
THESIS FOR THEDEGREE OFL ICENTIATE OF ENGINEERING

Scheduling Algorithms For Fault-Tolerant
Real-Time Systems

RISAT MAHMUD PATHAN

Division of Networks and Systems
Department of Computer Science and Engineering

CHALMERS UNIVERSITY OF TECHNOLOGY

Göteborg, Sweden 2010

Scheduling Algorithms For Fault-Tolerant Real-Time Systems
Risat Mahmud Pathan

Copyright c© Risat Mahmud Pathan, 2010.

Technical Report No. 65L
ISSN 1652-876X
Department of Computer Science and Engineering
Dependable Real-Time Systems Group

Contact Information:

Department of Computer Science and Engineering
Chalmers University of Technology
SE-412 96 Göteborg, Sweden
Phone: +46 (0)31-772 52 16
Fax: +46 (0)31-772 36 63
E-mail: risat@chalmers.se

Printed by Chalmers Reproservice
Göteborg, Sweden 2010

Scheduling Algorithms For Fault-Tolerant Real-Time Systems
Risat Mahmud Pathan
Department of Computer Science and Engineering
Chalmers University of Technology

Abstract
This thesis deals with the problem of designing efficient fault-tolerant real-time
scheduling algorithms for independent periodic tasks on uni- and multiproces-
sor platforms. The well-known Rate-Monotonic (RM) scheduling algorithm is
assumed as it is widely used in many commercial systems due toits simplicity
and ease of implementation. First, a uniprocessor RM scheduling algorithm is
analyzed to derive an efficient and exact feasibility condition considering fault-
tolerance. Second, a multiprocessor scheduling algorithmis designed to achieve
efficient utilization of the processors while meeting the task deadlines. The goal
of the former algorithm is to achieve reliability while the goal of the latter algo-
rithm is to achieve a high performance. In this thesis, it is also discussed how
to blend these two metrics into the same scheduling framework.

The uniprocessor RM scheduling algorithm is analyzed usinga novel com-
posability technique considering occurrences of multiplefaults. Based on this
analysis, the exact feasibility of the fault-tolerant schedule of a task set can be
determined efficiently in terms of time complexity. This algorithm exploits time
redundancy as a cost-efficient means to tolerate faults. Thefault model consid-
ered is very general in the sense that faults can occur in any task and at any time
(even during recovery), and covers a variety of hardware andsoftware faults.

The multiprocessor RM scheduling algorithm is designed to achieve a high
average utilization of the processors while meeting all task deadlines. The al-
gorithm uses a task-splitting technique, in which a boundednumber of tasks are
allowed to migrate their execution from one processor to another. It is proved
that, using the algorithm, all tasks can meet their deadlines if at most 55.2% of
the processor capacity is requested. The load on the processors are regulated to
enable the design of an efficient admission controller for online scheduling that
scales very well with an increasing number of processors.

Keywords: Real-Time Systems, Periodic Task Scheduling, Rate-Monotonic Schedul-
ing, Uniprocessor, Multiprocessors, Fault-Tolerant Scheduling, Partitioned Scheduling,
Task-Splitting Algorithms, Online Scheduling

List of Publications

This thesis is based on and extends the results in the following works:

⊲ Risat Mahmud Pathan and Jan Jonsson, “Load Regulating Algo-
rithm for Static-Priority Task Scheduling on Multiprocessors,” to
appear in Proceedings of the 24th IEEE International Parallel and
Distributed Processing Symposium (IPDPS 2010), Atlanta, USA,
19-23 Apr, 2010.

⊲ Risat Mahmud Pathan, Jan Jonsson and Johan Karlsson, “Sche-
dulability of Real-Time Fault-Tolerant Systems Using Multi-core,”
presented at the 6th HiPEAC Industrial Workshop, Massy, France,
26 Nov, 2008.

⊲ Risat Mahmud Pathan, “Fault-Tolerant Real-Time Scheduling us-
ing Chip Multiprocessors,” inProceedings Supplemental volume
of the 7th European Dependable Computing Conference (EDCC
2008), Kaunas, Lithuania, 7-9 May, 2008.

⊲ Risat Mahmud Pathan, “Recovery of Fault-Tolerant Real-Time Sc-
heduling Algorithm for Tolerating Multiple Transient Faults,” in
Proceedings of the 10th International Conference of Computer and
Information Technology (ICCIT 2007), Dhaka, Bangladesh, 27-29
Dec, 2007.

⊲ Risat Mahmud Pathan, “Probabilistic Analysis of Real-TimeSc-
heduling of Systems Tolerating Multiple Transient Faults,” in Pro-
ceedings of the 9th International Conference of Computer and In-
formation Technology (ICCIT 2006), Dhaka, Bangladesh, 21-23
Dec, 2006.

⊲ Risat Mahmud Pathan, “Fault-tolerant Real-Time Scheduling Al-
gorithm for Tolerating Multiple Transient Faults,” inProceedings
of the 4th International Conference on Electrical and Computer
Engineering (ICECE 2006), Dhaka, Bangladesh, 19-21 Dec, 2006.

i

Acknowledgments

First of all, I would like to thank my supervisor Docent Jan Jonsson for his
excellent comments, invaluable ideas, and most importantly his confidence in
me to carry out this research. His knowledge, feedback and guidance have
provided me the inspiration to work as a PhD student in real-time systems.

Special thanks and gratitude to Professor Johan Karlsson for sharing with
me his knowledge about fault-tolerant computer systems.

I would also like to take the opportunity to thank Professor Sanjoy Baruah
who gave me some insights regarding my work on multiprocessor scheduling
when I met him last year at the ARTIST Summer School in France.

I also thank Professor Per Stenstörm and Professor Philippas Tsigas for their
helpful discussion about the direction of my research at theadvisory committee
meeting.

Many thanks to my colleagues at the Department of Computer Science and
Engineering for creating such a friendly and stimulating working environment.
I especially thank Dr. Raul Barbosa and Daniel Skarin who offered me valuable
discussion, comments, and also helped me with issues related to LATEX.

I want to express my deepest gratitude and thanks to my parents who have
been encouraging me in pursuing my study. Finally, I thank mywife Nashita
Moona and our son Mahir Samran Pathan for their patience and love.

Risat Mahmud Pathan

This research has been funded by the Swedish Agency for Innovation Systems
(VINNOVA) under the funding IDs P30619-2 (TIMMO) and S4207 (NFFP-4).

iii

Contents

Abstract iii

List of Publications i

Acknowledgments iii

1 Introduction 1

2 Preliminaries 5
2.1 Real-Time Systems . 5

2.1.1 Periodic Task Systems 6
2.1.2 Task Independence . 6
2.1.3 Ready Tasks . 7
2.1.4 Task Priority . 7
2.1.5 Preemptive Scheduling 7
2.1.6 Work-Conserving Scheduling 8
2.1.7 Feasibility and Optimality of Scheduling 8
2.1.8 Minimum Achievable Utilization 9
2.1.9 Scheduling Algorithms 10
2.1.10 Offline and Online Scheduling 12

2.2 Fault-Tolerant Systems . 13
2.2.1 Failure, Error, and Faults 13
2.2.2 Error Detection Techniques 16

3 Goals and Contributions 17

4 Models 21
4.1 Task Model . 21
4.2 System Model . 23
4.3 Fault Model . 23

v

vi CONTENTS

5 Uniprocessor Scheduling 25
5.1 Introduction . 25
5.2 Background . 27

5.2.1 Task Model . 27
5.2.2 Fault Model . 27
5.2.3 RM Schedulability . 29

5.3 Related Work . 30
5.4 Problem Formulation . 33
5.5 Load Factors and Composability 35

5.5.1 Calculation ofLoad-Factor-i 37
5.5.2 Calculation ofLoad-Factor-HPi 38

5.6 Exact Feasibility Condition . 56
5.7 Algorithm Fault-Tolerant Rate-Monotonic (FTRM) 60

5.7.1 Multiprocessor Scheduling 62
5.8 Discussion and Summary . 64

6 Multiprocessor Scheduling 67
6.1 Introduction . 67
6.2 Important Features ofIBPS 70
6.3 Task Model . 71
6.4 Task Assignment and Splitting Overview 72
6.5 Task Assignment: First Phase 76
6.6 Task Assignment: Second Phase 78
6.7 Task Assignment: Third Phase 81

6.7.1 Residue Task Assignment: CAT-0 81
6.7.2 Residue Task Assignment: CAT-1 82
6.7.3 Residue Task Assignment: CAT-2 86

6.8 Performance ofIBPS . 90
6.9 Admission ControllerOIBPS 91
6.10 Related Work . 91
6.11 Fault-Tolerant Scheduling . 93

6.11.1 Direct Rejection . 94
6.11.2 Criticality-Based Eviction 95
6.11.3 Imprecise Computation 96

6.12 Discussion and Summary . 96

7 Conclusion 99

1
Introduction

Computer systems are ubiquitous. Examples of versatile uses of computers
range from playing computer games to diagnosing a shuttle inspace. Many of
these computer systems are known asreal-time systemsthat have timing con-
straints. One of the most important timing constraints of real-time systems is
meeting the deadlinesof the application tasks. Consequently, the correctness
of the real-time systems depend not only on their logical andfunctional output,
but also depend on the timewhenthe output is generated. One class of real-
time systems that have stringent timing constraints are called hard real-time
systems. If the timing constraints of hard real-time systems are not satisfied,
then the consequences may be catastrophic, like threat to human lives or signif-
icant economic loss. So, it is of utmost importance for hard real-time systems
designers to ensure that all timing constraints will be met once the system is in
mission.

In addition to satisfying the timing constraints of hard real-time system, the
functional correctness of the application ought to be guaranteed. Having timely
output of the real-time application is of no use if the systemdeviates from its
specified output. The cause of such deviated behavior of computer system is
the occurrences offaults in the system. For example, after the computer system
failed in the London Stock Exchange on September 8, 2008, thestock trading
halted for several hours. Hard real-time systems must thus satisfy all the timing

1

2 CHAPTER 1. INTRODUCTION

constraints of the applications and have to be fault-tolerant in the presence of
faults. The timing constraints of the real-time applications can be satisfied using
appropriatetask schedulingand the required level of reliability can be achieved
by means offault-tolerance.

Achieving fault-tolerance in computer systems requires employing redun-
dancy either in space or in time. Space redundancy is provided by additional
hardware, for example, using extra processors. However, due to cost, volume
and weight considerations providing space redundancy may not be always vi-
able, for example, in space, automotive or avionics applications. To achieve
fault-tolerance in such systems, time redundancy is used inthe form of taskre-
covery(re-execution of the original task or execution of a different version of
the task) when faults occur. Fault-tolerance using time redundancy cannot be
addressed independently of task scheduling issues. This isbecause time redun-
dant execution as a means for tolerating faults may have a negative impact on
the schedule of the tasks in the sense that it might lead to missed deadlines for
one or more of the tasks. Consequently,there is a need for the design of fault-
tolerant scheduling algorithms that minimize such intrusive impact resulting
from the recovery operations to tolerate faults.

The recent trend in the processor industry for developing Chip Multipro-
cessors (CMPs) enables many embedded applications to be deployed on CMPs.
Whereas the uniprocessor real-time task scheduling theory is considered very
mature, a comprehensive multiprocessor scheduling theoryhas yet to be devel-
oped. Since many of the well-understood uniprocessor scheduling algorithms
perform very poorly (in terms of hard real-time schedulability) on multipro-
cessors, developing new multiprocessor scheduling algorithms has recently re-
ceived considerable attention. Due to the trend of an increased use of CMPs
in embedded systems,there is a need for the design of efficient multiprocessor
scheduling algorithms and their extension toward fault-tolerance.

Many real-time systems are dynamic in nature, that is, application tasks
arrive and leave the system dynamically (for example, in online multimedia,
video conferencing or distance learning applications). Insuch rapidly chang-
ing workloads, whether or not to accept a task into the systemwhen it arrives
is decided by anadmission controller. If a task is accepted by the admission
controller, then the scheduling algorithm has to decidewhento execute the task.
If there are multiple processors,where(tha is, on which processor) to execute
the new task adds one more dimension to the scheduling decision. However, all
such online decisions have to be made very fast so that the timeliness of other
already-admitted tasks into the system is not jeopardized.Considering the trend
in developing CMPs with many cores and the diverse ranges of online applica-

3

tions, there is a need for the design of efficient online admission controllers and
online scheduling algorithms for multiprocessors.

This thesis addresses the problem of designing efficient real-time schedul-
ing algorithms for independent periodic tasks on uni- and multi-processor plat-
forms. The RM scheduling algorithm is assumed because it is widely used in
many commercial and safety-critical systems due to its simplicity and ease of
implementation. The first main contribution of the thesis deals with real-time
task-scheduling analysis on uniprocessor systems under the consideration of
multiple occurrences of faults. A uniprocessor fault-tolerant scheduling algo-
rithm, calledFTRM, is proposed. The algorithmFTRM is based on a necessary
and sufficient (exact) feasibility condition that ensures that all task deadlines are
met if, and only if, this exact condition is satisfied.FTRM can tolerate transient
faults in hardware as well as a variety of software faults. The fault model con-
sidered in this thesis is very general in the sense that faults can occur in any task
and at any time, even during the execution of a recovery operation. FTRM can
precisely determine whether or not a total off faults can be tolerated within
any time interval equal to the maximum period of any task in the periodic task
set. As will be discussed in the thesis, the exact feasibility condition used by
FTRM is directly applicable to partitioned multiprocessor scheduling, that is,
where tasks are pre-assigned to processors and never migrate.

The second main contribution of this thesis deals with the design of an ef-
ficient online real-time task-scheduling algorithm for multiprocessor systems.
The basis of the design is an offline partitioned multiprocessor scheduling al-
gorithm, called Interval-Based-Partitioned-Scheduling(IBPS), that pre-assigns
tasks to processors. To achieve higher performance than normally achievable
with partitioned scheduling, a bounded number of tasks, called split tasks, are
allowed to migrate exactly once from one processor to another. It is proved that
IBPS can meet the deadlines of all task if at most 55.2% capacity ofthe mul-
tiprocessor platform is requested. Based on this sufficientfeasibility condition,
an online version of the algorithm, called Online Interval-Based-Partitioned-
Scheduling (O-IBPS), is derived. The algorithm maintains a load regulation
policy that guarantees thatO-IBPS scales well with higher number of pro-
cessors (for example, CMPs with many cores). Due to the simplicity of the
feasibility condition, the admission controller ofO-IBPS can also determine
very fast (in linear time) whether or not to accept a newly-arriving task. If ad-
mission controller accepts the new task, then no task missesits deadline. If the
sufficient condition is not satisfied and if the new task is a critical task, then
the admission controller ofO-IBPS can evict a less critical task and can admit
the new task into the system. As will be discussed in the thesis, the scheduling

4 CHAPTER 1. INTRODUCTION

algorithmO-IBPS can be used to make a trade-off between performance and
reliability by modeling a recovery operation as a newly arriving task when fault
occurs in an already admitted task.

The rest of this thesis is organized as follows: Chapter 2 describes the re-
lated background of real-time and fault-tolerant systems.The major goals and
contributions of this thesis are discussed in Chapter 3. Then, Chapter 4 presents
the necessary models (that is, task, system and fault models) used in this work.
The analysis of the uniprocessor fault-tolerant scheduling algorithmFTRM is
presented in Chapter 5 and its applicability to multiprocessor scheduling is dis-
cussed. In Chapter 6, the sufficient feasibility condition of the offline multi-
processor scheduling algorithmIBPS is analyzed and then its extension to the
corresponding online algorithmO-IBPS is presented. Finally, Chapter 7 con-
cludes this thesis with a discussion on the applicability and extendability of the
proposed algorithms.

2
Preliminaries

In this chapter, the related background of this work is presented by discussing
the basic concepts of real-time scheduling followed by a discussion of related
concepts regarding fault-tolerant systems.

2.1 Real-Time Systems

Real-time systems are computerized systems with timing constraints. Real-time
systems can be classified ashard real-time systemsandsoft real-time systems.
In hard real-time systems, the consequences of missing a task deadline may be
catastrophic. In soft real-time systems, the consequencesof missing a deadline
are relatively milder. Examples of hard real-time systems are space applica-
tions, fly-by-wire aircraft, radar for tracking missiles, etc. Examples of soft
real-time systems are on-line transaction used in airline reservation systems,
multimedia systems, etc. This thesis deals with schedulingof periodic tasks in
hard real-time systems. Applications of many hard real-time systems are often
modeled using recurrent tasks. For example, real-time tasks in many control
and monitoring applications are implemented as recurrent periodic tasks. This
is because periodic execution of recurrent tasks is well understood and pre-
dictable [LL73, PM98, ABD+95, SAA+04, BF97]. The most relevant real-time

5

6 CHAPTER 2. PRELIMINARIES

task scheduling concepts in this thesis are: periodic task system, ready (active)
task, task priority, preemptive scheduling algorithm, feasibility condition of a
scheduling algorithm, offline and online scheduling.

2.1.1 Periodic Task Systems

The basic component of scheduling is atask. A task is unit of work such as a
program or code block that when executed provides some service of an appli-
cation. Examples of task are reading sensor data, a unit of data processing and
transmission, etc. Aperiodic task systemis a set of tasks in which each task is
characterized by aperiod, deadlineandworst-case execution time (WCET).

Period: Each task in periodic task system has an inter-arrival time of occur-
rence, called theperiodof the task. In each period, ajob of the task is released.
A job is ready to execute at the beginning of each period, called thereleased
time, of the job.

Deadline: Each job of a task has arelative deadlinethat is the time by
which the job must finish its execution relative to its released time. The relative
deadlines of all the jobs of a particular periodic task are same. Theabsolute
deadlineof a job is the time instant equal to released time plus the relative
deadline.

WCET: Each periodic task has a WCET that is the maximum execution
time that that each job of the task requires between its released time and absolute
deadline.

If the relative deadline of each task in a task set is less thanor equal to its
period, then the task set is called aconstraineddeadline periodic task system.
If the relative deadline of each task in a constrained deadline task set is exactly
equal to its period, then the task set is called animplicit deadline periodic task
system. If a periodic task system is neither constrained norimplicit, then it is
called anarbitrary deadline periodic task system. In this thesis, scheduling of
implicit deadline periodic task system is considered.

2.1.2 Task Independence

The tasks of a real-time application may be dependent on one another, for ex-
ample, due to resource or precedence constraints. If a resource is shared among
multiple tasks, then some tasks may be blocked from being executed until the
shared resource is free. Similarly, if tasks have precedence constraints, then one
task may need to wait until another task finishes its execution. In this thesis, all

2.1. REAL-TIME SYSTEMS 7

tasks are assumed to be independent, that is, there exists nodependency of one
tasks on another. The only resource the tasks share is the processor platform.

2.1.3 Ready Tasks

For a periodic task system, a job of a task is released in each period of the task.
All jobs that are released but have not completed their individual execution by
a time instantt are in the set ofready (active) tasksat timet. Note that, there
may be no job in the set of ready tasks at one time instant or there may be a job
of all the tasks in the set of ready tasks at another time instant.

2.1.4 Task Priority

When two or more ready tasks compete for the use of the processor, some rules
must be applied to allocate the use of processor(s). This setof rules is governed
by the priority discipline. The selection (by the runtime dispatcher) of the ready
task for execution is determined by the priorities of the tasks. The priority of a
task can bestaticor dynamic.

Static Priority: In static (fixed) priority discipline, each task has a priority
that never changes during run time. The different jobs of thesame task have
the same priority relative to any other tasks. For example, according to Liu and
Layland, the well known RM scheduling algorithm assigns static priorities to
tasks such thatthe shorter the period of the task, the higher the priority[LL73].

Dynamic Priority: In dynamic priority discipline, different jobs of a task
may have different priorities relative to other tasks in thesystem. In other
words, if the priority of jobs of the task change from one execution to another,
then the priority discipline is dynamic. For example, the well known Earliest-
Deadline-First (EDF) scheduling algorithm assigns dynamic priorities to tasks
such thata ready task whose absolute deadline is the nearest has the highest
priority [LL73].

2.1.5 Preemptive Scheduling

A scheduling algorithm ispreemptiveif the release of a new job of a higher
priority task can preempt the job of a currently running lower priority task.
During runtime, task scheduling is essentially determining the highest priority
active tasks and executing them in the free processor(s). For example, RM and
EDF are examples of preemptive scheduling algorithm.

8 CHAPTER 2. PRELIMINARIES

Under non-preemptive scheme, a currently executing task always completes
its execution before another ready task starts execution. Therefore, in non-
preemptive scheduling a higher priority ready task may needto wait in the ready
queue until the currently executing task (may be of lower priority) completes its
execution. This will result in worse schedulability performance than for the pre-
emptive case. In this thesis, preemptive scheduling on uni-and multiprocessor
platforms is considered.

2.1.6 Work-Conserving Scheduling

A scheduling algorithm is work conserving if it never idles aprocessor when-
ever there is a ready task awaiting execution on that processor. A work con-
serving scheduler guarantees that whenever a job is ready and the processor for
executing the job is available, the job will be dispatched for execution. For ex-
ample, scheduling algorithms RM and EDF are work-conserving by definition.

A non work-conserving algorithm may decide not to execute any task even
if there is a ready task awaiting execution. If the processorshould be idled
when there is a ready task awaiting execution, then the non work-conserving
scheduling algorithm requires information about all tasksparameters in order
to make the decision when to idle the processor. Online scheduling algorithms
typically do not have clairvoyant information about all theparameters of all
future tasks, which means such algorithms are generally work-conserving. In
this thesis, the work-conserving RM scheduling algorithm is considered.

2.1.7 Feasibility and Optimality of Scheduling

To predict the temporal behavior and to determine whether the timing con-
straints of an application tasks will be met during runtime,feasibility analysis
of scheduling algorithm is conducted. If a scheduling algorithm can generate
a schedule for a given set of tasks such that all tasks meet deadlines, then the
schedule of the task set isfeasible. If the schedule of a task set is feasible using
a scheduling algorithmA, we say that the task set isA-schedulable.

A scheduling algorithm is said to beoptimal, if it can feasibly schedule a
task set whenever some other algorithm can schedule the sametask set under
the same scheduling policy (with respect to for example, priority assignment,
preemptivity, migration, etc.). For example, Liu and Layland [LL73] showed
that the RM and EDF are optimal uniprocessor scheduling algorithm for static
and dynamic priority, respectively.

2.1. REAL-TIME SYSTEMS 9

Feasibility Condition (FC)

For a given a task set, it is computationally impractical to simulate the exe-
cution of tasks at all time instants to see in offline whether the task set will
be schedulable during runtime. To address this problem, feasibility conditions
for scheduling algorithms are derived. A feasibility condition is a (set of) con-
dition(s) that are used to determine whether a task set is feasible for a given
scheduling algorithm. The feasibility condition can benecessary and sufficient
(exact)or it can besufficientonly.

Necessary and Sufficient FC (Exact test):A task set will meet all its
deadlines if, and only if, it passes the exact test. If the exact FC of a scheduling
algorithmA is satisfied, then the task set isA-schedulable. Conversely, if the
task set isA-schedulable, then the exact FC of algorithmA is satisfied. There-
fore, if the exact FC of a task set is not satisfied, then it is also true that the
scheduling algorithm can notfeasibly schedule the task set.

Sufficient FC: A task set will meet all its deadlines if it passes the sufficient
test. If the sufficient FC of a scheduling algorithmA is satisfied, then the task
set isA-schedulable. However, the converse is not necessarily true. Therefore,
if the sufficient FC of a task set is not satisfied, then the taskset may or may not
be schedulable using the scheduling algorithm.

In this thesis, an exact and a sufficient feasibility conditions are derived for
RM scheduling on uniprocessor and multiprocessors, respectively.

2.1.8 Minimum Achievable Utilization

A processor platform is said to be fully utilized when an increase in the compu-
tation time of any of the tasks in a task set will make the task set unschedulable
on the platform. The least upper bound of the total utilization1 is the mini-
mum of all total utilizations over all sets of tasks that fully utilize the processor
platform. This least upper bound of a scheduling algorithm is called themin-
imum achievable utilizationor utilization boundof the scheduling algorithm.
A scheduling algorithm can feasibly schedule any set of tasks on a processor
platform if the total utilization of the tasks is less than orequal to the mini-
mum achievable utilization of the scheduling algorithm. Inthis thesis, mini-
mum achievable utilization bound for the proposed multiprocessor scheduling
algorithm is derived.

1Utilization of one task is the ratio between WCET and its period. Total utilization is the sum
of all tasks’ utilization (formally defined later) of a task set.

10 CHAPTER 2. PRELIMINARIES

2.1.9 Scheduling Algorithms

Scheduling algorithms execute tasks on a particular processor platform which
can be classified as either uniprocessor or multiprocessors. All scheduling al-
gorithms in this thesis are based on the RM scheduling paradigm for implicit
deadline periodic task system.

Uniprocessor Scheduling

Uniprocessor scheduling algorithm executes tasks on a single processor. The
schedulability of a given set of tasks on uniprocessor platform can be deter-
mined using feasibility condition of the algorithm.

Liu and Layland in [LL73] derived a sufficient feasibility condition for
RM scheduling on uniprocessor based on minimum achievable utilization. Nec-
essary and sufficient (exact) feasibility conditions for uniprocessor RM schedul-
ing have been derived in [LSD89, JP86, ABR+93].

It is worth mentioning at this point that the RM algorithm is widely used
in industry because of its simplicity, flexibility and its ease of implementa-
tion [SLR86, LSD89]. It can be used to satisfy the stringent timing constraints
of tasks while at the same time can also support execution of aperiodic tasks
to meet the deadlines of the periodic tasks. RM can be modifiedeasily, for
example, to implement priority inheritance protocol for synchronization pur-
pose [SRL90]. The conclusion of the study in [SLR86] is that “... the rate
monotonic algorithm is a simple algorithm which is not only easy to implement
but also very versatile”.

Multiprocessor Scheduling

In multiprocessor scheduling, tasks can be scheduled usingone of the two ba-
sic multiprocessor scheduling principles:global scheduling andpartitioned
scheduling. In global scheduling, a task is allowed to execute on any proces-
sor even when it is resumed after preemption. This is done by keeping all
tasks in a global queue from which tasks are dispatched to theprocessors based
on priority (possibly by preempting some lower priority tasks). In partitioned
scheduling, the task set is grouped in different task partitions and each parti-
tion has a fixed processor onto which all the tasks of that partition are assigned.
A task assignment algorithmpartitions the task set and assigns the tasks in
the local queues of each processor. In partitioned scheduling, ready tasks as-
signed in one processor are not allowed to execute in anotherprocessor even
if the other processor is idle. Evidently, tasks can migratein global schedul-
ing while no migration is allowed in partitioned scheduling. The advantage of

2.1. REAL-TIME SYSTEMS 11

partitioned scheduling is that once tasks are assigned to processors, each pro-
cessor can execute tasks based on mature uniprocessor scheduling algorithms.
Many static-priority scheduling policies for both global [ABJ01, Lun02, Bak06,
BG03, LL08, BCL05, And08] and partitioned [DL78, DD86, AJ03, FBB06,
LMM98, LBOS95, LDG04, LGDG03, OB98, OS95] approaches have been
well studied.

It has already been proved that there exists some task set with load slightly
greater than 50% of the capacity of a multiprocessor platform on which a dead-
line miss must occur for both global and partitioned static-priority scheduling
[ABJ01, OB98]. Therefore, the minimum achievable utilization bound for both
global and partitioned multiprocessor scheduling cannot be greater than 50%.
Moreover, it is also well-known that applying the uniprocessor RM scheme to
multiprocessor global scheduling can lead to missed deadlines of tasks even
when the workload of a task set is close to 0% of the capacity ofthe mul-
tiprocessor platform. This effect is known asDhall’s effect [DL78, Dha77].
Technique to avoid Dhall’s effect for static-priotity is proposed in [ABJ01] and
is further improved in [Lun02, And08]. Luckily,Dhall’s effectis absent in par-
titioned scheduling. The main challenge for partitioned scheduling is instead to
develop an efficient task assignment algorithm for partitioning a task set. How-
ever, since the problem of determining whether a schedulable partition exists
is an NP-complete problem [GJ79], different heuristic havebeen proposed for
assigning tasks to multiprocessors using partitioned scheduling. The majority
of the heuristics for partitioned scheduling are based on different bin-packing
algorithms (such as First-Fit or Next-Fit [LDG04, GJ79]). One bin-packing
heuristic relevant for this thesis is the First-Fit (FF) heuristic.

First-Fit (FF) Heuristic: With the FF heuristic, all processors (e.g. proces-
sor one, processor two, and so on) and tasks (task one, task two and so on) are
indexed. Starting with the task with lowest index (task one), tasks are feasibly
assigned to the lowest-indexed processor, always startingwith the first proces-
sor (processor one). To determine if a non-assigned task will be schedulable on
a particular processor with the already-assigned tasks, a uniprocessor feasibility
condition is used. If a task cannot be assigned to the first processor, then this
task is considered to assign in the second processor and so on. If all the tasks
are assigned to the processors, then the partitioning of thetask set is successful.
If some task cannot be assigned to any processor, then the task set can not be
partitioned using FF.

Tasks may be indexed based on some ordering of the task parameters (for
example, sort the task set based on period or utilization) orcan simply follow
any arbitrary ordering for indexing. For example, Dhall andLiu in [DL78]

12 CHAPTER 2. PRELIMINARIES

proposed partitioned scheduling for RM based on FF heuristic where tasks are
sorted based on increasing period. Baker in [OB98] analyzedRM using FF in
which tasks are assigned to processors according to the given input order of the
tasks (without any sorting). In this thesis, FF heuristic refers to task assignment
to processors without any sorting.

