY 55

time of Hy 10,151 is Wk, {0, 10, 15}) and calculated using E5.17) for

k = 0,1,2 (given in the second row of each Tablel5.5-Tdblé 5.7). Thas pr
cess continues and finally the horizontally-composed £585kio, 15, 20yand the
vertically-composed tasKzgy are composed into a new horizontally-composed
task that isH, 10, 15, 20,30 The execution time of the horizontally-composed
task H, 10, 15, 20, 30yis WK, { 0, 10, 15, 20, 30}) that is calculated using
Eq. (G.I7) for k = 0, 1, 2 (given in the fourth row of each Talle b.5-Tablel5.7).
The execution time of the four horizontally-composed t&&ks oy, Ho, 10, 15
H{o, 10, 15, 20} andH{o, 10, 15, 20, 30}AI€ given in TablES_]S, TabIIEG and TBEE 5.7
fork =0, k = 1 andk = 2 fault patterns, respectively.

Composed task

Execution time for O-fault pattern

Vo, 10}

W0, {0, 10}) =9

Vi0,10,15

W0, {0, 10, 15}) =12

Vi0,10,15,20}
V{0,10,15,20,30}

w0, {0, 10, 15, 20}) =15
w0, {0, 10, 15, 20, 30}) =21

Composed task

Execution time for 1-fault pattern

Vio, 103

W1, {0, 10}) =13

Vi0,10,15)

W(1,{0, 10, 15}) =16

Vi0,10,15,20}
V40,10,15,20,30}

W(1, {0, 10, 15, 20}) =19
w(1, {0, 10, 15, 20, 30}) =25

Table 5.5: The execution time due to O-fault pattern of the four horizontally-composed
tasksHyo, 103, H{o, 10, 15} Ho, 10, 15, 20y and Hyo, 10, 15, 20, 30}

Table 5.6: The execution time due to 1-fault pattern of the four horizontally-composed
tasksHyo, 103, Hio, 10, 15} H{o, 10, 15, 20y and Ho, 10, 15, 20, 30}

Composed task

Execution time for 2-fault pattert

h

Vio, 10}

W2, {0, 10}) =18

Vi0,10,15)

W(2, {0, 10, 15}) =21

Vi0,10,15,20}
V(0,10,15,20,30}

W2, {0, 10, 15, 20}) =24
W 2, {0, 10, 15, 20, 30}) =30

Table 5.7: The execution time due to 2-fault pattern of the four horizontally-composed
tasksHyo, 10}, H1o, 10,15} H{o, 10, 15, 20y @and Hyo, 10, 15, 20, 30}

The amount of execution tim& k, {0, 10, 15, 20, 30}) of the final

56 CHAPTER 5. UNIPROCESSOR SCHEDULING

horizontally-composed tadKs, is the exact value dfoad- Fact or - HPi due

to a k-fault-pattern. The value of(k, { 0, 10, 15, 20, 30}) represents the
amount of execution time withif, 40) by all the higher-priority jobs due to
the k-fault-pattern. Tablé 5]5-Table 8.7 show that the executiompleted by
the higher-priority jobs within0,40) is 21, 25, and 30 fok=0,1 and 2-fault
patterns, respectively (shown in the shaded fourth row ohex the Tabl€5]5-
Table[5.T). |

It is easy to realize at this point that the way the compasitechnique is
applied to calculate the execution time of the final horiatiptcomposed task
can also be applied to any fixed-priority task system.

Based on the value of tHeoad- Fact or - HPi , we now derive the exact
RM feasibility condition of task; in Sectior[5.6.

5.6 Exact Feasibility Condition

The exact feasibility condition for RM fault-tolerant ungzessor scheduling
for a periodic task seff' is derived based on the exact feasibility condition of
each task; fori = 1,2...n. The exact feasibility condition of task depends
on the amount of execution required by tasknd its higher-priority jobs within
the interval0, T;) consideringf faults that could occur withifD, T;).

By considering { — k) faults exclusively affecting task; and thek-fault
pattern affecting its higher-priority jobs within the imtal [0, T;), the sum of
Load- Fact or-i andLoad- Fact or - HPi can be calculated such that it
is maximized for somé, 0 < k& < f. This sum is consequently the worst-
case workload withif0,7;). The value ofLoad- Factor-i is Ci(f =)
and can be calculated using EQ.{5.5), for= 0,1,2,... f. The value of
Load- Fact or - HPi isw(k, S;) and can be calculated using Eg.(3.17), for
k=0,1,2,...f.

We denote the maximum total workload withih 7;) by TLoad; which is
equal to the sum dfoad- Fact or -i andLoad- Fact or - HPi such that the
sum is maximum for somk, 0 < k£ < f. The functionTLoad; is thus defined
in Eq. (5.I8) as follows:

TLoadY;:rlrég (Y= 1wk, 5} (5.18)
Using Eq.[(5.IB), the maximum total workload within the intd [0, 7;;) can

be determined. The total load is equal to the sum of the exettiine required
by taskr; if (f — k) faults exclusively affect the task and the execution time

5.6. EXACT FEASIBILITY CONDITION 57

within the interval[0, T;) by the jobs having higher priority than the tasldue
to k-fault pattern, such that, the sum is maximum for sdme < k < f.

Run-time complexity to compute the total load: Calculating the value of
Ci(f’k) forall k = 0,1,2,... f can be done irO(f) steps. The value of
W k, S;) is the execution time of the final horizontally-composed &sd can
be calculate irO(N - f?) time. In Eq. [5.IB), there ar¢f (+ 1) possible values
for the selection of, 0 < k£ < f. EvaluatingTLoad; in Eq. (518) requires
a total of f + 1 addition operations angl comparisons to find the maximum.
Given the values of'/ ~*) andw(k, S;) forallk =0,1,2,... f, finding the
value of TLoad, requiresO(f) steps. Therefore, the total time complexity for
evaluatingTLoad; is [O(f)+O(N - f2)+O(f)]=O(N - f?).

Based on the value dfLoad;, the necessary and sufficient condition for
RM scheduling is now proved in Theorém$®b.1.

Theorem 5.1 Taskr; € T is fault-tolerant RM-schedulable if, and only if,
TLoad;< T; .

Proof (if part) We prove that, ifTLoad;< T; , then taskr; is fault-tolerant
RM-schedulable using proof by contradiction. The valudbbad; as given
in Eq. (5.I8) is the sum dfoad- Fact or -i andLoad- Fact or - HPi . The
value ofLoad- Fact or-i is the maximum execution time required by the
taskr; if (f — k) faults exclusively occur in the first job of task The value of
Load- Factor-i isgiven byCi(f " in Eq. (55) fork =0,1,2,... f. The
value ofLoad- Fact or - HPi is the execution completed within the interval
[0, T;) by the jobs having higher priority than the priority of tagk The value
of Load- Fact or - HPi is given byw(k, S;) which is equal to the execution
time of the final horizontally-composed tagks, considering &-fault pattern
affecting the jobs of the higher-priority tasks within timarval[0, T;), for k =
0,1,2,... f. The value ofm k, S;) is the maximum amount of work that can
be completed by the higher-priority jobs within T;).

Now, assume a contradiction, that is, that some job of taskisses it dead-
line whenTLoad; < 7;. This assumption implies that the first job of task
7; misses its deadline (due to it being a critical instant). Wthenfirst job of
taskr; misses its deadline at tini€, the processor must be continuously busy
within the entire interval0, T;). This is because, if the processor was idle at
some time instant withif0, 7;), thenr; cannot have missed its deadline since
RM is a work-conserving algorithm.

In case that; misses its deadline, the processor either executesrtamk
its higher-priority jobs at each time instant witHih 7;). The time required for

58 CHAPTER 5. UNIPROCESSOR SCHEDULING

executing the higher-priority jobs withif, T;) is Load- Fact or - HPi which
is given byw(k, S;). Note thatw(k, S;) is less than or equal t@; ac-
cording to Eq.[(5.17). The total time required for complgtihe execution
of taskr; is Load- Fact or-i considering(f — k) faults that could affect
the first job of taskr;. Sincer; misses it deadline df;, the complete ex-
ecution of taskr; cannot have finished by timé&;. Therefore, the sum of
Load- Fact or-i andLoad- Fact or - HPi , denoted byfLoad;, must have
been greater thdf; (which is a contradiction). Therefore,TitLoad;< T; , then
taskr; is fault-tolerant RM-schedulable.

(only if part) We prove that, ifr; is RM-schedulable, theflLoad;< T; .
The amount of work on behalf of task (including execution of its recovery
copy) within the interva|0, T;) that is completed by RM isoad- Fact or - i .
Sincer; is the lowest priority task, the amount of execution on bitfahe jobs
(including execution of their recovery copies) having lghriority than task
7; that is completed by RM is exactly equal tmad- Fact or - HPi within
[O’ TZ)

Since the amount of work completed by the algorithm RM coneslevithin
[0,T;) is equal td_oad- Fact or - i plusLoad- Fact or - HPi , the total load
TLoad; is less than or equal t&;. Therefore, if taskr; is fault-tolerant RM-
schedulable, then we haWé.oad;< T;. Since the first jobs of task is RM-
schedulable, all the jobs of tagkare also RM-schedulable (due to our schedul-
ing analysis considering critical instant). |

The exact feasibility condition for RM scheduling of taskis given in
Theoren{5ll. The time complexity for evaluating this examdition is the
same as the time complexity for evaluating Eq. (5.18). Tioeegthe necessary
and sufficient condition for checking the feasibility ofkas can be evaluated
intime O(N - f2).

The exact feasibility condition for the entire task §es now given in the
following Corollary[5.2.

Corollary 5.2 Task sel’ ={r, 7, ..., 7,} is fault-tolerant RM schedulable if,
and only if, taskr; is RM-schedulable using Theoréml5.1 foria 1,2, ... n.

Proof Obvious from Theorem 5.1.

Note that Corollar{ 512 is the application of Theoren 5.1€ach one of the
tasks in sel’. Therefore, the exact feasibility condition for the entiask set
can be evaluated i (n- N - £2) time. We now determine the RM-schedulability
of the running example task set given in Tdblg 5.1.

5.6. EXACT FEASIBILITY CONDITION 59

Example: We have to apply Theorem b.1 to all the three tasks given in
Table[5.1. For task; we have to find the value dl.oad; for all i = 1,2, 3.
The taskr, is trivially RM-schedulable because it is the highest ptiotask
and we assume E@5.4)is true for all tasks.

Consider the feasibility of task,. Remember thatM k, S;) is the exe-
cution time of the final horizontally-composed task and isa¢p the value of
Load- Fact or - HPi . For taskr,, we haveS, = {0, 10}. By horizontal com-
position, the final horizontally-composed tally,10; has execution time equal
towm0,5) =6,wm1,S) =8,andw(2, S;) =11 fork =0,k = 1 and
k = 2 faults, respectively, within intervdl, 15) (given in Tabld 5.4). For task
72, We also have’§ =3, C3 =7 andC2 =9 fork = 0, k = 1 andk = 2 faults,
respectively, which are the values lbfad- Fact or -i using Eql(5.6). For
taskr, and f = 2, the calculation offLoad, using Eq.[(5.1B) is given below:

TLoads —maa {052“” +w(q, {0, 10}) }
q=0
:mcwc{[6'22 +w(0, {0, 10})],
[C; +W(1,{0,10})],
€9 +w(2,{0,10})]}
:max{[9+6],[7+8},[3+11]} ~15

SinceTLoad,= 15 < T, = 15, taskr, is RM-schedulable using Theoréml5.1.

Consider the feasibility of task;. We haveS; = {0, 10, 15,20,30}. By
horizontal composition, the final horizontally-composaskif (o 10 15,20,30}has
execution time equal tef 0, S3) =21, W(1, S3) =25, andw(2, S5) =30 for
k =0,k =1andk = 2 faults, respectively, within intervé, 40) (given in the
fourth shaded row in Table5.5-Talfle5.7). For tagskwe also have’) =9,
C5 =17 andC35 =23 for k = 0, £ = 1 andk = 2 faults, respectively, which
are the values dfoad- Fact or - i using Eq(5.6). For taskrs; and f = 2, the

60 CHAPTER 5. UNIPROCESSOR SCHEDULING

calculation ofTLoad; using Eq.(5.18)is given below:
TLoads :rgizg; {0§2‘q) +w(q, {0, 10, 15, 20, 30}) }
- max{[cg +w(0,{0, 10, 15, 20, 30})],
[} +w(1,{0, 10, 15, 20, 30})],
(€0 +w(2, {0, 10, 15, 20, 30})],}

- max{[?l +23], 25 + 17], [30 + 9]} =44

SinceTLoads= 44 > T3 = 40, taskrs is not RM-schedulable using Theo-
rem5.1. Therefore, the task set given in Tablé 5.1 is not RNedulable using
Corollary[5.2.

Based on the necessary and sufficient feasibility conditid@orollary[5.2,
the algorithmFTRMis now presented in Sectign b.7.

5.7 Algorithm FTRM

In this section, we present the fault-tolerant uniproceakwrithmFTRMbased
on the exact feasibility condition derived in Corollaryl5Hrst, the pseudocode
of the algorithmCheckFeasi bi lity(, f)is given in Figurd 5}4. The
algorithm CheckFeasi bi | i t y(7, f) checks the RM feasibility of a task
7; by considering occurrences ¢ffaults in any jobs of the tasks in setr,
T9, ...7;} released within the intervalo, T;). Next, the AlgorithmFTRMis
presented in Figurde 8.5. AlgorithfiTRM checks the feasibility of the entire
task setl’ based on the feasibility of each task € I'" using the algorithm
CheckFeasi bility(mw,[f).

In line 1 of AlgorithmCheckFeasi bi | i t y(=, f) in Figurd5.4, the jobs
having higher priority than the priority of task are determined using Eq.(5.7).
In line 2, the time instants at each of which higher-priojdips are released
within the interval[0, T;) are determined using Eq4._(5]11). Using the loop in
line 3-7, the execution time(k, { s}) of each vertically-composed ta$ks;
is derived for each poind € S;. The value ofm k, { s}) is determined for
eachk =0,1,2,... f atline 5 using Eq[(5.15).

Using the loop in line 8-12, the vertically-composed tasks @mposed
further using horizontal compositions. The loop at lineeBates tota).S;| — 1
times. Each iteration of this loop calculates the execuiime of one horizon-
tally composed taskl, ;) =Hp(i-1) ugs,}, for i = 2,3,...]S;|. The execution

5.7. ALGORITHMFTRM 61

Algorithm CheckFeasi bility(m,f)

Find theHP; using Eq.[(5.J7)
Find theS; using Eq.[(5.111)
Forall s € S;
Fork=1to f
Findw(k, { s}) using Eq.[(5.1b)
End For
End For
For ! =2to |S;|
fork=1to f
10. Findw k, p(1- 1) U{ s;}) using Eq.[(5.17)
11. End For
12.End For
13. Fork = fto0
14. FindCcY ~* using Eq.[5.b)
15. End For
16.For k =0to f
17. 1f [¢Y =% +w(k, S;)] > T then
18. return False
19. End If
20.End For
21.return True

©CoNoGOM~wWNE

Figure 5.4: Pseudocode of AlgorithtBheckFeasi bi l i ty(7, f)

timew(k, p({-1) U{ s;}) of the horizontally-composed tagy;. 1) u(s,} 1S
calculated at line 10 using Edq._(5117) forkefault pattern,k = 0,1,2,... f.
The execution timev k, S;) of the final horizontally-composed tadks, is
the value ofLoad- Fact or- HPi , fork =0,1,2... f.