Task-Splitting Algorithms: The different degrees of migration freedom
for tasks in the global and partitioned scheduling can be considered as two ex-
tremes of multiprocessor scheduling. While in global scheduling no restriction
is placed for task migration from one processor to another, partitioned schedul-
ing disallows migration completely. This strict non-migratory characteristic
of partitioned multiprocessor scheduling is relaxed usinga promising concept
calledtask-splittingin which some tasks, calledsplit-tasks, are allowed to mi-
grate to a different processor. Task splitting does not meandividing the code of
the tasks; rather it is migration of execution of the split tasks from one proces-
sor to another. Recent research has shown that task splitting can provide bet-
ter performance in terms of schedulability and can overcomethe limitations of
minimum achievable utilization for pure partitioned scheduling [AT06, AB08,
ABB08, KY08a, KY08b, KY07, KY09b, ABD05, LRL09, KLL09]. This the-
sis presents a multiprocessor scheduling algorithm, called IBPS, based on a
task-splitting technique.

2.1.10 Offline and Online Scheduling

When the complete schedulability analysis of a task system can be done be-
fore the system is put in mission, the scheduling is considered asoffline (static)
scheduling. In order to predict feasibility of a task set, offline scheduling analy-
sis requires the availability of all static task parameters, like periods, execution
time, and deadlines. If all task parameters arenot known before the system is
put in mission, then complete schedulability analysis is not possible to predict
the feasibility of the newly arriving tasks and such system considersonline (dy-
namic)scheduling. Since a newly arriving task can interfere with the execution
of already existing tasks in the system, anadmission controlleris needed to
determine whether to accept a new task that arrives online.

The feasibility condition of a scheduling algorithm can be used as the basis
for designing an admission controller for dynamic systems.However, evalu-
ating the feasibility condition when a new task arrives mustnot take too long
time. This is because using processing capacity to check thefeasibility con-
dition could detrimentally affect the timing constraints of the existing tasks in
the system. Moreover, after accepting a task using the admission controller,

2.2. FAULT-TOLERANT SYSTEMS 13

the task assignment algorithm for partitioned multiprocessor scheduling must
neither take too long time nor disturb the existing schedules in a large number
of processors to assign the newly accepted task (for example, task assignment
algorithms that require sorting).

Evaluating the exact feasibility test for uniprocessor RM scheduling derived
in [LSD89, ABR+93, JP86] usually takes long time and thus may not be ade-
quate for online admission controller if the system has a large number of tasks.
Moreover none of the partitioned scheduling algorithms that require sorting of
the tasks before assignment to processors are suitable for online scheduling.
This is because, whenever a new task arrived online, sortingof the tasks would
require reassignment of all tasks to the processors (for example, RM first-fit
in [DL78] requires sorting).

In contrast, a sufficient feasibility condition (closed form) that can be de-
rived offline provides an efficient way to reason about the effect of chang-
ing workload in online systems. Interesting approaches fordeveloping effi-
cient uniprocessor RM feasibility conditions for online scheduling can be found
in [BBB03, LLWS08, SH98]. In this thesis, the design of an efficient admission
controller for online multiprocessor systems is proposed.

2.2 Fault-Tolerant Systems

A system is something that provides some service. A system can be standalone
or can be part of a bigger system. The service a system provides may be used
by another system to provide another service. For example, the memory of a
computer system provides service to the applications running on the computers
and the applications in turn provides service to the user of the computer system.

A fault-tolerant system is one that continues to perform itsspecified service
in the presence of hardware and/or software faults. In designing fault-tolerant
systems, mechanisms must be provided to ensure the correctness of the ex-
pected service even in the presence of faults. Due to the real-time nature of
many fault-tolerant systems, it is essential that the fault-tolerance mechanisms
provided in such systems do not compromise the timing constraints of the real-
time applications. In this section, the basic concepts of fault-tolerant systems
under the umbrella of real-time systems are discussed.

2.2.1 Failure, Error, and Faults

Avižienis and others define the termsfailure, error andfaults in [ALRL04].

14 CHAPTER 2. PRELIMINARIES

Failure A systemfailure occurs when the service provided by the system de-
viates from the specified service. For example, when a user can not read
his stored file from computer memory, then the expected service is not
provided by the system.

Error An error is a perturbation of internal state of the system that may lead
to failure. A failure occurs when the erroneous state causesan incorrect
service to be delivered, for example, when certain portion of the computer
memory is corrupted or broken and stored files therefore cannot be read
by the user.

Fault The cause of the error is called afault. An active fault leads to an error;
otherwise the fault is dormant. For example, impurities in the semicon-
ductor devices may cause computer memory in the long run to behave
unpredictably.

If a fault remains dormant during system operation, then there is no error. If
the fault leads to an error, then the fault must be tolerated so that the error does
not lead to system failure. To tolerate faults, errors must be detected in any
fault-tolerant system. Identifying the characteristics of the faults that are mani-
fested as errors is an important issue to design effective fault-tolerant systems.
Faults in systems may be introduced during development (forexample, design
and production faults) or due to the interaction with the external environment
(for example, faults entering via user interface or due to natural process such
as radiation). To that end, faults are grouped as: development, physical and in-
teraction faults [ALRL04]. Based on persistence faults canfurther be classified
as permanent, intermittent, and transient [Joh88]. Faultscan occur in hardware
or/and software.

Hardware Faults: A permanent or hard fault in hardware is an erroneous
state that is continuous and stable. Permanent faults in hardware are caused
by the failure of the computing unit. Transient faults are temporary malfunc-
tioning of the computing unit or any other associated components which causes
incorrect results to be computed. Intermittent faults are repeated occurrences of
transient faults.

Transient faults and intermittent faults manifest themselves in a similar
manner. They happen for a short time and then disappear without causing a
permanent damage. As will be evident later, the proposed fault-tolerance tech-
niques to tolerate transient faults are also equally applicable for tolerating inter-
mittent faults.

2.2. FAULT-TOLERANT SYSTEMS 15

Software Faults: All software faults, known as software bugs, are perma-
nent. However, the way software faults are manifested as errors leads to cate-
gorize the effect as: permanent and transient errors. We characterize the effect
of software faults that are always manifested as permanent errors. For example,
initializing some global variable with incorrect value that is always used dur-
ing any execution and producing the output of the software isan example of a
permanent error. We characterize the effects of the software faults that are not
always manifested as transient errors. Such transient errors may be manifested
in one particular execution of the software and may not manifest themselves at
all in another execution. For example, when the execution path of a software
varies based on the input (for example, sensor values) or theenvironment, a
fault that is present in one particular execution path may manifest itself as an
transient error only when certain input values are used. This fault may remain
dormant when a different execution path is taken, for example, due to a change
in the input values or environment.

Sources of Hardware Transient Faults: The main sources of transient
faults in hardware are environmental disturbances like power fluctuations, elec-
tromagnetic interference and ionization particles. Transient faults are the most
common, and their number is continuously increasing due to high complex-
ity, smaller transistor sizes and low operating voltage forcomputer electron-
ics [Bau05].

Rate of Transient Faults: It has been shown that transient faults are sig-
nificantly more frequent than permanent faults [SKM+78, CMS82, IRH86,
CMR92, Bau05, SABR04]. Siewiorek and others in [SKM+78] observed that
transient faults are 30 times more frequent than permanent faults. Similar re-
sult is also observed by Castillo, McConnel and Siewiorek in[CMS82]. In an
experiment, Iyer and others found that 83% of all faults weredetermined to be
transient or intermittent [IRH86]. The results of these studies show the need to
design fault-tolerant system to tolerate transient faults.

Experiments by Campbell, McDonald, and Ray using an orbiting satellite
containing a microelectronics test system found that, within a small time in-
terval (∼ 15 minutes), the number of errors due to transient faults is quite
high [CMR92]. The result of this study shows that in space applications, the
rate of transient faults could be quite high and a mechanism is needed to toler-
ate multiple transient faults within a particular time interval.

The fault-tolerant scheduling algorithm proposed in this thesis considers
tolerating multiple faults within a time interval equal to the maximum period of
the tasks in a periodic task set.

16 CHAPTER 2. PRELIMINARIES

2.2.2 Error Detection Techniques

An active fault leads to an error. To tolerate a fault that leads to an error, fault-
tolerant systems rely on effective error detection mechanisms. Similarly, the de-
sign of many fault-tolerant scheduling algorithm relies oneffective mechanisms
to detect errors. Error detection mechanisms and their coverage determine the
effectiveness of the fault-tolerant scheduling algorithms.

Error detection can be implemented in hardware or software.Hardware
implemented error detection can be achieved by executing the same task on
two processors and compare their outputs for discrepancies(duplication and
comparison technique using hardware redundancy). Another cost-efficient ap-
proach based on hardware is to use a watchdog processor that monitors the
control flow or performs reasonableness checks on the outputof the main pro-
cessor [MCS91]. Control flow checks are done by verifying thestored signa-
ture of the program control flow with the actual program control flow during
runtime. In addition, today’s modern microprocessors havemany built-in error
detection capabilities like, error detection in memory, cache, registers, illegal
op-code detection, and so on [MBS07, WEMR04, SKK+08].

There are many software-implemented error-detection mechanisms: for ex-
ample, executable assertions, time or information redundancy-based checks,
timing and control flow checks, and etc. Executable assertions are small code
in the program that checks the reasonableness of the output or value of the vari-
ables during program execution based on the system specification [JHCS02].
In time redundancy, an instruction, a function or a task is executed twice and
the results are compared to allow errors to be detected (duplication and com-
parison technique used in software) [AFK05]. Additional data (for example,
error-detecting codes or duplicated variables) are used todetect occurrences of
an error using information redundancy [Pra96].

In summary, there are numerous ways to detect the errors and acomplete
discussion is beyond the scope of this thesis. The fault-tolerant scheduling al-
gorithms proposed in this thesis rely on effective error-detection mechanisms.

3
Goals and Contributions

The complexity of hardware and software in computerized system is increasing
due to the “push-pull” effect between development of new software for exist-
ing hardware and advancement in hardware technology for forthcoming soft-
ware. On the one hand, high-speed processors pull the development of new soft-
ware with more functionalities (possibly with added complexities) and on the
other hand, new software push the advancement of new hardware (with added
complexities). The increasing frequency of occurrences oftransient faults in
increasingly-complex hardware and the increasing likelihood of having more
bugs in increasingly-complex software require effective and cost-efficient fault-
tolerant mechanisms in today’s computerized systems.

The overall goal of this thesis is to design efficient fault-tolerant real-time
scheduling algorithms for both uniprocessor and multiprocessors. First, the
uniprocessor scheduling algorithmFTRM is developed using an exact feasibil-
ity condition considering occurrences of multiple faults (Chapter 5). This thesis
also suggests how this uniprocessor scheduling algorithm can be extended to-
wards multiprocessor platforms. Second, based on a task-splitting paradigm, a
multiprocessor scheduling algorithmIBPS is designed considering some im-
portant practical features, such as ease of debugging, low overhead of splitting
and scalability (Chapter 6). The schedulability of the offline algorithmIBPS is
analyzed and an efficient online scheduling version, calledO-IBPS, is pro-

17

18 CHAPTER 3. GOALS AND CONTRIBUTIONS

posed. In addition, this thesis suggests how this online scheduling algorithm
can be extended towards fault-tolerance.

Traditionally, redundant hardware is used as a means for tolerating faults.
However, due to cost, weight, and space considerations, some systems may
instead require that faults are tolerated using time redundancy. Simple re-
execution or execution of recovery block (ta is, different implementation of
the task) are two viable approaches to exploit time redundancy to achieve fault-
tolerance. However, exploitation of time redundancy consumes processor ca-
pacity in the schedule which may cause task deadlines to be missed. To address
this problem, this thesis proposes an efficient uniprocessor scheduling algorithm
that can tolerate multiple transient faults using time redundant execution of ap-
plication tasks. In addition, the recent trend in processorarchitecture design
to have many cores in one chip [KAO05] motivates the design ofan efficient
multiprocessor scheduling algorithm. The major contributions of this work are
as follows:

C1 Uniprocessor scheduling (Chapter 5)–A necessary and sufficient feasi-
bility condition is derived for RM uniprocessor fault-tolerant scheduling
to tolerate multiple faults. The exact RM feasibility condition of each
task is derived based on the maximum total workload requested within
the released time and deadline of the task. To calculate thismaximum
total workload considering the occurrences of faults, a novel technique
to compose the execution time of the higher priority jobs is used. The
proposed method considers a very general fault model such that multiple
faults can occur in any task and at any time (even during recovery). The
analysis considers a maximum off faults that can occur within a time
interval equal to the maximum period, denoted asTmax, of the tasks in a
periodic task set. The feasibility condition and the composability opera-
tions are implemented in an algorithm, calledFTRM.

The proposed composition technique is very efficient because it can ex-
ploit knowledge about the critical instant (identificationof the worst-case
workload scenario). To that end, the run time complexity ofFTRM is
O(n · N · f2), whereN is the maximum number of task jobs (of the
n periodic tasks) released within any time interval of lengthTmax. To
the best of my knowledge, no other previous work has derived an ex-
act fault-tolerant uniprocessor feasibility condition that has a lower time
complexity than that is presented in this thesis for the assumed general
fault model. The proposed fault-tolerant uniprocessor scheduling analy-
sis can easily be extended to partitioned multiprocessor RMscheduling.

19

C2 Multiprocessor scheduling (Chapter 6)–A partitioned multiprocessor sch-
eduling algorithm, calledIBPS, is proposed based on a task-splitting
technique. It is proved that the offline scheduling algorithm IBPS has a
minimum achievable utilization bound of 55.2%. This algorithm is one
of the first works1 to overcome the fundamental limitation of a 50% mini-
mum achievable utiliation bound of the traditional, non-task-splitting par-
titioned multiprocessor scheduling for static-priority tasks.

In IBPS, the load in each processor is regulated in such a way that at
most four processors in the system may have an individual load less than
55.2%. This regulation enables an efficient design of a corresponding on-
line scheduling algorithm, calledO-IBPS. More specifically, finding the
best processor to which an accepted online task should be assigned re-
quires searching at most four (underloaded) processors. Similarly, when
a task leaves the system, some of the remaining tasks may needto be
reassigned on at most five processors to regulate the load forfuture ad-
mittance of new tasks. The task assignment algorithmIBPS runs in
linear time, which means that reassignment of tasks on a bounded num-
ber of processors for the purpose of load regulation will be very efficient.
Since tasks only need to be (re-)assigned on a bounded numberof pro-
cessors, the algorithmO-IBPS will be very efficient and scale well for
systems with a large number of processors (for example, CMPshaving
many cores). The only other work solving the same problem [LRL09] is
not suitable as an online scheduler because reassignment oftasks may in
the worst case involve all processors.

One useful application of theO-IBPS algorithm is in fault-tolerant real
time systems. When a fault occurs in such a system, the required recov-
ery operation to tolerate faults can be considered as a request for a new
online task. Based on the available capacity of the processor and the crit-
icality of the existing tasks in the system, it is thus possible to design a
fault-tolerant online scheduler. To that end, this thesis proposes three dif-
ferent approaches to achieve fault-tolerance for the online multiprocessor
scheduling.

1The development of our algorithm took place in parallel with the development of a competing
task-splitting technique [LRL09], but the latter work was published first and also had a higher
utilization bound.

4
Models

The design of fault-tolerant scheduling algorithms is generally addressed based
on the models of the target systems. Thetask, systemandfault models used in
this thesis are presented in this chapter.

4.1 Task Model

To model the recurrent tasks of real-time applications, thepopularperiodic task
modelis used in this thesis [LL73]. The basic notations and some important
concepts used for a periodic task set is presented next.

Periodic Task Set: In this thesis, scheduling ofn implicit-deadline peri-
odic tasks in setΓ= {τ1, τ2, . . . , τn} is considered. Each of the tasksτi in set
{τ1, τ2, . . . , τn} is characterized by a pair (Ci, Ti), whereCi represents the
WCET andTi is the period of taskτi. Each taskτi is released and ready for
execution at the beginning of each periodTi and requires at mostCi units of
execution time before next period. The relative deadline ofa taskτi is equal to
its periodTi, that is,Γ is an implicit deadline task system.

RM priority: The priority of taskτi is greater than the priority of task
τj if Ti < Tj . This is the priority assignment governed by the RM scheduling

21

22 CHAPTER 4. MODELS

policy, in which a task with smaller period has higher priority. In case, two tasks
have equal periods they have the same priority and the run-time dispatcher can
arbitrarily break the tie.

Utilization: The load or utilization of a taskτi is denoted byui = Ci/Ti.
The total load or total utilizationof any task setA is U(A) =

∑

τi∈A ui. For
example, the total utilization of the task setΓ is U(Γ), which is the total load of
the task setΓ.

Jobs of Tasks: A job of a taskτi is released in each periodTi. All the
tasks in setΓ are released at the same time and it is assumed1 that this time
is zero. Thejth job of taskτi is denoted byτi,j for j = 1, 2, . . .∞. Jobτi,j

is released at time(j − 1) · Ti and has an absolute deadline2 at time j · Ti .
Formally, the released timeri,j and deadlinedi,j of job τi,j for i = 1, 2, . . . n
andj = 1, 2, . . .∞ are defined as follows:

ri,j = (j − 1) · Ti (4.1)

di,j = j · Ti (4.2)

Critical Instant: The critical instant of a task is the released time at which
the interference on the task from the higher priority tasks is maximized. Liu
and Layland (without considering faults) have proved that the critical instant
of uniprocessor RM scheduling for any task occurs when the task is released
simultaneously with the release of all of its higher priority tasks [LL73].

The uniprocessor schedulability analysis of algorithmFTRM in this thesis
must consider the critical instant of each task. Moreover, since the multiproces-
sor scheduling algorithmIBPS proposed in this thesis is based on partitioned
scheduling, the RM schedulability analysis on each processor in the multipro-
cessor system must also consider the critical instant for each task assigned to
that particular processor.

Under fault-tolerant scheduling, there is one job of each task in which the
occurrence of faults have the greatest impact. In such case,the faults may
occur in that particular job of the task and/or in any job of its higher priority
tasks. Ghoshet al. showed that, when faults occur and time redundancy is
used to tolerate faults in uniprocessor RM scheduling, the critical instant is
when all tasks are released simultaneously [GMMS98a]. The reasoning is as
follows: if the completion of jobJ of a task is delayed by∆ time units due to

1This latter assumption is only for convenience in our worst-case schedulability analysis.
2In the rest of this document ‘deadline’ refers to the absolutedeadline of a job if not mentioned

otherwise.

4.2. SYSTEM MODEL 23

the occurrence of some faults inJ or its higher-priority jobs, then some other
lower priority jobJ ′ of some other task will be delayed by at most∆ time unit
if both J andJ ′ are released simultaneously.

4.2 System Model

The system model considered in this thesis is either a uniprocessor or a mul-
tiprocessor platform3. The multiprocessor platform consists of a number of
uniprocessors connected by some interconnection network.The expected ser-
vice in each uniprocessor is delivered by executing a numberof tasks assigned
to the processor.

In partitioned multiprocessor scheduling, the tasks to execute on a processor
are assigned by some task assignment algorithm. The run timesystem in each
processor is a RM uniprocessor scheduler. Each processor executes a number of
real-time tasks using RM prioritization. Tasks are assumedto be independent,
that is, there is no resource sharing except for the processor. The cost of a
preemption and context-switch is assumed to be negligible.

4.3 Fault Model

Designing fault-tolerant scheduling algorithm needs to guarantee that all tasks
deadlines are met when faults occur even under the worst-case load condition.
No fault-tolerant system can, however, tolerate an arbitrary number of faults
within a particular time interval. The scheduling guarantee in fault-tolerant
system is thus given under the assumption of a certain fault model.

In this thesis, the fault model mainly assumes tolerating the faults due to
which the error is transient either in hardware or software.In addition, per-
manent software errors4 are also considered in the fault model when diverse
implementation of the software is available. It is assumed that transient faults
are short lived and would not reappear when re-executing thesame task. This
is a reasonable assumption since it can be implemented simply by resetting the
processor before re-execution. Our fault-tolerant mechanism can also tolerate
certain class of software faults. If the effect of faults in software is manifested
as transient error that would not re-appear upon re-execution, then such faults
can be tolerated using simple re-execution of the task. For example, due to
changes in the environment or changes in the input parameters, the execution

3By ‘processor’ we also mean an individual processing core in CMPs.
4permanent software faults means bugs that are always present or permanent in nature.

24 CHAPTER 4. MODELS

path a software takes could be different from one execution to another. In such
case, it is expected that the same error would not occur (since a different exe-
cution path is taken) if the software is simply re-executed.If the effect of faults
in a software is manifested as a permanent error, then re-execution of the same
software can not mitigate such faulty behavior. In such casea different version
of the software (that is called, a recovery block) can be executed when error is
detected.

Time redundancy is considered in this thesis for toleratingmultiple faults.
Faults are assumed to be detected at the end of execution of a task. This assump-
tion is must for the worst-case schedulability analysis as is pointed in [PM98].
When fault occurs during execution of a task and error is detected, either the
faulty task is simplyre-executedor arecovery blockcorresponding to the faulty
task is executed. The recovery block of a task is a different implementation of
the same task to achieve diversity as is used in N-version programming [Avi85].
The recovery block of a task has the same period as the original task but may
have a different WCET than that of the original task. When a taskis executed
for the first time, it is called theprimary copyof the task. After an error is de-
tected, the re-execution or execution of the recovery blockis called therecovery
copyof the task.

The re-execution of the task or execution of the recovery block is activated
when an error is detected. We assume that a combination of software and
hardware error-detection mechanisms are available to detect the occurrences
of faults. There are many software and hardware based error-detection mecha-
nisms as is discussed in Section 2.2.2. It is also assumed that the error-detection
and fault-tolerance mechanisms are themselves fault-tolerant.

Perfect error detection coverage is assumed for simplicityof the schedu-
lability analysis. However, a probabilistic analysis of fault-tolerant schedu-
lability with imperfect error detection coverage can be addressed similar to
[BPSW99, AH06, Pat06] and such an analysis is not the addressed in this the-
sis. The error detection overhead is considered as part of the WCET of the task.
There is no fault propagation, that is, faults affect only the results produced
by the executing task. This no-fault-propagation assumption is reasonable and
is a requirement in the design of many safety-critical applications, for exam-
ple, in Integrated Modular Avionics (IMA) systems, as is discussed in [Bar08].
Permanent processor failure is assumed to be tolerated using system level fault
tolerance [Bar08] and not considered in this thesis.

In summary, the fault model considered in this thesis has reasonable repre-
sentativity and very general to tolerate a variety of faultsin hardware/software.

5
Uniprocessor Scheduling

This chapter presents the analysis of RM scheduling on uniprocessor for tolerat-
ing multiple faults. The outcome of the analysis is the derivation of a necessary
and sufficient feasibility condition for fault-tolerant RMscheduling of periodic
tasks on a uniprocessor. An algorithm, calledFTRM, is presented based on this
necessary and sufficient feasibility condition. Using algorithm FTRM, the fea-
sibility of a set of periodic tasks on uniprocessor can be determined efficiently
considering multiple occurrences of faults.

5.1 Introduction

The importance of dependability is increasing as computersare taking a more
active role in everyday control applications. Fault-tolerance in such systems is
an important aspect to guarantee the correctness of the application even in the
event of faults. In many safety-critical systems, use of time redundancy is con-
sidered as a cost-efficient means to achieve fault-tolerance. In such systems,
when an error is detected tasks are simply re-executed or a different version,
called recovery block, of the task is executed. Due to the additional real-time re-
quirements of such systems, it is essential that exploitation of time redundancy
as a means for tolerating faults must not compromise the timeliness guarantee

25

26 CHAPTER 5. UNIPROCESSOR SCHEDULING

of the other tasks in the system.

To guarantee both correctness and timeliness behavior of safety-critical real-
time systems it is necessary to design a fault-tolerant scheduling algorithm.
To that end, an offline uniprocessor schedulability analysis is presented in this
chapter. The objective of the analysis is to find the condition needed to verify
that a set ofn static-priority periodic tasks will meet the deadlines even when
faults occur in the system. The outcome of the analysis is thederivation of a
necessary and sufficient (exact) feasibility condition forRM scheduling consid-
ering occurrences of multiple faults on a uniprocessor. Based on this exact fea-
sibility condition, a fault-tolerant uniprocessor scheduling algorithmFTRM is
proposed for schedulingn periodic tasks in task setΓ.

Th exact feasibility condition of the task setΓ is derived in terms of the
the exact RM feasibility condition of each task based on the maximum total
workload requested within the released time and deadline ofthe task. To calcu-
late this maximum total workload considering the occurrences of faults, a novel
technique to compose the execution time of the higher priority jobs is used. The
main important characteristic of the proposed composability technique is that
it is not only applicable for tasks with implicit deadline and RM priority, but
also for tasks with constrained deadlines and any fixed-priority policy. There-
fore, the proposed feasibility analysis technique in this chapter would enable
the derivation of an exact feasibility condition for any fixed-priority scheduling
of constrained or implicit deadline task systems (for example, in fault-tolerant
deadline-monotonic). However, in this thesis, the composability mechanism is
described for uniprocessor RM scheduling.

The scheduling analysis ofFTRM considers occurrences of a maximum of
f faults within any time interval of lengthTmax whereTmax is the largest pe-
riod of any task in the periodic task setΓ. The run-time complexity ofFTRM is
shown to beO(n · N · f2) wheren is the number of tasks in a periodic task
set,N is the maximum number of jobs released within any interval oflength
Tmax. To the best of my knowledge, this the first fault-tolerant RMschedul-
ing algorithm that considers such a general fault model as described in Section
4.3. A similar work exists for EDF considering the same faultmodel [Ayd07].
Compared to that work our proposed algorithm is more efficient (in terms of
time complexity) due to a new way to calculate the impact of higher-priority
tasks on the schedulability of a particular task.

The uniprocessor analysis presented in this chapter is applicable to parti-
tioned multiprocessor scheduling, where each processor executes tasks using
uniprocessor scheduling algorithm. A task assignment algorithm assigns the
tasks from setΓ to the processors of a multiprocessor platform. To determine

5.2. BACKGROUND 27

whether an unassigned task can be feasibly assigned to a processor, the pro-
posed exact fault-tolerant RM feasibility condition for a uniprocessor can be
used, which guarantees that each processor can tolerate up to f number of faults
within any time interval equal to the maximum length of the periods of the tasks
assigned to that particular processor.

The rest of the chapter is organized as follows: the necessary models and
theories used for uniprocessor fault-tolerant schedulability analysis is presented
in Section 5.2. Then, related work in fault-tolerant scheduling is presented
in Section 5.3. The problem statement is formally given in Section 5.4. The
fault-tolerant RM schedulability analysis for one individual task is presented in
Section 5.5. Then, in Section 5.6, the necessary and sufficient fault-tolerant
RM feasibility condition for a complete task set is derived.The algorithm
FTRM is presented in Section 5.7 and its applicability to the multiprocessor
setting is discussed. Section 5.8 concludes this chapter.

5.2 Background

5.2.1 Task Model

The task model used for the uniprocessor schedulability analysis is same as
the one presented in Section 4.1. The task model we consider assumes a set
of n implicit deadline periodic tasksΓ ={τ1, τ2, . . . , τn}. Each taskτi ∈ Γ is
characterized by WCETCi and periodTi. Thejth job of taskτi is denoted by
τi,j . The jobτi,j is released at timeri,j and has an absolute deadline by time
di,j as is defined in Eq. (4.1). We defineTmax to be the maximum period of
any task in the task setΓ ={τ1, τ2, . . . , τn}, that is,

Tmax =
n

max
i=1

{Ti}

Without loss of generality we assume that tasks are sorted insetΓ in order of
decreasing priority, that is, all tasks in set {τ1, τ2, . . . τi−1} are of higher-priority
than the priority of taskτi. Moreover, we denote the maximum number of jobs
released within any time interval of lengthTmax by N .

5.2.2 Fault Model

The fault model presented in Section 4.3 is extended here forexact RM feasi-
bility analysis on a uniprocessor. A number off faults that may occur within
any time interval of length equal toTmax is considered. The faults can occur

28 CHAPTER 5. UNIPROCESSOR SCHEDULING

during the execution of any primary and/or recovery copy of atask. A new
recovery copy is activated when an error is detected at the end of execution of
a primary or recovery copy of a task. The recovery copy could simply be the
re-execution of the primary copy or it could be a different implementation of
the same task, called recovery block, in which case the WCET may not be same
as the WCET of the primary copy. Within any time interval of length Tmax,
thef faults may occur in the same task’s primary and recovery copies or may
occur in different tasks. The recovery copy of a taskτi is executed with the
same priority as that of taskτi.

For each taskτi, the primary copy executes first. If an error is detected at
the end of execution of the primary copy, the first recovery copy of the task is
ready to execute. Again an error may be detected at the end of execution of the
recovery copy which in turn would trigger the execution of next recovery copy
and so on. Therefore, each task must havef recovery copies in case if all the
f faults occur in the same job of a task. If we sayk faults occur in a job of task
τi, then we mean that the first fault occurs in the primary copy ofthe job of task
τi and each of the subsequent(k− 1) faults occurs in each subsequent recovery
copy of the same job of taskτi. Note that, when the cumulative execution
demand within an interval of lengthTmax due tof faults is at its maximum,
then it is necessary that all thef faults occur within that interval.

Remember that an error is assumed to be detected at the end of execution
of a task’s primary or recovery copy. We assume that, during execution of a
particular primary or recovery copy of a task, at most one fault could occur.
This assumption is essential for the worst-case schedulability analysis. Because
when an error is detected at the end of execution of a task’s primary or recovery
copy, the overhead for executing the recovery operation does not depend on the
number of faults affecting that particular faulty copy.