Using the loop in line 13-15, the value Glff ~" s determined in line
14 using Eq.[(8)5) fok = 0,1,... f. Remember that the value GIZ.(f -k
is Load- Factor-i. Inline 16-21, the exact feasibility condition fer is
checked by considering faults affecting the jobs of the higher-priority tasks
and(f — k) faults exclusively affecting the task, for k = 0,1,2,... f. In
line 17, the value oTLoad; is calculated by summingoad- Fact or -i and
Load- Fact or - HPi and this sum is compared against the period of task
this sum is greater thédfi, then task; is not RM schedulable and the algorithm
CheckFeasi bi i ty(, f) returns FALSE at line 18. If the condition at
line 17 is false for alk = 0,1,2... f, then taskr; is RM schedulable and the
algorithmCheckFeasi bi | i t y(;, f) returns TRUE at line 21.

62 CHAPTER 5. UNIPROCESSOR SCHEDULING

Next, using the algorithn€heckFeasi bi l i ty(7;, f), we present the
algorithmFTRMin Figure[5.5.

Algorithm FTRM(T', f)

1. Forall ; €{m,72,...,7n}

2. If CheckFeasi bility(m, f)=Falsethen
3. return False

4. EndlIf

5. End For

6.

return True

Figure 5.5: Pseudocode of AlgorithffTRM(T", f)

Using the loop in line 1-5 of algorith®TRM(T', f), the RM-feasibility of
each task; in setl’ is checked. The algorithfTRM(I", f) checks the RM fea-
sibility of task;, € I' using the algorithnCheckFeasi bi lity(r, f) at
line 2. If the condition at line 2 is true for any task (that is, the algorithm
CheckFeasi bi | i ty(m, f) returns FALSE), then the task gets not RM-
schedulable. In such case, the algoritRifRM(I", f) returns FALSE (line 3).

If the condition at line 2 is false for task , for all i = 1,2,...n (that is,
CheckFeasi bi l i ty(m, f) returns TRUE for each task), then the task set
I' is RM-schedulable. In such case, the algorithifRM(T", f) returns TRUE
(line 6).

Given a task sef’ and the number of faultg that can occur within any
interval of lengtht,, ..., the fault-tolerant RM feasibility of the task set can be
determined using algorith/TRM(T, f) in O(n - N - f2) time.

Next we discuss the applicability of our exact uniproce$sasibility anal-
ysis for multiprocessor platform in subsection 5.7.1.

5.7.1 Multiprocessor Scheduling

The uniprocessdfTRMscheduling analysis is applicable to multiprocessor par-
titioned scheduling. To that end, the exact analysi&BRM can be applied
during the task assignment phase of a partitioned multgg®ar scheduling al-
gorithm in which the run time dispatcher in each processecetes tasks in
RM priority order.

Consider a multiprocessor platform consistingroforocessors. The ques-
tion addressed is as follows:

Is there an assignment of the tasks inIS&tn m processors such
that each processor can tolergtéaults?

5.7. ALGORITHMFTRM 63

Partitioned multiprocessor task scheduling is typicalgdxd on a bin-packing
algorithm for task assignment to the processors. When d@sgigmew task to
a processor, a uniprocessor feasibility condition is usagheck whether or not
an unassigned task and all the previously assigned tasksirtiaular processor
are RM schedulable. If the answer is yes, the unassigned-taske assigned
to the processor. In order to extend the partitioned mutipssor scheduling to
fault-tolerant scheduling, we can apply the exact feasibdlondition derived
in Corollary[5.2 when trying to assign a new task to a processpartitioned
scheduling. The following example discusses how the exaagibility condi-
tion derived in Corollary 5]2 can be applied to the FirstHféuristic for task
assignment on multiprocessors.

Example: Consider the First-Fit heuristic for task assignment to q@s-
sors. Given a task s€tr, 7, ..., 7,}, we consider the tasks to be assigned
to m processors in increasing order of task index. Thatrisjs considered
first, and thenr; is considered and so on. Using the First-Fit heuristics, the
processors of the multiprocessor platform are also indefxech 1...m. An
unassigned task is considered to be assigned to processocrgasing order
of processor index. An unassigned task is assigned to theegsor with the
smallest index for which it is feasible. Following the FFSt heuristic, task
71 is trivially assigned to the first processor. For task the necessary and
sufficient feasibility condition in Corollafy 5.2 is applieo a set of tasksr,

79} considering at mosf faults that could occur in an interval of lengffy,, ...
(whereT,, . is the maximum period of the tasks in st {r»}). If the feasibility
condition is satisfied, then;, is assigned to the first processor. Otherwisgis
trivially assigned to the second processor. Similarly,daaskr;, the feasibility
condition in Corollary[5.2 is checked for the already assidrasks and task;

on the first processor. If tagk and all the previously assigned tasks to the first
processor are RM schedulable using the exact condition iol@oy 5.2, then

7; IS assigned to the first processor. If the exact conditionoissatisfied, the
feasibility condition is checked for the second processut so on. If task;
cannot be assigned to any processor, then task'sztnnot be partitioned on
the given multiprocessor platform. If all the tasks are gasi to the multipro-
cessor platform, then task deis RM schedulable. For a successful partition of
the task sef’, each processor can tolerafefaults that can occur in any tasks
within a time interval equal to the maximum period of the sas&signed to a
particular processor. |

Similarly, the exact condition in Corollafy 3.2 can be useding task as-
signment to the processors of a multiprocessor platfornhichveach processor
executes tasks using uniprocessor RM scheduling algarithm

64 CHAPTER 5. UNIPROCESSOR SCHEDULING

5.8 Discussion and Summary

This chapter presented the analysis of RM fault-tolerahédaling that can be
used to guarantee the correctness and timeliness progesgldime applica-
tions on uniprocessor. The correctness property of thesys addressed by
means of fault-tolerance so that the system functions ctbyreven in the pres-
ence of faults. The timeliness property is addressed byidgria necessary
and sulfficient feasibility condition for the RM scheduling eniprocessor. The
proposed algorithnFTRM can verify the feasibility of a task sé&t using the
fault-tolerant RM scheduling on uniprocessor. The time plaxity of FTRMis
O(n - N - f2), wheren is the number of tasks in the periodic task 9étis the
maximum number of jobs released within any time intervakofgth7,, .., and
f is the maximum number of faults that can occur within any tinterval of
lengthT,, ...

The schedulability analysis used in this chapter is diyesppiplicable to any
static-priority scheduling algorithm for periodic tasksggms in which the rela-
tive deadline of each task is less than or equal to its pemaidiae time instant
zero can be considered as the critical instant. To checkesiljility of the
first job of taskr;, the higher priority jobs within the intervad0, D;), where
D; is the relative deadline of task, are to be determined. Using the composi-
tion techniques proposed in this chapter the value of maxirtaial workload
within [0, D;) can be calculated. If the value of the total load is less than o
equal toD;, then taskr; is schedulable. And conversely if the tasks schedu-
lable, then the value of total load is less than or equdDto It is not difficult
to see that, the novelty of our composition technique isiagble to determine
the exact feasibility of a static-priority aperiodic tagkt sn uniprocessor.

The fault model considered for the exact RM analysis is gdremough
in the sense that multiple faults can occur in any jobs, attang and even
during recovery operation. There is no restriction posetheroccurrences of
two consecutive faults. The only restriction considering fault model is that
a maximum off faults could occur within any time interval of leng#y, ..,
whereT,, ... is the maximum period of any tasks in §&t The fault-tolerance
mechanism proposed in this chapter can tolerate a varidtgrofvare and soft-
ware faults. Transient faults in hardware that are frequemrt-lived and do
not reappear if a task is re-executed can be tolerated usingroposed fault-
tolerant mechanism. Software faults that do not reappeanwine same soft-
ware is re-executed can also be tolerated using our propobedne. Moreover,
FTRMcan tolerate software faults that do appear again when the saftware
is simply re-executed. To tolerate such software faultsffardnt implemen-
tation of the specification of the software can be executednndmn error is

5.8. DISCUSSION AND SUMMARY 65

detected. To account for the execution of a different versibsoftware, the
exact analysis oFTRMconsiders WCET of the recovery copy that may not be
equal to the WCET of the primary copy of a task.

The variety of faults considered in our fault model can aleddberated us-
ing spatial redundancy, for example, executing the taswndifferent proces-
sor. When an error is detected at the end of execution of anaske processor,
the result of the task execution from another processor eanskd to toler-
ate the fault. However, considering the highly frequentgrant faults, use of
spatial redundancy may not a cost-efficient approach teaetault-tolerance.
Moreover, in many safety-critical systems, like applioat in space, avionics
and automotive systems, there is always a space and weiggtraimts. In such
systems, time redundancy is more cost-efficient and pigife@ver spatial re-
dundancy to achieve fault-tolerance. The fault-toleraneehanisms proposed
in this chapter exploits time redundancy.

To the best of my knowledge, no other work has proposed art &xai¢-
tolerant feasibility analysis for RM scheduling of periodasks considering
such a general fault model as ours. If an efficient (in terntsod complexity)
and exact feasibility test is needed, then the scheduliggridhm FTRM pro-
vides better computational efficiency than a recently psepofault-tolerant
EDF scheduling algorithm in [Ayd07].

Our proposed exact uniprocessor feasibility conditionlmaapplied to task
scheduling on multiprocessors. The exact uniprocesssitidity condition of
FTRMcan be used for partitioned multiprocessor scheduling, hirchy tasks
are assigned to the processors using uniprocessor RM ifeggsibndition. The
fault-tolerant exact feasibility condition proposed iistbhapter for uniproces-
sor can be used during task assignment to the processorisledng equal or
different values forf for different processors. The bin-packing heuristic and
the parametef determines the ways tasks are assigned to the processaors. Co
sequently, the task assignment algorithm for partitionethad for multipro-
cessor scheduling can be driven by the reliability requeenof the system.

Multiprocessor Scheduling

This chapter proposes a fixed-priority partitioned schieduhlgorithm for pe-
riodic tasks on multiprocessors. A new technique for assgtasks to proces-
sors is developed and the schedulability of the algorithemelyzed for worst-
case performance. We prove that, if the workload (utilaatiof a given task set
is less than or equal to 55.2% of the total processing capanitn processors,
then all tasks meet their deadlines. During task assignmemtotal work load
is regulated to the processors in such a way that a subseg gftitcessors are
guaranteed to have an individual processor load of at |€a28& Due to such
load regulation, our algorithm can be used efficiently asdaigsion controller
for online task scheduling. And this online algorithm islab¢e with increasing
number of processors.

6.1 Introduction

In recent years, applications of many embedded systemsrrunuttiproces-
sors, in particular, chip multiprocessors [KAO05, COB]. The main reasons
for doing this is to reduce power consumption and heat géoaraMany of
these embedded systems are also hard real-time systemsiie aad meet-
ing the task deadlines of the application is a major chaen§ince many

67

68 CHAPTER 6. MULTIPROCESSOR SCHEDULING

well-known uniprocessor scheduling algorithms, like Rislienotonic (RM) or
Earliest Deadline First (EDF) [LL73], are no longer optinfiat multiproces-
sors [DL78], developing new scheduling algorithms for nputicessor plat-
form have received considerable attention. In this chapteraddress the prob-
lem of meeting deadlines for a set wimplicit deadline periodic tasks using
RM scheduling onm processors based on task-splitting paradigm. We also
propose an extension of our scheduling algorithm that cafflméently used as
an admission controller for online scheduling. In additioar scheduling algo-
rithm possesses two properties that may be important fosyhtem designer.
The first one guarantees that if task priorities are fixed feefask assignment
they do not change during task assignment and executiorgkhdacilitating
debugging during development and maintenance of the sysi#me second
property guarantees that at maesy2 tasks are split, thereby keeping the run-
time overhead as caused by task splitting low.

Static-priority preemptive task scheduling on multipregars can be clas-
sified asglobal or partitioned scheduling. In global scheduling, at any time
m highest-priority tasks from a global queue are scheduledchgorocessors.
In partitioned scheduling, a task is allowed to execute amyone fixed, as-
signed, processor. That is, tasks are grouped first and eacip @f tasks
executes in one fixed processor without any migration. Irb@lschedul-
ing, tasks are allowed to migrate while in partitioned schied, tasks are
never allowed to migrate. Many static-priority schedulipglicies for both
global [ABJOZ1 [Lun0P, Bak(06, BCL0O5] and partitioned [DILIBOS95/AJ03,
FBBO6,LGDGO03. LMM98, OB9B] approaches have been well stddiVe ad-
dress a variation of partitioned scheduling technique irctva bounded num-
ber of tasks can migrate to a different processor.

It has already been proved that there exists some task s$eloai slightly
greater than 50% of the capacity of a multiprocessor platfon which a dead-
line miss must occur for both global and partitioned statiority schedul-
ing [ABJO1,/[OB98]. To achieve a utilization bound highernhz0%, some
recent work proposes techniques whemgratory [ABDO5] or split [AT06
ABBO08, [KY084d] tasks are allowed to migrate using a variatidrpartitioned
scheduling for dynamic-priority tasks. Very little work Y08H, LRL09] have
addressed the scheduling problem for static-prioritydashng task splitting to
overcome the 50% utilization bound. We propose a statiarityi scheduling
algorithm, calledinterval Based Partitioned SchedulirfgBPS), for periodic
tasks using the task splitting approach. gk splitting we mean that some
tasks are allowed to migrate their execution to a differeatessor during exe-

6.1. INTRODUCTION 69

cutiorl. We call the task that is splitted a ‘split task’ and its petaibtasks’.
No task or the subtasks of a split task can run in parallelugetial execution
of the code of a task). IhBPS , rate-monotonic (RM) prioritizatior [LL73] is
used both during task assignment and during run-time sdingcaf tasks on a
processor. One of the main contributions in this chapten isrove thaif the
total utilization (or workload) of a set af periodic tasks is less than or equal
to 55.2% of the capacity of processors, the task set is RM schedulable on
m processors usingBPS .

Apart from the guarantee bound, the important featurd B&S are:

e During task assignment, the individual processor loadgegelated in
a way that makes on-line scheduling (task addition and refhowore
efficient than for other existing task-splitting algoritemDue to load
regulation, a bounded number of processors have load laeass5h 2%.
So, the percentage of processors with load greater thafbh&eases
as the number of processors in a system increases. Therafitiiean
increasing number of cores in a chip multiprocessor (fongla, Sun’s
Rock processor with 16 cores [CCHY]), our proposed on-line scheduler
is more effective and scales very well.

e The priority of a task given before task assignment is nongkd to
another priority during task assignment and executioncivifécilitates
debugging during system development and maintenance.

e The task splitting algorithm split tasks in such a way thattlumber of
migrations is lower than for other existing task-splitt@gorithms.

The rest of the chapter is organized as follows. In Sedfid tbe important
features of BPS are further elaborated. In Sect{onl6.3, we present the asum
system model. In Sectidn 6.4, we briefly discuss the basia afeour task
assignment algorithms and also present our task splitfipgoach. Then, in
Sectiond 6.5 through 8.7, we present tHgPS task-assignment algorithms
in detail. The performance dfBPS and its online version is presented in
Section[6.B and_619. In Sectibn 6110, we discuss other wdakeakto ours.
The approaches to extend our proposed multiprocessor @atgdlgorithm to
fault-tolerance are discussed in Secfion b.11. Finallgti8e[6.12 concludes
the chapter with discussion and summary.

IHere, we do not mean splitting the code. ‘Task-splitting’ igration of the execution of task
from one processor to another.

70 CHAPTER 6. MULTIPROCESSOR SCHEDULING

6.2 Important Features ofl BPS

A real-time task scheduling algorithm does not only needstvoase guarantee
for deadlines but also need to be practically implementabBPS has three
other major features:(fpad regulation (ii) priority traceability property and
(iii) low cost of splitting

Load Regulation: | BPS regulates the load of a processor during task
assignment. When assigning tasks to processors, the objetti BPS is to
have as many processors as possible with load greater th2tb BHid still meet
all the deadlines. In the worst case, the number of processowhich the load
is less than or equal to 55.2% is at masn{m,4} wherem is the number of
processors. Thus, the load regulation &°S bounds the number of under-
utilized processors.

Load regulation of BPS enables design of efficient admission controller
for online scheduling. In practice, many real-time systemsdynamic in na-
ture, that is, tasks arrive and leave the system online r Afteepting an online
task, we then need to assign the task to a particular procdssding the best
processor to assign the task may require disturbing théirgischedule in all
m processors by means of a reassignment of tasks (e.g. taghrassit algo-
rithms that require sorting).

As will be evident later in this chapter, finding the best m%sor to which
an accepted online task is assigned requires searchingsatmmgm,4}proces-
sors (the under-loaded processors) whBRS is used online. Similarly, when
a task leaves the system, reassignment of tasks is needechmstmin{m,5}
processors to regulate the load for future admittance oftasts.| BPS runs
in linear time, therefore, reassignment of tasks on a badindenber of proces-
sors for load regulation is efficient. Moreover, task regissient on a bounded
number of processors makes our online scheduling algoritaitedO- | BPS,
scalable with the trend of increasing number of cores in ahiftiprocessor.

Priority Traceability Property: From a system designer’s point of view it
is desirable to facilitate debugging (execution tracimiglying the development
and maintenance of the system. One explanation for the spdead use of RM
in industry is the relative ease with which the designer cadipt the execution
behavior at run-time. The dynamic-priority EDF schedulas (despite being
as mature a scheduling method as RM, but with stronger stdtgtity proper-
ties) not received a corresponding attention in induséjplications. Even for
static-priority schedulers, the ease of debugging difi@rslifferent algorithms.
For example, when studying the recent work in [LRI_09] ofistatriority parti-
tioned scheduling with task splitting, we see that it is fldeshat the deadline

6.3. TASK MODEL 71

of a subtask could become smaller (during task assignneat)the given im-
plicit deadline of the original task during task assignnmenprocessors. This,
in turn, could make the priorities of the subtasks differotn the original
RM priority of the tasks and therefore cause a different teaceable, execu-
tion behavior. A similar behavior can be identified in knowmamic-priority
task-splitting algorithms[J[AT06, ABB0&, KY08a] where a $ask of a split
task may have different priority (that is, executes in sfieéime slots, or has
smaller deadline) than the original taskBPS is a static-priority partitioned
algorithm with a strongpriority traceability property in the sense that if the
priorities of all tasks are fixed before task assignment tieyer change during
task assignment and execution.

Cost of Splitting: One final property of interest for task-splitting parti-
tioned scheduling in particular is the run-time penaltydduiced due to migra-
tion. Cost of splitting and its relation to scheduling penfance has received
attention [KLLO9]. Clearly, the number of total split tasksd number of sub-
tasks (resulting from a split tasks) directly affect the amoof preemptions
and migrations, both of which in turn may affect cache penfance and other
migration related overhead. Therefore, it is always degrto reduce the num-
ber of split tasks and reduce the number of subtasks for gaithtassk. For
all existing dynamic- and static-priority task-splittimdgorithms, the number
of split tasks is(m — 1) onm processor. I BPS , total number of split task
in the worst-case is at most/2. In | BPS, a split task has only two subtasks
and therefore, a split task never suffers more than onceadorégration in one
period.

We assume tasks are independent. At most one subtask oft-#asgliis
assigned to one processor. Since the two subtasks of daghiare assigned in
two fixed processors, only the threads assigned to thesertveegsors can be
considered during debugging independent of the threadher processors.

6.3 Task Model

The task model presented in Sectionl 4.1 in extended herectoparate split
tasks. We assume a task $etonsisting ofn implicit deadline periodic tasks.
Each taskr; € I' arrives repeatedly with a peridfi and require<’; units
of worst-case execution time within each period. Task prégs are assigned
according to the RM policy (lower the period, the higher thionity). We
define theutilization of taskr; asu; = % Theload or total utilizationof any
task setd is U(A) = Y ., u. '

72 CHAPTER 6. MULTIPROCESSOR SCHEDULING

When a task; is split, it is considered as two subtasksandr/’, such that
both subtasks has execution time and period equ&}tandﬂ, respectively.
Note that, since the period of a subtask is equal to the pefidte split taskr;,
we must havey; = u;» = %5+ When assigning tasks to each processor, we use
Liu and Layland’s sufficient feasibility condition for RMseduling [LL73] for
determining whether the tasks can be assigned to a proceBsersufficient
RM feasibility condition according to_[LL73] is given as fols:

if U(A) < n(2% —1), then all then tasks in setd meet deadlines
oN UNiprocessor.

If n — oo, then the value of/[(2% — 1)] approaches 0.693. Therefore, if
the total utilization of a task set is less than or equal t®8,8hen the task
set is always RM-schedulable on uniprocessor. Here, we thakpessimistic
assumption that each non-split task has an offse= 0 since according to
[CL73] the worst-case condition for schedulability anadyss when all tasks
are released at the same time (we assume all tasks are cebdasme zero).
However, the second subtasK of a split taskr; is given an offset equal to
Qi = % to ensure nonparallel execution with first subtagk In rest of the
chapter, we use the notation LLBX:n(Q% — 1) for n tasks, LLB(o)=In2 =
0.693 to represent an unknown number of tasks, and alsQ#t/2 — 1).

6.4 Task Assignment and Splitting Overview
Our proposed task assignment algorithm starts by dividigutilization in-
terval (0,1] into seven disjoint utilization subintervdls-I; (see Tablé_6]1).
Fora < b, we use }—I, to denote all the subintervalg,Il .1, ... ;. Note
b= 1 L= % L=
= (32, 22] 15=(%2,%9] 16=(%., 4]

I7 = (0, %] (Where,Q= /2 — 1)
Table 6.1: Seven disjoint utilization subintervals—I 7

that, each task; € I will have a utilization that belongs to exactly one of the
subintervals {—1;. By overloading the set membership operatet,‘we write
7; € |y to denote #; in 1p=(a,b]” foranyk € {1...7}, if a < u; < b. For

6.4. TASK ASSIGNMENT AND SPLITTING OVERVIEW 73

example, if a task; hasm:%, thent; € I3. Clearly, the grouping of tasks
into subintervals can be completed in linear time.

Why Seven Utilization Subintervals?The seven utilization intervals result
from the four main goals of the task assignment: (i) low nundfsubtasks per
split task, (ii) low number of split tasks, (iii) assigningwW number of tasks per
process@r, and (iv) load regulation.

To reach these goals, we start by assigning only one taske@urcessor
exclusively. To avoid assigning a task with very small méition to one proces-
sor exclusively, we select a task that belongs to a certdimation subinterval.
If 1 BPS has worst-case utilization bound nd load regulation tries to main-
tain the load on most processors aboyg then one task with utilization greater
than U, is assigned to one processor exclusively. Thus, we obtaifirstiuti-
lization interval which is (,, 1]. The actual value of J is determined when
we assign more than one task having utilization less thartdbne processor.
When we try to assign two tasks with utilization less thantd one processor,
we find that in case if these two tasks have equal utilizatioen each individ-
ual task’s utilization can not be greater than Q2¢1) according to LLB(=2).
This implies U, < 41% without a task splitting technique. To achieve, U
greater than 50%, we split a task with utilization less thanibJtwo subtasks
each having equal utilization. We gain no advantage by lgavirequal utiliza-
tion for the two subtasks as individual task utilization subded from below
and our strategy is to assign minimum number of tasks pelegsm. So, each
subtask has utilization at moi‘:'f. We assign one such subtask and a non-split
task to one processor. For RM schedulability, we must haye{-LPz—w < 2Q.
This implies the value of) < % and we get our first utilization subinterval
Ilz(%,l]. Note that this interval also defines the maximum poeditilization
bound ofl BPS.

In summary, a task with utilization greater th&lp, and less than or equal
to 1 is exclusively assigned to one processor. Some othes teith maximum
utilization U,, is split into two subtasks such that each subtask has maximum
utilization U, /2. If one such non-split task with maximum utilization,land
one subtask with maximum utilization,\J2 are assigned to one processor, then
we must need L) + U,,/2 < 2Q using LLB. This implies the maximum value
of U, is U, = 4Q/3. Thus the actual (maximum possible) value of i$
hinted (proved later) when more than one task are assignede@rocessor.
Thus the first intervalU,,, 1] = (4Q/3, 1] is derived.

The overall goal of the task assignment is to achieve the maxi possi-

2According to LLB, the RM scheduling on uniprocessor achiehigher utilization bound if
number of tasks assigned to the processor is small [LL73].

74 CHAPTER 6. MULTIPROCESSOR SCHEDULING

ble U, which is% ~55.2%. To achieve this bound, at each stage of task
assignment, we bound the utilization of tasks from belowdad regulation by
selecting a task from a certain utilization interval, splitask in only two sub-
tasks when task splitting is unavoidable and try to assigimamim number of
tasks to one processor. The consequence is that we derigevtr utilization
intervals k-1, given in Tablg 6.ll. Driven by the four main goals of task as-
signment, the derivations ofdls are done in a similar fashion, as far, while

I, becomes the remaining interval task utilization in whichuiees no lower
bound. More details can be found in the technical reportgRJO

Task Assignment Overview: | BPS assigns tasks to processorstlimee
phases. In théirst phasetasks from each subinterval &re assigned to proces-
sors using one particul@olicy for each |,. Any unassigned tasks in+lg after
first phase, calleddd tasksare assigned to processors in feegond phasdf
tasks are assigned w0’ processors during the first and second phases, the total
utilization in each of then’ processors will then be greater théﬁ ~ 55.2%
due to load regulation strategy. Any unassigned tasks #feesecond phase,
calledresidue tasksare assigned to processors during tthied phase If, af-
ter the second phase, the total utilization of the residslestés smaller than or
equal to4Q§”N for the smallest non-negative integer’, all the residue tasks
are assigned to at mast’ processors. The load on thes€ processors may be
smaller than 55.2%. Load regulation in first two phases @sstiratm” < 4.
When task arrives online, we need only to consider the’$@rocessor for task
assignment. The different task assignment algorithmserttiree phases con-
stitute the algorithni BPS .

We conclude this section by defining some useful functioaswfil be used
later for the worst-case schedulability analysis in thiapter. We us&/un (A)
and Uux (A) to denote the lower and upper bound, respectively, on tte tot
utilization of all tasks in an arbitrary task sét

Uwn(4) = Z x wherer; € I, = (z,] (6.1)
T,EA

Umx (4) = Z y wherer; € Iy = (z,y]
T,EA

Clearly, the following inequality holds for any task sét
Uwn(A) <U(A) < Unx (4) (6.2)

If | BPS assigns a task set ta, processors aneh, < m, we declare

6.4. TASK ASSIGNMENT AND SPLITTING OVERVIEW 75

SUCCESS for schedulability om processors. Otherwise, we declare FAIL-
URE. Thereforel BPS can be used to determine: {ije number of processors
needed to schedule a task,sahd (ii) whether a task set is schedulable on
m processors When used onling)- | BPS either accepts or rejects a new on-
line task. Similarly, when a task leaves the systenmh BPS makes necessary
changes (that is, reassignment of the existing tasks) sad¢aonline tasks can
be accepted to the system in future.

Task Splitting Algorithm: | BPS uses the algorithm &.1T in Fig. [6.1
for task splitting. The input to algorithmr&IT is a setX, containing an odd
number of tasks. Each task iXi, except the highest-priority one, is assigned
to one of two selected (empty) processors. The highestiyriask is split and
assigned to both processors. As will be evident in lateligestno more tasks
will be assigned to these processors.

Algorithm SpLIT (TaskSet: X)

Letr, € X suchthafl, < T;forall7; € X
Split the taskr, into subtasks;, andr;’ such that
¢k/:O, C;; = Ck/2, T;i =Tk
(bk”:Ck/z, C;/C/ = Ck/z, T,Q’ = Tk

Let setX; containsw tasks from X-{r.}
XQ :X—Xl —{Tk}

Assign 7" and all tasks in seX to a processor
Assign 7" and all tasks in seX> to a processor

©ONoGOhA~ONE

Figure 6.1: Task Splitting Algorithm

The highest priority task;, € X is determined (line 1) ang; is split into two
subtasksy, and7; such thatu, = u» = %= (line 2-4). Half of the tasks from
set(X — {7x}) is stored in a new seX; (line 5), and the remaining half in
another new seX, (line 6). Note thatX — {1 }| is an even number. Subtask
7' and all tasks inX; are assigned to one processor (line 7), while subtagk
and all tasks inX; are assigned to the other processor (line 8). Note that sinc
Ty, 1S the highest-priority task and no more tasks will be assigo the selected
processors, the offset of,” (dm:%) will ensure that the two subtasks are
not executed in parallel.

76 CHAPTER 6. MULTIPROCESSOR SCHEDULING

6.5 Task Assignment: First Phase

During the first phasd,BPS assigns tasks using a particular policy for each of
the seven subintervals using load regulation strategy. rGamfor all policies,
however, is that each processor to which tasks have beeagnadswill have
an RM schedulable task set with a total utilization strigthgater thar% for
load regulation. We now describe the seven policies useidgltine first task-
assignment phase.

Policy 1: Each task; € Ilz(%, 1} is assigned to one dedicated processor.
Clearly, each of these tasks is trivially RM schedulablénaiutilization greater
than% on one processor. This policy guarantees that there wilbdasks left
in 1, after the first phase.

Policy 2: Exactlythreetasks in b=(32, 42] are assigned ttwo processors
using algorithm 8LIT given in Fig.[6.1. This process iterates until less than
three tasks are left il Thus, there are 0—2 unassigned tasks itoldeclare
asoddtasks.

The proof that the tasks assigned to each processor are Rididable and
the utilization on each processor is greater tﬁﬁris as follows. Assume that
a particular iteration assigns the three tasksr; and; from |, to two pro-
cessors by calling &.iT ({ 7x,7;,7;}) such thatr; is the highest priority tasks.
Then, line 3 of algorithm BLIT ensures thafg—Q <up < %. Now, without
loss of generality, assuni€; = {r;} inline 5 of SPLIT. We have the total min-
imum and maximum load in one processdin ({7;,7;.}) = % + % = %
andUux ({7, 71.}) = % + % = 2@Q = LLB(2), respectively, using E{.(8.1).
We have,% <U({m,m}) < LLB(2) using Eq. [6R). Similarly we have,
29 < U({rj,m}) < LLB(2).

Policy 3: Exactlytwotasks from };#%, %] are assigned to one processor
without any splitting. This process iterates until lessth&o tasks are left in
I3. Thus, there are 0-1 task left ip 1o declare a®ddtasks. Two tasks insl
must have a total utilization greater th&#< and less than or equal %<,
assigned to one processor. Si#%@ <LLB(2)=2Q, the two tasks fromjl are

RM schedulable with processor utilization greater th@n

Policy 4: Exactly five tasks from JL:(%, %} are assigned ttwo proces-
sors using algorithm .17 in Fig.[6.1. This process iterates until there are less
than five tasks lefting. Thus, there are 0—-4 unassigned tasks ito ldeclare as
oddtasks. The proof that the tasks in each processor are RM wletidel and

the utilization in each processor is greater tlﬂ@nis similar to the proof for

6.5. TASK ASSIGNMENT: FIRST PHASE 77

Policy 2 and can be found in [PJ09].

Policy 5 : Exactlythreetasks from @,=(%7 81%9] are assigned to one proces-
sor. This process iterates until there are less than thsés teft in k. Thus,
there are 0-2 tasks left in; to declare a®dd tasks. Three tasks in Imust
have a total utilization greater thaf;'< and less thaf*s< < LLB(3). So,
each processor utilization is greater th%ﬁ and the three tasks i lare RM

schedulable on one processor.

Policy 6: Exactly four tasks fromﬁlz(%, %} are assigned to one processor.
This process iterates until there is less than four tasksref;. Thus, there
are 0-3 tasks left inglto declare amdd tasks. Four tasks ingImust have a
utilization greaterthaﬁxg—Q and less thaﬁ%Q < LLB(4). So, each processor
utilization is greater thaﬁag and the four tasks irglare RM schedulable on one

processor.