The f faults may occur in one job or might occur in different jobs ofdif-
ferent tasks released within a time interval of lengthTmax. The fault-tolerant
scheduling algorithm must guarantee that, for any combination of the occur-
rences of thef faults in the jobs released within any interval of lengthTmax,
the schedule has to be fault-tolerant. Remember that we assume that there are
maximumN jobs released within any interval of lengthTmax. There are differ-
ent possibilities of the occurrences of thef faults in theN jobs. One possibility
is that all thef faults occur in one of theN jobs. Another possibility is that a
different number of faults occur in different jobs. Each such possibility of fault
occurrence is called afault pattern[Ayd07, LMM00]. Given a set of jobs inA
we denote any possible combination ofk faults that can occur in the jobs in set
A by k-fault-pattern,k = 0, 1, 2 . . . f . For example, ifk = 0, no fault occurs

5.2. BACKGROUND 29

within the jobs in setA.
To achieve fault-tolerance, it has to be ensured that all thejobs released

within any interval of lengthTmax will meet the deadlines for any possible
f -fault pattern. The question that arises at this point is:what are the different
possible fault patterns that one must consider for RM feasibility analysis of
N jobs released within a time interval of lengthTmax? In other words, in how
many ways thef faults could occur inN jobs that are released within any time
interval of lengthTmax. According to combinatorial theory, there are a total
of
(

N +f -1
f

)

different ways thef faults could occur inN jobs. As is already
pointed out in [Ayd07], number of different fault patterns given by the binomial
coefficient

(

N +f -1
f

)

is equal to

(

N +f -1
f

)

= Ω

(

(N

f

)f

)

= O(Nf) (5.1)

according to [CLRS01].
The RM feasibility analysis on uniprocessor considering this exponential

number of fault patterns may not be computationally practical if N andf are
large. To overcome this problem, a dynamic programing technique is used in
this thesis to find an exact RM feasibility condition for a task set considering
f faults that could occur in any interval of lengthTmax. The time complexity
of this technique for evaluating the exact feasibility condition is O(n · N · f2).

5.2.3 RM Schedulability

RM scheduling is widely used in many real-time systems because of its sim-
plicity and ease of implementation. The analysis of uniprocessor RM schedul-
ing for an implicit deadline periodic task system is addressed by Liu and Lay-
land in [LL73]. Liu and Layland proved that RM is an optimal fixed-priority
scheduling algorithm on a uniprocessor. They derived a sufficient feasibil-
ity condition (without considering fault-tolerance) thatcan check RM feasi-
bility of a set ofn periodic tasks inO(n) time. Necessary and sufficient (ex-
act) feasibility conditions for uniprocessor RM scheduling have been derived
in [LSD89, JP86, ABR+93].

Liu and Layland in [LL73] proved that if the first job of each task can meet
its deadline when all tasks are simultaneously released (known as a critical in-
stant), then all the jobs of a task set are RM schedulable. Theexact RM feasi-
bility condition proposed by Lehoczky, Sha and Ding in [LSD89] is derived by
assuming that all tasks are released at time 0. In [LSD89], the cumulative exe-

30 CHAPTER 5. UNIPROCESSOR SCHEDULING

cution demand by the tasks in set{τ1, τ2, . . . τi} over an interval[0, t) is given
as follows:

Wi(t) =

i
∑

j=1

Cj · ⌈
t

Tj

⌉

The necessary and sufficient condition for RM feasibility ofa periodic task set
Γ ={τ1, τ2, . . . , τn} according to [LSD89] is given in Eq. (5.2) and Eq. (5.3):

1. Taskτi can be scheduled using RM if and only if:

Li = min
t∈Qi

Wi(t)

t
≤ 1 (5.2)

whereQi = {k · Tj | j = 1 . . . i, k = 1 . . . ⌊ Ti

Tj
⌋}

2. The task setΓ is RM schedulable if and only if:

max
i=1...n

Li ≤ 1 (5.3)

The exact feasibility condition for a taskτi in the task set{τ1, τ2, . . . , τn} is
given in Eq. (5.2). Based on the exact feasibility conditionfor each one of the
tasksτi ∈ {τ1, τ2, . . . , τn}, the exact feasibility condition of the entire task set
{τ1, τ2, . . . , τn} is derived in Eq. (5.3).

In this thesis, the fault model considers different number of faults in differ-
ent jobs of the same task due to various fault patterns. Therefore, the execution
time of different jobs of the same task could be different. Consequently, be-
cause the worst-case fault pattern is not known in advance, the exact analysis
as given in Eq (5.3) is not applicable for the exact fault-tolerant schedulability
analysis. However, in this thesis an approach similar to Eq.(5.2) and Eq. (5.3)
is used—in the sense that the exact fault-tolerant RM feasibility condition for
the task setΓ is derived in terms of the exact fault-tolerant feasibilitycondition
of individual task.

5.3 Related Work

Many approaches exist in the literature for tolerating faults in task schedul-
ing algorithms. Traditionally, processor failures (permanent faults) are toler-
ated using Primary and Backup (PB) approaches in which the primary and re-
covery copies of each task are scheduled on two different processors [BT83,
KS86, SWG92, Gho, OS94, GMM97, MM98, BMR99, AOSM01, KLLS05b,

5.3. RELATED WORK 31

KLLS05a]. Since this thesis does not deal with permanent faults, these works
will not be further discussed.

Ghosh, Melhem and Mossé proposed fault-tolerant uniprocessor schedul-
ing of aperiodic tasks considering transient faults by inserting enough slack
in the schedule to allow for the re-execution of tasks when anerror is de-
tected [GMM95]. They assumed that the occurrences of two faults are separated
by a minimum distance. Pandya and Malek analyzed fault-tolerant RM schedul-
ing on a uniprocessor for tolerating one fault and proved that the minimum
achievable utilization bound is 50% [PM98]. The authors also demonstrated
the applicability of their scheme for tolerating multiple faults if two faults are
separated by a minimum time distance equal toTmax. In this thesis, the pro-
posed algorithmFTRM can toleratef faults within any time interval equal to
Tmax and no restriction is placed between the time distance between two con-
secutive faults withinTmax.

Ghoshet al. derived a utilization bound for RM uniprocessor scheduling
for tolerating single and multiple transient faults using aconcept of backup
utilization [GMMS98b]. To toleratef transient faults, the utilization of the
backup is set tof times the maximum utilization of any task given that a fault
model similar to the one in this thesis is used. Whereas the recovery scheme
in [GMMS98b] allows recovery tasks to execute at a priority higher than that
of the faulty task, the recovery scheme in this thesis executes recovery copies at
the same priority as the faulty task.

Liberto, Melhem and Mossé derived both exact and sufficient feasibility
conditions for toleratingf transient faults for a set of aperiodic tasks using
EDF scheduling [LMM00]. They showed that for a set ofn aperiodic tasks in
which a maximum off faults could occur, the exact test can be evaluated in
O(n2 · f) time using a dynamic programming technique. However, the authors
of [LMM00] consider recovery copy of a faulty task simply as are-execution of
the primary copy and do not consider the execution of a recovery block (that is,
diverse implementation of a task with a possibly different execution time) when
an error is detected.

Burns, Davis, and Punnekkat derived an exact fault-tolerant feasibility test
for any fixed priority system using recovery blocks or re-execution [BDP96].
This work is extended in [PBD01] to provide the exact schedulability tests
employing check-pointing for fault recovery. In [MdALB03], de A Lima and
Burns proposed an optimal fixed priority assignment to tasksfor fault-tolerant
scheduling based on re-execution. The fixed priorities of the tasks can be deter-
mined inO(n2) time for a set ofn periodic tasks. The schedulability analysis
in [BDP96, MdALB03] require the information about the minimum time dis-

32 CHAPTER 5. UNIPROCESSOR SCHEDULING

tance between any two consecutive occurrences of transientfaults within the
schedule, and only considers simple re-execution or execution of a recovery
block when error is detected. In the latter case, the execution time of the re-
covery block is the same regardless of the number of execution of a particular
job. This is in contrast to our proposed method where each recovery block for
a particular job may have different execution time.

Based on thelast chance strategyof Chetto and Chetto [CC89] (in which
recovery tasks execute at late as possible), software faults are tolerated by con-
sidering two versions of each periodic tasks: a primary taskand a recovery
block [HSW03]. Recovery blocks are scheduled as late as possible using a
backward RM algorithm (schedule from backward of time). Similar to the work
in [MdALB03], the work in [HSW03] considers that there is onlyone recov-
ery block of each task and therefore do not have the provisionfor considering
different recovery blocks if more than one fault affect the same task.

Santoset al. in [SSO05] derived a feasibility condition for determining
the combinations of faults in jobs that can be tolerated using fault-tolerant
RM scheduling of periodic tasks. In order to guarantee that the system can toler-
ate multiple transient faults for any combination of faults, all possible fault pat-
terns has to be considered in their derived condition which gives an intractable
time complexity. Moreover, the authors assumed that a faultcan occur only in
the primary copy of a job. The work in [SSO05] is based a notion, calledk-RM
schedulable (originally proposed in [SUSO04]). Byk-RM schedulable, the au-
thors mean that there are at leastk free time slots available between the release
time and deadline of each task. The time complexity to determine whether a
task set isk-RM schedule isO(n · Tmax) which can be significant for large
Tmax [SUSO04].

Aydin in [Ayd07] proposed aperiodic and periodic task scheduling based
on an exact EDF feasibility analysis in which a recovery copyof a task can
be different from the primary copy. Aydin considers a fault model in which
a maximum off transient faults could occur in any task of the aperiodic task
set. The schedulability analysis in [Ayd07] is based on processor demand anal-
ysis [BRH90]. For periodic task systems, the proposed exactfeasibility test
in [Ayd07] is evaluated inO(A2 · B2) time, whereA is the number of jobs re-
leased within the first hyper-period (i.e. least common multiple of all the tasks
periods) andB is the number of faults that can occur within the first hyper-
period. In this thesis, we derive an exact RM feasibility condition for which the
run-time complexity isO(n · N · f2) whereN is the maximum number of jobs
of then periodic tasks released within a time interval of lengthTmax, andf is
the maximum number of faults that can occur within any time interval of length

5.4. PROBLEM FORMULATION 33

Tmax. To see the difference between the termsA2 and (n · N) exist in the time
complexity figuresO(A2 · B2) andO(n · N · f2), considern = 4 tasks such
that the periods of the four tasks areT1 = 3, T2 = 7, T3 = 11, andT4 = 13.
The length of the hyper-period islcm{3 · 7 · 11 · 23} = 3003. The number
of jobs released within the hyper-period isA = 1934. On the other hand, the
number of jobs released within any interval of lengthTmax =13 isN = 10. The
value ofA2 and (n ·N) are19342 = 3740356 and(4 · 10) = 40 in the the time
complexityO(A2 ·B2) andO(n ·N · f2) of the EDF algorithm in [Ayd07] and
our proposedFTRM algorithm, respectively. Therefore, for a given failure rate,
the time complexity of our proposed exact RM test for periodic task set is more
efficient than that of the exact EDF test proposed in [Ayd07].

In conclusion, most of the work related to developing fault-tolerant schedul-
ing algorithms using time redundancy consider a fault modelthat is not as gen-
eral as the fault model considered in this thesis. Only the work in [Ayd07] for
EDF scheduling considers a fault model similar to the one addressed in this
thesis. However, the exact EDF test in [Ayd07] is less efficient in terms of
time complexity than that of ours for RM. Therefore, if both efficiency and
preciseness is required, ourFTRM algorithm can provide better performance
than that of EDF scheduling in [Ayd07]. However, it should bementioned that,
in [Ayd07], a sufficient test (lacking preciseness in the feasibility testing) for
EDF scheduling of periodic tasks is proposed that is more efficient than our
proposed exact RM feasibility condition.

5.4 Problem Formulation

The uniprocessor fault-tolerant scheduling algorithmFTRM proposed in this
thesis is based on an exact RM feasibility condition. We consider occurrences
of a maximum off faults within any time interval of lengthTmax. Thef faults
could be distributed over any jobs that are eligible to execute within any time in-
terval of lengthTmax. Note that a job is eligible to execute between its released
time and its deadline. The problem addressed in this thesis is:

Is the task setΓ RM-schedulable if a maximum off faults occur
within any time interval of length equal toTmax?

The exact RM feasibility condition of the task setΓ for the fault-tolerant
scheduling algorithmFTRM can be derived based on exact feasibility condition
of each taskτi ∈ Γ, for i = 1, 2, . . . n. If a maximum off faults can occur
within a time interval of lengthTmax, then the maximum number of faults that

34 CHAPTER 5. UNIPROCESSOR SCHEDULING

can occur within any time interval of lengthTi, for i = 1, 2, 3, . . . n, can be at
mostf . Following this, the last problem statement can be re-written as:

Is taskτi RM-schedulable if a maximum off faults occur within
any time interval of length equal toTi, for i = 1, 2, . . . n?

It is clear that, if the exact feasibility condition for eachtaskτi ∈ Γ can be
determined, then the exact feasibility condition for the entire task setΓ follows
immediately (similar to the approach in [LSD89]).

To ensure that taskτi is RM-schedulable on a uniprocessor, the critical in-
stant for which the load imposed by the higher-priority tasks on taskτi is maxi-
mized needs to be considered in the fault-tolerant schedule. Under our assumed
fault model, the critical instant in the uniprocessor fault-tolerant schedule is
when all the tasks are released at the same time (as discussedin Section 4.1).
In this thesis, without loss of generality, we assume that all the tasks are re-
leased simultaneously at time zero. Similar to [LSD89], in order to derive the
exact feasibility condition of taskτi, it is sufficient to derive the exact feasibility
condition for the first job of each taskτi ∈ Γ. The first job of taskτi become
eligible for execution at time 0 and must finish its execution(including any
possible recovery execution due to faults) before timeTi. Consequently, the
problem addressed can finally be re-written as:

Is the first job of taskτi RM-schedulable if a maximum off
faults occur within the time interval [0,Ti), for i = 1, 2, . . . n?

In the rest of this chapter, the exact feasibility conditionof taskτi refers to the
exact feasibility condition of the first job ofτi unless otherwise noted.

In next Section 5.5, the exact feasibility analysis of taskτi within [0, Ti) is
presented. In order to find the exact feasibility condition,the maximum total
work completed within[0, Ti) by the jobs of the tasks{τ1, τ2 . . . τi} is calcu-
lated based on twoload factorswithin [0, Ti). In subsection 5.5.1, the first load
factor that is equal to the maximum work needs to be completedby a job of task
τi is calculated. Then in subsection 5.5.2, the second load factor that is equal
to the maximum work completed within[0, Ti) by the higher priority jobs of
the tasks{τ1, τ2 . . . τi−1} is calculated. This second load factor is calculated by
determining, for selected time points within[0, Ti), the different sets of higher
priority jobs for which all jobs in each such set are releasedat the same time.
Using these identified sets (note that, all the higher-priority jobs in one such set
are released at the same time), the execution of all higher-priority jobs is then
abstracted by means of twocompositiontechniques, calledvertical composition
andhorizontal composition, to find the maximum work completed by the higher
priority jobs within[0, Ti) in subsection 5.5.2.

5.5. LOAD FACTORS AND COMPOSABILITY 35

It is worth mentioning at this point that the proposed composability tech-
nique is not only applicable for tasks with RM priority, but also for tasks with
any fixed-priority policy (for example, deadline-monotonic scheduling). The
novelty of the following composability technique enable todo schedulability
analysis that requires to find the worst-case workload within a given time in-
terval considering occurrences of faults. In this thesis, the composability tech-
nique applied to a set of periodic tasks having RM priority isdemonstrated in
next section.

5.5 Load Factors and Composability

In this section, we derive the fundamental theoretical building blocks for the
schedulability analysis of taskτi within the time interval[0, Ti) in terms of load
factors and compositions. The taskτi may not have exclusive access to the
processor within the entire time interval[0, Ti) because jobs of higher-priority
tasks are eligible for execution within this interval. To determine whether the
first job of taskτi is feasible using RM, the amount of execution completed by
higher-priority jobs within[0, Ti) needs to be calculated. Note that the max-
imum amount of execution completed by the higher-priority jobs depends on
different fault patterns affecting these higher-priorityjobs. By subtracting the
maximum amount of execution completed by the higher- priority jobs within
[0, Ti) from Ti, the available time for execution of taskτi within [0, Ti) can
be derived. To determine whether the available execution time for taskτi is
enough for its complete execution within[0, Ti), we need to know the maxi-
mum amount of execution required to be completed by the first job of taskτi.
This amount of execution depends on the number of faults exclusively affecting
taskτi within [0, Ti).

Theworst-case workloadwithin [0, Ti) is the maximum amount of execu-
tion completed by the jobs of the tasks in set {τ1, τ2 . . .τi} that are released
within [0, Ti). Remember that at mostf faults could occur within[0, Ti). To
find this worst-case workload required to be completed within [0, Ti) by the
jobs of the tasks in set {τ1, τ2 . . .τi} , we have to consider (i) the occurrences
of k faults affecting the jobs of higher-priority tasks (including their recovery
copies), and (ii) the occurrences of(f − k) faults exclusively affecting the first
job of taskτi and its recovery copies, fork = 0, 1, 2, . . . f . In summary, to find
the worst-case workload within[0, Ti), we need to determine the following two
workload factors, fork = 0, 1, 2 . . . f .

1. Load-Factor-i: Execution time required by taskτi when (f − k)
faults exclusively affect the first job of taskτi, for k = 0, 1, 2 . . . f .

36 CHAPTER 5. UNIPROCESSOR SCHEDULING

2. Load-Factor-HPi: Execution time required by the higher-priority
jobs (that is, jobs of tasks {τ1, τ2 . . .τi−1}) within [0, Ti) whenk faults
affect these higher-priority jobs in this interval, fork = 0, 1, 2 . . . f .

The worst-case workload within[0, Ti) can now be defined as the sum of
these two load factors such that this sum is maximized for somek, 0 ≤ k ≤ f .
To meet the deadline of taskτi, the complete execution of taskτi (including
the execution of its recovery copies) must take place withinthe interval[0, Ti).
However, parts of the execution of jobs having higher priority than the prior-
ity of task τi may take place outside the interval[0, Ti). If the execution of
any higher-priority job takes place outside the interval[0, Ti), the execution
time beyond time instantTi must not be accounted for in the calculation of
Load-Factor-HPi. This is to avoid overestimating the amount of worst-
case workload within the interval[0, Ti).

If the maximum sum ofLoad-Factor-i andLoad-Factor-HPi (for
somek) is less thanTi, then taskτi has enough time to finish its complete
execution within[0, Ti). In such case, taskτi is RM-schedulable. Thus, based
on the values of the two workload factors, the exact feasibility condition for task
τi can be derived. The calculation of the two workload factors (that is, value
of Load-Factor-i andLoad-Factor-HPi) are presented in subsection
5.5.1 and subsection 5.5.2, respectively.

A necessary condition for the theories that follows is that the total workload
of the primary copy and the maximum number of activated recovery blocks for
a particular job does not exceed the period of the task of the job. Following the
task model, the WCETs of the primary copy of all the jobs of taskτi are equal,
and is denoted byCi. Similarly, the WCETs of thebth recovery copy of all the
jobs of taskτi are also equal, and is denoted byRb

i , for b = 1, 2, . . . f . If a
total of x faults occur in taskτi (one fault occurs in the primary copy of a job
of τi and(x − 1) faults occur in the (x − 1) recovery copies of the job ofτi),
then the total execution requirement for toleratingx faults for the job ofτi is
[Ci +

∑x
b=1 Rb

i]. Consequently, the necessary condition for schedulability of
taskτi, for all i = 1, 2, . . . n, is that

[Ci +

f
∑

b=1

Rb
i] ≤ Ti (5.4)

We assume that, for each taskτi ∈ Γ, the inequality in Eq. (5.4) holds.

5.5. LOAD FACTORS AND COMPOSABILITY 37

5.5.1 Calculation ofLoad-Factor-i

The value ofLoad-Factor-i is the execution time required by taskτi when
(f − k) faults exclusively affect taskτi, for k = 0, 1, 2 . . . f . If an error is
detected after the primary copy of taskτi finishes execution, then the first re-
covery copy of taskτi is ready for execution. If an error is detected at the end
of execution of a recovery copy of taskτi, then the next recovery copy of task
τi is ready for execution. Remember that the WCET of thebth recovery copy of
taskτi is denoted byRb

i , for b = 1, 2 . . . f . We denote the total execution time
required due to the(f − k) faults affecting the primary and recovery copies of
a particular job of taskτi by

C (f − k)
i = [Ci +

f−k
∑

b=1

Rb
i]

The value ofLoad-Factor-i is equal toC(f − k)
i and has to be calculated

for all k = 0, 1, 2, . . . f . The value ofC(f − k)
i can be calculated recursively

using Eq. (5.5) as follows:

C
(f − k)
i =

Ci if (f − k) = 0

R
(f−k)
i + C

(f − k − 1)
i if (f − k) > 0

(5.5)

The value ofC(f − k)
i is set equal toCi when(f − k) is equal to 0. When

(f − k) is equal to 0, only the execution time of the primary copy of task τi is
considered in Eq. (5.5). In the recursive part of Eq. (5.5), the execution time of
the(f − k)th recovery copy of taskτi and the execution time due to a total of
(f − k − 1) faults affecting taskτi are added to find the value ofC

(f − k)
i .

To find the worst-case workload within the interval[0, Ti), the value of
C

(f − k)
i need to be known for allk = 0, 1, 2, . . . f . Using Eq. (5.5), starting

fromk = f, (f−1), . . . 0, the valueC(f − k)
i can be calculated for all(f−k) =

0, 1, 2 . . . f using a total ofO(f) addition operations. The taskτi must com-
pleteC

(f − k)
i units of execution within the interval[0, Ti) to tolerate(f − k)

faults that exclusively affect taskτi. The calculation ofLoad-Factor-i is
now demonstrated using an example.

Example: Consider the example task set {τ1, τ2, τ3} given in Table 5.1 for
f=2. The first column in Table 5.1 represents the name of each task. The second
column represent the period of each task. The WCET of the primary copy of

38 CHAPTER 5. UNIPROCESSOR SCHEDULING

each task is given in the third column. The fourth and fifth columns represent
the WCET of the first and second (sincef = 2, at most two faults can occur in
one task) recovery copies of each task, respectively. Note that the WCET of a
recovery copy of a task may be greater or smaller than the WCETof the primary
copy of the corresponding task. Using Eq.(5.5), the amount of execution time

τi Ti Ci R1
i R2

i

τ1 10 3 2 3
τ2 15 3 4 2
τ3 40 9 8 6

Table 5.1: Example task set withf=2 recovery copies for each task

required for each taskτi due to (f − k) faults exclusively affecting taskτi is
calculated in Eq.(5.6) for k = 0, 1, 2 as follows:

For taskτ1,

C0
1 = C1 = 3

C1
1 = R1

1 + C0
1 = 2 + C0

1 = 2 + 3 = 5

C2
1 = R2

1 + C1
1 = 3 + C1

1 = 3 + 5 = 8

For taskτ2,

C0
2 = C2 = 3

C1
2 = R1

2 + C0
2 = 4 + C0

2 = 4 + 3 = 7 (5.6)

C2
2 = R2

2 + C1
2 = 5 + C1

2 = 2 + 7 = 9

For taskτ3,

C0
3 = C3 = 9

C1
3 = R1

3 + C0
3 = 8 + C0

3 = 8 + 9 = 17

C2
3 = R2

3 + C1
3 = 6 + C1

3 = 6 + 17 = 23

We will use the example task set in Table 5.1 in the rest of thischapter as
our running example. The calculation of the value ofLoad-Factor-HPi is
presented in next subsection.

5.5.2 Calculation ofLoad-Factor-HPi

The value ofLoad-Factor-HPi is the maximum execution time completed
within [0, Ti) by jobs having higher priority than the priority of taskτi, whenk

5.5. LOAD FACTORS AND COMPOSABILITY 39

faults affect these higher-priority jobs within[0, Ti). If the execution of some
of these higher-priority jobs takes place outside[0, Ti), then only the execu-
tion that takes place within[0, Ti) must be considered in the calculation of
Load-Factor-HPi. This is a very crucial issue in determining the value
of Load-Factor-HPi, as can be seen in the following example.

Example: Consider the first job of taskτ2 in Table 5.1 that is to be sched-
uled within the interval(0, 15], sinceT2 = 15. The jobsτ1,1 and τ1,2 are
released within the interval[0, 15) and have higher priority than the priority of
taskτ2. The primary copies of the jobsτ1,1 andτ1,2 execute within the interval
[0, 3) and [10, 13), respectively. Now, consider a 2-fault pattern in which the
first and the second faults occur in the primary and the first recovery copy of job
τ1,2, respectively. The detection of the second error in the firstrecovery copy
of job τ1,2 triggers the execution of the second recovery copy of jobτ1,2. The
first and second recovery copies of jobτ1,2 executes within the interval[13, 15)
and [15, 18), respectively. The schedule of the jobsτ1,1 andτ1,2 including the
execution of the recovery copies for the considered 2-faultpattern is shown in
Figure 5.1. The total execution time required by the higher-priority jobs τ1,1

andτ1,2 is (3 + 3 + 2 + 3) = 11 time unit (including time for recovery). Notice
that, the second recovery copy of jobτ1,2 executes outside the interval[0, T2).
The value of maximum execution time by the jobsτ1,1 andτ1,2 within the inter-
val [0, T2) is equal to(3 + 3 + 2) = 8, not11.

When calculating the worst-case workload within[0, Ti) to derive the exact
RM feasibility condition task taskτi, the value ofLoad-Factor-HPi must
not be overestimated. To calculate the value ofLoad-Factor-HPi, we need
to identify the jobs that are released within interval[0, Ti) and have higher pri-
ority than the priority of taskτi. The set of jobs having higher-priority than
the priority of taskτi is denoted by a setHPi such that each job in setHPi is
released within the interval[0, Ti). That is, the setHPi is defined in Eq. (5.7) as
follows:

HPi = {τp,q| p < i andrp,q < Ti} (5.7)

According to Eq. (5.7), if jobτp,q ∈ HPi, then taskτp has shorter period (that
is, higher priority) than taskτi and the released time of jobτp,q (that is, value
of rp,q defined in Eq. (4.1)) is less thanTi. Each of the higher-priority jobs in
setHPi is eligible for execution at or after its released time within [0, Ti). In the
case of our running example, the setsHPi for i = 1, 2, 3 are determined for the
three tasks in Table 5.1.

40 CHAPTER 5. UNIPROCESSOR SCHEDULING

0 2 4 6 8 10 12 14 16 18 20 t

-

↓ ↓ ↓

τ1,1 τ1,2 τ1,2 τ1,2

First

Fault

Second

Fault

Execution time by jobsτ1,1

andτ1,2 within [0, 15) is 8
� -

Figure 5.1: Schedule of jobsτ1,1 andτ1,2. The downward vertical arrows denotes the
arrival time of the jobs ofτ1. The two faults occur in the primary copy and the first
recovery copy of jobτ1,2. The maximum amount of total execution by the jobsτ1,1

and τ1,2 due to the two faults is equal to 11. However, the amount of maximum total
execution by the jobsτ1,1 andτ1,2 within the interval[0, 15) is 8, not 11.

Example: Using Eq.(5.7) for the task set in Table 5.1 we have,

HP1 = ∅
HP2 = { τ1,1 , τ1,2 } (5.8)

HP3 = { τ1,1, τ1,2, τ1,3, τ1,4, τ2,1, τ2,2, τ2,3}

Remember thatN is the maximum number of jobs that are released within
the time interval[0, Tmax). Therefore, the number of jobs having higher priority
than the priority of taskτi that are released within[0, Ti) is at mostN . If the
released time of a higher-priority jobτp,q is earlier thanTi, then jobτp,q is
included in setHPi. Therefore, the time complexity to find the setHPi is O(N).

When considering the feasibility of taskτi, we need to calculate the value
of Load-Factor-HPi for a k-fault pattern such that thek faults affect the
jobs in setHPi, for k = 0, 1, . . . f . The value ofLoad-Factor-HPi is a
measure of how much computation is completed within the interval [0, Ti) by
the higher-priority jobs in setHPi due to thek-fault pattern. The amount of
computation completed by the jobs in setHPi within [0, Ti) depends on how
much workload is requested by the jobs inHPi due to thek-fault pattern. Aydin
in [Ayd07] used a dynamic programming technique to compute the maximum
workload requested by a set of aperiodic tasks due to ak-fault pattern. Using

5.5. LOAD FACTORS AND COMPOSABILITY 41

an approach similar to that in [Ayd07], we determine the maximum workload
requested by a set of higher-priority jobs that are all released at a particular time
instantt within the time interval[0, Ti).

We denote the maximum workload requested by a set of jobs in set A, all
released at a particular time instantt, by functionLk(A) for a k-fault pattern1.
Note that the value ofLk(A) is the maximum workload requested by the jobs
in setA, not the actual amount of execution by the jobs in setA within [0, Ti).
the The functionLk(A) is defined recursively (similar to [Ayd07], but the dif-
ference being that all the jobs in setA have the same released time) in Eq. (5.9)
and Eq. (5.10). The basis of the recursion is defined in Eq. (5.9) considering
exactly one jobτx,y in setA, for k = 0, 1, 2, . . . f , as follows

Lk({ τx,y}) = Ck
x (5.9)

The value ofLk({ τx,y}) represents the amount of execution time requested by
job τx,y whenk faults exclusively affect the primary and recovery copies of job
τx,y. Remember that the value ofCk

x is defined in Eq. (5.5) as the maximum
amount of execution time required by the taskτx when k faults exclusively
affect a particular job of this task. The value ofCk

x in the right hand side of
Eq. (5.9) can be calculated using Eq. (5.5) inO(f) time, for allk = 0, 1, 2 . . . f .

By assuming that the value ofLk(A) is known, we compute the value of
Lk(A ∪ { τx,y}) recursively, fork = 0, 1, 2 . . . f , as follows:

Lk(A ∪ { τx,y}) =
k

max
q=0

{

Lq(A) + Lk−q({ τx,y})
}

(5.10)

In Eq. (5.10), the value ofLk(A ∪ { τx,y}) is maximum for one of the(k + 1)
possible values ofq, for 0 ≤ q ≤ k. The value ofq is selected such that, ifq
faults occur in the jobs in setA and(k − q) faults occur exclusively in jobτx,y,
thenLk(A ∪ { τx,y}) is at its maximum for someq, 0 ≤ q ≤ k. The working of
Eq. (5.10) is now demonstrated using an example.