Policy 7: In this policy,| BPS assigns tasks fromy+{0, %] using First-Fit
(FF) bin packing allocation as i [DL78]. We denote i processor by,
and the total utilization (load) &®; by L(©;). Assume tha®,, is the first con-
sidered processor and thay, is the last considered processor, fopr p using
FF, in this policy. When a task; € |, cannot be feasibly assigned @&, for
I=p,(p+1),...(¢g—1) we must havd (0,;) + u; > LLB(c0) = In2. Since
u; < ¢, we haveL(©;) > In2 — § > 22, So, the total utilization of the tasks
in each processor is greater th@@\, except possibly the last processdy. If
L(©,) < %, the task assignment t9, is undone and these unassigned tasks
are calledesiduetasks in k. If L(©,) > %, all the tasks in- assigned to pro-
cessor®),, 0,41, ... 0, are RM schedulable with utilization in each processor
greater tharfe?.

Therefore, it is proved that, each processor to which taske Ibeen as-
signed in first phase will have an RM schedulable task setanitital utilization
strictly greater thal'f»‘SQ. In rest of this chapter, to denote the set of residue tasks
in 1, we use

S={r,.| .- is a residue task in;}

We have the following Lemnia 1.

Lemma 1 All the residue task irt are RM schedulable in one processor.
Proof From policy 7, we havd/(S) < % (undone task assignment @,).

Since% < LLB(o0) = In2, all tasks inS are RM schedulable in one proces-
sor.

78 CHAPTER 6. MULTIPROCESSOR SCHEDULING

Note that, first phase of task assignment runs in linear tioeetd its iterative
nature.

6.6 Task Assignment: Second Phase

During the second phaseBPS assigns unassigned tasks in subintervildl,
referred to a®dd tasksusing algorithm @DASSIGNIN Fig. [6.2. Unlike the
first phase, however, each processor can now be assignedi@askmore than
one subinterval.

Algorithm ODDASSIGN(Odd tasks ind—l¢):

. while both I, and L, has at least one task
Assignr; € 12 andr; € |4 to a processor

. while both I, and k has at least one task
Assignr; € I; andT; € |5 to a processor

AssignT; € I3, 7; € lg andT, € |6 to a processor

. while ((14 has one task and has two tasks)

. or (I4 has two tasks and; lhas one task))
9. if (14 has one task and has two tasksphen
10. Assignr; € 14, 7; € |5 and7, € |5 to a processor
11. else
12. Assignr; € |4, 75 € 14 andry, € |5 to a processor
13. endif

14.while |4 has two tasks and; lhas one task
15. Assignr; € l4, 75 € I4 and7y, € lg to a processor

1
2
3
4
5 while I3 has one task ang has two tasks
6
7
8

16.while each §, |5 and k has one task
17. Assignr; € I3, 75 € |5 andTy, € g to a processor

Figure 6.2: Assignment of odd tasks gl

Using algorithm DA ssIGNN Figure[6.2, tasks assigned in each iteration
of eachwhi | e loop are RM schedulable with total utilization is greatemﬁg
on each processor due to load regulation strategy. We phnas/byt showing that
the inequality% < U(A) < LLB(|A|) holds (where A is the task set assighed
to one processor) in each iteration of ea¢ti | e loop (here, named Loop 1—
Loop 6). We now analyze each loop separately.

Loop 1 (line 1-2): Each iteration of this loop assigns A%f{;} to one

6.6. TASK ASSIGNMENT: SECOND PHASE 79

processor such that € 1, = (52, %¢] and7; € I4 = (8¢,%2]. Thus,

’ 73

Unx(A) = 2 + 22 — 20 = LLB(2) andUun(A) = 52 + 8¢ — 8@ -, 40
Loop 2 (line 3-4): Each iteration of this Ioop assigns A;,{g} to one
processor such that € 1, = (32, %] and7; € |5 = (*2,55]. Thus,

31 .
Uwx (A) = 2@ 4 39 — 25¢ - 11,B(2) andUun(A) = 5 + — @_

Loop 3 (line 5-6): Each iteration of this loop assigns {r] 71} 10 one
processor such that, € 13 = (32,%2], 7, € I¢ = (£,%2] and 7, €
lg = (£,29]. Thus, we havé/yx (4) = 52 4 4@ 4 19 16Q < LLB(3)
andUwn(A) = 22 + € + ¢ =42,

Loop 4 (line 7-13): Each iteration of this loop assigns exactleéhtasks
A={7;,7;,71} t0 one processor, selecting the tasks from two subinteriga
(52, 22) and k=(*%, 5¢]. Tasks are assigned to one processor either if (i)
T € lu, 5 € lsandr, € I or (i) 7; € 1y, 7; € Iy and7, € 15. When (i)
is true, we havéyx (4) = 22 + 2x8@ = 29 < LLB(3) andUun(A) =
59 p 240 810 5 29 When (ii) i |s true we havyx (4) = 2229 4 8¢ —
2L LLB(3)andUMN(A) = 2X8Q 4 4& _ 880 5 49

Loop 5 (line 14-15): Each iteration of this loop assigns As{;,7+} to one
processor such that € 14 = (32,22), 7, € I, = (32,%2] and7, € I =
(€,29]. Thus,Uux (A) = Z29¢ 4+ 29 = 159 11,5(3) andUun(A) =

23éQ9 .Q 7Q _ 4Q ?
X _
5 T3=75 > 3

Loop 6 (line 16-17): Each iteration of this loop assigns Az{;,7:} to
one processor such that € 13 = (22,52], 7, € |5 = (*2,%¢] and7;, €
le = (£,7%2]. Thus,Uux(A) = 52 + 3¢ 4 22 = 280 < LI B(3) and
Uwn(A) =22 + 42+ & =180 5 49

Using Eg. [6.2), we can thus conclude that, for each itematioeach loop
if task setA is assigned to one processor, we hé§e< U(A) < LLB(|A]).
Therefore, it is proved that, each processor to which taake been assigned
in second phase will have an RM schedulable task set withah wtitization
strictly greater thar?SQ. The second task-assignment phase also runs in linear

time due to its iterative nature.

Residue tasks

Unassigned tasks in+lg after the second phase are caltedidue tasksFor
example, if there are only two unassigned tasks iafter the first phase, these
two odd tasks cannot be assigned to a processor in the sebasd.pSuch a

80 CHAPTER 6. MULTIPROCESSOR SCHEDULING

scenario, henceforth referred to agassibility, of residue tasks will have to be
handled during the third phase. We identify all such poBtés of residue tasks

in subintervals 4—I4 for any task set. In particular, we determine the number of
residue tasks in each of the subintervalsl} for each identified possibility.

After the first phase,slhas 0-2 odd tasksz has 0-1 odd task,lhas 0-4
odd tasks, § has 0-2 odd tasks, ang has 0-3 odd tasks (see Sectionl 6.5).
Odd tasks thus exist, in subintervals-ls, as one of(3 x 2 x 5 x 3 x 4 =
)360 possibilities after the first phase. During the second phalg@rithm
ODDASSIGN s able to assigrll the odd tasks in subintervalslg for 316
out of the 360 possibilities of odd tasks after the first phase It is easy
to see that, this fact can be verified by running the algori@®pmA SSIGN for
each the 360 possibilities of odd tasks after first phase gncbbnting how
many possibilities remain unassigned (please also seendippB in [PJ09] for
a formal proof). Therefore, for any task setpse residue tasks in subintervals
I,—I¢ that need to be handled in the third phase exist as one of thairéng 44
different possibilities.During the third phasd,BPS considers assigning any
such possibility of residue tasks fronHlg including all residue tasks frony |
to processors.

We now define some functions that will be used in the next eestiFunc-
tion Urt denotes the total utilization of all the residue tasksinl}:

7
Urt = Z Z u; [is residue task iny]
k=2 1€l

Using functionUgr in Eg. (6.6), the utilization of a set of residue tasks is galc
lated. For the purpose of schedulability analysis, the heatfunctionsUrmn
andUrmx are defined to bound the utilization of a set of residue taska be-
low and above, respectively. Functiobigyn andUrwx denote the lower and
upper bound, respectively, on total utilization of all ces tasksr; € 1, for
1=2,...6:

6
UrMN :Z Z x wherer; € 1,=(z,y]

k=2 1€l

6
URMX :Z Z Yy WheI'ETi S |k=(x,y]

k=2 T1;€lg

6.7. TASK ASSIGNMENT: THIRD PHASE 81

If one of I,—lg is nonempty and task set S is the residue tasks, wé have:

Urmn < Urt — U(S) < Urmx (6.3)

6.7 Task Assignment: Third Phase

During the third phasd, BPS assigns all residue tasks to processors, thereby
completing the task assignment. Each of thgddsibilitiesof residue tasks in
lo—lg is listed in a separate row of Talile 6.2 (row 1-20), Tablé 6% @1-41),
Table[6.4 (row 42-44). The columns of these table are orgdnas follows.
The first column represents tip@ssibility number. Columns two through six
represent the number of residue tasks in each of the sumtgds—Ig, while

the seventh column represents the total number of residle ba these subin-
tervals. The eighth and ninth columns repredégin andUrwx, respectively.
The rows of the table are divided into three categories, basethree value
ranges olUrmn as in the following equations:

CAT-0 (row no 1-20): 0 < Urwmn < 22
CAT-1 (row no 21-41): 22 < Upun < %2 (6.4)
CAT-2 (row no 42-44): 32 < Upun < 4Q

We now present the task-assignment algorithms for the tatsgories (given
in Eq. ([€.4))of residue tasks in+lg and the residue tasks in,whose collective
purpose is to guarantee thitt,Ugt < %m” for the smallest non-negative
integerm”, all residue tasks are assigned to at most processors

6.7.1 Residue Task Assignment: CAT-0

Consider the first 20 possibilities (rows 1-20 in Tablg 6.RLAT-0 residue
tasks and all residue task in.|Assign tasks to processor as followsUrt <

%, all residue tasks ino—I; are assigned to one processor.Ufr > %, all
residue tasks ith; are assigned to one processor and all CAT-0 residue tasks in
I,—lg are assigned to another processor.

We prove the RM schedulability by considering two cases—@#s&rr <
%, and case (ii):Urr > %. If case (i) is true, all residue tasks ipHl; are
assigned to one processor. Sirgg < % < LLB(o0) = In2, all residue
tasks are RM schedulable on one processor. If case (ii)eg@lil residue tasks
in 1, assigned to one processor are RM schedulable using Léinmext, tNe
CAT-0 residue tasks i+l are assigned to another processor.

82 CHAPTER 6. MULTIPROCESSOR SCHEDULING

No. [|2 [|3 [|4 [|5 [|6 [Total [URMN [URMX
CAT-0
1 JoJoJoJoJ1] 1 g =
2 [oJo]JoJ1]o[1 = =
3 |oJo[1][0[0] 1 e =
4 JoJ1]of[o0[0] 1))
5 [o[o[o]o]2] 2) =
6 [0J]O0JOo[1[1] 2 = e
7 |oJo]Jo[2]0] 2 2O Y
8 |0oJo[1][0[1] 2 e
9 JoJo[1]1]o0] 2 e EE
w[o[1]oJo[1][2 Q =
1m1[o]Jofo[o0] 1 £ B
2/0]Jo]Jo]Jo0o[3] 3 Q =
B3[oJo|[2]0of0[2 o< |
4]0J1]o]1]0] 2 52 B
i5/0JoJo]1]2] 3 o< =
6/o0JoJo]2]1] 3 e EE
7]oJ1]1]0o]o0] 2 =T EE
8|]o0JoJ1]0]2] 3 =2 =2
wvJjojJoJ1]1]1] 3 X
201 [of[o]o]1] 2 e EE

Table 6.2: All 20 possibilities (row 1-20) of CAT-0 Residue tasksqifl

According to column seven of Tallle 6.2, the number of CATSidchee tasks
in I,—lg is at most3. And observing the ninth column, we find that the max-
imum total utilization (/rmx) Of all CAT-0 residue tasks in+-lg for any row
1-20is152 ~ 0.736 (see row 20). Sincé®? < LLB(3) ~ 0.779, all CAT-0
residue tasks fromylg are RM schedulable on the second processor. In sum-
mary,for CAT-0 residue tasks, ifigt < %, we need one processor, otherwise,
we need at most two processors to assign all the residue itasksl ;.

6.7.2 Residue Task Assignment: CAT-1

Before we propose the task assignment algorithms for thegoay, consider
the following Theorem from [LGDGUQ3] that is used to assigtake tasks ins
processors using RMFF algoritﬁm

3Symbolsn andm in [LGDG03] are renamed asandt in this thesis for clarity.

6.7. TASK ASSIGNMENT: THIRD PHASE 83

No. [lo [I3 [4 [I5 [lg [Total [UrmN [Urmx
CAT-1
21J0JO0JO]1][3] 4 ST Y
22 | 0[1]o0[2]0] 3 =T =2
23| 0Jo0Jo[2]2] 4 == | =
24 0J0]1]0[3] 4 221 2Q
25 |0[0|3[0]0] 3 221 2Q
26 |[oO[1]1[0]1] 3 221 2Q
27 o[1]1[1]0] 3 T2 =
28| 0JoJ1]1]2] 4 T TX
29 [1]1]o0o]Jo0]O0][2 =
30 []o[1]2[]0]0] 3 9T
31[1]o]JoJo]2] 3 =9 2
32| 0[0[0[2[3] 5 o9 [=W
33[]0J0[1][1]3] 5 e
341000 [3] 4 = =
35 |00 [4[0[0] 4 =L
36 |1 [1][o0[0[1] 3 Z
37 2]0]ofJo0o]O0] 2 el
382000 [1] 3 == | =
3921000 3 e
40 [0[1][3]0]0] 4 =T 2T
41 [2]0]JoJo]2] 4 =R
Table 6.3: All 21 possibilities (row 21-41) of CAT-1 Residue taskkid ¢
No. [lo [I3 [4 [I5 [lg [Total [UrMN [Urmx
CAT-2
42 2]1]0]0]1] 4)
43 20|00 3 5 oL 4Q
440 1]4]0[0] 5 =2 =

Table 6.4: All 3 possibilities (row 42-44) of CAT-2 Residue tasksé;ifl

Theorem 1 (from [LGDGO03]) All ¢ tasks in setd are schtladulable 0B’ pro-
cessors using RMFF, i (A) < (s —1)Q + (t — s + 1)(27=+1 —1).

We denote the bound given in TheorEm 1 as follows:
U(s,t) = (s —1)Q + (t — s + 1)(27 71 — 1)

Consider the next 21 possibilities (rows 21-41 in Tablé 6f3FAT-1 residue
tasks and residue tasks ipn IIf Ugr < %, we assign all CAT-1 residue tasks

84 CHAPTER 6. MULTIPROCESSOR SCHEDULING

in 1o—lg for rows 21-41 and the residue tasks jntd at most two processors,
otherwise, to at most three processors. For the first ddsgy < %, all CAT-1
residue tasks ino—l; are assigned using RMFF allocation to two processors.
We prove the RM schedulability in Lemrfi 2.

Lemma?2 If Ugt < %, then all the CAT-1 residue tasks Ip—lg and the
residue tasks it; are RM schedulable on two processors using FF allocation.

Proof According to Theorerfi]1, the value &f(s,t) for s = 2 is given as
U2,t) = Q+ (t—1)(2 . 1). Note that, for rows 21-41, the number
of residue task$ > 2. The functionU (2, ¢) is monotonically non-increasing
ast increases. The minimum @f (2,t) is @ + In2 ast — oo. Therefore,
U(2,t) > Q + 1In2 = 1.10736 for anyt. SinceUgrr < % = 1.10456, we
haveUrr < U(2,t). Using Theorerill, all CAT-1 residue tasks #+lg and the
residue tasks in;lare RM schedulable on two processor&i < %.