Example: Consider the taskτ3 given in Table 5.1. The jobs, having higher
priority than the priority of taskτ3, that are released at timet = 0 are in the set
A={ τ1,1, τ2,1}. If we want to determine the maximum workload requested by the
higher-priority jobs in setA={ τ1,1, τ2,1} due to ak-fault pattern, then we need
to calculate the value ofLk(A). To calculateLk(A), we have to evaluate the
base in Eq.(5.9)for each of the jobs in setA considering occurrences ofk faults

1The jobs in setA are released at timet. The time instantt is not included in functionLk(A)
and can be understood from the context. Although the value ofLk(A) can be calculated indepen-
dent oft, the contextt is important for the schedulability analysis.

42 CHAPTER 5. UNIPROCESSOR SCHEDULING

exclusively affecting that job. Sincef is equal to 2, the possible values ofk are
0, 1 and 2. According to Eq.(5.6), the maximum execution time required for job
τ1,1 is C0

1 =3, C1
1 =5 andC2

1 =8 for k = 0, k = 1 andk = 2 faults exclusively
affecting jobτ1,1, respectively. The maximum execution time required for job
τ2,1 is C0

2 =3, C1
2 =7 andC2

2 =9 for k = 0, k = 1 andk = 2 faults exclusively
affecting jobτ2,1, respectively, according to Eq.(5.6). Using the base of the
recursion in Eq.(5.9)we have,

L0({ τ1,1}) = C0
1 = 3 L1({ τ1,1}) = C1

1 = 5 L2({ τ1,1}) = C2
1 = 8

L0({ τ2,1}) = C0
2 = 3 L1({ τ2,1}) = C1

2 = 7 L2({ τ2,1}) = C2
2 = 9

Using Eq.(5.10), the value ofLk(A) for k = 0, 1, 2 and A={τ1,1,τ2,1} can
be calculated as follows:

L0({ τ1,1, τ2,1}) =
0

max
q=0

{Lq({ τ1,1}) + L0−q({ τ2,1})}

= L0({ τ1,1}) + L0({ τ2,1})

= 3 + 3 = 6

L1({ τ1,1, τ2,1}) =
1

max
q=0

{Lq({ τ1,1}) + L1−q({ τ2,1})}

= max { L0({ τ1,1}) + L1({ τ2,1}) ,

L1({ τ1,1}) + L0({ τ2,1})}
= max {3 + 7, 5 + 3} = 10

L2({ τ1,1, τ2,1}) =
2

max
q=0

{Lq({ τ1,1}) + L2−q({ τ2,1})}

= max { L0({ τ1,1}) + L2({ τ2,1}) ,

L1({ τ1,1}) + L1({ τ2,1}) ,

L2({ τ1,1}) + L0({ τ2,1})}
= max {3 + 9, 5 + 7, 8 + 3} = 12

The maximum amount of workload requested by the jobs in set A={τ1,1,τ2,1}
is L0(A)=6, L1(A)=10, and L2(A)=12 for k = 0, 1 and 2 fault patterns,
respectively.

5.5. LOAD FACTORS AND COMPOSABILITY 43

Time complexity to calculateLk(A ∪ {τx,y}): There are total(|A| + 1)
jobs in set (A∪ { τx,y}). For each one of the(|A| + 1) jobs, evaluating the
base case using Eq. (5.9) can be done using Eq. (5.5) in O(f) steps for allk =
0, 1, 2, . . . f . Therefore, evaluating the base for all the jobs in set (A∪ { τx,y})
requires [(|A| + 1) · O(f)]= O(|A| · f) operations.

For the recursive step, if the value ofLk(A) is known, then there are(k+1)
possibilities for the selection ofq in Eq. (5.10) to computeLk(A ∪ { τx,y})
for a givenk, 0 ≤ k ≤ f . Therefore, computingLk(A ∪ { τx,y}) requires
O(k) operations (k + 1 additions andk comparisons) for a particulark. Given
that the value ofLk(A) is known for all k = 0, 1, 2, . . . f , then computing
Lk(A ∪ { τx,y}) requires totalO(0+1+2 . . . f)=O(f2) operations, for allk =
0, 1, . . . f .

Starting with one job in setA, a new jobτx,y is considered when computing
the value ofLk(A ∪ { τx,y}). By including one jobτx,y in the setA at each step,
the set (A∪{ τx,y}) is formed. Therefore, for all the jobs in the set (A∪{ τx,y}),
the total time complexity to recursively compute the value of Lk(A ∪ { τx,y})
is equal to [(|A| + 1) · O(f2)] = O(|A| · f2).

Therefore, the total time complexity for the base and recursive steps to com-
puteLk(A ∪ { τx,y}) is O(|A| · f + |A| · f2)= O(|A| · f2).

As mentioned before, the value ofLoad-Factor-HPi is the maximum
execution completed within the interval[0, Ti) by the jobs having higher pri-
ority than the priority of taskτi for a k-fault pattern. The maximum execution
completed by the set of higher-priority jobs within[0, Ti) may not be same as
the maximum workload requested by this set of higher-priority jobs for ak-fault
pattern. The value ofLk(A) is calculated considering that all the jobs in setA
are released at the same time, say at timet. Consider that the setA contains the
jobs having higher priority than the priority of taskτi and all the jobs in setA
are released at timet. If the value ofLk(A) is greater than (Ti − t), then the
maximum amount of work completed by the higher-priority jobs in setA within
the interval[0, Ti) is at most (Ti − t) using the work-conserving algorithm RM.
If Lk(A) is less than or equal to (Ti − t), then the maximum amount of work
that can be completed by the jobs in setA within the interval[0, Ti) is at most
Lk(A).

In order to find the amount of execution completed by the jobs of the higher-
priority tasks within the time interval[0, Ti), the higher-priority jobs released
at different time instants within the time interval[0, Ti) arecomposed. A com-
posed task is not an actual task in the system rather a way to represent the
execution of a collection of higher-priority jobs in a compact (composed) way.
The execution time of a composed task (formally defined later) represents the

44 CHAPTER 5. UNIPROCESSOR SCHEDULING

maximum amount of execution within the interval[0, Ti) if the jobs represented
by the composed tasks have exclusive access to the processorwithin the interval
[0, Ti). In other words, the execution time of a composed task is the amount of
maximum execution within the interval[0, Ti) if only the jobs represented by
the composed task are allowed to execute within the interval[0, Ti).

The composition of the higher-priority tasks are done in twosteps: first
by vertical compositionand then byhorizontal composition. Each vertically-
composed task abstracts2 the higher-priority jobs that are all released at a partic-
ular time instant within[0, Ti). Each horizontally-composed task abstracts the
higher-priority jobs that are abstracted by more than one vertically-composed
task.

Vertical Composition

Consider a set of all jobs that are released at time instantt, t < Ti and have
higher priority than the priority of taskτi. To compactly represent these higher-
priority jobs, we define a vertically-composed taskV{t} for time instantt such
that the composed taskV{t} abstracts the set of higher-priority jobs that are all
released at timet, such that0 ≤ t < Ti.

The execution time of the composed taskV{t} (formally calculated later)
denotes the maximum amount of execution that can be completed within [0, Ti)
by the higher-priority jobs that are released at timet such that only the jobs
represented byV{t} are allowed to execute within[0, Ti).

One vertically-composed task is formed for each time instant within [0, Ti)
at which new higher-priority jobs are released.

Example: Consider the feasibility of taskτ3 in Table 5.1. The first job
of taskτ3 is released at time 0 and has its deadline by timeT3 = 40. The
tasksτ1 and τ2 are the higher-priority tasks of taskτ3. The release of the
higher-priority jobs at different time instants within theinterval [0, 40) is shown
in Figure 5.2 using downward arrows. New jobs of the higher-priority tasks
are released at time instants 0, 10, 15, 20 and 30. At each of these five time
instants, a vertically-composed task is formed (that abstracts the released jobs
shown in each oval in Figure 5.2). The five composed tasks are denoted by
V{0} ,V{10},V{15},V{20} andV{30} in Figure 5.2.

To form the vertically-composed tasks, we need to determinethe different
time points within[0, Ti) where new jobs of the higher-priority tasks are re-
leased. The set of time points, denoted bySi, where jobs having higher priority

2We use this as a short form for ”represents an abstraction of”.

5.5. LOAD FACTORS AND COMPOSABILITY 45

0 5 10 15 20 25 30 35 40 t

-

↓ ↓ ↓

↓ ↓ ↓ ↓

τ2

τ1

V{0} V{10} V{15} V{20} V{30}
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Deadline ofτ3

Figure 5.2: Five vertically-composed tasks are shown using vertically long ovals at time
instants 0, 10, 15, 20, and 30. Each vertically-composed task at timet abstracts all the
newly released higher-priority jobs of taskτ3 that are released at timet within the time
interval [0, 40).

than the priority of taskτi are released within the interval[0, Ti) is given by
Eq. (5.11) as follows:

Si = {k · Tj | j = 1 . . . (i − 1), k = 0 . . . ⌊Ti

Tj

⌋} − {Ti} (5.11)

The time points in setSi are less thanTi and are nonnegative integer multi-
ples of the periods of the higher-priority taskτj for j = 1, 2, . . . (i − 1). Since
higher-priority jobs released at or beyond time instantTi will not execute prior
to time instantTi, it is necessary that all the time points in setSi are less than
Ti (that is, deadline of the first job of taskτi). At each of the time points in set
Si, new higher-priority jobs are released.

Example: Consider the task set given in Table 5.1. Using Eq.(5.11)we
have,

S1 = {}
S2 = {0, 10} − {15} = {0, 10} (5.12)

S3 = {0, 10, 15, 20, 30, 40} − {40} = {0, 10, 15, 20, 30}

The jobs having higher priority than that of taskτi are released at each of the
time points in setSi. Remember that there are at mostN jobs released within
any interval of lengthTmax. The time points inSi are integer multiples of
the periods of the higher-priority tasks. Therefore, the run-time complexity to

46 CHAPTER 5. UNIPROCESSOR SCHEDULING

computeSi is O(N).

When considering the feasibility of taskτi, at each time point in setSi

some new higher-priority jobs of taskτi are released. For each time point
s ∈ Si, a vertically-composed taskV{s} is formed. In the case of our running
example, when considering the feasibility condition for task τ3, one vertically-
composed task for each time points ∈ S3 ={0,10,15,20,30} is formed (see the
five vertically-composed tasks in Figure 5.2).

The vertically-composed taskV{s} at times ∈ Si abstracts the set of higher-
priority jobs (that is, jobs from setHPi) that are released at times. To find the
execution time of a vertically-composed task at times ∈ Si, we need to know
the higher-priority jobs in setHPi that are released at time instants. The set
Reli,s denotes the higher-priority jobs of taskτi that are released at times.
The setReli,s is given in Eq. (5.13) as follows:

Reli,s = {τp,q| τp,q ∈ HPi andrp,q = s} (5.13)

The setReli,s contains the jobs that are released at times and are of higher
priority than taskτi. If job τp,q is in setReli,s, then jobτp,q is in setHPi and
the released time of jobτp,q is equal to time instants, that is,s is equal torp,q.
The condition in Eq. (5.13) is to be evaluated for each job in set HPi. Since
there are at mostN jobs released within any time interval of lengthTmax, the
number of jobs in setHPi is O(N). The jobτp,q ∈ HPi is stored in setReli,s

if the released timerp,q is equal tos. By selecting one by one jobτp,q from
setHPi, the jobτp,q can be stored in the appropriate setReli,s such that the
released timerp,q of job τp,q is equal tos. Therefore, the time complexity to
find Reli,s for all s ∈ Si is equal toO(N).

Example: Consider the example task set in Table 5.1. Since there are no
higher-priority jobs of taskτ1, the setHP1 = ∅. For tasksτ2 and τ3 we have
S2 ={0, 10} andS3 ={0, 10, 15, 20, 30}, respectively, according to Eq.(5.12).
The set,Reli,s, of higher-priority jobs released at different time instant s ∈ Si

for i = 2 andi = 3 are given in Eq.(5.14)as follows:

Rel2,0 = { τ1,1}
Rel2,10 = { τ1,2}
Rel3,0 = { τ1,1, τ2,1}
Rel3,10 = { τ1,2}
Rel3,15 = { τ2,2}
Rel3,20 = { τ1,3}
Rel3,30 = { τ2,3, τ1,4}

(5.14)

5.5. LOAD FACTORS AND COMPOSABILITY 47

The jobs in setReli,s are of higher priority than that of the taskτi and all
these higher-priority jobs are released at times. For eachs ∈ Si, the vertically-
composed taskV{s} abstracts the jobs in setReli,s. We now concentrate on
calculating the execution time of a vertically-composed taskV{s} .

The execution time of the vertically-composed taskV{s} is denoted by the
functionw(k,{s}) for ak-fault pattern affecting the jobs in setReli,s. If no
jobs other than the jobs in setReli,s are allowed to execute within the interval
[0, Ti), then the value ofw(k,{s}) represents the maximum amount of exe-
cution that can be completed by the jobs in setReli,s within the interval[0, Ti)
for ak-fault pattern.

The value ofLk(Reli,s) is the maximum amount of workload requested by
the jobs abstracted by the vertically-composed taskV{s} . The set of jobs released
at times can complete, using work conserving algorithm RM, at most(Ti − s)
amount of work within[0, Ti) if Lk(Reli,s) is greater than(Ti−s). Otherwise,
the maximum amount of work completed by the set of jobs released at times
is Lk(Reli,s). To this end, the execution time ofV{s} for k = 0, 1, 2, . . . f is
defined in Eq. (5.15) as follows:

w(k,{s})= min {Lk(Reli,s) , (Ti − s) } (5.15)

The valuew(k,{s}) represents the maximum amount of execution completed
by the jobs released at times within the interval[0, Ti) if no jobs other than
the jobs in setReli,s are allowed to execute within the interval[0, Ti). The
calculation ofw(k,{s}) is shown next for our running example.

Example: Consider the task set in Table 5.1. When considering the fea-
sibility of taskτ1, there is no higher-priority jobs of taskτ1. Therefore, no
vertically-composed task is formed since setS1 is empty.

When considering the feasibility of taskτ2, there are higher-priority jobs
that are released within[0, T2). To find the vertical compositions of the higher-
priority jobs, we use the following information:

S2 = {0, 10} from Eq. (5.12)

T2 = 15 from Table 5.1

Rel2,0 = { τ1,1} for s = 0 from Eq. (5.14)

Rel2,10 = { τ1,2} for s = 10 from Eq. (5.14)

Two vertically-composed tasks are formed since there are two time points in

48 CHAPTER 5. UNIPROCESSOR SCHEDULING

setS2 = {0, 10}. The two vertically-composed tasks areV{0} and V{10}. For
each vertically-composed task, the amount of execution time within the interval
[0, T2) can be determined fork = 0, 1, 2 (sincef = 2) using Eq. (5.15). The
value ofw(k,{s}) for the composed taskV{s} using Eq.(5.15) is calculated
in Table 5.2 fork = 0, 1, 2 and s = 0, 10. When considering the feasibility

Fors = 0 andk = 0 Fors = 10 andk = 0
w(0,0) w(0,10)
= min{L0(Rel2,0), Ti − 0} = min{L0(Rel2,10), Ti − 10}
= min{L0(Rel2,0), 15 − 0} = min{L0(Rel2,10), 15 − 10}
= min{L0({ τ1,1}), 15} = min{L0({ τ1,2}), 5}
= min{3, 15} = 3 = min{3, 5} = 3
Fors = 0 andk = 1 Fors = 10 andk = 1
w(1,0) w(1,10)
= min{L1(Rel2,0), Ti − 0} = min{L1(Rel2,10), Ti − 10}
= min{L1(Rel2,0), 15 − 0} = min{L1(Rel2,10), 15 − 10}
= min{L1({ τ1,1}), 15} = min{L1({ τ1,2}), 5}
= min{5, 15} = 5 = min{5, 5} = 5
Fors = 0 andk = 2 Fors = 10 andk = 2
w(2,0) w(2,10)
= min{L2(Rel2,0), Ti − 0} = min{L2(Rel2,10), Ti − 10}
= min{L2(Rel2,0), 15 − 0} = min{L2(Rel2,10), 15 − 10}
= min{L2({ τ1,1}), 15} = min{L2({ τ1,2}), 5}
= min{8, 15} = 8 = min{8, 5} = 5

Table 5.2: Calculation ofw(k,{s}) for vertical composition at eachs ∈ S2 for
k = 0, 1, 2. The left column show the execution timew(k,{0}) of the vertically-
composed taskV{0} for k = 0, 1, 2 faults and the right column show the execution time
w(k,{10}) of the vertically-composed taskV{10} for k = 0, 1, 2 faults.

of taskτ3, there are higher-priority jobs that are eligible for execution within
[0, T3). To find the vertical compositions of the higher-priority jobs, we use the

5.5. LOAD FACTORS AND COMPOSABILITY 49

following information:

S3 = {0, 10, 15, 20, 30} from Eq. (5.12)

T3 = 40 from Table 5.1

Rel3,0 = { τ1,1, τ2,1} for s = 0 from Eq. (5.14)

Rel3,10 = { τ1,2} for s = 10 from Eq. (5.14)

Rel3,15 = { τ2,2} for s = 15 from Eq. (5.14)

Rel3,20 = { τ1,3} for s = 20 from Eq. (5.14)

Rel3,30 = { τ1,4, τ2,3} for s = 30 from Eq. (5.14)

Five vertically-composed tasks are formed since there are five time points in
S3 at each of which new higher-priority jobs are released. The five vertically-
composed tasks areV{0} , V{10}, V{15}, V{20} and V{30}. For each vertically-
composed taskV{s}, the value ofw(k,{s}) for k = 0, 1, 2 is given in each
row of Table 5.3 fork = 0, 1, 2 ands = 0, 10, 15, 20, 30.

V{s} k = 0 k = 1 k = 2
V{0} w(0,0)=6 w(1,0)=10 w(2,0)=12
V{10} w(0,10)=3 w(1,10)=5 w(2,10)=8
V{15} w(0,15)=3 w(1,15)=7 w(2,15)=9
V{20} w(0,20)=3 w(1,20)=5 w(2,20)=8
V{30} w(0,30)=6 w(1,30)=10 w(2,30)=10

Table 5.3: The value ofw(k,{s}) for eachs ∈ S3 and fork = 0, 1, 2. Thek faults
affect the higher-priority jobs that are released at times ∈ S3.

Run-time complexity for vertical composition: CalculatingReli,s for all
s ∈ Si need totalO(N) operations. CalculatingLk(Reli,s) for setReli,s

requiresO(|Reli,s| · f2) operations for allk = 0, 1, 2, . . . f . There are at most
N jobs that are released within any time interval of lengthTmax. Therefore,
the number of total jobs having higher priority than the priority of taskτi that
are released in all the time points in setSi is equal toO(N). In other words,
∑

s∈Si
|Reli,s| = O(N).

Therefore, the computational complexity of all the vertical compositions in
all time pointss ∈ Si is [O(N)+O(

∑

s∈Si
|Reli,s| · f2)]=O(N · f2).

For eachs ∈ Si, a vertically-composed taskV{s} is formed. The vertically-
composed taskV{s} has execution timew(k,{s}) considering ak-fault pattern

50 CHAPTER 5. UNIPROCESSOR SCHEDULING

for k = 0, 1, 2 . . . f . Within the interval[0, Ti), there may be more than one
vertically-composed task. In our running example, there are five vertically-
composed task within[0, T3) as shown in Figure 5.2. The higher-priority jobs
represented by two or more vertically-composed tasks will execute within the
interval [0, Ti). Now, we observed that the execution of the jobs represented
by two or more vertically-composed tasks may not be completely independent.
Some jobs in one vertically-composed task may interfere or be interfered by
the execution of some jobs in another vertically-composed task within[0, Ti).
By considering such effect of one composed task over another, the vertically-
composed tasks can be further composed using horizontal composition so as to
calculate the value ofLoad-Factor-HPi.

Horizontal Composition

A horizontally-composed task is formed by composing two or more vertically-
composed tasks. To see how this composition works, considertwo different
time pointss1 ands2 in setSi such thats1 < s2. For these two time points,
two vertically-composed tasksV{s1} and V{s2} are formed. A horizontally-
composed task, denoted byH{s1, s2} , is formed by composing the two vertically
composed tasksV{s1} andV{s2} . The taskH{s1, s2} abstracts all the jobs of the
higher-priority tasks than the priority of taskτi that are released at times1 and
s2.

The execution time of this new horizontally-composed taskH{s1, s2} is de-
noted byw(k,{s1, s2}) and must not be greater than (Ti − s1). This is
because the earliest time at which the jobs represented by the the composed
taskH{s1, s2} can start execution is at times1 sinces1 < s2. Note that, if
0 ∈ {s1, s2}, thenw(k,{s1, s2}) must not be greater thanTi. The value
of w(k,{s1, s2}) represents the maximum execution exclusively by the jobs
released at times1 ands2 within the time interval[0, Ti).

When considering the feasibility of taskτi, there are a total of|Si| time
instants at each of which a vertically-composed task is formed. To calculate
Load-Factor-HPi, we have to find the final horizontally-composed task
HSi

with execution timew(k,Si) for k = 0, 1, 2 . . . f . The value ofw(k,Si)
is the amount of execution completed by the higher-priorityjobs that are re-
leased within the time instants in setSi. Since setSi contains all the time
instants where jobs of higher-priority task are released, the value ofw(k,Si)
is Load-Factor-HPi.

To find the horizontally-composed taskHSi
, we need (|Si| − 1) horizontal

compositions. Starting with two vertically-composed tasks a new horizontally-
composed task is formed. This horizontally-composed task is further composed

5.5. LOAD FACTORS AND COMPOSABILITY 51

with a third vertically-composed task into a new horizontally-composed task.
This process continues until all the vertically-composed tasks are considered
in the horizontal compositions. Note that a vertically-composed task has no
priority associated with it. The jobs abstracted by a vertically-composed tasks
have RM priority. Therefore, the order of execution of the jobs abstracted by a
horizontally-composed task is determined by the RM priorities of the jobs that
are abstracted by the constituent vertically-composed tasks.

The first horizontally-composed task abstracts all higher-priority jobs re-
leased at two points in setSi. The last (final) horizontally-composed task ab-
stracts all the jobs that are released at all time points in set Si. For example, the
five vertically-composed tasks in Figure 5.2 are composed horizontally and the
four horizontally-composed tasks are shown in Figure 5.3.

0 5 10 15 20 25 30 35 40 t

-

↓ ↓ ↓

↓ ↓ ↓ ↓

τ2

τ1

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

H{0,10}

H{0,10, 15}

H{0,10,15, 20}

H{0,10,15,20,30}

V{0} V{10} V{15} V{20} V{30} Deadline ofτ3

Figure 5.3: Four horizontal compositions (horizontally longer ovals) are shown for the
five vertically-composed tasks (vertically longer ovals). The four horizontally-composed
tasks areH{0,10}, H{0,10, 15}, H{0,10, 15, 20} and H{0,10,15,20,30}. The composed taskH{0,10}

represents the first horizontally-composed task and the composed taskH{0,10,15,20,30}rep-
resents the final horizontally-composed task. The execution time ofH{0,10,15,20,30}is the
value ofLoad-Factor-HPi.

We now concentrate on finding the execution time of a horizontally-composed
task. If there arec time points in the setSi, then we denote the setSi as
Si={s1, s2 . . . sc}. According to Eq. (5.11), the setSi contains the time point 0.
Without loss of generality, we assumes1 = 0. We denote the firstx time points
in Si by set

p(x) = {sl | l ≤ x andsl ∈ Si}
Therefore, the setp(x) ={s1, s2 . . . sx} for x = 1, 2 . . . c. For example, we
havep(1) ={s1}={0} and p(c) ={s1, s2 . . . sc}=Si.

52 CHAPTER 5. UNIPROCESSOR SCHEDULING

We start composing the first two vertically-composed tasks horizontally.
The horizontal composition of the first two vertically-composed tasksV{s1}

and V{s2} is denoted by the composed taskHp(2)=H{s1, s2} . The execution
time of V{s1} andV{s2} arew(k,{s1}) andw(k,{s2}), respectively (given
by Eq.(5.15)). The execution time ofHp(2) is denoted byw(k,p(2)) =
w(k,{s1, s2}) and is given in Eq. (5.16), fork = 0, 1, 2, . . . f , as follows:

w(k,p(2)) =
k

max
q=0

{

min
{

[w(q,{s1})+ w(k-q,{s2})], Ti

}

}

(5.16)

The calculation of the value ofw(k,p(2)) in Eq. (5.16) considers the sum
of the execution time of tasksV{s1} andV{s2} for q and(k − q) fault pattern,
respectively, such that the sum is maximized for someq, 0 ≤ q ≤ k. Since
the amount of execution within the interval[0, Ti) by the higher-priority jobs
released at times1 ands2 can not be greater than (Ti − s1) = (Ti − 0) = Ti,
the minimum of this sum for someq andTi is determined to be the value of
w(k,p(2)) in Eq. (5.16). This is because the earliest time that higher-priority
jobs can start execution is at times1 = 0.

By assuming that the value ofw(k,p(x)) is known for the horizontally-
composed tasksHp(x), we define a new horizontally-composed taskHp(x+1)

which is equivalent toHp(x) ∪ {sx+1} . The execution timew(k,p(x+1))
of the horizontally-composed taskHp(x+1) is given in Eq. (5.17), fork =
0, 1, 2, . . . f , as follows:

w(k,p(x+1)) =
k

max
q=0

{

min
{

[w(q,p(x))+ w(k-q,{sx+1})], Ti

}

}

(5.17)

The execution timew(k,p(x+1)) of the new horizontally-composed task
Hp(x+1) is calculated by finding the sum of the execution time of the hori-
zontally composed taskHp(x) and the execution time of the new vertically-
composed taskV{sx+1} . The value of this sum is maximized by consideringq
faults in taskHp(x) and (k − q) faults in taskV{sx+1} , for someq, 0 ≤ q ≤ k.
Since the amount of execution within the interval[0, Ti) can not be greater than
(Ti − s1) = (Ti − 0) = Ti, the minimum of this sum (for someq) andTi is
determined to be the value ofw(k,p(x+1)) in Eq. (5.17).

Using Eq. (5.17), we can find the execution timew(k,Si) of the final
horizontally-composed taskHSi

=Hp(|Si|) for k = 0, 1, 2 . . . f . The value of
w(k,Si) is the value ofLoad-Factor-HPi for k = 0, 1, 2 . . . f . Before
we demonstrate the calculation of the execution time of horizontally-composed
task using an example, we analyze the run time complexity of calculating the
execution time of the horizontally composed tasks.

5.5. LOAD FACTORS AND COMPOSABILITY 53

Run time complexity of horizontal compositions:There are total|Si|− 1
horizontal composition for|Si| vertically-composed tasks when considering the
feasibility of taskτi. When considering the feasibility of a taskτi, for each hori-
zontal composition, there are(k+1) possibilities forq, 0 ≤ q ≤ k, in Eq. (5.17).
For each value ofq, there is one addition and one comparison operation. There-
fore, total (2 · (k + 1)) operations are needed for one horizontal composition
for eachk. For allk = 0, 1, 2 . . . f , each horizontal composition requires total
[2 + 4 + 6 + . . . 2 · (f + 1)]=O(f2) operations. Given all the|Si| vertical com-
positions, there are a total of[(|Si| − 1) · O(f2)]= O(|Si| · f2) operations for
all the (|Si| − 1) horizontal compositions. Note that|Si|=O(N) since there are
at mostN time instants where new higher-priority jobs are released.Therefore,
finding theLoad-Factor-HPi for one taskτi is O(N · f2).

The time complexity to find the execution time of vertically-composed tasks
is O(N · f2). Therefore, total time complexity for the vertical and horizon-
tal composition when considering the feasibility of taskτi is O(N · f2 + N ·
f2)=O(N · f2).

We now present the calculation ofLoad-Factor-HPi (that is, the value
of w(k,Si)) using our running example.

Example: For taskτ1, we haveS1 = ∅ from Eq. (5.12). Therefore, no
vertical composition, and hence no horizontal compositionis needed.

For taskτ2, we haveS2 = {0, 10}. Using vertical composition, we have
two vertically-composed tasksV{0} andV{10}. The execution timew(k,{s})
of the vertically-composed task fors = 0 and k = 0, 1, 2 fault patterns are
w(0,0)=3, w(1,0)=5, and w(2,0)=8 (given in the first column of Ta-
ble 5.2). Similarly, the execution timew(k,{s}) of the vertically-composed
task fors = 10 andk = 0, 1, 2 fault patterns arew(0,10)=3, w(1,10)=5
andw(2,10)=5 (given in the second column of Table 5.2). Using Eq.(5.16),
the two vertically-composed tasksV{0} andV{10} are horizontally-composed as
H{0, 10} with execution timew(k,{0,10}) that is calculated in Table 5.4 for
k = 0, 1, 2. Form Table 5.4, when considering the feasibility of taskτ2, the
amount of execution completed by the higher-priority jobs within [0, 15) is 6, 8
and 11 fork=0, 1 and 2 faults affecting only the jobs of the higher-priority task,
respectively.