For the second cas#,Urt > %, we assign all residue tasks In to one pro-
cessor (RM schedulable using Lemipha 1). And, all residues timsk—I ¢ are
assigned to at most two processors using algorititds_ 37 , R38 , R39 ,
andR40_41 for row 21-37, row 38, row 39 and row 40-41 in Tablel6.3, re-
spectively.Next, we present each of these algorithms and show that at1ICA
residue tasks inok-lg are RM schedulable on at most two processors.

Algorithm R21_37 : All residue tasks in 4—Ig for rows 21-37 are as-
signed to two processors using FF allocation. Such taskRrechedulable
using LemmaB.

Lemma 3 All the residue tasks itp—lg given in any row of 21-37 of Taldle 6.3
are RM schedulable on two processors using FF allocation.

Proof According to column seven in Talle 6.3 for rows 21-37, the Inemof
residue tasks inoklg is at most 5. Thereford/(2,t) is minimized for rows
21-37 whert = 5, and we havel/(2,5) = Q + 4(23 — 1) ~ 1.17. Observing
the ninth column of rows 21-37, we find that the maximum totdization
(Urmx) of the residue tasks in+lg is at most% ~ 1.105 (see row 37). Since
82 < U(2,5), all thet < 5 residue tasks ins-lg for any row 21-37 are RM
schedulable on two processors using FF allocation.

Algorithm R38 : For row 38, there are two tasks in &nd one task in
lg. Assume that, € I, 7, € |5 and7. € lg. Taskr, € |5 is assigned to
one dedicated processor and therefore trivially RM scteddel Then,r, €

I, = (52, %] and7, € Is = (£, 2] are assigned to another processor. Since

6.7. TASK ASSIGNMENT: THIRD PHASE 85

up < %2 andu, < %2, we haveu, +u, < 42 +42 = 15¢ <20 = LLB(2).
So, 1, andr, are schedulable on one processor. All three residue tagksvin
38 are thus RM schedulable on two processors.

Algorithm R39 : For row 39, there are two tasks in &nd one task insl.
Assume that, € |, 7, € |y andr, € I5. We assign these tasks by calling
SPLIT ({74,7s,7c}) Where the highest-priority task is split. We prove thatka
Ta, Tp @and7, are RM schedulable on two processors in Leriina 4.

Lemma4 If 7, € |5, 7, € I3 andT. € |3, then all three tasks are RM schedu-
lable in two processors usingPLIT ({74,75,7c})-

Proof It has already been proven (Policy 2 in Secfiod 6.5) thaetkaeks in }
are RM schedulable on two processors usirgi$. The utilization of a task
from I3 is smaller than that of a task in.l Hence, two task from,land one
from I3 are also RM schedulable usin@iST on two processors.

Algorithm R40_41 : Four residue tasks either in row 40 or in row 41 are
scheduled on two processors as in Eig] 6.3. We prove the Rbtstbility of
these tasks in Lemnia 5.

Algorithm R40_41 (Residue tasks for row 40 or 41)

Selectr, andr, from two different subintervals
Letr. andTy be the remaining residue tasks
Assignr,, 7 t0 One processor

Assignr., 74 to one processor

pPwnhPE

Figure 6.3: Residue Task Assignment (row 40 or row 41)

Lemma 5 The residue tasks in row 40 or 41 in Table]l6.3 are RM schedelabl
on two processors using algorithRd40_41 .

Proof The four residue tasks either in row 40 or row 41 are from dydato
subintervals. For row 40, there is one residue task3i:r(33Q, %] and three
residue tasks imh(%, ?}. For row 41, there are two residue tasks in each of
1,=(58, 22 and k=(£, 22]. Now, consider two cases: case (i) for row 40 and
case (i) for row 41.

Case (i} Two tasks from two different subintervals of row 40 (lineshtisfy

7, € I3 andr, € 14. We then have.. € 1, and7, € 14 (line 2). Sou, < &,

86 CHAPTER 6. MULTIPROCESSOR SCHEDULING

w, < 22, u. < %2 anduy < 22. Taskr, andr, are assigned to one processor
(line 3); we haveu, +u, < 52 + 22 = 1@ — 90 = [1B(2). Taskr, and

7, are assigned to one processor (line 4); we have uy < 22 + 22 = 29 <

2Q) = LLB(2). Thus, all residue tasks in row 40 are RM schedulable on two
processors.

Case (iiy Two tasks from two different subintervals of row 41 (ling 1)
satisfyr, € I, and7, € lg. We then have, € |, and7,; € Ig (line 2). So,
ug < 28w < 22w, < 22 anduy < 42, Taskr, andT, are assigned
to one processor (line 3); we havwg + v, < % + % = % < 2Q =
LLB(2). Similarly, taskr. andt, are assigned to one processor (line 4); we
haveu. +uq < LLB(2). Thus, all residue tasks in row 41 are RM schedulable

on two processors.

In summary, for CAT-1 residue tasksUrt < %, thenl BPS needs to assign
all residue tasks iho—I 7 to at most two processors, and otherwli€ePS needs
at most three processors.

6.7.3 Residue Task Assignment: CAT-2

We now consider the last three possibilities (rows 42—44aild6.%) of CAT-2
residue tasks insklg and the residue tasks in.| We propose two task as-
signment algorithm&42 andR43_44 for residue tasks in row 42 and rows
43-44, respectively, along with all residue tasks:n |

Algorithm R42 : The algorithmR42 presented in Figule 8.4 assigns the
four CAT-2 residue tasks in row 42 and residue tasks inThe RM schedula-
bility using algorithmR42 is ensured as follows. There are four residue tasks
in row 42 such that, € Iy, 7, € Iy, 7. € I3 andry € lg (line 1 in Fig.
[6.4). Tasksr,, 7, andr. are assigned to two processors (line 2) by calling
SPLIT ({74,7,7c}). Such three tasks are RM schedulable on two processors
according to Lemm@al4.

Next, residue task; € lg and all residue tasks iny lare assigned to one
or two processors depending on two cases: caség{i)< 4Q and, case (ii)
Urt > 4Q) respectively.

Case () Urt < 4Q: WhenUgr < 4Q (line 3), taskr, and all residue tasks
in |, are assigned to a third processor (line 4). So, to ensure Ritstability
on one processor, we prove thaj+U (S) < LLB(c0) ~ 0.693 whereS is the
set of residue tasks i | For row 42, we hav&gr = u, +up +ue +uqg+U(S)
andUrun < uq + up + ue + ug. ThereforeUgr > Urmn + U(S). Since,

6.7. TASK ASSIGNMENT: THIRD PHASE 87

Algorithm R42 (Residue task ina-I7 in row 42)

Letr, €la, 7 € 12, 7c € I3 andry € lg
SPUIT ({7a,76,7e))
if (URT < 4@) then

Assignry and all tasks of4 to one processor
else

Assignr, to one processor.

Assign all tasks of (if any) to one processor
end if

NGO sWNE

Figure 6.4: Residue Assignment(row 42)

for row 42, Ugmn = @ (see eighth column of row 42) arickr < 4@ (case

assumption), we have (S) < 4Q — 22 = L& Sincer, € 15 = (%, %¢],
we haveu, + U(S) < 42 4 119 — 15Q (), 69035. Thereforeuq + U(S) <

9
LLB(c0) ~ 0.693.

Case (i) Urr > 4Q: WhenUgt > 4Q, taskr, is assigned to the third
processor (line 6), which is trivially RM schedulable. Adisidue tasks in-l
are scheduled on another processor (line 7), which are &fssdRedulable ac-
cording to Lemmal]l. So, tasl and all residue tasks iy are RM schedulable
on two processor for row 42 whenevEgr > 4Q.

In summarylf Ugr < 4Q), the four CAT-2 residue tasks in row 42 and all
residue tasks ih; are RM schedulable on at most three processors; otherwise,
the tasks are schedulable on at most four processors 129

Algorithm R43_44 : Algorithm R43_44 (see Fig[6.b) assigns the five
CAT-2 residue tasks in row 43 or row 44 and residue tasks.in |

The RM schedulability using algorithiR43 44 is ensured as follows.
The five tasks in row 43 or in row 44 are denotedQy, 7., 74 andr.. Tasks
T, andr, are from two different subintervals (line 1). For row 43, rhare two
residue tasks inoE(22, 49| and three residue tasks igd(<, 22]. For row 44,
there is one residue task ig=(%2, 22] and four residue tasks in#(3%, 22].
Taskst, and, are assigned to one processor (line 4). For row#43¢ |,
and7, € lg and we haver, + up < % + % = % < LLB(2). For row

44,7, € 13 andr, € |y, we haveu, +u, < 52 + 22 = ¢ < LLB(2).
So, tasksr, and 7, are RM schedulable on one processor for any row 43 or
44. To prove the RM schedulability of.,, 74, 7. and all residue tasks in |
we consider two cases: case (i) + uq + u. < LLB(3) (line 5), case (ii):

Ue + ug + ue > LLB(3) (line 8).

88 CHAPTER 6. MULTIPROCESSOR SCHEDULING

Algorithm R43_44 (Residue tasks for row 43 or 44)

Selectr, andt, in different subintervals ofs-lg
Letr., 74 andr. be the remaining tasks in+lg
such thaty. > ug andue > ue
Assignr, andT, to one processor.
if (U(re)+U(ra)+ U(7e)) < LLB(3) then
Assignr,, 74 andr, to a processor.
Assign all tasks of (if any) to a processor
else
Assignr, andr, to a processor.
10. if (URT < 4Q) then
11. Assignr. and all tasks of4 to a processor
12. else
13. Assignr. to one processor.
14. Assign all tasks ofl (if any) to a processor
15. endif
16.end if

CoNoGO~WNE

Figure 6.5: Residue Assignment (row 43-44)

Case (i): Here,r., 74 andr, are assigned to a second processor (line 6) and
they are RM schedulable (case assumption). All residues fadk are assigned
to a third processor (line 7) and are RM schedulable usingrhald.

Case (ii): Here,r. andr, are assigned to a second processor (line 9). For
row 43,7, € I, = (32, 29] sinceu. > uq andu, > u, (line 3). Then obvi-
ously,7; € I = (£, 2] for row 43.

We haveu, +ug < %2 + 22 = 15¢ — 1,1 B(2). For row 44, bothr, and
raarein k=52, 29], and we haveLc + ug < 28 422 = 48 < L1B(2). So,

7. and 74 assigned to one processor (line 9) are RM schedulable forddw
or 44. Next, taskr. and all residue tasks in; lare scheduled on one or two
processors depending on two subcases: subcadéf}):< 4Q (line 10) and,

subcase (i)Urr > 4Q (line 12).

Subcase(i):WhenUgr < 4Q, taskr, and all residue tasks iry lare as-
signed to a third processor (line 11). For RM schedulabilitg show that
ue + U(S) < LLB(c0) = In2 where S is the set of residue tasks n Note
thatUgrun + U(S) < Urr < 4Q for this subcase. For row 4wy = 23 (see
column 8) and we have/(S) < 4Q — 22 = L2 Sincer, € I = (% 29
for row 43, we haver, + U(S) < 22 + HQ

15@ ~ 0.6903 < In2.
For row 44 in Tablg64, sincel €ly=(2 ,769], mely =32 29 and

157 3

“Lo ”

6.7. TASK ASSIGNMENT: THIRD PHASE 89

Ue + ug + ue > LLB(3) = 3(23 — 1) for case (i) we havey, + uy + u. +
ug+ue > 22+ 892 1 3(25 —1) = & 1 3(25 — 1). SinceU(S) +uq +up +

Ue + ug + u. = Urr @andUgr < 4Q (subcase assumption), we havés) <
4Q — (52 +3(25 — 1)) = M2 —3(25 —1). Sincer, € |4 = (32, 22| for row

44, we haver. +U(S) < 22+ 149 —3(25 —1) ~ 0.6561 < In2 = LLB(0).
So, 7. and all residue tasks from bre schedulable on one processor for row 43
orrow 44 if Ugr < 4Q. So, in order to assign,, 7, 7., 7¢ andr, and residue

tasks in I we need at most three processor§ifr < 4Q).

Subcase(ii)WhenUgr > 4Q), taskr, is assigned to a third processor (line
13) and is trivially RM schedulable. All residue tasks indre assigned to a
fourth processor (line 14) and RM schedulable using Lefim&d.. in order
to assignr,, 7, 7., 7¢ and 7. and residue tasks in;| we need at most four
processors it/gr > 4Q.

In summaryjf Urt < 4Q), we assign residue taskslip-l s and residue tasks
for I; to at most three processors; otherwise, these residue tskassigned
to at most four processors.

From the scheduling analysis in this section, we have tHevidig fact.

Fact-1. Any CAT-z residue tasks, fat = 0, 1, 2, and residue tasks from |
are RM schedulable on at mdst+ 1) processors it/rr < w; otherwise,
these residue tasks are schedulable on at (nost2) processors. We have the
following TheorentiP.

Theorem 2 If Ugr < 4Q;’”” , for the smallest non-negative integer’, all the

residue tasks are RM schedulable on at ma&tprocessors.

Proof Note that, if residue tasks only exist in, lour theorem is true because
of Lemmé&1. Now, consider any CATtesidue tasks and residue tasks frgm |

For CAT= residue tasks, we havézr > Urun > ‘“?T“” using Eq. [6.B)£(614).
If Usr < %, then all the residue tasks are RM schedulabléonr- 1)
processors (using Fact-1). Note that = (z + 1) is the smallest non-negative
integer such thal/z; < 4Q§””. Now, if Urr > 22Z*D thenUgr < 4Q3m”
for somem” > (z + 2). Since, using Fact-1 in such case, all residue tasks
are assigned to at mo&t + 2) processors, our theorem is true for the smallest

nonnegative integer.”” > (z + 2) such thal/rr < 4Q§"”,

Task assignment to processor completes here. The taskamsig algo-
rithms in this phase also runs in linear time.

90 CHAPTER 6. MULTIPROCESSOR SCHEDULING

6.8 Performance ofl BPS

Utilization Bound: The worst-case utilization bound bBPS is given in The-
orem3.

Theorem 3 If U(T") < 4Qm , all tasks meet deadlines on at mestprocessors
usingl BPS.

Proof As shown in Section 615=8.6, each processor, to which tamks been
assigned during the first two phases, will have an RM schettask set with
a total utilization strictly greater thaﬁJQ due to load regulation. Let:’>0
be the number of processors to which tasks are assignedydienfirst two
phases. Theorel 2 states that/jr < %’”” for the smallest non-negative
integerm”, then all residue tasks are RM schedulable on at mdstpro-
cessors during the third phase. We must show that] (i) < @, then

(m' +m"”) < m. SinceUgpr < %’”N for the smallest integem”, we
have%ﬁ_l) < Ugr. The total utilization of tasks assignedstd processors
during the first two phases &(I') — Ugr. Therefore,U(T') — Urr > 4Qm
and we have@m’=1) o 19m’ /(1) If we haveU(I') < 19m then

3
Qmm 1) o 4Qm which implies(m’ +m” — 1) < m. Becausen m’

andm are non- negat|ve integers, we have’ +m”) <m. So, fU(T) <
4Qm , all tasks in sefl” are RM schedulable on at most processors. Since

= (y/2 — 1), the utilization bound om: processors i€Y2 ™ ~; 55.2%.

Resource Augmentation Resource augmentation compares a given algorithm
against an optimal algorithm by determining the factor byohtif a given mul-
tiprocessor platform is augmented, then the given algoritfas equal perfor-
mance to the optimal. We find the resource augmentationrfémtd BPS as
follows: given a task sef known to be feasible om processors each having
speed,, we determine the multiplicative factor of this speed byathe plat-
form of | BPS can be augmented so tHats schedulable usingBPS . Baruah
and Fisher[|[BEO5] proved thaf,task systent’ is feasible (under either parti-
tioned or global paradigm) on an identical multiprocessdatform comprised
of m processors each with speédthen we must havew(> U(T"). Now, if
29 > ¢, thenm > %% Using the necessary condition(> U(T") for feasi-

b|||ty in [BFO5), we havem > 200 & U(T) < 9™, According to Theorem
[3, T" is schedulable on m unit-capacity processors. Therefbee ptocessor
speed-up factor far BPS is% > % ~ 1.81.