For task τ3, we haveS3 = {0, 10, 15, 20, 30}. Using vertical composi-
tion, we have five vertically-composed tasksV{0} , V{10}, V{15}, V{20} and V{30}.
The execution time of the vertically-composed tasks fork = 0, 1, 2 are given
in Table 5.3. Using Eq.(5.16) and Eq.(5.17), we horizontally compose the
five vertically-composed tasksV{0} , V{10},V{15} V{20} and V{30}. For the five

54 CHAPTER 5. UNIPROCESSOR SCHEDULING

ForH{0, 10} andk = 0
w(0,{0,10}) = w(0,{0}∪{10})
=

0
max
q=0

{

min{w(q,{0})+ w(k-q,{10}), Ti }
}

= min
{

[w(0,{0})+ w(0,{10})], Ti

}

= min{[3 + 3], 15} = min{6, 15}
}

= 6

ForH{0,10} andk = 1
w(1,{0,10}) = w(1,{0}∪{10})
=

1
max
q=0

{

min{w(q,{0})+ w(1-q,{10}), Ti }
}

= max
{

min{[w(0,{0})+ w(1,{10})], Ti },
min

{

[w(1,{0})+ w(0,{10})], Ti }
}

= max
{

min{[3 + 5], 15},min{[5 + 3], 15}
}

= max
{

min{8, 15},min{8, 15}
}

= 8

ForH{0,10} andk = 2
w(2,{0,10}) = w(2,{0}∪{10})
=

2
max
q=0

{

min{w(q,{0})+ w(2-q,{10}), Ti }
}

= max
{

min{[w(0,{0})+ w(2,{10})], Ti },

min{[w(1,{0})+ w(1,{10})], Ti }
min{[w(2,{0})+ w(0,{10})], Ti }

}

= max
{

min{[3 + 5], 15},min{[5 + 5], 15},min{[8 + 3], 15}
}

= max
{

min{8, 15},min{10, 15},min{11, 15}
}

= 11

Table 5.4: Calculation ofw(k,{0,10}) for horizontally-composed taskH{0, 10} for
k = 0, 1, 2.

vertically-composed tasks, four horizontally-composed tasks are formed. We
start with composingV{0} and V{10} horizontally using Eq.(5.16). The new
horizontally-composed task isH{0,10}. The execution time of the horizontally-
composed taskH{0,10} is w(k,{0,10}) and calculated using Eq.(5.16) for
k = 0, 1, 2 (given in the first row of each Table 5.5-Table 5.7). Then, the
horizontally-composed taskH{0, 10} and the vertically-composed taskV{15} are
composed in to a new horizontally-composed taskH{0, 10, 15}. The execution

5.5. LOAD FACTORS AND COMPOSABILITY 55

time ofH{0,10,15} is w(k,{0,10,15}) and calculated using Eq.(5.17) for
k = 0, 1, 2 (given in the second row of each Table 5.5-Table 5.7). This pro-
cess continues and finally the horizontally-composed taskH{0, 10, 15, 20}and the
vertically-composed taskV{30} are composed into a new horizontally-composed
task that isH{0, 10, 15, 20, 30}. The execution time of the horizontally-composed
task H{0, 10, 15, 20, 30} is w(k,{0,10,15,20,30}) that is calculated using
Eq. (5.17), for k = 0, 1, 2 (given in the fourth row of each Table 5.5-Table 5.7).
The execution time of the four horizontally-composed tasksH{0, 10}, H{0, 10, 15 },
H{0, 10, 15, 20}, andH{0, 10, 15, 20, 30}are given in Table 5.5, Table 5.6 and Table 5.7
for k = 0, k = 1 andk = 2 fault patterns, respectively.

Composed task Execution time for 0-fault pattern
V{0, 10} w(0,{0,10})=9

V{0,10,15} w(0,{0,10,15})=12
V{0,10,15,20} w(0,{0,10,15,20})=15

V{0,10,15,20,30} w(0,{0,10,15,20,30})=21

Table 5.5: The execution time due to 0-fault pattern of the four horizontally-composed
tasksH{0, 10}, H{0, 10, 15 }, H{0, 10, 15, 20}, andH{0, 10, 15, 20, 30}

Composed task Execution time for 1-fault pattern
V{0, 10} w(1,{0,10})=13

V{0,10,15} w(1,{0,10,15})=16
V{0,10,15,20} w(1,{0,10,15,20})=19

V{0,10,15,20,30} w(1,{0,10,15,20,30})=25

Table 5.6: The execution time due to 1-fault pattern of the four horizontally-composed
tasksH{0, 10}, H{0, 10, 15 }, H{0, 10, 15, 20}, andH{0, 10, 15, 20, 30}

Composed task Execution time for 2-fault pattern
V{0, 10} w(2,{0,10})=18

V{0,10,15} w(2,{0,10,15})=21
V{0,10,15,20} w(2,{0,10,15,20})=24

V{0,10,15,20,30} w(2,{0,10,15,20,30})=30

Table 5.7: The execution time due to 2-fault pattern of the four horizontally-composed
tasksH{0, 10}, H{0, 10, 15 }, H{0, 10, 15, 20}, andH{0, 10, 15, 20, 30}

The amount of execution timew(k,{0,10,15,20,30}) of the final

56 CHAPTER 5. UNIPROCESSOR SCHEDULING

horizontally-composed taskHSi
is the exact value ofLoad-Factor-HPi due

to a k-fault-pattern. The value ofw(k,{0,10,15,20,30}) represents the
amount of execution time within[0, 40) by all the higher-priority jobs due to
thek-fault-pattern. Table 5.5-Table 5.7 show that the execution completed by
the higher-priority jobs within[0, 40) is 21, 25, and 30 fork=0,1 and 2-fault
patterns, respectively (shown in the shaded fourth row in each of the Table 5.5-
Table 5.7).

It is easy to realize at this point that the way the composition technique is
applied to calculate the execution time of the final horizontally composed task
can also be applied to any fixed-priority task system.

Based on the value of theLoad-Factor-HPi, we now derive the exact
RM feasibility condition of taskτi in Section 5.6.

5.6 Exact Feasibility Condition

The exact feasibility condition for RM fault-tolerant uniprocessor scheduling
for a periodic task setΓ is derived based on the exact feasibility condition of
each taskτi for i = 1, 2 . . . n. The exact feasibility condition of taskτi depends
on the amount of execution required by taskτi and its higher-priority jobs within
the interval[0, Ti) consideringf faults that could occur within[0, Ti).

By considering (f − k) faults exclusively affecting taskτi and thek-fault
pattern affecting its higher-priority jobs within the interval [0, Ti), the sum of
Load-Factor-i andLoad-Factor-HPi can be calculated such that it
is maximized for somek, 0 ≤ k ≤ f . This sum is consequently the worst-
case workload within[0, Ti). The value ofLoad-Factor-i is C

(f − k)
i

and can be calculated using Eq. (5.5), fork = 0, 1, 2, . . . f . The value of
Load-Factor-HPi is w(k,Si) and can be calculated using Eq. (5.17), for
k = 0, 1, 2, . . . f .

We denote the maximum total workload within[0, Ti) by TLoadi which is
equal to the sum ofLoad-Factor-i andLoad-Factor-HPi such that the
sum is maximum for somek, 0 ≤ k ≤ f . The functionTLoadi is thus defined
in Eq. (5.18) as follows:

TLoadi=
f

max
k=0

{ C
(f − k)
i + w(k,Si)} (5.18)

Using Eq. (5.18), the maximum total workload within the interval [0, Ti) can
be determined. The total load is equal to the sum of the execution time required
by taskτi if (f − k) faults exclusively affect the taskτi and the execution time

5.6. EXACT FEASIBILITY CONDITION 57

within the interval[0, Ti) by the jobs having higher priority than the taskτi due
to k-fault pattern, such that, the sum is maximum for somek, 0 ≤ k ≤ f .

Run-time complexity to compute the total load:Calculating the value of
C

(f − k)
i for all k = 0, 1, 2, . . . f can be done inO(f) steps. The value of

w(k,Si) is the execution time of the final horizontally-composed task and can
be calculate inO(N · f2) time. In Eq. (5.18), there are (f + 1) possible values
for the selection ofk, 0 ≤ k ≤ f . EvaluatingTLoadi in Eq. (5.18) requires
a total off + 1 addition operations andf comparisons to find the maximum.
Given the values ofC(f − k)

i andw(k,Si) for all k = 0, 1, 2, . . . f , finding the
value ofTLoadi requiresO(f) steps. Therefore, the total time complexity for
evaluatingTLoadi is [O(f)+O(N · f2)+O(f)]=O(N · f2).

Based on the value ofTLoadi, the necessary and sufficient condition for
RM scheduling is now proved in Theorem 5.1.

Theorem 5.1 Taskτi ∈ Γ is fault-tolerant RM-schedulable if, and only if,
TLoadi≤ Ti .

Proof (if part) We prove that, ifTLoadi≤ Ti , then taskτi is fault-tolerant
RM-schedulable using proof by contradiction. The value ofTLoadi as given
in Eq. (5.18) is the sum ofLoad-Factor-i andLoad-Factor-HPi. The
value ofLoad-Factor-i is the maximum execution time required by the
taskτi if (f − k) faults exclusively occur in the first job of taskτi. The value of
Load-Factor-i is given byC(f − k)

i in Eq. (5.5) fork = 0, 1, 2, . . . f . The
value ofLoad-Factor-HPi is the execution completed within the interval
[0, Ti) by the jobs having higher priority than the priority of taskτi. The value
of Load-Factor-HPi is given byw(k,Si) which is equal to the execution
time of the final horizontally-composed taskHSi

considering ak-fault pattern
affecting the jobs of the higher-priority tasks within the interval[0, Ti), for k =
0, 1, 2, . . . f . The value ofw(k,Si) is the maximum amount of work that can
be completed by the higher-priority jobs within[0, Ti).

Now, assume a contradiction, that is, that some job of taskτi misses it dead-
line whenTLoadi ≤ Ti. This assumption implies that the first job of task
τi misses its deadline (due to it being a critical instant). Whenthe first job of
taskτi misses its deadline at timeTi, the processor must be continuously busy
within the entire interval[0, Ti). This is because, if the processor was idle at
some time instant within[0, Ti), thenτi cannot have missed its deadline since
RM is a work-conserving algorithm.

In case thatτi misses its deadline, the processor either executes taskτi or
its higher-priority jobs at each time instant within[0, Ti). The time required for

58 CHAPTER 5. UNIPROCESSOR SCHEDULING

executing the higher-priority jobs within[0, Ti) isLoad-Factor-HPi which
is given byw(k,Si). Note thatw(k,Si) is less than or equal toTi ac-
cording to Eq. (5.17). The total time required for completing the execution
of task τi is Load-Factor-i considering(f − k) faults that could affect
the first job of taskτi. Sinceτi misses it deadline atTi, the complete ex-
ecution of taskτi cannot have finished by timeTi. Therefore, the sum of
Load-Factor-i andLoad-Factor-HPi, denoted byTLoadi, must have
been greater thanTi (which is a contradiction). Therefore, ifTLoadi≤ Ti , then
taskτi is fault-tolerant RM-schedulable.

(only if part) We prove that, ifτi is RM-schedulable, thenTLoadi≤ Ti .
The amount of work on behalf of taskτi (including execution of its recovery
copy) within the interval[0, Ti) that is completed by RM isLoad-Factor-i.
Sinceτi is the lowest priority task, the amount of execution on behalf of the jobs
(including execution of their recovery copies) having higher priority than task
τi that is completed by RM is exactly equal toLoad-Factor-HPi within
[0, Ti).

Since the amount of work completed by the algorithm RM completes within
[0, Ti) is equal toLoad-Factor-i plusLoad-Factor-HPi, the total load
TLoadi is less than or equal toTi. Therefore, if taskτi is fault-tolerant RM-
schedulable, then we haveTLoadi≤ Ti. Since the first jobs of taskτi is RM-
schedulable, all the jobs of taskτi are also RM-schedulable (due to our schedul-
ing analysis considering critical instant).

The exact feasibility condition for RM scheduling of taskτi is given in
Theorem 5.1. The time complexity for evaluating this exact condition is the
same as the time complexity for evaluating Eq. (5.18). Therefore, the necessary
and sufficient condition for checking the feasibility of task τi can be evaluated
in timeO(N · f2).

The exact feasibility condition for the entire task setΓ is now given in the
following Corollary 5.2.

Corollary 5.2 Task setΓ ={τ1, τ2, . . . , τn} is fault-tolerant RM schedulable if,
and only if, taskτi is RM-schedulable using Theorem 5.1 for alli = 1, 2, . . . n.

Proof Obvious from Theorem 5.1.

Note that Corollary 5.2 is the application of Theorem 5.1 foreach one of then
tasks in setΓ. Therefore, the exact feasibility condition for the entiretask set
can be evaluated inO(n·N ·f2) time. We now determine the RM-schedulability
of the running example task set given in Table 5.1.

5.6. EXACT FEASIBILITY CONDITION 59

Example: We have to apply Theorem 5.1 to all the three tasks given in
Table 5.1. For taskτi we have to find the value ofTLoadi for all i = 1, 2, 3.
The taskτ1 is trivially RM-schedulable because it is the highest priority task
and we assume Eq.(5.4) is true for all tasks.

Consider the feasibility of taskτ2. Remember that,w(k,Si) is the exe-
cution time of the final horizontally-composed task and is equal to the value of
Load-Factor-HPi. For taskτ2, we haveS2 = {0, 10}. By horizontal com-
position, the final horizontally-composed taskH{0,10} has execution time equal
to w(0,S2) = 6, w(1,S2) = 8, andw(2,S2) = 11 for k = 0, k = 1 and
k = 2 faults, respectively, within interval[0, 15) (given in Table 5.4). For task
τ2, we also haveC0

2 =3, C1
2 =7 andC2

2 =9 for k = 0, k = 1 andk = 2 faults,
respectively, which are the values ofLoad-Factor-i using Eq.(5.6). For
taskτ2 andf = 2, the calculation ofTLoad2 using Eq. (5.18) is given below:

TLoad2 =
2

max
q=0

{

C
(2 − q)
2 + w(q,{0,10})

}

= max
{

[C2
2 + w(0,{0,10})],

[C1
2 + w(1,{0,10})],

[C0
2 + w(2,{0,10})]

}

= max
{

[9 + 6], [7 + 8], [3 + 11]
}

= 15

SinceTLoad2= 15 ≤ T2 = 15, taskτ2 is RM-schedulable using Theorem 5.1.

Consider the feasibility of taskτ3. We haveS3 = {0, 10, 15, 20, 30}. By
horizontal composition, the final horizontally-composed taskH{0,10,15,20,30}has
execution time equal tow(0,S3)=21, w(1,S3)=25, andw(2,S3)=30 for
k = 0, k = 1 andk = 2 faults, respectively, within interval[0, 40) (given in the
fourth shaded row in Table 5.5–Table 5.7). For taskτ3, we also haveC0

3 =9,
C1

3 =17 andC2
3 =23 for k = 0, k = 1 andk = 2 faults, respectively, which

are the values ofLoad-Factor-i using Eq.(5.6). For taskτ3 andf = 2, the

60 CHAPTER 5. UNIPROCESSOR SCHEDULING

calculation ofTLoad3 using Eq.(5.18)is given below:

TLoad3 =
2

max
q=0

{

C
(2 − q)
3 + w(q,{0,10,15,20,30})

}

= max
{

[C2
3 + w(0,{0,10,15,20,30})],

[C1
3 + w(1,{0,10,15,20,30})],

[C0
3 + w(2,{0,10,15,20,30})],

}

= max
{

[21 + 23], [25 + 17], [30 + 9]
}

= 44

SinceTLoad3= 44 ≥ T3 = 40, taskτ3 is not RM-schedulable using Theo-
rem 5.1. Therefore, the task set given in Table 5.1 is not RM -schedulable using
Corollary 5.2.

Based on the necessary and sufficient feasibility conditionin Corollary 5.2,
the algorithmFTRM is now presented in Section 5.7.

5.7 Algorithm FTRM

In this section, we present the fault-tolerant uniprocessor algorithmFTRM based
on the exact feasibility condition derived in Corollary 5.2. First, the pseudocode
of the algorithmCheckFeasibility(τi, f)is given in Figure 5.4. The
algorithmCheckFeasibility(τi, f)checks the RM feasibility of a task
τi by considering occurrences off faults in any jobs of the tasks in set {τ1,
τ2, . . .τi} released within the interval[0, Ti). Next, the AlgorithmFTRM is
presented in Figure 5.5. AlgorithmFTRM checks the feasibility of the entire
task setΓ based on the feasibility of each taskτi ∈ Γ using the algorithm
CheckFeasibility(τi, f).

In line 1 of AlgorithmCheckFeasibility(τi, f)in Figure 5.4, the jobs
having higher priority than the priority of taskτi are determined using Eq. (5.7).
In line 2, the time instants at each of which higher-priorityjobs are released
within the interval[0, Ti) are determined using Eq. (5.11). Using the loop in
line 3–7, the execution timew(k,{s}) of each vertically-composed taskV{s}

is derived for each points ∈ Si. The value ofw(k,{s}) is determined for
eachk = 0, 1, 2, . . . f at line 5 using Eq. (5.15).

Using the loop in line 8–12, the vertically-composed tasks are composed
further using horizontal compositions. The loop at line 8 iterates total|Si| − 1
times. Each iteration of this loop calculates the executiontime of one horizon-
tally composed taskHp(l)=Hp(l-1)∪{sl} , for l = 2, 3, . . . |Si|. The execution

5.7. ALGORITHMFTRM 61

Algorithm CheckFeasibility(τi, f)

1. Find theHPi using Eq. (5.7)
2. Find theSi using Eq. (5.11)
3. For all s ∈ Si

4. For k = 1 to f
5. Findw(k,{s}) using Eq. (5.15)
6. End For
7. End For
8. For l = 2 to |Si|
9. for k = 1 to f
10. Findw(k,p(l-1)∪{sl}) using Eq. (5.17)
11. End For
12.End For
13. For k = f to 0

14. FindC
(f − k)
i using Eq. (5.5)

15. End For
16.For k = 0 to f

17. If [C(f − k)
i +w(k,Si)] > Ti then

18. return False
19. End If
20.End For
21. return True

Figure 5.4: Pseudocode of AlgorithmCheckFeasibility(τi, f)

time w(k,p(l-1)∪{sl}) of the horizontally-composed taskHp(l-1)∪{sl} is
calculated at line 10 using Eq. (5.17) for ak-fault pattern,k = 0, 1, 2, . . . f .
The execution timew(k,Si) of the final horizontally-composed taskHSi

is
the value ofLoad-Factor-HPi, for k = 0, 1, 2 . . . f .

Using the loop in line 13–15, the value ofC
(f − k)
i is determined in line

14 using Eq. (5.5) fork = 0, 1, . . . f . Remember that the value ofC
(f − k)
i

is Load-Factor-i. In line 16–21, the exact feasibility condition forτi is
checked by consideringk faults affecting the jobs of the higher-priority tasks
and(f − k) faults exclusively affecting the taskτi, for k = 0, 1, 2, . . . f . In
line 17, the value ofTLoadi is calculated by summingLoad-Factor-i and
Load-Factor-HPi and this sum is compared against the period of taskτi. If
this sum is greater thanTi, then taskτi is not RM schedulable and the algorithm
CheckFeasibility(τi, f)returns FALSE at line 18. If the condition at
line 17 is false for allk = 0, 1, 2 . . . f , then taskτi is RM schedulable and the
algorithmCheckFeasibility(τi, f)returns TRUE at line 21.

62 CHAPTER 5. UNIPROCESSOR SCHEDULING

Next, using the algorithmCheckFeasibility(τi, f), we present the
algorithmFTRM in Figure 5.5.

Algorithm FTRM (Γ, f)

1. For all τi ∈{τ1, τ2, . . . , τn}
2. If CheckFeasibility(τi, f)= False then
3. return False
4. End If
5. End For
6. return True

Figure 5.5: Pseudocode of AlgorithmFTRM (Γ, f)

Using the loop in line 1–5 of algorithmFTRM (Γ, f), the RM-feasibility of
each taskτi in setΓ is checked. The algorithmFTRM (Γ, f) checks the RM fea-
sibility of taskτi ∈ Γ using the algorithmCheckFeasibility(τi, f) at
line 2. If the condition at line 2 is true for any taskτi (that is, the algorithm
CheckFeasibility(τi, f)returns FALSE), then the task setΓ is not RM-
schedulable. In such case, the algorithmFTRM (Γ, f) returns FALSE (line 3).
If the condition at line 2 is false for taskτi , for all i = 1, 2, . . . n (that is,
CheckFeasibility(τi, f)returns TRUE for each task), then the task set
Γ is RM-schedulable. In such case, the algorithmFTRM (Γ, f) returns TRUE
(line 6).

Given a task setΓ and the number of faultsf that can occur within any
interval of lengthTmax, the fault-tolerant RM feasibility of the task set can be
determined using algorithmFTRM (Γ, f) in O(n · N · f2) time.

Next we discuss the applicability of our exact uniprocessorfeasibility anal-
ysis for multiprocessor platform in subsection 5.7.1.

5.7.1 Multiprocessor Scheduling

The uniprocessorFTRM scheduling analysis is applicable to multiprocessor par-
titioned scheduling. To that end, the exact analysis ofFTRM can be applied
during the task assignment phase of a partitioned multiprocessor scheduling al-
gorithm in which the run time dispatcher in each processor executes tasks in
RM priority order.

Consider a multiprocessor platform consisting ofm processors. The ques-
tion addressed is as follows:

Is there an assignment of the tasks in setΓ on m processors such
that each processor can toleratef faults?

5.7. ALGORITHMFTRM 63

Partitioned multiprocessor task scheduling is typically based on a bin-packing
algorithm for task assignment to the processors. When assigning a new task to
a processor, a uniprocessor feasibility condition is used to check whether or not
an unassigned task and all the previously assigned tasks in aparticular processor
are RM schedulable. If the answer is yes, the unassigned taskcan be assigned
to the processor. In order to extend the partitioned multiprocessor scheduling to
fault-tolerant scheduling, we can apply the exact feasibility condition derived
in Corollary 5.2 when trying to assign a new task to a processor in partitioned
scheduling. The following example discusses how the exact feasibility condi-
tion derived in Corollary 5.2 can be applied to the First-Fitheuristic for task
assignment on multiprocessors.

Example: Consider the First-Fit heuristic for task assignment to proces-
sors. Given a task set{τ1, τ2, . . . , τn}, we consider the tasks to be assigned
to m processors in increasing order of task index. That is,τ1 is considered
first, and thenτ2 is considered and so on. Using the First-Fit heuristics, the
processors of the multiprocessor platform are also indexedfrom 1 . . . m. An
unassigned task is considered to be assigned to processor inincreasing order
of processor index. An unassigned task is assigned to the processor with the
smallest index for which it is feasible. Following the First-Fit heuristic, task
τ1 is trivially assigned to the first processor. For taskτ2, the necessary and
sufficient feasibility condition in Corollary 5.2 is applied to a set of tasks {τ1,
τ2} considering at mostf faults that could occur in an interval of lengthTmax

(whereTmax is the maximum period of the tasks in set {τ1, τ2}). If the feasibility
condition is satisfied, thenτ2 is assigned to the first processor. Otherwise,τ2 is
trivially assigned to the second processor. Similarly, fora taskτi, the feasibility
condition in Corollary 5.2 is checked for the already assigned tasks and taskτi

on the first processor. If taskτi and all the previously assigned tasks to the first
processor are RM schedulable using the exact condition in Corollary 5.2, then
τi is assigned to the first processor. If the exact condition is not satisfied, the
feasibility condition is checked for the second processor and so on. If taskτi

cannot be assigned to any processor, then task setΓ cannot be partitioned on
the given multiprocessor platform. If all the tasks are assigned to the multipro-
cessor platform, then task setΓ is RM schedulable. For a successful partition of
the task setΓ, each processor can toleratef faults that can occur in any tasks
within a time interval equal to the maximum period of the tasks assigned to a
particular processor.

Similarly, the exact condition in Corollary 5.2 can be used during task as-
signment to the processors of a multiprocessor platform in which each processor
executes tasks using uniprocessor RM scheduling algorithm.

64 CHAPTER 5. UNIPROCESSOR SCHEDULING

5.8 Discussion and Summary

This chapter presented the analysis of RM fault-tolerant scheduling that can be
used to guarantee the correctness and timeliness property of real-time applica-
tions on uniprocessor. The correctness property of the system is addressed by
means of fault-tolerance so that the system functions correctly even in the pres-
ence of faults. The timeliness property is addressed by deriving a necessary
and sufficient feasibility condition for the RM scheduling on uniprocessor. The
proposed algorithmFTRM can verify the feasibility of a task setΓ using the
fault-tolerant RM scheduling on uniprocessor. The time complexity of FTRM is
O(n · N · f2), wheren is the number of tasks in the periodic task set,N is the
maximum number of jobs released within any time interval of lengthTmax, and
f is the maximum number of faults that can occur within any timeinterval of
lengthTmax.

The schedulability analysis used in this chapter is directly applicable to any
static-priority scheduling algorithm for periodic task systems in which the rela-
tive deadline of each task is less than or equal to its period and the time instant
zero can be considered as the critical instant. To check the feasibility of the
first job of taskτi, the higher priority jobs within the interval[0,Di), where
Di is the relative deadline of taskτi, are to be determined. Using the composi-
tion techniques proposed in this chapter the value of maximum total workload
within [0,Di) can be calculated. If the value of the total load is less than or
equal toDi, then taskτi is schedulable. And conversely if the taskτi is schedu-
lable, then the value of total load is less than or equal toDi. It is not difficult
to see that, the novelty of our composition technique is applicable to determine
the exact feasibility of a static-priority aperiodic task set on uniprocessor.

The fault model considered for the exact RM analysis is general enough
in the sense that multiple faults can occur in any jobs, at anytime and even
during recovery operation. There is no restriction posed onthe occurrences of
two consecutive faults. The only restriction considering our fault model is that
a maximum off faults could occur within any time interval of lengthTmax,
whereTmax is the maximum period of any tasks in setΓ. The fault-tolerance
mechanism proposed in this chapter can tolerate a variety ofhardware and soft-
ware faults. Transient faults in hardware that are frequent, short-lived and do
not reappear if a task is re-executed can be tolerated using our proposed fault-
tolerant mechanism. Software faults that do not reappear when the same soft-
ware is re-executed can also be tolerated using our proposedscheme. Moreover,
FTRM can tolerate software faults that do appear again when the same software
is simply re-executed. To tolerate such software faults, a different implemen-
tation of the specification of the software can be executed when an error is

5.8. DISCUSSION AND SUMMARY 65

detected. To account for the execution of a different version of software, the
exact analysis ofFTRM considers WCET of the recovery copy that may not be
equal to the WCET of the primary copy of a task.

The variety of faults considered in our fault model can also be tolerated us-
ing spatial redundancy, for example, executing the task in two different proces-
sor. When an error is detected at the end of execution of a task in one processor,
the result of the task execution from another processor can be used to toler-
ate the fault. However, considering the highly frequent transient faults, use of
spatial redundancy may not a cost-efficient approach to achieve fault-tolerance.
Moreover, in many safety-critical systems, like applications in space, avionics
and automotive systems, there is always a space and weight constraints. In such
systems, time redundancy is more cost-efficient and preferable over spatial re-
dundancy to achieve fault-tolerance. The fault-tolerancemechanisms proposed
in this chapter exploits time redundancy.

To the best of my knowledge, no other work has proposed an exact fault-
tolerant feasibility analysis for RM scheduling of periodic tasks considering
such a general fault model as ours. If an efficient (in terms oftime complexity)
and exact feasibility test is needed, then the scheduling algorithmFTRM pro-
vides better computational efficiency than a recently proposed fault-tolerant
EDF scheduling algorithm in [Ayd07].

Our proposed exact uniprocessor feasibility condition canbe applied to task
scheduling on multiprocessors. The exact uniprocessor feasibility condition of
FTRM can be used for partitioned multiprocessor scheduling, in which, tasks
are assigned to the processors using uniprocessor RM feasibility condition. The
fault-tolerant exact feasibility condition proposed in this chapter for uniproces-
sor can be used during task assignment to the processors considering equal or
different values forf for different processors. The bin-packing heuristic and
the parameterf determines the ways tasks are assigned to the processors. Con-
sequently, the task assignment algorithm for partitioned method for multipro-
cessor scheduling can be driven by the reliability requirement of the system.

6
Multiprocessor Scheduling

This chapter proposes a fixed-priority partitioned scheduling algorithm for pe-
riodic tasks on multiprocessors. A new technique for assigning tasks to proces-
sors is developed and the schedulability of the algorithm isanalyzed for worst-
case performance. We prove that, if the workload (utilization) of a given task set
is less than or equal to 55.2% of the total processing capacity on m processors,
then all tasks meet their deadlines. During task assignment, the total work load
is regulated to the processors in such a way that a subset of the processors are
guaranteed to have an individual processor load of at least 55.2%. Due to such
load regulation, our algorithm can be used efficiently as an admission controller
for online task scheduling. And this online algorithm is scalable with increasing
number of processors.

6.1 Introduction

In recent years, applications of many embedded systems run on multiproces-
sors, in particular, chip multiprocessors [KAO05, CCE+09]. The main reasons
for doing this is to reduce power consumption and heat generation. Many of
these embedded systems are also hard real-time systems in nature and meet-
ing the task deadlines of the application is a major challenge. Since many

67

68 CHAPTER 6. MULTIPROCESSOR SCHEDULING

well-known uniprocessor scheduling algorithms, like Rate-Monotonic (RM) or
Earliest Deadline First (EDF) [LL73], are no longer optimalfor multiproces-
sors [DL78], developing new scheduling algorithms for multiprocessor plat-
form have received considerable attention. In this chapter, we address the prob-
lem of meeting deadlines for a set ofn implicit deadline periodic tasks using
RM scheduling onm processors based on task-splitting paradigm. We also
propose an extension of our scheduling algorithm that can beefficiently used as
an admission controller for online scheduling. In addition, our scheduling algo-
rithm possesses two properties that may be important for thesystem designer.
The first one guarantees that if task priorities are fixed before task assignment
they do not change during task assignment and execution, thereby facilitating
debugging during development and maintenance of the system. The second
property guarantees that at mostm/2 tasks are split, thereby keeping the run-
time overhead as caused by task splitting low.