6.9. ADMISSION CONTROLLERO BPS 91

6.9 Admission Controller O BPS

In this section, an efficient admission controller for oglitask scheduling,
calledO | BPS | is presented. When a multiprocessor scheduling algorithm
is used on-line, the challenge is to determine how a newranthskr,,.,, is
accepted and assigned to a processoiO-IhBPS | if U(T) + upew < %,

the new task,.,, is accepted to the systerftheoreniB ensures that we have
sufficient capacity to assign the new task,, usingl BPS . If u,¢., € |1, we
assign this new task to a dedicated processor. Otherwisg,jfc | for some

k=23,...7, we haveu,ec,, < %. Let I'r denote the set of residue tasks

beforer,.,, is assigned to a processor such tﬁ%&@ <U(IR) < %m”.
These residue tasks Ik were assigned on at most” processors (using The-
orem2) before,,.,, arrives to the systenO- | BPS then forms a new task set
Thew=TrRU{Tmew} FU(Tpew) < 4Qm” , T'new IS @ssigned ten” processors

3
using thel BPS task assignment phases.UfT,,c.,) > 4Q§” , then we have,

UTnew) = Ur + Unew < %’”’” +19 = %”“). The task sef’,,.., is
assigned to at mogin” + 1) processors usingBPS (one new processor is
introduced).

When a task leaves the system, say from proce@soithen for load reg-
ulation we re-execute the assignment algorithm&pnas well as on alin”
processors. Since residue tasks never require more thamprfocessors (See
Section[&.J7)during third phase bBPS , we havem’ < 4. Thus, wherr,,c,,
is admitted to the system usii@y | BPS, the number of processors that require
reassignment of task is upper boundedibyn{4, m}. And when a task leaves
the system, the number of processors that require reassigrohtask for load
regulation is upper bounded byin{5,m}. Remember that BPS runs in
linear time. This, together with the trend in processor stduto have chip
multiprocessors with many cores (16, 32, 64 cores or moregns that our
scheduling algorithm is efficient and scalable with inchegsiumber of cores
in CMPs for online scheduling of real-time tasks.

6.10 Related Work

While the RM scheduling algorithm is optimal for uniprocaesscheduling
[LL73], it is not optimal for multiprocessor scheduling leese of the well-
known Dhall’'s effectlimiting the utilization bound[[DL78]. Recent work cir-
cumvents this effect by restricting the utilization of imidiual tasks in multipro-
cessor scheduling [ABJO1, Lun02, And08, Bak06, B(G03, BALDS that end,

92 CHAPTER 6. MULTIPROCESSOR SCHEDULING

the worst-case utilization bound for static- and dynanriofty partitioned
scheduling is 50% [CFH04]. The corresponding bound for dynamic-priority
global scheduling is 100% using thefair family of algorithms [BCPV96],
while static-priority global scheduling is 50% [AJ03] ewehen using thefair
strategy.

Partitioned approaches for RM scheduling is based on diftdsin-packing
heuristics. The performance of earlier works on partitbiM scheduling
were measured in terms 8¢ = Nﬂ where N is the number of processor
for algorithm A under investigation andv, is the optimal number of pro-
cessors[[DL78, DD86, OS95. LBOS95]. While metHE® expresses the re-
source requirement of a task allocation scheme, it doesxpoess its schedu-
lability performance. In[[OB98], it is shown that the worstse utilization
bound for partitioned RM First-Fit (FF) schedulings(y/2 — 1) ~ 41%.
In [LGDGO03], this bound is improved by also including the rten of tasks
in the schedulability condition. The algorithRy BOUND- MP [LMM98] uses
R-BOUND test that exploits harmonicity in task periods. [RJQ3], an al-
gorithm R- BOUND- MP- NFR (based on the R-BOUND test) is proposed that
has a utilization bound of 50%. The work [n [FBB06] assigreksato proces-
sors according to FF with a decreasing deadline order aridefeaniprocessor
schedulability using alemand-boundunction (DBF). Although these works
do not present a utilization bound, their worst-case peréorce is character-
ized usingresource augmentation

In order to achieve a utilization bound for the partitionqap@ach that
exceeds 50%, a new type of scheduling algorithms using tpttirsy has
evolved [ABDO5| AT06, ABO8, ABBOE, KYQ7, KY08a, KY09a, LRI]). Most
of these works address task splitting for EDF priority.[IB[B035], a task split-
ting algorithmEDF- f mis proposed that has no scheduling guarantee but in-
stead offers bounded task tardiness. An algorithm, cdlli€@ [ATO6], for
dynamic-priorities using task splitting has a utilizatloound between 66% and
100% depending on a design paramétarhich trade-off utilization bound and
preemption count. Using a time slot-based technique, gpotask schedul-
ing for constrained and arbitrary deadline are developgdB08|, /ABBOg]. In
[KYO07] KY08a], the EDF-based partitioning algorithreed2Si p and EDDP
are developed using a concept similar to task splittingedaiportioning’. In
Ehd2Si p, the second portion of a task gets highest priority over rotioa-
split task if the first portion is not executing. EDDP, the deadline of a split
task is changed to a smaller deadline called ‘virtual deadli

Common for all these dynamic-priority task splitting algloms is the ab-
sence of priority traceability property and load regulatidA\s many of the al-

6.11. FAULT-TOLERANT SCHEDULING 93

gorithms requires sorting task before assignment, onlaieduling may be
inefficient. The static-priority task-splitting algorithin [KY094,[KY08b] has
utilization bound that does not exceed 50%. [In [LRL09], aplioit deadline
task set is converted to a constrained deadline staticiyriask set during task
assignment. Even if this algorithm has more than 50% utibmebound, it does
not have the priority traceability property and does notsiger its online appli-
cability as we do with BPS . Our scheduling algorithm has utilization bound
55.2% and the algorithm of Lakshmanan, Rajkumar and LehofizZRLO9]
has utilization bound 60% (non-sorted-version) to 65%tésbrersion). Al-
though the utilization bound in [LRL09] is higher than thdtours, the algo-
rithm in [LRLO9] has higher overhead in terms of online sakledy and number
of migrations.

First, the sorted-version of algorithm presented_in [LRL®9Mot suitable
for online scheduling since sorting of all tasks is requivetenever task en-
ters/leaves dynamically. If unsorted-version of algaritm [LRLO9] is used
for online scheduling and when task leaves the system, thersubtasks of
some existing split-task (for example, that run acrossralt@ssors) may need
to be recombined and reassigned. This can disturb the siehiedall proces-
sors. Our algorithm ensures online rescheduling of taskeqsired in at most
4 to 5 processors. Second, our algorithm has lower migratenhead due to
splitting than that of in([LRLOB]. Our algorithm has at mosthsplit tasks in
comparison tonf, — 1) split tasks in[[LRLOY]. The relationship between number
of subtasks of a split-task on preemption overhead and stihggerformance
(in terms of makespan) has been considered in [KILL09].

If trade-off between theoretical utilization bound andqtieal overheads
for online scheduling is to be made, then we believe our &lyoroutweighs
the 5%-10% higher utilization bound of algorithm [n_[LRLO&r large sys-
tems(CMPs with many cores).

In addition, the algorithnh BPS is priority-traceable (that is, task priorities
are not changed to another fixed-priority during task assat) while the al-
gorithm in [LRLOS] is not. Priority-traceability is impaaht for system designer
who wants that during task assignment his assigned taskt@sdbe preserved
for (i) application requirement, (ii) better predictabjliof the run-time system
and (iii) ease of debugging during development.

6.11 Fault-Tolerant Scheduling

We now turn our attention to tolerating faults in a multipeesor system. Using
the sufficient and necessary feasibility conditioF@RMderived in Chaptdlr]5,

94 CHAPTER 6. MULTIPROCESSOR SCHEDULING

tasks can be assigned to the processors via partitionegpnogkssor schedul-
ing. During task assignment to each processor, we can detemvhether an
unassigned task can be feasibly assigned to a processgr @siollary[5.2.
If all the tasks of a task set can be feasibility assigned ¢opttocessors, then
each processor can tolergtdaults. Note that il BPS, a processor can have
a subtask of a split task. If an error is detected at the endkedidion of a
split task, the error is in fact detected in the processoo arttich the second
subtask of the split task is assigned. However, the recovepy of the task
will be executed on two processors as a split recovery tagie calculation
of the execution time of the composed task in Eg. (5.17) clm it@o account
the execution of a split-task across two processors in dodfind the value of
Load- Fact or - HPi as defined in Chaptél 5. However, the time complexity
of the exact test iFTRMwill then be significant for on-line multiprocessor
scheduling.

As discussed in Sectign 6.9, using the sufficient scheditiabondition of
| BPS, an efficient admission controller for online multiproomsscheduling
can be designed. If an online task is accepted, this task easdigned to the
system usindg>- | BPS very efficiently. If during run time of the system, an
error is detected at the end of execution of a task, the red@ixecution of the
recovery copy of the task can be regarded as an online refyeshew task.
Based on th&®- | BPS admission controller, if the recovery request is accepted
to the system, then the recovery operation can be completisebthe dead-
line of the task. If the recovery request cannot be accepat)uhe sufficient
condition of the admission controller, we propose threesiids alternatives for
handling the recovery request:

e Direct Rejection: Simply reject the request without any further consid-
eration.

e Criticality-Based Eviction: Evict some low-criticality task from the sys-
tem to accept the new request.

e Imprecise Computation: Accept the new request and execute as much
as possible of the recovery copy without compromising timeliness of
other tasks.

6.11.1 Direct Rejection

If an error is detected and the recovery request cannot teptext by the ad-
mission controller of>- | BPS, the approach is as simple as just rejecting the
recovery request. Therefore, if the system utilizationresager than or equal to

6.11. FAULT-TOLERANT SCHEDULING 95

55.2%, then no recovery request would be accepted by thesadmicontroller.

In such a highly-loaded system the reliability is compraedign favor of time-

liness for the already accepted tasks in the multiprocesgiem. Therefore,
reliability is degraded so as to guarantee schedulabifith@existing tasks.

6.11.2 Criticality-Based Eviction

If an error is detected and the recovery request cannot leptert by the ad-
mission controller o> | BPS, then we can emplogriticality-based eviction
In this approach, some already-admitted task, having l@nigcality than the
criticality of the recovery request, is temporarily teraied and the recovery
request is accepted. The termination of the lower-criticahsk is temporary
in the sense that, when the recovery copy of a faulty task@si€xecution, the
evicted lower criticality task can be re-admitted into tigetem. In such case,
the lower-criticality task may be unable to execute its jthest are released
while recovery operation is performed.

By criticality of a task we mean the user-perceived imparéaof the appli-
cations tasks in meeting the deadlines. The criticalityheftasks in a task set
can be determined independent of the priorities of the tigkéVI99]. Such
criticality-based eviction is applicable for applicat®om which execution of
some jobs of a task can be skipped. [In [CB98], scheduling of bad firm
periodic tasks are considered. A firm task can occasionkiyane of its jobs
based on some predetermined quality-of-service agreewtdld the hard pe-
riodic task must execute all of its jobs.

Criticality-based scheduling for non-deterministic wodds is addressed
by Alvarez and Mossé i [MAM99]. They analyzed the schedilitgbof a
fixed-priority system using a concept called responsiveifggAM99]. Their
analysis is best suited for systems with nondeterministickiead in which
recovery operations caused by faults are serviced at @iffalesponsiveness
levels. By responsiveness level, the authors mean whétheetovery opera-
tion is run in a non-intrusive (without affecting schedulip of other tasks) or
intrusive (affecting schedulability of existing tasks)mnar. In case of intrusive
recovery, timeliness of the less-critical tasks are commised and the system
suffers degraded service. Thus, the eviction of lowereality task degrades
schedulability performance but provides higher religpili

Note that, such criticality-based eviction may not worliéte are no lower-
criticality tasks to evict in order to accept a recovery resjuor if the compu-
tation time of the lower-criticality tasks may not be enodghexecuting the
recovery copy. This problem can be addressed using imgrecisiputation
paradigm.

96 CHAPTER 6. MULTIPROCESSOR SCHEDULING

6.11.3 Imprecise Computation

If partial computation of the recovery request is usefuéntihe recovery re-
quest can be accepted into the system even though a cometeteery re-
guest cannot be serviced due insufficient processing dgpadihen the re-
sult of a complete execution of a recovery request cannotrdduped before
the deadline, faults can be tolerated usimgrecise computationf the recov-
ery copy. Imprecise computation models are considered i 90, |LSL 94,
MAAMMOO] and are appropriate for monotone processes whesellt pro-
duced by a task will have increasingly higher quality the entime is spent in
executing the task. Such monotone processes are considdrade a manda-
tory part and an optional paft [LS194]. The mandatory part of each task has a
hard deadline and must complete its execution. Howevegptienal part of a
task can be skipped if enough processing power is not alailab

The imprecise computational model is applicable if the vecp copy of a
faulty task is modeled as a monotone process. Therefors,ithe full execu-
tion of the recovery request cannot be completed, the refthe partial com-
putation of the recovery request can ensure a certain gualthe application.
Hence, when the admission controller cannot guarantee letengxecution of
a recovery request, the request can still be accepted tgstens and imprecise
result can be delivered to the application consequentlycd@ysidering the re-
covery request as a monotone process, the imprecise catoputchnique to
serve a recovery requests can be seen as providing a baktmeeb schedula-
bility performance and reliability.

Itis easy to realize that eviction of a low-criticality taakd imprecise com-
putation can be combined so as to offer a solution to the pmbkhere the
mandatory part of a task does not have enough time to finisbrééfs hard
deadline. In such case by evicting a lower criticality taskld enable the com-
plete execution of the mandatory part of a highly-criticadavery request to be
serviced.

6.12 Discussion and Summary

In this chapter, we have proposed a task-assignment dlgoritalled BPS that
uses the utilization of static-priority tasks in differesutbintervals as a guideline
during assignment. The algorithhBPS is based on a task splitting approach.
The worst-case utilization bound bBPS is 55.2%. The task-assignment algo-
rithm of | BPS requires no a priori sorting of the tasks, and the time corifyle
for assigningn periodic tasks to the processor@§n). In addition to hav-

6.12. DISCUSSION AND SUMMARY 97

ing linear time complexity for task assignment, the aldorit BPS possesses
many important practical features.

First, the load regulation technique bBPS enables the design of an ef-
ficient admission controller for on-line task schedulingmnltiprocessor sys-
tems. | BPS guarantees that, as the number of processors in the system in
creases, the percentage of processors having a load gteateb5.2% also
increases, since at most four processor could have a loagt lilvan 55.2%.
Therefore, online scheduling of tasks usidgl BPS scales very well with the
current trend of having an increasing number of cores in phifiiprocessors.
Second, our algorithhBPS possesses a priority-traceability property which fa-
cilitates the system designer’s ability to debug and mor@aystem during de-
velopment and maintenance. Third, the task-splitting rétlgm causes a lower
number of migrations compared to any other task-splittiggrithm for static
and dynamic priority systems. All these salient featurekemaur scheduling
algorithm efficient for practical implementation for chiputtiprocessors with
an increasing number of cores.

When an error is detected at the end of execution of a tasketuwery re-
quest generated as a means to achieve online fault-tokeramcbe considered
as an online request of a new task. If the sufficient scheditjatondition of
| BPS can guarantee the schedulability of the recovery requestomline ad-
mission controller accepts the request and can executetiogeary to tolerate
the fault. If the sufficient schedulability condition loBPS cannot guarantee the
schedulability of the recovery request, this thesis prepdbree different alter-
natives to handle the non-accepted request. Each of thieseatives makes a
particular trade-off between schedulability performaand reliability require-
ments for the real-time application.