Static-priority preemptive task scheduling on multiprocessors can be clas-
sified asglobal or partitioned scheduling. In global scheduling, at any time
m highest-priority tasks from a global queue are scheduled onm processors.
In partitioned scheduling, a task is allowed to execute onlyon one fixed, as-
signed, processor. That is, tasks are grouped first and each group of tasks
executes in one fixed processor without any migration. In global schedul-
ing, tasks are allowed to migrate while in partitioned scheduling, tasks are
never allowed to migrate. Many static-priority schedulingpolicies for both
global [ABJ01, Lun02, Bak06, BCL05] and partitioned [DL78,LBOS95, AJ03,
FBB06, LGDG03, LMM98, OB98] approaches have been well studied. We ad-
dress a variation of partitioned scheduling technique in which a bounded num-
ber of tasks can migrate to a different processor.

It has already been proved that there exists some task set with load slightly
greater than 50% of the capacity of a multiprocessor platform on which a dead-
line miss must occur for both global and partitioned static-priority schedul-
ing [ABJ01, OB98]. To achieve a utilization bound higher than 50%, some
recent work proposes techniques wheremigratory [ABD05] or split [AT06,
ABB08, KY08a] tasks are allowed to migrate using a variationof partitioned
scheduling for dynamic-priority tasks. Very little work [KY08b, LRL09] have
addressed the scheduling problem for static-priority tasks using task splitting to
overcome the 50% utilization bound. We propose a static-priority scheduling
algorithm, calledInterval Based Partitioned Scheduling(IBPS), for periodic
tasks using the task splitting approach. Bytask splitting, we mean that some
tasks are allowed to migrate their execution to a different processor during exe-

6.1. INTRODUCTION 69

cution1. We call the task that is splitted a ‘split task’ and its pieces ‘subtasks’.
No task or the subtasks of a split task can run in parallel (sequential execution
of the code of a task). InIBPS , rate-monotonic (RM) prioritization [LL73] is
used both during task assignment and during run-time scheduling of tasks on a
processor. One of the main contributions in this chapter is to prove thatif the
total utilization (or workload) of a set ofn periodic tasks is less than or equal
to 55.2% of the capacity ofm processors, the task set is RM schedulable on
m processors usingIBPS .

Apart from the guarantee bound, the important features ofIBPS are:

• During task assignment, the individual processor loads areregulated in
a way that makes on-line scheduling (task addition and removal) more
efficient than for other existing task-splitting algorithms. Due to load
regulation, a bounded number of processors have load less than 55.2%.
So, the percentage of processors with load greater than 55.2% increases
as the number of processors in a system increases. Therefore, with an
increasing number of cores in a chip multiprocessor (for example, Sun’s
Rock processor with 16 cores [CCE+09]), our proposed on-line scheduler
is more effective and scales very well.

• The priority of a task given before task assignment is not changed to
another priority during task assignment and execution, which facilitates
debugging during system development and maintenance.

• The task splitting algorithm split tasks in such a way that the number of
migrations is lower than for other existing task-splittingalgorithms.

The rest of the chapter is organized as follows. In Section 6.2, the important
features ofIBPS are further elaborated. In Section 6.3, we present the assumed
system model. In Section 6.4, we briefly discuss the basic idea of our task
assignment algorithms and also present our task splitting approach. Then, in
Sections 6.5 through 6.7, we present theIBPS task-assignment algorithms
in detail. The performance ofIBPS and its online version is presented in
Section 6.8 and 6.9. In Section 6.10, we discuss other work related to ours.
The approaches to extend our proposed multiprocessor scheduling algorithm to
fault-tolerance are discussed in Section 6.11. Finally, Section 6.12 concludes
the chapter with discussion and summary.

1Here, we do not mean splitting the code. ‘Task-splitting’ is migration of the execution of task
from one processor to another.

70 CHAPTER 6. MULTIPROCESSOR SCHEDULING

6.2 Important Features ofIBPS

A real-time task scheduling algorithm does not only need worst-case guarantee
for deadlines but also need to be practically implementable. IBPS has three
other major features:(i)load regulation, (ii) priority traceability property, and
(iii) low cost of splitting.

Load Regulation: IBPS regulates the load of a processor during task
assignment. When assigning tasks to processors, the objective of IBPS is to
have as many processors as possible with load greater than 55.2% and still meet
all the deadlines. In the worst case, the number of processors on which the load
is less than or equal to 55.2% is at mostmin{m,4} wherem is the number of
processors. Thus, the load regulation ofIBPS bounds the number of under-
utilized processors.

Load regulation ofIBPS enables design of efficient admission controller
for online scheduling. In practice, many real-time systemsare dynamic in na-
ture, that is, tasks arrive and leave the system online. After accepting an online
task, we then need to assign the task to a particular processor. Finding the best
processor to assign the task may require disturbing the existing schedule in all
m processors by means of a reassignment of tasks (e.g. task assignment algo-
rithms that require sorting).

As will be evident later in this chapter, finding the best processor to which
an accepted online task is assigned requires searching at mostmin{m,4}proces-
sors (the under-loaded processors) whenIBPS is used online. Similarly, when
a task leaves the system, reassignment of tasks is needed in at mostmin{m,5}
processors to regulate the load for future admittance of newtasks.IBPS runs
in linear time, therefore, reassignment of tasks on a bounded number of proces-
sors for load regulation is efficient. Moreover, task reassignment on a bounded
number of processors makes our online scheduling algorithm, calledO-IBPS,
scalable with the trend of increasing number of cores in chipmultiprocessor.

Priority Traceability Property: From a system designer’s point of view it
is desirable to facilitate debugging (execution tracing),during the development
and maintenance of the system. One explanation for the wide-spread use of RM
in industry is the relative ease with which the designer can predict the execution
behavior at run-time. The dynamic-priority EDF scheduler has (despite being
as mature a scheduling method as RM, but with stronger schedulability proper-
ties) not received a corresponding attention in industrialapplications. Even for
static-priority schedulers, the ease of debugging differsfor different algorithms.
For example, when studying the recent work in [LRL09] of static-priority parti-
tioned scheduling with task splitting, we see that it is possible that the deadline

6.3. TASK MODEL 71

of a subtask could become smaller (during task assignment) than the given im-
plicit deadline of the original task during task assignmentto processors. This,
in turn, could make the priorities of the subtasks differentfrom the original
RM priority of the tasks and therefore cause a different, less traceable, execu-
tion behavior. A similar behavior can be identified in known dynamic-priority
task-splitting algorithms [AT06, ABB08, KY08a] where a subtask of a split
task may have different priority (that is, executes in specific time slots, or has
smaller deadline) than the original task.IBPS is a static-priority partitioned
algorithm with a strongpriority traceability property, in the sense that if the
priorities of all tasks are fixed before task assignment theynever change during
task assignment and execution.

Cost of Splitting: One final property of interest for task-splitting parti-
tioned scheduling in particular is the run-time penalty introduced due to migra-
tion. Cost of splitting and its relation to scheduling performance has received
attention [KLL09]. Clearly, the number of total split tasksand number of sub-
tasks (resulting from a split tasks) directly affect the amount of preemptions
and migrations, both of which in turn may affect cache performance and other
migration related overhead. Therefore, it is always desirable to reduce the num-
ber of split tasks and reduce the number of subtasks for each split task. For
all existing dynamic- and static-priority task-splittingalgorithms, the number
of split tasks is(m − 1) on m processor. InIBPS , total number of split task
in the worst-case is at mostm/2. In IBPS , a split task has only two subtasks
and therefore, a split task never suffers more than once due to migration in one
period.

We assume tasks are independent. At most one subtask of a split-task is
assigned to one processor. Since the two subtasks of a split-task are assigned in
two fixed processors, only the threads assigned to these two processors can be
considered during debugging independent of the threads in other processors.

6.3 Task Model

The task model presented in Section 4.1 in extended here to incorporate split
tasks. We assume a task setΓ consisting ofn implicit deadline periodic tasks.
Each taskτi ∈ Γ arrives repeatedly with a periodTi and requiresCi units
of worst-case execution time within each period. Task priorities are assigned
according to the RM policy (lower the period, the higher the priority). We
define theutilization of taskτi asui = Ci

Ti
. The load or total utilizationof any

task setA is U(A) =
∑

τi∈A ui.

72 CHAPTER 6. MULTIPROCESSOR SCHEDULING

When a taskτi is split, it is considered as two subtasks,τ ′
i andτ ′′

i , such that
both subtasks has execution time and period equal toCi

2 andTi, respectively.
Note that, since the period of a subtask is equal to the periodof the split taskτi,
we must haveui′ = ui′′ = ui

2 . When assigning tasks to each processor, we use
Liu and Layland’s sufficient feasibility condition for RM scheduling [LL73] for
determining whether the tasks can be assigned to a processor. The sufficient
RM feasibility condition according to [LL73] is given as follows:

if U(A) ≤ n(2
1
n −1), then all then tasks in setA meet deadlines

on uniprocessor.

If n → ∞, then the value of [n(2
1
n − 1)] approaches 0.693. Therefore, if

the total utilization of a task set is less than or equal to 0.693, then the task
set is always RM-schedulable on uniprocessor. Here, we makethe pessimistic
assumption that each non-split task has an offsetφi = 0 since according to
[LL73] the worst-case condition for schedulability analysis is when all tasks
are released at the same time (we assume all tasks are released at time zero).
However, the second subtaskτ ′′

i of a split taskτi is given an offset equal to
φi′′ = Ci

2 to ensure nonparallel execution with first subtaskτ ′
i . In rest of the

chapter, we use the notation LLB(n)=n(2
1
n − 1) for n tasks, LLB(∞)=ln 2 ≈

0.693 to represent an unknown number of tasks, and also letQ=(
√

2 − 1).

6.4 Task Assignment and Splitting Overview

Our proposed task assignment algorithm starts by dividing the utilization in-
terval (0,1] into seven disjoint utilization subintervalsI1–I7 (see Table 6.1).
For a < b, we use Ia–Ib to denote all the subintervals Ia, Ia+1, . . . Ib. Note

I1= (4Q
3 , 1] I2= (8Q

9 , 4Q
3] I3= (2Q

3 , 8Q
9]

I4= (8Q
15 , 2Q

3] I5= (4Q
9 , 8Q

15] I6= (Q
3 , 4Q

9]

I7 = (0, Q
3] (where,Q=

√
2 − 1)

Table 6.1: Seven disjoint utilization subintervalsI1–I7

that, each taskτi ∈ Γ will have a utilization that belongs to exactly one of the
subintervals I1–I7. By overloading the set membership operator “∈”, we write
τi ∈ Ik to denote “τi in Ik=(a,b]” for anyk ∈ {1 . . . 7}, if a < ui ≤ b. For

6.4. TASK ASSIGNMENT AND SPLITTING OVERVIEW 73

example, if a taskτi hasui=
4Q
5 , thenτi ∈ I3. Clearly, the grouping of tasks

into subintervals can be completed in linear time.

Why Seven Utilization Subintervals?The seven utilization intervals result
from the four main goals of the task assignment: (i) low number of subtasks per
split task, (ii) low number of split tasks, (iii) assigning low number of tasks per
processor2, and (iv) load regulation.

To reach these goals, we start by assigning only one task to one processor
exclusively. To avoid assigning a task with very small utilization to one proces-
sor exclusively, we select a task that belongs to a certain utilization subinterval.
If IBPS has worst-case utilization bound Uw and load regulation tries to main-
tain the load on most processors above Uw, then one task with utilization greater
than Uw is assigned to one processor exclusively. Thus, we obtain our first uti-
lization interval which is (Uw, 1]. The actual value of Uw is determined when
we assign more than one task having utilization less than Uw to one processor.
When we try to assign two tasks with utilization less than Uw to one processor,
we find that in case if these two tasks have equal utilization,then each individ-
ual task’s utilization can not be greater than Q=(

√
2–1) according to LLB(n=2).

This implies Uw ≤ 41% without a task splitting technique. To achieve Uw

greater than 50%, we split a task with utilization less than Uw in two subtasks
each having equal utilization. We gain no advantage by having unequal utiliza-
tion for the two subtasks as individual task utilization is bounded from below
and our strategy is to assign minimum number of tasks per processor. So, each
subtask has utilization at mostUw

2 . We assign one such subtask and a non-split
task to one processor. For RM schedulability, we must have Uw + Uw

2 ≤ 2Q.
This implies the value of Uw ≤ 4Q

3 and we get our first utilization subinterval
I1=(4Q

3 ,1]. Note that this interval also defines the maximum possible utilization
bound ofIBPS.

In summary, a task with utilization greater thanUw and less than or equal
to 1 is exclusively assigned to one processor. Some other tasks with maximum
utilization Uw is split into two subtasks such that each subtask has maximum
utilization Uw/2. If one such non-split task with maximum utilization Uw and
one subtask with maximum utilization Uw/2 are assigned to one processor, then
we must need Uw + Uw/2 ≤ 2Q using LLB. This implies the maximum value
of Uw is Uw = 4Q/3. Thus the actual (maximum possible) value of Uw is
hinted (proved later) when more than one task are assigned toone processor.
Thus the first interval(Uw, 1] = (4Q/3, 1] is derived.

The overall goal of the task assignment is to achieve the maximum possi-

2According to LLB, the RM scheduling on uniprocessor achieves higher utilization bound if
number of tasks assigned to the processor is small [LL73].

74 CHAPTER 6. MULTIPROCESSOR SCHEDULING

ble Uw, which is 4Q
3 ≈55.2%. To achieve this bound, at each stage of task

assignment, we bound the utilization of tasks from below forload regulation by
selecting a task from a certain utilization interval, splita task in only two sub-
tasks when task splitting is unavoidable and try to assign a minimum number of
tasks to one processor. The consequence is that we derive theseven utilization
intervals I1-I7 given in Table 6.1. Driven by the four main goals of task as-
signment, the derivations of I2-I6 are done in a similar fashion, as for I1, while
I7 becomes the remaining interval task utilization in which requires no lower
bound. More details can be found in the technical report [PJ09].

Task Assignment Overview: IBPS assigns tasks to processors inthree
phases. In thefirst phase, tasks from each subinterval Ik are assigned to proces-
sors using one particularpolicy for each Ik. Any unassigned tasks in I2–I6 after
first phase, calledodd tasks, are assigned to processors in thesecond phase. If
tasks are assigned tom′ processors during the first and second phases, the total
utilization in each of them′ processors will then be greater than4Q

3 ≈ 55.2%
due to load regulation strategy. Any unassigned tasks afterthe second phase,
calledresidue tasks, are assigned to processors during thethird phase. If, af-
ter the second phase, the total utilization of the residue tasks is smaller than or
equal to4Qm′′

3 for the smallest non-negative integerm′′, all the residue tasks
are assigned to at mostm′′ processors. The load on thesem′′ processors may be
smaller than 55.2%. Load regulation in first two phases ensures thatm′′ ≤ 4.
When task arrives online, we need only to consider thesem′′ processor for task
assignment. The different task assignment algorithms in the three phases con-
stitute the algorithmIBPS .

We conclude this section by defining some useful functions that will be used
later for the worst-case schedulability analysis in this chapter. We useUMN(A)
andUMX (A) to denote the lower and upper bound, respectively, on the total
utilization of all tasks in an arbitrary task setA:

UMN(A) =
∑

τi∈A

x whereτi ∈ Ik = (x, y] (6.1)

UMX (A) =
∑

τi∈A

y whereτi ∈ Ik = (x, y]

Clearly, the following inequality holds for any task setA:

UMN(A) < U(A) ≤ UMX (A) (6.2)

If IBPS assigns a task set tomx processors andmx ≤ m, we declare

6.4. TASK ASSIGNMENT AND SPLITTING OVERVIEW 75

SUCCESS for schedulability onm processors. Otherwise, we declare FAIL-
URE. Therefore,IBPS can be used to determine: (i)the number of processors
needed to schedule a task set, and (ii) whether a task set is schedulable on
m processors. When used online,O-IBPS either accepts or rejects a new on-
line task. Similarly, when a task leaves the systemO-IBPS makes necessary
changes (that is, reassignment of the existing tasks) so that new online tasks can
be accepted to the system in future.

Task Splitting Algorithm: IBPS uses the algorithm SPLIT in Fig. 6.1
for task splitting. The input to algorithm SPLIT is a setX, containing an odd
number of tasks. Each task inX, except the highest-priority one, is assigned
to one of two selected (empty) processors. The highest-priority task is split and
assigned to both processors. As will be evident in later sections, no more tasks
will be assigned to these processors.

Algorithm SPLIT (TaskSet: X)
1. Letτk ∈ X such thatTk ≤ Ti for all τi ∈ X
2. Split the taskτk into subtasksτ ′

k andτ ′′
k such that

3. φk
′=0, C′

k = Ck/2, T ′
k = Tk

4. φk
′′=Ck/2, C′′

k = Ck/2, T ′′
k = Tk

5. Let setX1 contains|X−{τk}|
2

tasks from X-{τk}
6. X2 = X − X1 − {τk}
7. Assign τk

′ and all tasks in setX1 to a processor
8. Assign τk

′′ and all tasks in setX2 to a processor

Figure 6.1: Task Splitting Algorithm

The highest priority taskτk ∈ X is determined (line 1) andτk is split into two
subtasksτ ′

k andτ ′′
k such thatuk′ = uk′′ = uk

2 (line 2-4). Half of the tasks from
set (X − {τk}) is stored in a new setX1 (line 5), and the remaining half in
another new setX2 (line 6). Note that|X − {τk}| is an even number. Subtask
τk

′ and all tasks inX1 are assigned to one processor (line 7), while subtaskτk
′′

and all tasks inX2 are assigned to the other processor (line 8). Note that, since
τk is the highest-priority task and no more tasks will be assigned to the selected
processors, the offset ofτk

′′ (φk′′=Ck

2) will ensure that the two subtasks are
not executed in parallel.

76 CHAPTER 6. MULTIPROCESSOR SCHEDULING

6.5 Task Assignment: First Phase

During the first phase,IBPS assigns tasks using a particular policy for each of
the seven subintervals using load regulation strategy. Common for all policies,
however, is that each processor to which tasks have been assigned will have
an RM schedulable task set with a total utilization strictlygreater than4Q

3 for
load regulation. We now describe the seven policies used during the first task-
assignment phase.

Policy 1: Each taskτi ∈ I1=(4Q
3 , 1} is assigned to one dedicated processor.

Clearly, each of these tasks is trivially RM schedulable with a utilization greater
than 4Q

3 on one processor. This policy guarantees that there will be no tasks left
in I1 after the first phase.

Policy 2: Exactlythreetasks in I2=(8Q
9 , 4Q

3] are assigned totwoprocessors
using algorithm SPLIT given in Fig. 6.1. This process iterates until less than
three tasks are left in I2. Thus, there are 0–2 unassigned tasks in I2 to declare
asodd tasks.

The proof that the tasks assigned to each processor are RM schedulable and
the utilization on each processor is greater than4Q

3 is as follows. Assume that
a particular iteration assigns the three tasksτk, τi andτj from I2 to two pro-
cessors by calling SPLIT ({ τk,τi,τj}) such thatτk is the highest priority tasks.
Then, line 3 of algorithm SPLIT ensures that4Q

9 < uk′ ≤ 2Q
3 . Now, without

loss of generality, assumeX1 = {τi} in line 5 of SPLIT. We have the total min-
imum and maximum load in one processorUMN({τi, τ

′
k}) = 8Q

9 + 4Q
9 = 4Q

3

andUMX ({τi, τ
′
k}) = 4Q

3 + 2Q
3 = 2Q = LLB(2), respectively, using Eq.(6.1).

We have,4Q
3 < U({τi, τk′}) ≤ LLB(2) using Eq. (6.2). Similarly we have,

4Q
3 < U({τj , τk′′}) ≤ LLB(2).

Policy 3: Exactlytwo tasks from I3=(2Q
3 , 8Q

9] are assigned to one processor
without any splitting. This process iterates until less than two tasks are left in
I3. Thus, there are 0–1 task left in I3 to declare asodd tasks. Two tasks in I3
must have a total utilization greater than2×2Q

3 and less than or equal to2×8Q
9 ,

assigned to one processor. Since16Q
9 <LLB(2)=2Q, the two tasks from I3 are

RM schedulable with processor utilization greater than4Q
3 .

Policy 4: Exactlyfive tasks from I4=(8Q
15 , 2Q

3] are assigned totwo proces-
sors using algorithm SPLIT in Fig. 6.1. This process iterates until there are less
than five tasks left in I4. Thus, there are 0–4 unassigned tasks in I4 to declare as
odd tasks. The proof that the tasks in each processor are RM schedulable and
the utilization in each processor is greater than4Q

3 is similar to the proof for

6.5. TASK ASSIGNMENT: FIRST PHASE 77

Policy 2 and can be found in [PJ09].

Policy 5 : Exactlythreetasks from I5=(4Q
9 , 8Q

15] are assigned to one proces-
sor. This process iterates until there are less than three tasks left in I5. Thus,
there are 0–2 tasks left in I5 to declare asodd tasks. Three tasks in I5 must
have a total utilization greater than3×4Q

9 and less than3×8Q
15 < LLB(3). So,

each processor utilization is greater than4Q
3 and the three tasks in I5 are RM

schedulable on one processor.

Policy 6: Exactly four tasks from I6=(Q
3 , 4Q

9] are assigned to one processor.
This process iterates until there is less than four tasks left in I6. Thus, there
are 0–3 tasks left in I6 to declare asodd tasks. Four tasks in I6 must have a
utilization greater than4×Q

3 and less than4×4Q
9 < LLB(4). So, each processor

utilization is greater than4Q
3 and the four tasks in I6 are RM schedulable on one

processor.

Policy 7: In this policy,IBPS assigns tasks from I7={0, Q
3] using First-Fit

(FF) bin packing allocation as in [DL78]. We denote thelth processor byΘl

and the total utilization (load) ofΘl by L(Θl). Assume thatΘp is the first con-
sidered processor and thatΘq is the last considered processor, forq ≥ p using
FF, in this policy. When a taskτi ∈ I7 cannot be feasibly assigned toΘl, for
l = p, (p + 1), . . . (q − 1) we must haveL(Θl) + ui > LLB(∞) = ln 2. Since
ui ≤ Q

3 , we haveL(Θl) > ln 2 − Q
3 > 4Q

3 . So, the total utilization of the tasks
in each processor is greater than4Q

3 , except possibly the last processorΘq. If
L(Θq) ≤ 4Q

3 , the task assignment toΘq is undone and these unassigned tasks
are calledresiduetasks in I7. If L(Θq) > 4Q

3 , all the tasks in I7 assigned to pro-
cessorsΘp,Θp+1, . . . Θq are RM schedulable with utilization in each processor
greater than4Q

3 .

Therefore, it is proved that, each processor to which tasks have been as-
signed in first phase will have an RM schedulable task set witha total utilization
strictly greater than4Q

3 . In rest of this chapter, to denote the set of residue tasks
in I7 we use

S={τr| τr is a residue task in I7}

We have the following Lemma 1.

Lemma 1 All the residue task inS are RM schedulable in one processor.

Proof From policy 7, we haveU(S) ≤ 4Q
3 (undone task assignment inΘq).

Since4Q
3 < LLB(∞) = ln 2, all tasks inS are RM schedulable in one proces-

sor.

78 CHAPTER 6. MULTIPROCESSOR SCHEDULING

Note that, first phase of task assignment runs in linear time due to its iterative
nature.

6.6 Task Assignment: Second Phase

During the second phase,IBPS assigns unassigned tasks in subintervals I2–I6,
referred to asodd tasks, using algorithm ODDASSIGN in Fig. 6.2. Unlike the
first phase, however, each processor can now be assigned tasks from more than
one subinterval.

Algorithm ODDASSIGN(Odd tasks in I2–I6):

1. while both I2 and I4 has at least one task
2. Assignτi ∈ I2 andτj ∈ I4 to a processor

3. while both I2 and I5 has at least one task
4. Assignτi ∈ I2 andτj ∈ I5 to a processor

5 while I3 has one task and I6 has two tasks
6. Assignτi ∈ I3, τj ∈ I6 andτk ∈ I6 to a processor

7. while ((I4 has one task and I5 has two tasks)
8. or (I4 has two tasks and I5 has one task))
9. if (I4 has one task and I5 has two tasks)then
10. Assignτi ∈ I4, τj ∈ I5 andτk ∈ I5 to a processor
11. else
12. Assignτi ∈ I4, τj ∈ I4 andτk ∈ I5 to a processor
13. end if

14.while I4 has two tasks and I6 has one task
15. Assignτi ∈ I4, τj ∈ I4 andτk ∈ I6 to a processor

16.while each I3, I5 and I6 has one task
17. Assignτi ∈ I3, τj ∈ I5 andτk ∈ I6 to a processor

Figure 6.2: Assignment of odd tasks inI2–I6

Using algorithm ODDASSIGNin Figure 6.2, tasks assigned in each iteration
of eachwhile loop are RM schedulable with total utilization is greater than 4Q

3

on each processor due to load regulation strategy. We prove this by showing that
the inequality4Q

3 < U(A) ≤ LLB(|A|) holds (where A is the task set assigned
to one processor) in each iteration of eachwhile loop (here, named Loop 1–
Loop 6). We now analyze each loop separately.

Loop 1 (line 1–2): Each iteration of this loop assigns A={τi,τj} to one

6.6. TASK ASSIGNMENT: SECOND PHASE 79

processor such thatτi ∈ I2 = (8Q
9 , 4Q

3] and τj ∈ I4 = (8Q
15 , 2Q

3]. Thus,
UMX (A) = 4Q

3 + 2Q
3 = 2Q = LLB(2) andUMN(A) = 8Q

9 + 8Q
15 = 64Q

45 > 4Q
3 .

Loop 2 (line 3–4): Each iteration of this loop assigns A={τi,τj} to one
processor such thatτi ∈ I2 = (8Q

9 , 4Q
3] and τj ∈ I5 = (4Q

9 , 8Q
15]. Thus,

UMX (A) = 4Q
3 + 8Q

15 = 28Q
15 < LLB(2) andUMN(A) = 8Q

9 + 4Q
9 = 4Q

3 .

Loop 3 (line 5–6): Each iteration of this loop assigns A={τi,τj ,τk} to one
processor such thatτi ∈ I3 = (2Q

3 , 8Q
9], τj ∈ I6 = (Q

3 , 4Q
9] and τk ∈

I6 = (Q
3 , 4Q

9]. Thus, we haveUMX (A) = 8Q
9 + 4Q

9 + 4Q
9 = 16Q

9 < LLB(3)

andUMN(A) = 2Q
3 + Q

3 + Q
3 = 4Q

3 .

Loop 4 (line 7–13): Each iteration of this loop assigns exactly three tasks
A={ τi,τj ,τk} to one processor, selecting the tasks from two subintervals I4=
(8Q

15 , 2Q
3] and I5=(4Q

9 , 8Q
15]. Tasks are assigned to one processor either if (i)

τi ∈ I4, τj ∈ I5 andτk ∈ I5 or (ii) τi ∈ I4, τj ∈ I4 andτk ∈ I5. When (i)
is true, we haveUMX (A) = 2Q

3 + 2×8Q
15 = 26Q

15 < LLB(3) andUMN(A) =
8Q
15 + 2×4Q

9 = 64Q
45 > 4Q

3 . When (ii) is true, we haveUMX (A) = 2×2Q
3 + 8Q

15 =
28Q
15 < LLB(3) andUMN(A) = 2×8Q

15 + 4Q
9 = 68Q

45 > 4Q
3 .

Loop 5 (line 14–15): Each iteration of this loop assigns A={τi,τj ,τk} to one
processor such thatτi ∈ I4 = (8Q

15 , 2Q
3], τj ∈ I4 = (8Q

15 , 2Q
3] andτk ∈ I6 =

(Q
3 , 4Q

9]. Thus,UMX (A) = 2×2Q
3 + 4Q

9 = 16Q
9 < LLB(3) andUMN(A) =

2×8Q
15 + Q

3 = 7Q
5 > 4Q

3 .

Loop 6 (line 16–17): Each iteration of this loop assigns A={τi,τj ,τk} to
one processor such thatτi ∈ I3 = (2Q

3 , 8Q
9], τj ∈ I5 = (4Q

9 , 8Q
15] andτk ∈

I6 = (Q
3 , 4Q

9]. Thus,UMX (A) = 8Q
9 + 8Q

15 + 4Q
9 = 28Q

15 < LLB(3) and
UMN(A) = 2Q

3 + 4Q
9 + Q

3 = 13Q
9 > 4Q

3 .
Using Eq. (6.2), we can thus conclude that, for each iteration of each loop

if task setA is assigned to one processor, we have4Q
3 < U(A) ≤ LLB(|A|).

Therefore, it is proved that, each processor to which tasks have been assigned
in second phase will have an RM schedulable task set with a total utilization
strictly greater than4Q

3 . The second task-assignment phase also runs in linear
time due to its iterative nature.

Residue tasks

Unassigned tasks in I2–I6 after the second phase are calledresidue tasks. For
example, if there are only two unassigned tasks in I2 after the first phase, these
two odd tasks cannot be assigned to a processor in the second phase. Such a

80 CHAPTER 6. MULTIPROCESSOR SCHEDULING

scenario, henceforth referred to as apossibility, of residue tasks will have to be
handled during the third phase. We identify all such possibilities of residue tasks
in subintervals I2–I6 for any task set. In particular, we determine the number of
residue tasks in each of the subintervals I2–I6 for each identified possibility.

After the first phase, I2 has 0–2 odd tasks, I3 has 0–1 odd task, I4 has 0–4
odd tasks, I5 has 0–2 odd tasks, and I6 has 0–3 odd tasks (see Section 6.5).
Odd tasks thus exist, in subintervals I2–I6, as one of(3 × 2 × 5 × 3 × 4 =
)360 possibilities after the first phase. During the second phase, algorithm
ODDASSIGN is able to assignall the odd tasks in subintervals I2–I6 for 316
out of the 360 possibilities of odd tasks after the first phase. It is easy
to see that, this fact can be verified by running the algorithmODDASSIGN for
each the 360 possibilities of odd tasks after first phase and by counting how
many possibilities remain unassigned (please also see Appendix B in [PJ09] for
a formal proof). Therefore, for any task set,those residue tasks in subintervals
I2–I6 that need to be handled in the third phase exist as one of the remaining 44
different possibilities.During the third phase,IBPS considers assigning any
such possibility of residue tasks from I2–I6 including all residue tasks from I7

to processors.

We now define some functions that will be used in the next sections. Func-
tion URT denotes the total utilization of all the residue tasks in I2–I7:

URT =

7
∑

k=2

∑

τi∈Ik

ui [τi is residue task in Ik]

Using functionURT in Eq. (6.6), the utilization of a set of residue tasks is calcu-
lated. For the purpose of schedulability analysis, the nexttwo functionsURMN

andURMX are defined to bound the utilization of a set of residue tasks from be-
low and above, respectively. FunctionsURMN andURMX denote the lower and
upper bound, respectively, on total utilization of all residue tasksτi ∈ Ik for
i = 2, . . . 6:

URMN =
6
∑

k=2

∑

τi∈Ik

x whereτi ∈ Ik=(x, y]

URMX =

6
∑

k=2

∑

τi∈Ik

y whereτi ∈ Ik=(x, y]

6.7. TASK ASSIGNMENT: THIRD PHASE 81

If one of I2–I6 is nonempty and task set S is the residue tasks in I7, we have:

URMN < URT − U(S) ≤ URMX (6.3)

6.7 Task Assignment: Third Phase

During the third phase,IBPS assigns all residue tasks to processors, thereby
completing the task assignment. Each of the 44possibilitiesof residue tasks in
I2–I6 is listed in a separate row of Table 6.2 (row 1-20), Table 6.3 (row 21-41),
Table 6.4 (row 42-44). The columns of these table are organized as follows.
The first column represents thepossibilitynumber. Columns two through six
represent the number of residue tasks in each of the subintervals I2–I6, while
the seventh column represents the total number of residue tasks in these subin-
tervals. The eighth and ninth columns representURMN andURMX , respectively.
The rows of the table are divided into three categories, based on three value
ranges ofURMN as in the following equations:

CAT-0 (row no 1–20): 0 < URMN ≤ 4Q
3

CAT-1 (row no 21–41): 4Q
3 < URMN ≤ 8Q

3

CAT-2 (row no 42–44): 8Q
3 < URMN ≤ 4Q

(6.4)

We now present the task-assignment algorithms for the threecategories (given
in Eq. (6.4))of residue tasks in I2–I6 and the residue tasks in I7, whose collective
purpose is to guarantee that,if URT ≤ 4Qm′′

3 for the smallest non-negative
integerm′′, all residue tasks are assigned to at mostm′′ processors.

6.7.1 Residue Task Assignment: CAT-0

Consider the first 20 possibilities (rows 1–20 in Table 6.2) of CAT-0 residue
tasks and all residue task in I7. Assign tasks to processor as follows.If URT ≤
4Q
3 , all residue tasks inI2–I7 are assigned to one processor. IfURT > 4Q

3 , all
residue tasks inI7 are assigned to one processor and all CAT-0 residue tasks in
I2–I6 are assigned to another processor.

We prove the RM schedulability by considering two cases—case(i): URT ≤
4Q
3 , and case (ii):URT > 4Q

3 . If case (i) is true, all residue tasks in I2–I7 are
assigned to one processor. SinceURT ≤ 4Q

3 < LLB(∞) = ln 2, all residue
tasks are RM schedulable on one processor. If case (ii) applies, all residue tasks
in I7 assigned to one processor are RM schedulable using Lemma 1. Next, the
CAT-0 residue tasks in I2–I6 are assigned to another processor.

82 CHAPTER 6. MULTIPROCESSOR SCHEDULING

No. I2 I3 I4 I5 I6 Total URMN URMX

CAT-0
1 0 0 0 0 1 1 Q

3
4Q

9

2 0 0 0 1 0 1 4Q

9
8Q

15

3 0 0 1 0 0 1 8Q

15
2Q

3

4 0 1 0 0 0 1 2Q

3
8Q

9

5 0 0 0 0 2 2 2Q

3
8Q

9

6 0 0 0 1 1 2 7Q

9
44Q

45

7 0 0 0 2 0 2 8Q

9
16Q

15

8 0 0 1 0 1 2 13Q

15
10Q

9

9 0 0 1 1 0 2 44Q

45
18Q

15

10 0 1 0 0 1 2 Q 4Q

3

11 1 0 0 0 0 1 8Q

9
4Q

3

12 0 0 0 0 3 3 Q 4Q

3

13 0 0 2 0 0 2 16Q

15
4Q

3

14 0 1 0 1 0 2 10Q

9
64Q

45

15 0 0 0 1 2 3 10Q

9
64Q

45

16 0 0 0 2 1 3 11Q

9
68Q

45

17 0 1 1 0 0 2 18Q

15
14Q

9

18 0 0 1 0 2 3 18Q

15
14Q

9

19 0 0 1 1 1 3 59Q

45
74Q

45

20 1 0 0 0 1 2 11Q

9
16Q

9

Table 6.2: All 20 possibilities (row 1-20) of CAT-0 Residue tasks inI2–I6

According to column seven of Table 6.2, the number of CAT-0 residue tasks
in I2–I6 is at most3. And observing the ninth column, we find that the max-
imum total utilization (URMX) of all CAT-0 residue tasks in I2–I6 for any row
1–20 is16Q

9 ≈ 0.736 (see row 20). Since16Q
9 < LLB(3) ≈ 0.779, all CAT-0

residue tasks from I2–I6 are RM schedulable on the second processor. In sum-
mary,for CAT-0 residue tasks, ifURT ≤ 4Q

3 , we need one processor, otherwise,
we need at most two processors to assign all the residue tasksin I2–I7.

6.7.2 Residue Task Assignment: CAT-1

Before we propose the task assignment algorithms for this category, consider
the following Theorem from [LGDG03] that is used to assign total t tasks ins
processors using RMFF algorithm3.

3Symbolsn andm in [LGDG03] are renamed ass andt in this thesis for clarity.

6.7. TASK ASSIGNMENT: THIRD PHASE 83

No. I2 I3 I4 I5 I6 Total URMN URMX

CAT-1
21 0 0 0 1 3 4 13Q

9
28Q

15

22 0 1 0 2 0 3 14Q

9
88Q

45

23 0 0 0 2 2 4 14Q

9
88Q

45

24 0 0 1 0 3 4 23Q

15
2Q

25 0 0 3 0 0 3 24Q

15
2Q

26 0 1 1 0 1 3 23Q

15
2Q

27 0 1 1 1 0 3 74Q

45
94Q

45

28 0 0 1 1 2 4 74Q

45
94Q

45

29 1 1 0 0 0 2 14Q

9
20Q

9

30 0 1 2 0 0 3 26Q

15
20Q

9

31 1 0 0 0 2 3 14Q

9
20Q

9

32 0 0 0 2 3 5 17Q

9
12Q

5

33 0 0 1 1 3 5 89Q

45
38Q

15

34 1 0 0 0 3 4 17Q

9
8Q

3

35 0 0 4 0 0 4 32Q

15
8Q

3

36 1 1 0 0 1 3 17Q

9
8Q

3

37 2 0 0 0 0 2 16Q

9
8Q

3

38 2 0 0 0 1 3 19Q

9
28Q

9

39 2 1 0 0 0 3 22Q

9
32Q

9

40 0 1 3 0 0 4 34Q

15
26Q

9

41 2 0 0 0 2 4 22Q

9
32Q

9

Table 6.3: All 21 possibilities (row 21-41) of CAT-1 Residue tasks inI2–I6

No. I2 I3 I4 I5 I6 Total URMN URMX

CAT-2
42 2 1 0 0 1 4 25Q

9
4Q

43 2 0 0 0 3 5 25Q

9
4Q

44 0 1 4 0 0 5 14Q

5
32Q

9

Table 6.4: All 3 possibilities (row 42-44) of CAT-2 Residue tasks inI2–I6

Theorem 1 (from [LGDG03]) All t tasks in setA are schedulable ons pro-
cessors using RMFF, ifU(A) ≤ (s − 1)Q + (t − s + 1)(2

1
t−s+1 − 1).

We denote the bound given in Theorem 1 as follows:

U(s, t) = (s − 1)Q + (t − s + 1)(2
1

t−s+1 − 1)

Consider the next 21 possibilities (rows 21–41 in Table 6.3)of CAT-1 residue
tasks and residue tasks in I7. If URT ≤ 8Q

3 , we assign all CAT-1 residue tasks

84 CHAPTER 6. MULTIPROCESSOR SCHEDULING

in I2–I6 for rows 21–41 and the residue tasks in I7 to at most two processors,
otherwise, to at most three processors. For the first case,if URT ≤ 8Q

3 , all CAT-1
residue tasks inI2–I7 are assigned using RMFF allocation to two processors.
We prove the RM schedulability in Lemma 2.

Lemma 2 If URT ≤ 8Q
3 , then all the CAT-1 residue tasks inI2–I6 and the

residue tasks inI7 are RM schedulable on two processors using FF allocation.

Proof According to Theorem 1, the value ofU(s, t) for s = 2 is given as

U(2, t) = Q + (t − 1)(2
1

(t−1) − 1). Note that, for rows 21–41, the number
of residue taskst ≥ 2. The functionU(2, t) is monotonically non-increasing
as t increases. The minimum ofU(2, t) is Q + ln 2 as t → ∞. Therefore,
U(2, t) ≥ Q + ln 2 = 1.10736 for any t. SinceURT ≤ 8Q

3 = 1.10456, we
haveURT < U(2, t). Using Theorem 1, all CAT-1 residue tasks in I2–I6 and the
residue tasks in I7 are RM schedulable on two processors ifURT ≤ 8Q

3 .

For the second case,if URT > 8Q
3 , we assign all residue tasks inI7 to one pro-

cessor (RM schedulable using Lemma 1). And, all residue tasks in I2–I6 are
assigned to at most two processors using algorithmsR21_37 , R38 , R39 ,
andR40_41 for row 21–37, row 38, row 39 and row 40–41 in Table 6.3, re-
spectively.Next, we present each of these algorithms and show that all CAT-1
residue tasks in I2–I6 are RM schedulable on at most two processors.

Algorithm R21_37 : All residue tasks in I2–I6 for rows 21–37 are as-
signed to two processors using FF allocation. Such tasks areRM schedulable
using Lemma 3.

Lemma 3 All the residue tasks inI2–I6 given in any row of 21–37 of Table 6.3
are RM schedulable on two processors using FF allocation.

Proof According to column seven in Table 6.3 for rows 21–37, the number of
residue tasks in I2–I6 is at most 5. Therefore,U(2, t) is minimized for rows
21–37 whent = 5, and we have,U(2, 5) = Q + 4(2

1
4 − 1) ≈ 1.17. Observing

the ninth column of rows 21–37, we find that the maximum total utilization
(URMX) of the residue tasks in I2–I6 is at most8Q

3 ≈ 1.105 (see row 37). Since
8Q
3 < U(2, 5), all thet ≤ 5 residue tasks in I2–I6 for any row 21–37 are RM

schedulable on two processors using FF allocation.

Algorithm R38 : For row 38, there are two tasks in I2 and one task in
I6. Assume thatτa ∈ I2, τb ∈ I2 andτc ∈ I6. Taskτa ∈ I2 is assigned to
one dedicated processor and therefore trivially RM schedulable. Then,τb ∈
I2 = (8Q

9 , 4Q
3] andτc ∈ I6 = (Q

3 , 4Q
9] are assigned to another processor. Since

6.7. TASK ASSIGNMENT: THIRD PHASE 85

ub ≤ 4Q
3 anduc ≤ 4Q

9 , we haveub +uc ≤ 4Q
3 + 4Q

9 = 16Q
9 < 2Q = LLB(2).

So,τb andτc are schedulable on one processor. All three residue tasks inrow
38 are thus RM schedulable on two processors.

Algorithm R39 : For row 39, there are two tasks in I2 and one task in I3.
Assume thatτa ∈ I2, τb ∈ I2 andτc ∈ I3. We assign these tasks by calling
SPLIT ({ τa,τb,τc}) where the highest-priority task is split. We prove that task
τa, τb andτc are RM schedulable on two processors in Lemma 4.

Lemma 4 If τa ∈ I2, τb ∈ I2 andτc ∈ I3, then all three tasks are RM schedu-
lable in two processors usingSPLIT ({τa,τb,τc}).

Proof It has already been proven (Policy 2 in Section 6.5) that three tasks in I2
are RM schedulable on two processors using SPLIT . The utilization of a task
from I3 is smaller than that of a task in I2. Hence, two task from I2 and one
from I3 are also RM schedulable using SPLIT on two processors.

Algorithm R40_41 : Four residue tasks either in row 40 or in row 41 are
scheduled on two processors as in Fig. 6.3. We prove the RM schedulability of
these tasks in Lemma 5.

Algorithm R40_41 (Residue tasks for row 40 or 41)

1. Selectτa andτb from two different subintervals
2. Letτc andτd be the remaining residue tasks
3. Assignτa, τb to one processor
4. Assignτc, τd to one processor

Figure 6.3: Residue Task Assignment (row 40 or row 41)

Lemma 5 The residue tasks in row 40 or 41 in Table 6.3 are RM schedulable
on two processors using algorithmR40_41 .

Proof The four residue tasks either in row 40 or row 41 are from exactly two
subintervals. For row 40, there is one residue task in I3=(2Q

3 , 8Q
9] and three

residue tasks in I4=(8Q
15 , 2Q

3]. For row 41, there are two residue tasks in each of
I2=(8Q

9 , 4Q
3] and I6=(Q

3 , 4Q
9]. Now, consider two cases: case (i) for row 40 and

case (ii) for row 41.

Case (i): Two tasks from two different subintervals of row 40 (line 1)satisfy
τa ∈ I3 andτb ∈ I4. We then haveτc ∈ I4 andτd ∈ I4 (line 2). So,ua ≤ 8Q

9 ,

86 CHAPTER 6. MULTIPROCESSOR SCHEDULING

ub ≤ 2Q
3 , uc ≤ 2Q

3 andud ≤ 2Q
3 . Taskτa andτb are assigned to one processor

(line 3); we haveua + ub ≤ 8Q
9 + 2Q

3 = 14Q
9 < 2Q = LLB(2). Taskτc and

τd are assigned to one processor (line 4); we haveuc +ud ≤ 2Q
3 + 2Q

3 = 4Q
3 <

2Q = LLB(2). Thus, all residue tasks in row 40 are RM schedulable on two
processors.

Case (ii): Two tasks from two different subintervals of row 41 (line 1),
satisfyτa ∈ I2 andτb ∈ I6. We then haveτc ∈ I2 andτd ∈ I6 (line 2). So,
ua ≤ 4Q

3 , ub ≤ 4Q
9 , uc ≤ 4Q

3 andud ≤ 4Q
9 . Taskτa andτb are assigned

to one processor (line 3); we haveua + ub ≤ 4Q
3 + 4Q

9 = 16Q
9 < 2Q =

LLB(2). Similarly, taskτc andτd are assigned to one processor (line 4); we
haveuc +ud ≤ LLB(2). Thus, all residue tasks in row 41 are RM schedulable
on two processors.

In summary, for CAT-1 residue tasksIf URT ≤ 8Q
3 , thenIBPS needs to assign

all residue tasks inI2–I7 to at most two processors, and otherwiseIBPS needs
at most three processors.

6.7.3 Residue Task Assignment: CAT-2

We now consider the last three possibilities (rows 42–44 in Table 6.4) of CAT-2
residue tasks in I2–I6 and the residue tasks in I7. We propose two task as-
signment algorithmsR42 andR43_44 for residue tasks in row 42 and rows
43–44, respectively, along with all residue tasks in I7.

Algorithm R42 : The algorithmR42 presented in Figure 6.4 assigns the
four CAT-2 residue tasks in row 42 and residue tasks in I7. The RM schedula-
bility using algorithmR42 is ensured as follows. There are four residue tasks
in row 42 such thatτa ∈ I2, τb ∈ I2, τc ∈ I3 and τd ∈ I6 (line 1 in Fig.
6.4). Tasksτa, τb and τc are assigned to two processors (line 2) by calling
SPLIT ({ τa,τb,τc}). Such three tasks are RM schedulable on two processors
according to Lemma 4.

Next, residue taskτd ∈ I6 and all residue tasks in I7 are assigned to one
or two processors depending on two cases: case (i)URT ≤ 4Q and, case (ii)
URT > 4Q respectively.

Case (i)URT ≤ 4Q: WhenURT ≤ 4Q (line 3), taskτd and all residue tasks
in I7 are assigned to a third processor (line 4). So, to ensure RM schedulability
on one processor, we prove that,ud+U(S) ≤ LLB(∞) ≈ 0.693 whereS is the
set of residue tasks in I7. For row 42, we haveURT = ua +ub +uc +ud +U(S)
andURMN < ua + ub + uc + ud. Therefore,URT > URMN + U(S). Since,

6.7. TASK ASSIGNMENT: THIRD PHASE 87

Algorithm R42 (Residue task in I2–I7 in row 42)

1. Letτa ∈ I2, τb ∈ I2, τc ∈ I3 andτd ∈ I6
2. SPLIT ({ τa,τb,τc})
3. if (URT ≤ 4Q) then
4. Assignτd and all tasks of I7 to one processor
5. else
6. Assignτd to one processor.
7. Assign all tasks of I7 (if any) to one processor
8. end if

Figure 6.4: Residue Assignment(row 42)

for row 42,URMN = 25Q
9 (see eighth column of row 42) andURT ≤ 4Q (case

assumption), we haveU(S) < 4Q − 25Q
9 = 11Q

9 . Sinceτd ∈ I6 = (Q
3 , 4Q

9],
we haveud + U(S) ≤ 4Q

9 + 11Q
9 = 15Q

9 ≈ 0.69035. Therefore,ud + U(S) ≤
LLB(∞) ≈ 0.693.

Case (ii) URT > 4Q: WhenURT > 4Q, taskτd is assigned to the third
processor (line 6), which is trivially RM schedulable. All residue tasks in I7
are scheduled on another processor (line 7), which are also RM schedulable ac-
cording to Lemma 1. So, taskτd and all residue tasks in I7 are RM schedulable
on two processor for row 42 wheneverURT > 4Q.

In summary,If URT ≤ 4Q, the four CAT-2 residue tasks in row 42 and all
residue tasks inI7 are RM schedulable on at most three processors; otherwise,
the tasks are schedulable on at most four processors usingR42.

Algorithm R43_44 : Algorithm R43_44 (see Fig. 6.5) assigns the five
CAT-2 residue tasks in row 43 or row 44 and residue tasks in I7.

The RM schedulability using algorithmR43_44 is ensured as follows.
The five tasks in row 43 or in row 44 are denoted byτa, τb, τc, τd andτe. Tasks
τa andτb are from two different subintervals (line 1). For row 43, there are two
residue tasks in I2=(8Q

9 , 4Q
3] and three residue tasks in I6=(Q

3 , 4Q
9]. For row 44,

there is one residue task in I3=(2Q
3 , 8Q

9] and four residue tasks in I4=(8Q
15 , 2Q

3].
Tasksτa andτb are assigned to one processor (line 4). For row 43,τa ∈ I2
andτb ∈ I6 and we haveua + ub ≤ 4Q

3 + 4Q
9 = 16Q

9 < LLB(2). For row
44, τa ∈ I3 andτb ∈ I4, we haveua + ub ≤ 8Q

9 + 2Q
3 = 14Q

9 < LLB(2).
So, tasksτa andτb are RM schedulable on one processor for any row 43 or
44. To prove the RM schedulability ofτc, τd, τe and all residue tasks in I7,
we consider two cases: case (i):uc + ud + ue ≤ LLB(3) (line 5), case (ii):
uc + ud + ue > LLB(3) (line 8).

88 CHAPTER 6. MULTIPROCESSOR SCHEDULING

Algorithm R43_44 (Residue tasks for row 43 or 44)

1. Selectτa andτb in different subintervals of I2–I6
2. Letτc, τd andτe be the remaining tasks in I2–I6
3. such that,uc ≥ ud anduc ≥ ue

4. Assignτa andτb to one processor.
5. if (U(τc) + U(τd) + U(τe)) ≤ LLB(3) then
6. Assignτc, τd andτe to a processor.
7. Assign all tasks of I7 (if any) to a processor
8. else
9. Assignτc andτd to a processor.
10. if (URT ≤ 4Q) then
11. Assignτe and all tasks of I7 to a processor
12. else
13. Assignτe to one processor.
14. Assign all tasks of I7 (if any) to a processor
15. end if
16.end if

Figure 6.5: Residue Assignment (row 43-44)

Case (i):Here,τc, τd andτe are assigned to a second processor (line 6) and
they are RM schedulable (case assumption). All residue tasks in I7 are assigned
to a third processor (line 7) and are RM schedulable using Lemma 1.

Case (ii): Here,τc andτd are assigned to a second processor (line 9). For
row 43,τc ∈ I2 = (8Q

9 , 4Q
3] sinceuc ≥ ud anduc ≥ ue (line 3). Then obvi-

ously,τd ∈ I6 = (Q
3 , 4Q

9] for row 43.

We haveuc + ud ≤ 4Q
3 + 4Q

9 = 16Q
9 < LLB(2). For row 44, bothτc and

τd are in I4=(8Q
15 , 2Q

3], and we haveuc + ud ≤ 2Q
3 + 2Q

3 = 4Q
3 < LLB(2). So,

τc and τd assigned to one processor (line 9) are RM schedulable for row43
or 44. Next, taskτe and all residue tasks in I7 are scheduled on one or two
processors depending on two subcases: subcase (i):URT ≤ 4Q (line 10) and,
subcase (ii):URT > 4Q (line 12).

Subcase(i):WhenURT ≤ 4Q, taskτe and all residue tasks in I7 are as-
signed to a third processor (line 11). For RM schedulability, we show that
ue + U(S) ≤ LLB(∞) = ln 2 where S is the set of residue tasks in I7. Note
thatURMN + U(S) < URT ≤ 4Q for this subcase. For row 43URMN = 25Q

9 (see
column 8) and we haveU(S) ≤ 4Q − 25Q

9 = 11Q
9 . Sinceτe ∈ I6 = (Q

3 , 4Q
9]

for row 43, we haveue + U(S) ≤ 4Q
9 + 11Q

9 = 15Q
9 ≈ 0.6903 < ln 2.

For row 44 in Table 6.4, sinceτa ∈ I3 = (2Q
3 , 8Q

9], τb ∈ I4 = (8Q
15 , 2Q

3] and

6.7. TASK ASSIGNMENT: THIRD PHASE 89

uc + ud + ue > LLB(3) = 3(2
1
3 − 1) for case (ii) we have,ua + ub + uc +

ud + ue > 2Q
3 + 8Q

15 + 3(2
1
3 − 1) = 6Q

5 + 3(2
1
3 − 1). SinceU(S) + ua + ub +

uc + ud + ue = URT andURT ≤ 4Q (subcase assumption), we haveU(S) ≤
4Q− (6Q

5 +3(2
1
3 −1)) = 14Q

5 −3(2
1
3 −1). Sinceτe ∈ I4 = (8Q

15 , 2Q
3] for row

44, we haveue+U(S) ≤ 2Q
3 + 14Q

5 −3(2
1
3 −1) ≈ 0.6561 < ln 2 = LLB(∞).

So,τe and all residue tasks from I7 are schedulable on one processor for row 43
or row 44 ifURT ≤ 4Q. So, in order to assignτa, τb, τc, τd andτe and residue
tasks in I7 we need at most three processors ifURT ≤ 4Q.

Subcase(ii):WhenURT > 4Q, taskτe is assigned to a third processor (line
13) and is trivially RM schedulable. All residue tasks in I7 are assigned to a
fourth processor (line 14) and RM schedulable using Lemma 1.So, in order
to assignτa, τb, τc, τd and τe and residue tasks in I7, we need at most four
processors ifURT > 4Q.

In summary,if URT ≤ 4Q, we assign residue tasks inI2–I6 and residue tasks
for I7 to at most three processors; otherwise, these residue tasksare assigned
to at most four processors.

From the scheduling analysis in this section, we have the following fact.

Fact-1. Any CAT-x residue tasks, forx = 0, 1, 2, and residue tasks from I7

are RM schedulable on at most(x+1) processors ifURT ≤ 4Q(x+1)
3 ; otherwise,

these residue tasks are schedulable on at most(x + 2) processors. We have the
following Theorem 2.

Theorem 2 If URT ≤ 4Qm′′

3 , for the smallest non-negative integerm′′, all the
residue tasks are RM schedulable on at mostm′′ processors.

Proof Note that, if residue tasks only exist in I7, our theorem is true because
of Lemma 1. Now, consider any CAT-x residue tasks and residue tasks from I7.
For CAT-x residue tasks, we haveURT > URMN > 4Qx

3 using Eq. (6.3)–(6.4).

If URT ≤ 4Q(x+1)
3 , then all the residue tasks are RM schedulable on(x + 1)

processors (using Fact-1). Note thatm′′ = (x + 1) is the smallest non-negative
integer such thatURT ≤ 4Qm′′

3 . Now, if URT > 4Q(x+1)
3 , thenURT ≤ 4Qm′′

3

for somem′′ ≥ (x + 2). Since, using Fact-1 in such case, all residue tasks
are assigned to at most(x + 2) processors, our theorem is true for the smallest
nonnegative integerm′′ ≥ (x + 2) such thatURT ≤ 4Qm′′

3 .

Task assignment to processor completes here. The task assignment algo-
rithms in this phase also runs in linear time.

90 CHAPTER 6. MULTIPROCESSOR SCHEDULING

6.8 Performance ofIBPS

Utilization Bound: The worst-case utilization bound ofIBPS is given in The-
orem 3.

Theorem 3 If U(Γ) ≤ 4Qm
3 , all tasks meet deadlines on at mostm processors

usingIBPS .

Proof As shown in Section 6.5–6.6, each processor, to which tasks have been
assigned during the first two phases, will have an RM schedulable task set with
a total utilization strictly greater than4Q

3 due to load regulation. Letm′≥0
be the number of processors to which tasks are assigned during the first two
phases. Theorem 2 states that, ifURT ≤ 4Qm′′

3 for the smallest non-negative
integerm′′, then all residue tasks are RM schedulable on at mostm′′ pro-
cessors during the third phase. We must show that, ifU(Γ) ≤ 4Qm

3 , then

(m′ + m′′) ≤ m. SinceURT ≤ 4Qm′′

3 for the smallest integerm′′, we

have4Q(m′′−1)
3 < URT. The total utilization of tasks assigned tom′ processors

during the first two phases isU(Γ) − URT. Therefore,U(Γ) − URT > 4Qm′

3

and we have,4Q(m′′−1)
3 + 4Qm′

3 < U(Γ). If we haveU(Γ) ≤ 4Qm
3 , then

4Q(m′+m′′−1)
3 < 4Qm

3 which implies(m′ + m′′ − 1) < m. Becausem′, m′′,
andm are non-negative integers, we have(m′ + m′′) ≤ m. So, if U(Γ) ≤
4Qm

3 , all tasks in setΓ are RM schedulable on at mostm processors. Since

Q = (
√

2 − 1), the utilization bound onm processors is4(
√

2−1)m
3 ≈ 55.2%.

Resource Augmentation: Resource augmentation compares a given algorithm
against an optimal algorithm by determining the factor by which if a given mul-
tiprocessor platform is augmented, then the given algorithm has equal perfor-
mance to the optimal. We find the resource augmentation factor for IBPS as
follows: given a task setΓ known to be feasible onm processors each having
speedζ, we determine the multiplicative factor of this speed by which the plat-
form ofIBPS can be augmented so thatΓ is schedulable usingIBPS . Baruah
and Fisher [BF05] proved that,if task systemΓ is feasible (under either parti-
tioned or global paradigm) on an identical multiprocessor platform comprised
of m processors each with speedζ, then we must havemζ ≥ U(Γ). Now, if
4Q
3 ≥ ζ, thenm ≥ 3mζ

4Q
. Using the necessary conditionmζ ≥ U(Γ) for feasi-

bility in [BF05], we havem ≥ 3U(Γ)
4Q

⇔ U(Γ) ≤ 4Qm
3 . According to Theorem

3, Γ is schedulable on m unit-capacity processors. Therefore, the processor
speed-up factor forIBPS is 1

ζ
≥ 3

4Q
≈ 1.81.

6.9. ADMISSION CONTROLLEROIBPS 91

6.9 Admission ControllerOIBPS

In this section, an efficient admission controller for online task scheduling,
calledO-IBPS , is presented. When a multiprocessor scheduling algorithm
is used on-line, the challenge is to determine how a new on-line taskτnew is
accepted and assigned to a processor. InO-IBPS , if U(Γ) + unew ≤ 4Qm

3 ,
the new taskτnew is accepted to the system. Theorem 3 ensures that we have
sufficient capacity to assign the new taskτnew usingIBPS . If unew ∈ I1, we
assign this new task to a dedicated processor. Otherwise, ifτnew ∈ Ik for some
k = 2, 3, . . . 7, we haveunew ≤ 4Q

3 . Let ΓR denote the set of residue tasks

beforeτnew is assigned to a processor such that4Q(m′′−1)
3 ≤ U(ΓR) ≤ 4Qm′′

3 .
These residue tasks inΓR were assigned on at mostm′′ processors (using The-
orem 2) beforeτnew arrives to the system.O-IBPS then forms a new task set
Γnew = ΓR ∪ {τnew}. If U(Γnew) ≤ 4Qm′′

3 , Γnew is assigned tom′′ processors

using theIBPS task assignment phases. IfU(Γnew) > 4Qm′′

3 , then we have,

U(Γnew) = UR + unew ≤ 4Qm′′

3 + 4Q
3 = 4Q(m′′+1)

3 . The task setΓnew is
assigned to at most(m′′ + 1) processors usingIBPS (one new processor is
introduced).