Conclusion

The research presented in this thesis deals with desigoireglsling algorithms
with the objective of meeting deadlines for a set of periddi&ks on uni- and
multiprocessor systems. The feasibility of the two proploseheduling algo-
rithms — FTRMand| BPS — are analyzed for uni- and multiprocessor plat-
forms with the main goal at achieving fault-tolerance arghhprocessor uti-
lization, respectively. Both algorithms are designed fstadic-priority system,
more specifically, the RM priority policy for a set of impligieadline periodic
tasks.

A very general fault model is considered in the analysis efuthiprocessor
scheduling algorithnk TRMfor achieving fault-tolerance. The fault model cov-
ers a variety of hardware and software faults that can odcamyatime, in any
task, and even during execution of a recovery operation.rébavery copy of
a task that runs to tolerate a fault may simply be the re-di@tof the faulty
task or it may be the execution of a recovery block (that isiffarént imple-
mentation of the task). The possession of a fault-tolereimtduling algorithm
that considers such a general fault-model mdkERMa viable candidate for
development of a wide ranges of hard-real time applications

The schedulability analysis ®fTRMuses a novel composability technique
to compute the worst-case workload requested by jobs of ¢hiegic tasks
released within a particular time interval. By calculatihg worst-case work-

99

100 CHAPTER 7. CONCLUSION

load within an interval defined by the released time and deadif each task,
the necessary and sufficient (exact) RM feasibility condittan be derived for
uniprocessor systems. It is proved that this exact conditidrue if, and only
if, a set of implicit-deadline periodic tasks is fault-trdat RM-schedulable. In
addition, the efficiency in terms of time complexity BTRMis also preferable
over the same for existing EDF scheduling.

Another facet of the proposed composability technique uetie feasi-
bility analysis of FTRMis that it is not only applicable for tasks with implicit
deadline and RM priority, but also for tasks with constrdirdeadlines and
any fixed-priority policy. Therefore, the proposed fedgjpanalysis technique
would enable the derivation of an exact feasibility coruwitifor any fixed-
priority scheduling of constrained or implicit deadlineskasystems assuming
the general fault model considered in this thesis.

The exact feasibility condition &FTRMis directly applicable to partitioned
multiprocessor scheduling during assignment of task tgtbeessors, for ex-
ample, during assignment of tasks uslrgPS algorithm proposed in this the-
sis. However, in oder to be able to design an efficient adomssbntroller for
online multiprocessor scheduling, the time-complexitfF-@RMmay be a con-
cern if the system has a large number of tasks. Thereformymesand sufficient
feasibility condition for offline partitioned multiprocssr scheduling, called
| BPS, is derived, based on a task-splitting technique. It is pdothat, all task
deadlines are met usindPS if at most 55.2% capacity of the processor com-
putation capacity is requested. This sufficient condit®mised to design the
admission controller of an online multiprocessor schetdpélgorithm, called
O | BPS. The algorithml BPS is one of the first two works to overcome the
fundamental limitation of a 50% minimum achievable utitina bound of the
traditional, non-task-splitting partitioned multipr@ser scheduling for static-
priority systems. The other algorithm, proposed by Lakshena Rajkumar,
and Lehoczky at Carnegie Mellon University, has an utilmabound of 60%
(unsorted version) to 65% (sorted version). While the sclieglalgorithm pro-
posed by Lakshmanaat al. has better utilization bound for offline systems, itis
not suitable for online scheduling on multiprocessors dué¢ overhaed asso-
ciated with assignment and re-assignment of tasks thakaarid leave online,
respectively.

Using the task-splitting paradigm, the proposed task assémt algorithm
for | BPS runs in linear time. During task assignmentliBPS, the load of
the processors are regulated such that at mest{m, 4} processors (whena
is the number of processors) may have an individual procdsad less than
55.2%. This means that, when a new task arrives, the numipeooéssors that

101

has to be considered for assigning a new task is at mos{m,4}. Likewise,
when a task leaves the system, the number of processorsahéd be consid-
ered for reassignment of some of the remaining tasks (far legulation) is at
mostmin{m, 5}. Consequently®- | BPS is an efficient scheduling algorithm
for online scheduling of real-time tasks on large systentk wiany processors
(for example, Chip-Multiprocessors with many cores).

The algorithml BPS possesses two additional properties, namely priority
traceability and a low number of migrations due to task sptit In | BPS,
the initial priorities of the application tasks do not getinlged during task as-
signment. This is in contrast to the algorithm proposed bishananaret al.
where static-priorities are assigned to tasks during tasigament. The pri-
orities of the tasks are independent of the task assignnhgaritam in | BPS.
This property ofl BPS enables the application designer to easily come up with
his preferred choice of task priorities just by selectingrapriate task periods
(that is, the shorter is the task period selected, the highttre assigned task
priority). Such priority assignments that are indepenadéitie task assignment
algorithm provides a better traceability and predictapitif the run-time sys-
tems and also could facilitates debugging and monitoringp@fsystem during
development.

Another positive property of BPS is that the total number of migrations
caused by the split tasks is lower than that of any other sptikting algorithm.
A migration of a task from one processor to another causespogemption
(the task stops execution in one processor and then statsition in another
processor). Therefore, the lower the number of migratitmes|ower the num-
ber of preemptions and its associated cost. If such overbestd due to task
migration is accounted for, then our proposed algoritrB®S has yet another
positive feature over other task-splitting algorithms.

In | BPS, first tasks are grouped into seven utilization subintsraald then
the tasks from these groups are assigned to processors.itAasgl has only
two subtasks that are assigned on two different processdrBRS. | believe
that, by splitting a task more than once and grouping thestagk given task
set into more than seven subintervals, new task assignrigaitams can be
derived such that it may be possible to achieve a 69% mininzhiegable uti-
lization bound, which is the maximum possible utilizatiarund for partitioned
RM scheduling on multiprocessors.

In the future, the exact feasibility condition BTRMcan be used for joint
scheduling of periodic and aperiodic tasks on uni- and prdtessor platform.
To compare the average performance of such joint schedudinmulation ex-
periments can be conducted to schedule randomly geneesiedéts on a par-

102 CHAPTER 7. CONCLUSION

ticular platform. Moreover, it would be interesting to looko the aspects of
how the algorithm&TRMandl BPS can be adapted for scheduling of periodic
tasks that are not independent.

For the fault-tolerant point of view, the admission cortgnbf O- | BPS can
be augmented with the appropriate mechanisms for toleréainlts. | believe
such an augmentation would provide good average schedpénfprmance
of many soft-real time applications. For example, when en&af an online
video is dropped occasionally due to network problems, fkismie can be re-
transmitted using appropriate fault-tolerant mechanisynthe sender in order
to maintain the quality of the video perceived by the reaeive

In summary, if the preciseness of a feasibility conditionfisnain concern,
then the algorithnFTRM for a uniprocessor provides a faster schedulability
decision than EDF scheduling assuming the fault model usetis thesis.
The composability technique of the uniprocessor fauktaht scheduling al-
gorithm can be easily applied to derive the exact feasjbid@ndition for any
fixed-priority implicit or constrained deadline periodask system (for exam-
ple, deadline-monotonic scheduling). The algorithBPS can be used to as-
sign and execute the tasks on the processors of a multigaogisitform based
on the application designer’s selected task periods acgptd RM priority. If
| BPSis used online, then scheduling of the online applicatisksaan be done
efficiently using the algorithn® | BPS. By selecting appropriate fault-tolerant
mechanisms®- | BPS can be augmented with the capability of fault-tolerance.
To concludeFTRMandO- | BPS can be used more efficiently to schedule the
real-time tasks on uni- and multiprocessor platforms camgbdo many other
competing algorithms.

[ABOS]

[ABBOS]

[ABD *95]

[ABDO5]

[ABJO1]

[ABR'93]

[AFKO5]

[AHO6]

[AJO3]

[ALRLO4]

Bibliography

B. Andersson and K. Bletsas. Sporadic Multiprocessor Saliregiwith
Few Preemptions. IRroceedings of the EuroMicro Conference on Real-
Time Systempages 243—-252, 2008.

B. Andersson, K. Bletsas, and S. Baruah. Scheduling AatyitDeadline
Sporadic Task Systems on MultiprocessorsPtaceedings of the IEEE
Real-Time Systems Symposipages 385-394, 2008.

N. C. Audsley, A. Burns, R. I. Davis, K. W. Tindell, and A. J. Wellsg
Fixed priority pre-emptive scheduling: an historical perspectiReal-
Time System8(2-3):173-198, 1995.

J. H. Anderson, V. Bud, and U. C. Devi. An EDF-based &tiiing Al-
gorithm for Multiprocessor Soft Real-Time Systems.Pimceedings of
the EuroMicro Conference on Real-Time Systgrages 199-208, 2005.

B. Andersson, S. Baruah, and J. Jonsson. Static-Pricchediling on
Multiprocessors. IrProceedings of the IEEE Real-Time Systems Sym-
posium pages 193-202, 2001.

N. Audsley, A. Burns, M. Richardson, K. Tindell, and A.J. Wellingg-
plying new scheduling theory to static priority pre-emptive scheduling.
Software Engineering Journg8(5):284—292, 1993.

J. Aidemark, P. Folkesson, and J. Karlsson. A FrameworkNode-
Level Fault Tolerance in Distributed Real-Time System$1oceedings

of the International Conference on Dependable Systems and Nefworks
pages 656-665, 2005.

G. Attiya and Y. Hamam. Task allocation for maximizing reliability of
distributed systems: a simulated annealing approdmirnal of Parallel
and Distributed Computing6(10):1259-1266, 2006.

B. Andersson and J. Jonsson. The utilization bounds of pariiamd
pfair static-priority scheduling on multiprocessors are 50%Proceed-
ings of the EuroMicro Conference on Real-Time Systgrages 33-40,
2003.

A. AviZienis, J.-C. Laprie, B. Randell, and C. Landwehadic Concepts
and Taxonomy of Dependable and Secure Computl&dE Transac-
tions on Dependable and Secure Computit{@):11-33, 2004.

103

104

[AndO8]

[AOSMO1]

[ATO6]

[Avig5)

[Ayd07]

[Bako6]

[Bar08]

[Bau05]

[BBBO3]

[BCLO5]

[BCPV96]

[BDP96]

[BF97]

BIBLIOGRAPHY

Bjorn Andersson. Global Static-Priority Preemptive Multip sz

Scheduling with Utilization Bound 38%. IRroceedings of the Inter-
national Conference on Principles of Distributed Systepages 73—88,
2008.

R. Al-Omari, Arun K. Somani, and G. Manimaran. A New Fault-
Tolerant Technique for Improving Schedulability in Multiprocessor
Real-time Systems. IRroceedings of the IEEE Parallel and Distributed
Processing Symposiumpage 8, 2001.

B. Andersson and E. Tovar. Multiprocessor Scheduling wittv IPee-
emptions. InProceedings of the IEEE Conference on Embedded and
Real-Time Computing Systems and Applicatipages 322—-334, 2006.

A. Avizienis. The N-Version Approach to Fault-Tolerant Soft@d EEE
Transactions on Software Engineerjrig.(12):1491-1501, 1985.

H. Aydin. Exact Fault-Sensitive Feasibility Analysis of Real-Time
Tasks.|IEEE Transactions on Computers6(10):1372—-1386, 2007.

T. P. Baker. An Analysis of Fixed-Priority Schedulability on altiro-
cessorReal-Time System32(1-2):49-71, 2006.

R. Barbosa. Layered Fault Tolerance for Distributed ErdbddSys-
tems. PhD Thesis, Department of Computer Science and Engineering,
Chalmers University of Technologg008.

R. Baumann. Soft errors in advanced computer systéaf<E Design
and Test of Computerg2(3):258—266, 2005.

E. Bini, G. C. Buttazzo, and G. M. Buttazzo. Rate Monotonic Ay
The Hyperbolic Bound.I[EEE Transactions on Computers2(7):933—
942, 2003.

M. Bertogna, M. Cirinei, and G. Lipari. New Schedulability Tests f
Real-Time Task Sets Scheduled by Deadline Monotonic on Multipro-
cessors . IlProceedings of the Conference on Principles of Distributed
Systemgspages 306—-321, 2005.

S. K. Baruah, N. K. Cohen, C. G. Plaxton, and D. A. VariRzoportion-
ate progress: A notion of fairness in resource allocatibigorithmicg
15(6):600-625, 1996.

A. Burns, R. Davis, and S. Punnekkat. Feasibility Analysis anflf
Tolerant Real-Time Task Sets. Rroceedings of the EuroMicro Confer-
ence on Real-Time Systemages 522-527, 1996.

A. A.Bertossi and A. Fusiello. Rate-monotonic scheduling todkreal-
time systems.European Journal of Operational Resear®6(3):429—
443, 1997.

BIBLIOGRAPHY 105

[BFO5]

[BGO3]

[BMR99]

[BPSW99]

[BRH90]

[BT83]

[CBOS]

[CC89]

[CCE*09]

[CFHT04]

[CLL9O]

[CLRS01]

[CMR92]

S. Baruah and N. Fisher. The partitioned multiprocessor stimgdof
sporadic task systems. Proceedings of the IEEE Real-Time Systems
Symposiumpages 321-329, 2005.

S. Baruah and J. Goossens. The Static-priority Schedulingriddic
Task Systems upon Identical Multiprocessor PlatforinsProc. of the
IASTED Int. Conf. on PDC$ages 427-432, 2003.

A. A. Bertossi, L. V. Mancini, and F. Rossini. Fault-ToleranatB-
Monotonic First-Fit Scheduling in Hard-Real-Time System$EEE
Transactions on Parallel and Distributed Systet3(9):934-945, 1999.

A. Burns, S. Punnekkat, L. Strigini, and D.R. Wright. Piulistic
scheduling guarantees for fault-tolerant real-time system®ejmend-
able Computing for Critical Applicationpages 361-378, 1999.

S. Baruah, L. E. Rosier, and R. R. Howell. Algorithms and plaxity
concerning the preemptive scheduling of periodic, real-time tasks®n on
processorReal-Time System£(4):301-324, 1990.

J. A. Bannister and K. S. Trivedi. Task allocation in fault-tolerdis-
tributed systemsActa Informatica 20:261-281, 1983.

M. Caccamo and G. Buttazzo. Optimal scheduling for fault-toleaad
firm real-time systems . IRroceedings of the IEEE Conference on Real-
Time Computing Systems and Applicatiqreges 223-231, 1998.

H. Chetto and M. Chetto. Some Results of the Earliest Deadline
Scheduling Algorithm. IEEE Transactions on Software Engineering
15(10):1261-1269, 1989.

S. Chaudhry, R. Cypher, M. Ekman, M. Karlsson, A. LandinY,
H. Zeffer, and M. Tremblay. Rock: A High-Performance Sparc CMT
ProcessorlEEE Micro, 29(2):6-16, 2009.

J. Carpenter, S. Funk, P. Holman, J. H. Anderson, and S.aBaré
categorization of real-time multiprocessor scheduling problems and al-
gorithms. Handbook on Scheduling Algorithms, Methods, and Models
2004.

J.-Y. Chung, J.W.S. Liu, and K.-J. Lin. Scheduling peitojbbs that
allow imprecise resultdEEE Transactions on Computei®9(9):1156—
1174, 1990.

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stkitroduction
to Algorithms MIT Press, 2001.

A. Campbell, P. McDonald, and K. Ray. Single event upsegsrén
space. IEEE Transactions on Nuclear Scien@9(6):1828-1835, Dec
1992.

106

[CMS82]

[DD86]

[Dha77]

[DL78]

[FBBO6]

[Gho]

[GJI79]

[GMMO5]

[GMM97]

[GMMS98a]

[GMMS98b]

[HSWO3]

[IRH86]

BIBLIOGRAPHY

X. Castillo, S. R. McConnel, and D. P. Siewiorek. Derivatiod &al-
ibration of a Transient Error Reliability ModelEEE Transactions on
Computers31(7):658-671, 1982.

Sadegh Davari and Sudarshan K. Dhall. An On Line AlgorithnReal-
Time Tasks Allocation. IfProceedings of the IEEE Real-Time Systems
Symposiumpages 194-200, 1986.

S. K. Dhall. Scheduling periodic-time - critical jobs on single pssc
sor and multiprocessor computing systen®hD Thesis, University of
lllinois at Urbana-Champaign1977.

S. K. Dhall and C. L. Liu. On a Real-Time Scheduling Probleoper-
ations Research26(1):127-140, 1978.

N. Fisher, S. Baruah, and T. P. Baker. The Partitioned @dhmg of
Sporadic Tasks According to Static-Priorities. Pmoceedings of the
EuroMicro Conference on Real-Time Systepagjes 118-127, 2006.

Fault-tolerant scheduling on a hard real-time multiprocessormaysie-
thor=Ghosh, S. and Melhem, R. and Mossé, D., booktitle=Proceedings
of the International Parallel Processing Symposium, pages=775-782
year=1994,.

M. R. Garey and D. S. Johnsabomputers and Intractability: A Guide
to the Theory of NP-Completenesd/. H. Freeman & Co., New York,
NY, USA, 1979.

S. Ghosh, R. Melhem, and D. Mossé. Enhancing real-timedules to
tolerate transient faults. IRroceedings of the IEEE Real-Time Systems
Symposiumpages 120-129, 1995.

S. Ghosh, R. Melhem, and D. Mossé. Fault-Tolerance Tgindachedul-
ing of Aperiodic Tasks in Hard Real-Time Multiprocessor Systems.
IEEE Transactions on Parallel and Distributed Syste®(8):272—-284,
1997.

S. Ghosh, R. Melhem, D. Mossé, and J. S. Sarma. Faldtaht Rate-
Monotonic SchedulingReal-Time Systemd4.5(2):149-181, 1998.

S. Ghosh, Rami Melhem, Daniel Mossé, and Joydeefs8ana. Fault-
Tolerant Rate-Monotonic SchedulindReal-Time Systemsl5(2):149—
181, 1998.

C.-C. Han, K. G. Shin, and J. Wu. A Fault-Tolerant Scheduigo-
rithm for Real-Time Periodic Tasks with Possible Software FalBEE
Transactions on Computers2(3):362—-372, 2003.

R. K. lyer, D. J. Rossetti, and M. C. Hsueh. Measuremadtraodeling
of computer reliability as affected by system activiCM Transactions
on Computer Systen¥(3):214—-237, 1986.

BIBLIOGRAPHY 107

[JHCSO02]

[Johssg]

[JP86]

[KAOO5]

[KLLO9]

[KLLSO05a]

[KLLS05b]

[KS86]

[KYO07]

[KY08a]

[KY08b]

[KY09a]

[KY09b]

A. Jhumka, M. Hiller, V. Claesson, and N. Suri. On systenusgign

of globally consistent executable assertions in embedded software. In
Proceedings of the joint conference on Languages, compilers and tools
for embedded systemages 75-84, 2002.

B. W. Johnson.Design & analysis of fault tolerant digital systems
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
1988.

M. Joseph and P. Pandya. Finding Response Times in a RealSyisa
tem. The Computer JournaP9(5):390-395, 1986.

P. Kongetira, K. Aingaran, and K. Olukotun. Niagara: a 32ywmulti-
threaded Sparc processtEEE Micro, 25(2):21-29, 2005.

K. Klonowska, L. Lundberg, and H. Lennerstad. The madimgain
of increasing the number of preemptions in multiprocessor scheduling.
Acta Informatica, 46(4):285-295, 2009.

K. Klonowska, H. Lennerstad, L. Lundberg, and C. I8vaerg. Optimal
recovery schemes in fault tolerant distributed computiga Informat-
ica., 41(6):341-365, 2005.

K. Klonowska, L. Lundberg, H. Lennerstad, and C. Bvwaerg. Ex-
tended Golomb rulers as the new recovery schemes in distributed de-
pendable computing. IRroceedings of the IEEE International Parallel
and Distributed Processing Symposiymage 8, April 2005.

C.M. Krishna and K.G. Shin. On Scheduling Tasks with a Quickdwe
ery from Failure.IEEE Transactions on Computer8-35(5):448-455,
1986.

S. Kato and N. Yamasaki. Real-Time Scheduling with Task Splitting
on Multiprocessors. IProceedings of the IEEE International Confer-
ence on Embedded and Real-Time Computing Systems and Applications
pages 441-450, 2007.

S. Kato and N. Yamasaki. Portioned EDF-based schedulingaiti-
processors. IProceeding of the International Conference on Embedded
Software pages 139-148, 2008.

S. Kato and N. Yamasaki. Portioned static-priority schedulingnotti-
processors. IfProceedings of the IEEE International Parallel and Dis-
tributed Processing Symposiupages 1-12, 2008.

S. Kato and N. Yamasaki. Semi-Partitining Fixed-Priority Schiedu
on Multiprocessor. IrProceedings of the IEEE Real-Time Technology
and Applications Symposiympages 23—-32, 2009.

S. Kato and N. Yamasaki. Semi-Partitioned Scheduling of SporEask
Systems on Multiprocessors. Rroceedings of the EuroMicro Confer-
ence on Real-Time Systemages 249-258, 2009.

108

[LBOS95]

[LDGO4]

[LGDGO3]

[LL73]

[LLOS]

[LLWSO08]

[LMM98]

[LMMOO]

[LRLO9]

[LSD89]

[LSLT94]

[Lun02]

BIBLIOGRAPHY

J. Liebeherr, A. Burchard, Y. Oh, and S. H. Son. Nevatggies for As-
signing Real-Time Tasks to Multiprocessor Systel&&E Transactions
on Computers44(12):1429-1442, 1995.

J. M. Lopez, J. L. Diaz, and D. F. Garcia. Minimum and Maximuti-
lization Bounds for Multiprocessor Rate Monotonic SchedulilgEE
Transactions on Parallel and Distributed Systets(7):642—-653, 2004.

J. M. Lopez, M. Garcia, J. L. Diaz, and D. F. Garcia. UtilizaBounds
for Multiprocessor Rate-Monotonic SchedulingReal-Time Systems
24(1):5-28, 2003.

C. L. Liuand J. W. Layland. Scheduling Algorithms for Multipragn-
ming in a Hard-Real-Time Environmeritournal of the ACM20(1):46—
61, 1973.

Lars Lundberg and Hakan Lennerstad. Slack-based globdtiproces-

sor scheduling of aperiodic tasks in parallel embedded real-time systems
In Proceedings of the IEEE/ACS International Conference on Computer
Systems and Applicationgages 465-472, 2008.

W.-C. Lu, K.-J. Lin, H.-W. Wei, and W.-K. Shih. Efficierifxact Test
for Rate-Monotonic Schedulability Using Large Period-Dependent Ini-
tial Values.|EEE Transactions on Computeis7(5):648—659, 2008.

S. Lauzac, R. Melhem, and D. Mossé. An Efficient RMS Cohénd Its
Application to Multiprocessor Scheduling. Rroceedings of the Inter-
national Parallel Processing Symposiupages 511-518, 1998.

F. Liberato, R. Melhem, and D. Mossé. Tolerance to Multiplengignt
Faults for Aperiodic Tasks in Hard Real-Time Syste&EE Transac-
tions on Computer19(9):906-914, 2000.

K. Lakshmanan, R. Rajkumar, and J. Lehoczky. PartitioRredd-

Priority Preemptive Scheduling for Multi-core ProcessorsPtlaceed-
ings of the EuroMicro Conference on Real-Time Systgages 239—
248, 2009.

J. Lehoczky, L. Sha, and Y. Ding. The rate monotonic sahied algo-
rithm: exact characterization and average case behaviérolceedings
of the IEEE Real-Time Systems Symposjpages 166—-171, 1989.

J.W.S. Liu, W.-K. Shih, K.-J. Lin, R. Bettati, and J.-Y. Chung pir@acise
computationsProceedings of the IEEB2(1):83-94, 1994.

L. Lundberg. Analyzing Fixed-Priority Global Multiprocessschedul-
ing. InProceedings of the IEEE Real-Time Technology and Applications
Symposiumpages 145-153, 2002.

[MAAMMOO] P. Mejia-Alvarez, H. Aydin, D. Mossé, and R. Melhem. Sstuling op-

tional computations in fault-tolerant real-time systemsPtaceedings

BIBLIOGRAPHY 109

[MAMO9]

[MBS07]

[MCS91]

[MdALBO3]

[MM98]

[OB98]

[0S94]

[0S95]

[Pat06]

[PBDO1]

[PJO9]

[PMO8]

[Pra96]

of the Conference on Real-Time Computing Systems and Applications
page 323, 2000.

P. Mejia-Alvarez and D. Mossé. A responsiveness apghdar schedul-
ing fault recovery in real-time systems. Rroceedings of the IEEE
Real-Time Technology and Applications Sympospages 4-13, 1999.

A. Meixner, M.E. Bauer, and D.J. Sorin. Argus: Low-GoSompre-
hensive Error Detection in Simple Cores. Rroceedings of the Annual
IEEE/ACM International Symposium on Microarchitectupages 210—
222, 2007.

H. Madeira, J. Camoes, and J. G. Silva. A watchdog procésscon-
current error detection in multiple processor systei&roprocessors
and Microsystemsl5(3):123-130, 1991.

G. M. de A. Lima and A. Burns. An optimal fixed-priority agament
algorithm for supporting fault-tolerant hard real-time systeniBEEE
Transactions on Computers2(10):1332-1346, 2003.

G. Manimaran and C. S. R. Murthy. A Fault-Tolerant Dynamit&adul-

ing Algorithm for Multiprocessor Real-Time Systems and Its Analysis.
IEEE Transactions on Parallel and Distributed Syster®€l1):1137—
1152, 1998.

D.-I. Ohand T. P. Baker. Utilization Bounds for N-ProcedRate Mono-
tone Scheduling with Static Processor Assignm&#al-Time Systems
15(2):183-192, 1998.

Y. Oh and S. H. Son. Enhancing fault-tolerance in rate-moimton
scheduling.Real-Time Systemg.(3):315-329, 1994.

Yingfeng Oh and Sang H. Son. Allocating fixed-priority periodgkta
on multiprocessor systemBReal-Time System£(3):207-239, 1995.

R. M. Pathan. Probabilistic Analysis of Real-Time Scheduling sf Sy
tems Tolerating Multiple Transient Faults. Broceedings of the Inter-
national Conference of Computer and Information Technql@g®6.

S. Punnekkat, A. Burns, and R. Davis. Analysis of Chetokpw for
Real-Time SystemsReal-Time System£0(1):83-102, 2001.

R. M. Pathan and J. Jonsson. Load Regulating Algorithm for
Static-Priority Task Scheduling on Multiprocessofechnical Report,
Chalmers University of Technology, Swedgtay 2009.

http://ww. cse.chal mers.se/ ~risat/Iraspts. pdf.

M. Pandya and M. Malek. Minimum Achievable Utilization for Fault-
Tolerant Processing of Periodic TaskEEE Transactions on Comput-
ers 47(10):1102-1112, 1998.

D. K. Pradhan Fault-tolerant computer system desigRrentice-Hall,
Inc., Upper Saddle River, NJ, USA, 1996.

http://www.cse.chalmers.se/~risat/lraspts.pdf

110

[SAAT04]

[SABRO4]

[SHO8]

[SKK*08]

[SKM 78]

[SLRS6]

[SRL90]

[SSO05]

[SUS004]

[SWG92]

[WEMRO04]

BIBLIOGRAPHY

L. Sha, T. Abdelzaher, K.-E. Arzén, A. Cervin, T. Baker, AurBs,

G. Buttazzo, M. Caccamo, J. Lehoczky, and A. K. Mok. Real Time
Scheduling Theory: A Historical PerspectiReal-Time System28(2-
3):101-155, 2004.

J. Srinivasan, S. V. Adve, P. Bose, and J. A. River$ie Tmpact of
Technology Scaling on Lifetime Reliability. IRroceedings of the Inter-
national Conference on Dependable Systems and Netwuages 177—
186, 2004.

M. Sjédin and H. Hansson. Improved Response-Time Anayaisula-
tions. InProceedings of the IEEE Real-Time Systems Sympopage
399, 1998.

P. N. Sanda, J. W. Kellington, P. Kudva, R. Kalla, R. B. McBeth,
J. Ackaret, R. Lockwood, J. Schumann, and C. R. Jones. Saft-err
resilience of the IBM POWERG6 processtBM J. Res. Dey52(3):275—
284, 2008.

D.P. Siewiorek, V. Kini, H. Mashburn, S. McConnel, and M. Tsao.
A case study of C.mmp, Cm*, and C.vmp: Part |-Experiences with
fault tolerance in multiprocessor system®roceedings of the IEEE
66(10):1178-1199, 1978.

L. Sha, J. P. Lehoczky, and R. Rajkumar. Solutions for &&mactical
Problems in Prioritized Preemptive Scheduling. Pmceedings of the
IEEE Real-Time Systems Symposipages 181-191, 1986.

L. Sha, R. Rajkumar, and J.P. Lehoczky. Priority InhedéaRroto-
cols: An Approach to Real-Time SynchronizatiolfEEE Transactions
on Computers39(9):1175-1185, 1990.

R. M. Santos, J. Santos, and J. D. Orozco. A least uppedbmn the
fault tolerance of real-time system3ournal of Systems and Software.
78(1):47-55, 2005.

R. M. Santos, J. Urriza, J. Santos, and J. Orozco. Nehoaefor redis-
tributing slack time in real-time systems: applications and comparative
evaluations.Journal of Systems and Softwa69(1-2):115-128, 2004.

S. M. Shatz, J.-P. Wang, and M. Goto. Task allocation forimiax
ing reliability of distributed computer system$EEE Transactions on
Computers41(9):1156-1168, Sep 1992.

C. Weaver, J. Emer, S. S. Mukherjee, and S. K. Reirthdrechniques

to Reduce the Soft Error Rate of a High-Performance Microprocesso
In Proceedings of the annual international symposium on Computer ar-
chitecture pages 264-275, 2004.

	Abstract
	List of Publications
	Acknowledgments
	Introduction
	Preliminaries
	Real-Time Systems
	Periodic Task Systems
	Task Independence
	Ready Tasks
	Task Priority
	Preemptive Scheduling
	Work-Conserving Scheduling
	Feasibility and Optimality of Scheduling
	Minimum Achievable Utilization
	Scheduling Algorithms
	Offline and Online Scheduling

	Fault-Tolerant Systems
	Failure, Error, and Faults
	Error Detection Techniques

	Goals and Contributions
	Models
	Task Model
	System Model
	Fault Model

	Uniprocessor Scheduling
	Introduction
	Background
	Task Model
	Fault Model
	RM Schedulability

	Related Work
	Problem Formulation
	Load Factors and Composability
	Calculation of Load-Factor-i
	Calculation of Load-Factor-HPi

	Exact Feasibility Condition
	Algorithm FTRM
	Multiprocessor Scheduling

	Discussion and Summary

	Multiprocessor Scheduling
	Introduction
	Important Features of IBPS
	Task Model
	Task Assignment and Splitting Overview
	Task Assignment: First Phase
	Task Assignment: Second Phase
	Task Assignment: Third Phase
	Residue Task Assignment: CAT-0
	Residue Task Assignment: CAT-1
	Residue Task Assignment: CAT-2

	Performance of IBPS
	Admission Controller OIBPS
	Related Work
	Fault-Tolerant Scheduling
	Direct Rejection
	Criticality-Based Eviction
	Imprecise Computation

	Discussion and Summary

	Conclusion