When a task leaves the system, say from processorΘx, then for load reg-
ulation we re-execute the assignment algorithm onΘx as well as on allm′′

processors. Since residue tasks never require more than four processors (See
Section 6.7)during third phase ofIBPS , we havem′′ ≤ 4. Thus, whenτnew

is admitted to the system usingO-IBPS , the number of processors that require
reassignment of task is upper bounded bymin{4,m}. And when a task leaves
the system, the number of processors that require reassignment of task for load
regulation is upper bounded bymin{5,m}. Remember thatIBPS runs in
linear time. This, together with the trend in processor industry to have chip
multiprocessors with many cores (16, 32, 64 cores or more), means that our
scheduling algorithm is efficient and scalable with increasing number of cores
in CMPs for online scheduling of real-time tasks.

6.10 Related Work

While the RM scheduling algorithm is optimal for uniprocessor scheduling
[LL73], it is not optimal for multiprocessor scheduling because of the well-
known Dhall’s effectlimiting the utilization bound [DL78]. Recent work cir-
cumvents this effect by restricting the utilization of individual tasks in multipro-
cessor scheduling [ABJ01, Lun02, And08, Bak06, BG03, BCL05]. To that end,

92 CHAPTER 6. MULTIPROCESSOR SCHEDULING

the worst-case utilization bound for static- and dynamic-priority partitioned
scheduling is 50% [CFH+04]. The corresponding bound for dynamic-priority
global scheduling is 100% using thepfair family of algorithms [BCPV96],
while static-priority global scheduling is 50% [AJ03] evenwhen using thepfair
strategy.

Partitioned approaches for RM scheduling is based on different bin-packing
heuristics. The performance of earlier works on partitioned RM scheduling
were measured in terms ofℜ∞

A = N
No

whereN is the number of processor
for algorithm A under investigation andNo is the optimal number of pro-
cessors [DL78, DD86, OS95, LBOS95]. While metricℜ∞

A expresses the re-
source requirement of a task allocation scheme, it does not express its schedu-
lability performance. In [OB98], it is shown that the worst case utilization
bound for partitioned RM First-Fit (FF) scheduling ism(

√
2 − 1) ≈ 41%.

In [LGDG03], this bound is improved by also including the number of tasks
in the schedulability condition. The algorithmR-BOUND-MP [LMM98] uses
R-BOUND test that exploits harmonicity in task periods. In [AJ03], an al-
gorithmR-BOUND-MP-NFR (based on the R-BOUND test) is proposed that
has a utilization bound of 50%. The work in [FBB06] assigns tasks to proces-
sors according to FF with a decreasing deadline order and decides uniprocessor
schedulability using ademand-boundfunction (DBF). Although these works
do not present a utilization bound, their worst-case performance is character-
ized usingresource augmentation.

In order to achieve a utilization bound for the partitioned approach that
exceeds 50%, a new type of scheduling algorithms using task splitting has
evolved [ABD05, AT06, AB08, ABB08, KY07, KY08a, KY09a, LRL09]. Most
of these works address task splitting for EDF priority. In [ABD05], a task split-
ting algorithmEDF-fm is proposed that has no scheduling guarantee but in-
stead offers bounded task tardiness. An algorithm, calledEKG [AT06], for
dynamic-priorities using task splitting has a utilizationbound between 66% and
100% depending on a design parameterk which trade-off utilization bound and
preemption count. Using a time slot-based technique, sporadic task schedul-
ing for constrained and arbitrary deadline are developed in[AB08, ABB08]. In
[KY07, KY08a], the EDF-based partitioning algorithmsEhd2Sip andEDDP
are developed using a concept similar to task splitting called ‘portioning’. In
Ehd2Sip, the second portion of a task gets highest priority over other non-
split task if the first portion is not executing. InEDDP, the deadline of a split
task is changed to a smaller deadline called ‘virtual deadline’.

Common for all these dynamic-priority task splitting algorithms is the ab-
sence of priority traceability property and load regulation. As many of the al-

6.11. FAULT-TOLERANT SCHEDULING 93

gorithms requires sorting task before assignment, online scheduling may be
inefficient. The static-priority task-splitting algorithm in [KY09a, KY08b] has
utilization bound that does not exceed 50%. In [LRL09], an implicit deadline
task set is converted to a constrained deadline static-priority task set during task
assignment. Even if this algorithm has more than 50% utilization bound, it does
not have the priority traceability property and does not consider its online appli-
cability as we do withIBPS . Our scheduling algorithm has utilization bound
55.2% and the algorithm of Lakshmanan, Rajkumar and Lehoczky [LRL09]
has utilization bound 60% (non-sorted-version) to 65% (sorted-version). Al-
though the utilization bound in [LRL09] is higher than that of ours, the algo-
rithm in [LRL09] has higher overhead in terms of online scheduling and number
of migrations.

First, the sorted-version of algorithm presented in [LRL09] is not suitable
for online scheduling since sorting of all tasks is requiredwhenever task en-
ters/leaves dynamically. If unsorted-version of algorithm in [LRL09] is used
for online scheduling and when task leaves the system, then the subtasks of
some existing split-task (for example, that run across all processors) may need
to be recombined and reassigned. This can disturb the schedule in all proces-
sors. Our algorithm ensures online rescheduling of tasks isrequired in at most
4 to 5 processors. Second, our algorithm has lower migrationoverhead due to
splitting than that of in [LRL09]. Our algorithm has at most m/2 split tasks in
comparison to (m−1) split tasks in [LRL09]. The relationship between number
of subtasks of a split-task on preemption overhead and scheduling performance
(in terms of makespan) has been considered in [KLL09].

If trade-off between theoretical utilization bound and practical overheads
for online scheduling is to be made, then we believe our algorithm outweighs
the 5%-10% higher utilization bound of algorithm in [LRL09]for large sys-
tems(CMPs with many cores).

In addition, the algorithmIBPS is priority-traceable (that is, task priorities
are not changed to another fixed-priority during task assignment) while the al-
gorithm in [LRL09] is not. Priority-traceability is important for system designer
who wants that during task assignment his assigned task priorities be preserved
for (i) application requirement, (ii) better predictability of the run-time system
and (iii) ease of debugging during development.

6.11 Fault-Tolerant Scheduling

We now turn our attention to tolerating faults in a multiprocessor system. Using
the sufficient and necessary feasibility condition ofFTRM derived in Chapter 5,

94 CHAPTER 6. MULTIPROCESSOR SCHEDULING

tasks can be assigned to the processors via partitioned multiprocessor schedul-
ing. During task assignment to each processor, we can determine whether an
unassigned task can be feasibly assigned to a processor using Corollary 5.2.
If all the tasks of a task set can be feasibility assigned to the processors, then
each processor can toleratef faults. Note that inIBPS, a processor can have
a subtask of a split task. If an error is detected at the end of execution of a
split task, the error is in fact detected in the processor onto which the second
subtask of the split task is assigned. However, the recoverycopy of the task
will be executed on two processors as a split recovery task. The calculation
of the execution time of the composed task in Eq. (5.17) can take into account
the execution of a split-task across two processors in orderto find the value of
Load-Factor-HPias defined in Chapter 5. However, the time complexity
of the exact test inFTRM will then be significant for on-line multiprocessor
scheduling.

As discussed in Section 6.9, using the sufficient schedulability condition of
IBPS, an efficient admission controller for online multiprocessor scheduling
can be designed. If an online task is accepted, this task can be assigned to the
system usingO-IBPS very efficiently. If during run time of the system, an
error is detected at the end of execution of a task, the required execution of the
recovery copy of the task can be regarded as an online requestby a new task.
Based on theO-IBPS admission controller, if the recovery request is accepted
to the system, then the recovery operation can be completed before the dead-
line of the task. If the recovery request cannot be accepted using the sufficient
condition of the admission controller, we propose three possible alternatives for
handling the recovery request:

• Direct Rejection: Simply reject the request without any further consid-
eration.

• Criticality-Based Eviction: Evict some low-criticality task from the sys-
tem to accept the new request.

• Imprecise Computation: Accept the new request and execute as much
as possible of the recovery copy without compromising the timeliness of
other tasks.

6.11.1 Direct Rejection

If an error is detected and the recovery request cannot be accepted by the ad-
mission controller ofO-IBPS, the approach is as simple as just rejecting the
recovery request. Therefore, if the system utilization is greater than or equal to

6.11. FAULT-TOLERANT SCHEDULING 95

55.2%, then no recovery request would be accepted by the admission controller.
In such a highly-loaded system the reliability is compromised in favor of time-
liness for the already accepted tasks in the multiprocessorsystem. Therefore,
reliability is degraded so as to guarantee schedulability of the existing tasks.

6.11.2 Criticality-Based Eviction

If an error is detected and the recovery request cannot be accepted by the ad-
mission controller ofO-IBPS, then we can employcriticality-based eviction.
In this approach, some already-admitted task, having lowercriticality than the
criticality of the recovery request, is temporarily terminated and the recovery
request is accepted. The termination of the lower-criticality task is temporary
in the sense that, when the recovery copy of a faulty task finishes execution, the
evicted lower criticality task can be re-admitted into the system. In such case,
the lower-criticality task may be unable to execute its jobsthat are released
while recovery operation is performed.

By criticality of a task we mean the user-perceived importance of the appli-
cations tasks in meeting the deadlines. The criticality of the tasks in a task set
can be determined independent of the priorities of the tasks[MAM99]. Such
criticality-based eviction is applicable for applications in which execution of
some jobs of a task can be skipped. In [CB98], scheduling of hard and firm
periodic tasks are considered. A firm task can occasionally skip one of its jobs
based on some predetermined quality-of-service agreementwhile the hard pe-
riodic task must execute all of its jobs.

Criticality-based scheduling for non-deterministic workloads is addressed
by Alvarez and Mossé in [MAM99]. They analyzed the schedulability of a
fixed-priority system using a concept called responsiveness [MAM99]. Their
analysis is best suited for systems with nondeterministic workload in which
recovery operations caused by faults are serviced at different responsiveness
levels. By responsiveness level, the authors mean whether the recovery opera-
tion is run in a non-intrusive (without affecting schedulability of other tasks) or
intrusive (affecting schedulability of existing tasks) manner. In case of intrusive
recovery, timeliness of the less-critical tasks are compromised and the system
suffers degraded service. Thus, the eviction of lower-criticality task degrades
schedulability performance but provides higher reliability.

Note that, such criticality-based eviction may not work if there are no lower-
criticality tasks to evict in order to accept a recovery request, or if the compu-
tation time of the lower-criticality tasks may not be enoughfor executing the
recovery copy. This problem can be addressed using imprecise computation
paradigm.

96 CHAPTER 6. MULTIPROCESSOR SCHEDULING

6.11.3 Imprecise Computation

If partial computation of the recovery request is useful, then the recovery re-
quest can be accepted into the system even though a complete recovery re-
quest cannot be serviced due insufficient processing capacity. When the re-
sult of a complete execution of a recovery request cannot be produced before
the deadline, faults can be tolerated usingimprecise computationof the recov-
ery copy. Imprecise computation models are considered in [CLL90, LSL+94,
MAAMM00] and are appropriate for monotone processes where result pro-
duced by a task will have increasingly higher quality the more time is spent in
executing the task. Such monotone processes are consideredto have a manda-
tory part and an optional part [LSL+94]. The mandatory part of each task has a
hard deadline and must complete its execution. However, theoptional part of a
task can be skipped if enough processing power is not available.

The imprecise computational model is applicable if the recovery copy of a
faulty task is modeled as a monotone process. Therefore, even if the full execu-
tion of the recovery request cannot be completed, the resultof the partial com-
putation of the recovery request can ensure a certain quality to the application.
Hence, when the admission controller cannot guarantee complete execution of
a recovery request, the request can still be accepted to the system and imprecise
result can be delivered to the application consequently. Byconsidering the re-
covery request as a monotone process, the imprecise computation technique to
serve a recovery requests can be seen as providing a balance between schedula-
bility performance and reliability.

It is easy to realize that eviction of a low-criticality taskand imprecise com-
putation can be combined so as to offer a solution to the problem where the
mandatory part of a task does not have enough time to finish before its hard
deadline. In such case by evicting a lower criticality task could enable the com-
plete execution of the mandatory part of a highly-critical recovery request to be
serviced.

6.12 Discussion and Summary

In this chapter, we have proposed a task-assignment algorithm, calledIBPS that
uses the utilization of static-priority tasks in differentsubintervals as a guideline
during assignment. The algorithmIBPS is based on a task splitting approach.
The worst-case utilization bound ofIBPS is 55.2%. The task-assignment algo-
rithm ofIBPS requires no a priori sorting of the tasks, and the time complexity
for assigningn periodic tasks to the processor isO(n). In addition to hav-

6.12. DISCUSSION AND SUMMARY 97

ing linear time complexity for task assignment, the algorithmIBPS possesses
many important practical features.

First, the load regulation technique ofIBPS enables the design of an ef-
ficient admission controller for on-line task scheduling inmultiprocessor sys-
tems. IBPS guarantees that, as the number of processors in the system in-
creases, the percentage of processors having a load greaterthan 55.2% also
increases, since at most four processor could have a load lower than 55.2%.
Therefore, online scheduling of tasks usingO-IBPS scales very well with the
current trend of having an increasing number of cores in chipmultiprocessors.
Second, our algorithmIBPS possesses a priority-traceability property which fa-
cilitates the system designer’s ability to debug and moniotr a system during de-
velopment and maintenance. Third, the task-splitting algorithm causes a lower
number of migrations compared to any other task-splitting algorithm for static
and dynamic priority systems. All these salient features make our scheduling
algorithm efficient for practical implementation for chip multiprocessors with
an increasing number of cores.

When an error is detected at the end of execution of a task, the recovery re-
quest generated as a means to achieve online fault-tolerance can be considered
as an online request of a new task. If the sufficient schedulability condition of
IBPS can guarantee the schedulability of the recovery request, the online ad-
mission controller accepts the request and can execute the recovery to tolerate
the fault. If the sufficient schedulability condition ofIBPS cannot guarantee the
schedulability of the recovery request, this thesis proposes three different alter-
natives to handle the non-accepted request. Each of these alternatives makes a
particular trade-off between schedulability performanceand reliability require-
ments for the real-time application.

7
Conclusion

The research presented in this thesis deals with designing scheduling algorithms
with the objective of meeting deadlines for a set of periodictasks on uni- and
multiprocessor systems. The feasibility of the two proposed scheduling algo-
rithms —FTRM andIBPS — are analyzed for uni- and multiprocessor plat-
forms with the main goal at achieving fault-tolerance and high processor uti-
lization, respectively. Both algorithms are designed for astatic-priority system,
more specifically, the RM priority policy for a set of implicit-deadline periodic
tasks.

A very general fault model is considered in the analysis of the uniprocessor
scheduling algorithmFTRM for achieving fault-tolerance. The fault model cov-
ers a variety of hardware and software faults that can occur at any time, in any
task, and even during execution of a recovery operation. Therecovery copy of
a task that runs to tolerate a fault may simply be the re-execution of the faulty
task or it may be the execution of a recovery block (that is, a different imple-
mentation of the task). The possession of a fault-tolerant scheduling algorithm
that considers such a general fault-model makesFTRM a viable candidate for
development of a wide ranges of hard-real time applications.

The schedulability analysis ofFTRM uses a novel composability technique
to compute the worst-case workload requested by jobs of the periodic tasks
released within a particular time interval. By calculatingthe worst-case work-

99

100 CHAPTER 7. CONCLUSION

load within an interval defined by the released time and deadline of each task,
the necessary and sufficient (exact) RM feasibility condition can be derived for
uniprocessor systems. It is proved that this exact condition is true if, and only
if, a set of implicit-deadline periodic tasks is fault-tolerant RM-schedulable. In
addition, the efficiency in terms of time complexity ofFTRM is also preferable
over the same for existing EDF scheduling.

Another facet of the proposed composability technique usedin the feasi-
bility analysis ofFTRM is that it is not only applicable for tasks with implicit
deadline and RM priority, but also for tasks with constrained deadlines and
any fixed-priority policy. Therefore, the proposed feasibility analysis technique
would enable the derivation of an exact feasibility condition for any fixed-
priority scheduling of constrained or implicit deadline task systems assuming
the general fault model considered in this thesis.

The exact feasibility condition ofFTRM is directly applicable to partitioned
multiprocessor scheduling during assignment of task to theprocessors, for ex-
ample, during assignment of tasks usingIBPS algorithm proposed in this the-
sis. However, in oder to be able to design an efficient admission controller for
online multiprocessor scheduling, the time-complexity ofFTRM may be a con-
cern if the system has a large number of tasks. Therefore, a simple and sufficient
feasibility condition for offline partitioned multiprocessor scheduling, called
IBPS, is derived, based on a task-splitting technique. It is proved that, all task
deadlines are met usingIBPS if at most 55.2% capacity of the processor com-
putation capacity is requested. This sufficient condition is used to design the
admission controller of an online multiprocessor scheduling algorithm, called
O-IBPS. The algorithmIBPS is one of the first two works to overcome the
fundamental limitation of a 50% minimum achievable utilization bound of the
traditional, non-task-splitting partitioned multiprocessor scheduling for static-
priority systems. The other algorithm, proposed by Lakshmanan, Rajkumar,
and Lehoczky at Carnegie Mellon University, has an utilization bound of 60%
(unsorted version) to 65% (sorted version). While the scheduling algorithm pro-
posed by Lakshmananet al. has better utilization bound for offline systems, it is
not suitable for online scheduling on multiprocessors due to the overhaed asso-
ciated with assignment and re-assignment of tasks that arrive and leave online,
respectively.

Using the task-splitting paradigm, the proposed task assignment algorithm
for IBPS runs in linear time. During task assignment inIBPS, the load of
the processors are regulated such that at mostmin{m, 4} processors (wherem
is the number of processors) may have an individual processor load less than
55.2%. This means that, when a new task arrives, the number ofprocessors that

101

has to be considered for assigning a new task is at mostmin{m, 4}. Likewise,
when a task leaves the system, the number of processors that has to be consid-
ered for reassignment of some of the remaining tasks (for load regulation) is at
mostmin{m, 5}. Consequently,O-IBPS is an efficient scheduling algorithm
for online scheduling of real-time tasks on large systems with many processors
(for example, Chip-Multiprocessors with many cores).

The algorithmIBPS possesses two additional properties, namely priority
traceability and a low number of migrations due to task splitting. In IBPS,
the initial priorities of the application tasks do not get changed during task as-
signment. This is in contrast to the algorithm proposed by Lakshmananet al.
where static-priorities are assigned to tasks during task assignment. The pri-
orities of the tasks are independent of the task assignment algorithm inIBPS.
This property ofIBPS enables the application designer to easily come up with
his preferred choice of task priorities just by selecting appropriate task periods
(that is, the shorter is the task period selected, the higheris the assigned task
priority). Such priority assignments that are independentof the task assignment
algorithm provides a better traceability and predictability of the run-time sys-
tems and also could facilitates debugging and monitoring ofthe system during
development.

Another positive property ofIBPS is that the total number of migrations
caused by the split tasks is lower than that of any other task-splitting algorithm.
A migration of a task from one processor to another causes onepreemption
(the task stops execution in one processor and then starts execution in another
processor). Therefore, the lower the number of migrations,the lower the num-
ber of preemptions and its associated cost. If such overheadcost, due to task
migration is accounted for, then our proposed algorithmIBPS has yet another
positive feature over other task-splitting algorithms.

In IBPS, first tasks are grouped into seven utilization subintervals and then
the tasks from these groups are assigned to processors. A split-task has only
two subtasks that are assigned on two different processors in IBPS. I believe
that, by splitting a task more than once and grouping the tasks of a given task
set into more than seven subintervals, new task assignment algorithms can be
derived such that it may be possible to achieve a 69% minimum achievable uti-
lization bound, which is the maximum possible utilization bound for partitioned
RM scheduling on multiprocessors.

In the future, the exact feasibility condition ofFTRM can be used for joint
scheduling of periodic and aperiodic tasks on uni- and multiprocessor platform.
To compare the average performance of such joint scheduling, simulation ex-
periments can be conducted to schedule randomly generated task sets on a par-

102 CHAPTER 7. CONCLUSION

ticular platform. Moreover, it would be interesting to lookinto the aspects of
how the algorithmsFTRM andIBPS can be adapted for scheduling of periodic
tasks that are not independent.

For the fault-tolerant point of view, the admission controller ofO-IBPS can
be augmented with the appropriate mechanisms for tolerating faults. I believe
such an augmentation would provide good average schedulingperformance
of many soft-real time applications. For example, when a frame of an online
video is dropped occasionally due to network problems, thisframe can be re-
transmitted using appropriate fault-tolerant mechanismsby the sender in order
to maintain the quality of the video perceived by the receiver.

In summary, if the preciseness of a feasibility condition isof main concern,
then the algorithmFTRM for a uniprocessor provides a faster schedulability
decision than EDF scheduling assuming the fault model used in this thesis.
The composability technique of the uniprocessor fault-tolerant scheduling al-
gorithm can be easily applied to derive the exact feasibility condition for any
fixed-priority implicit or constrained deadline periodic task system (for exam-
ple, deadline-monotonic scheduling). The algorithmIBPS can be used to as-
sign and execute the tasks on the processors of a multiprocessor platform based
on the application designer’s selected task periods according to RM priority. If
IBPS is used online, then scheduling of the online application tasks can be done
efficiently using the algorithmO-IBPS. By selecting appropriate fault-tolerant
mechanisms,O-IBPS can be augmented with the capability of fault-tolerance.
To conclude,FTRM andO-IBPS can be used more efficiently to schedule the
real-time tasks on uni- and multiprocessor platforms compared to many other
competing algorithms.

Bibliography

[AB08] B. Andersson and K. Bletsas. Sporadic Multiprocessor Scheduling with
Few Preemptions. InProceedings of the EuroMicro Conference on Real-
Time Systems, pages 243–252, 2008.

[ABB08] B. Andersson, K. Bletsas, and S. Baruah. Scheduling Arbitrary-Deadline
Sporadic Task Systems on Multiprocessors. InProceedings of the IEEE
Real-Time Systems Symposium, pages 385–394, 2008.

[ABD+95] N. C. Audsley, A. Burns, R. I. Davis, K. W. Tindell, and A. J. Wellings.
Fixed priority pre-emptive scheduling: an historical perspective.Real-
Time Systems, 8(2-3):173–198, 1995.

[ABD05] J. H. Anderson, V. Bud, and U. C. Devi. An EDF-based Scheduling Al-
gorithm for Multiprocessor Soft Real-Time Systems. InProceedings of
the EuroMicro Conference on Real-Time Systems, pages 199–208, 2005.

[ABJ01] B. Andersson, S. Baruah, and J. Jonsson. Static-Priority Scheduling on
Multiprocessors. InProceedings of the IEEE Real-Time Systems Sym-
posium, pages 193–202, 2001.

[ABR+93] N. Audsley, A. Burns, M. Richardson, K. Tindell, and A.J. Wellings. Ap-
plying new scheduling theory to static priority pre-emptive scheduling.
Software Engineering Journal, 8(5):284–292, 1993.

[AFK05] J. Aidemark, P. Folkesson, and J. Karlsson. A Frameworkfor Node-
Level Fault Tolerance in Distributed Real-Time Systems. InProceedings
of the International Conference on Dependable Systems and Networks,
pages 656–665, 2005.

[AH06] G. Attiya and Y. Hamam. Task allocation for maximizing reliability of
distributed systems: a simulated annealing approach.Journal of Parallel
and Distributed Computing, 66(10):1259–1266, 2006.

[AJ03] B. Andersson and J. Jonsson. The utilization bounds of partitioned and
pfair static-priority scheduling on multiprocessors are 50%. InProceed-
ings of the EuroMicro Conference on Real-Time Systems, pages 33–40,
2003.

[ALRL04] A. Avižienis, J.-C. Laprie, B. Randell, and C. Landwehr. Basic Concepts
and Taxonomy of Dependable and Secure Computing.IEEE Transac-
tions on Dependable and Secure Computing, 1(1):11–33, 2004.

103

104 BIBLIOGRAPHY

[And08] Björn Andersson. Global Static-Priority Preemptive Multiprocessor
Scheduling with Utilization Bound 38%. InProceedings of the Inter-
national Conference on Principles of Distributed Systems, pages 73–88,
2008.

[AOSM01] R. Al-Omari, Arun K. Somani, and G. Manimaran. A New Fault-
Tolerant Technique for Improving Schedulability in Multiprocessor
Real-time Systems. InProceedings of the IEEE Parallel and Distributed
Processing Symposium, page 8, 2001.

[AT06] B. Andersson and E. Tovar. Multiprocessor Scheduling with Few Pre-
emptions. InProceedings of the IEEE Conference on Embedded and
Real-Time Computing Systems and Applications, pages 322–334, 2006.

[Avi85] A. Avižienis. The N-Version Approach to Fault-Tolerant Software. IEEE
Transactions on Software Engineering, 11(12):1491–1501, 1985.

[Ayd07] H. Aydin. Exact Fault-Sensitive Feasibility Analysis of Real-Time
Tasks.IEEE Transactions on Computers, 56(10):1372–1386, 2007.

[Bak06] T. P. Baker. An Analysis of Fixed-Priority Schedulability on a Multipro-
cessor.Real-Time Systems, 32(1-2):49–71, 2006.

[Bar08] R. Barbosa. Layered Fault Tolerance for Distributed Embedded Sys-
tems. PhD Thesis, Department of Computer Science and Engineering,
Chalmers University of Technology, 2008.

[Bau05] R. Baumann. Soft errors in advanced computer systems.IEEE Design
and Test of Computers, 22(3):258–266, 2005.

[BBB03] E. Bini, G. C. Buttazzo, and G. M. Buttazzo. Rate Monotonic Analysis:
The Hyperbolic Bound.IEEE Transactions on Computers, 52(7):933–
942, 2003.

[BCL05] M. Bertogna, M. Cirinei, and G. Lipari. New Schedulability Tests for
Real-Time Task Sets Scheduled by Deadline Monotonic on Multipro-
cessors . InProceedings of the Conference on Principles of Distributed
Systems, pages 306–321, 2005.

[BCPV96] S. K. Baruah, N. K. Cohen, C. G. Plaxton, and D. A. Varvel. Proportion-
ate progress: A notion of fairness in resource allocation.Algorithmica,
15(6):600–625, 1996.

[BDP96] A. Burns, R. Davis, and S. Punnekkat. Feasibility Analysis of Fault-
Tolerant Real-Time Task Sets. InProceedings of the EuroMicro Confer-
ence on Real-Time Systems, pages 522–527, 1996.

[BF97] A. A. Bertossi and A. Fusiello. Rate-monotonic scheduling for hard-real-
time systems.European Journal of Operational Research, 96(3):429–
443, 1997.

BIBLIOGRAPHY 105

[BF05] S. Baruah and N. Fisher. The partitioned multiprocessor scheduling of
sporadic task systems. InProceedings of the IEEE Real-Time Systems
Symposium, pages 321–329, 2005.

[BG03] S. Baruah and J. Goossens. The Static-priority Scheduling of Periodic
Task Systems upon Identical Multiprocessor Platforms.in Proc. of the
IASTED Int. Conf. on PDCS, pages 427–432, 2003.

[BMR99] A. A. Bertossi, L. V. Mancini, and F. Rossini. Fault-Tolerant Rate-
Monotonic First-Fit Scheduling in Hard-Real-Time Systems.IEEE
Transactions on Parallel and Distributed Systems, 10(9):934–945, 1999.

[BPSW99] A. Burns, S. Punnekkat, L. Strigini, and D.R. Wright. Probabilistic
scheduling guarantees for fault-tolerant real-time systems. InDepend-
able Computing for Critical Applications, pages 361–378, 1999.

[BRH90] S. Baruah, L. E. Rosier, and R. R. Howell. Algorithms and complexity
concerning the preemptive scheduling of periodic, real-time tasks on one
processor.Real-Time Systems., 2(4):301–324, 1990.

[BT83] J. A. Bannister and K. S. Trivedi. Task allocation in fault-tolerant dis-
tributed systems.Acta Informatica, 20:261–281, 1983.

[CB98] M. Caccamo and G. Buttazzo. Optimal scheduling for fault-tolerant and
firm real-time systems . InProceedings of the IEEE Conference on Real-
Time Computing Systems and Applications, pages 223–231, 1998.

[CC89] H. Chetto and M. Chetto. Some Results of the Earliest Deadline
Scheduling Algorithm. IEEE Transactions on Software Engineering,
15(10):1261–1269, 1989.

[CCE+09] S. Chaudhry, R. Cypher, M. Ekman, M. Karlsson, A. Landin, S.Yip,
H. Zeffer, and M. Tremblay. Rock: A High-Performance Sparc CMT
Processor.IEEE Micro, 29(2):6–16, 2009.

[CFH+04] J. Carpenter, S. Funk, P. Holman, J. H. Anderson, and S. Baruah. A
categorization of real-time multiprocessor scheduling problems and al-
gorithms. Handbook on Scheduling Algorithms, Methods, and Models,
2004.

[CLL90] J.-Y. Chung, J.W.S. Liu, and K.-J. Lin. Scheduling periodic jobs that
allow imprecise results.IEEE Transactions on Computers, 39(9):1156–
1174, 1990.

[CLRS01] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.Introduction
to Algorithms. MIT Press, 2001.

[CMR92] A. Campbell, P. McDonald, and K. Ray. Single event upset rates in
space. IEEE Transactions on Nuclear Science, 39(6):1828–1835, Dec
1992.

106 BIBLIOGRAPHY

[CMS82] X. Castillo, S. R. McConnel, and D. P. Siewiorek. Derivation and Cal-
ibration of a Transient Error Reliability Model.IEEE Transactions on
Computers, 31(7):658–671, 1982.

[DD86] Sadegh Davari and Sudarshan K. Dhall. An On Line Algorithm for Real-
Time Tasks Allocation. InProceedings of the IEEE Real-Time Systems
Symposium, pages 194–200, 1986.

[Dha77] S. K. Dhall. Scheduling periodic-time - critical jobs on single proces-
sor and multiprocessor computing systems.PhD Thesis, University of
Illinois at Urbana-Champaign, 1977.

[DL78] S. K. Dhall and C. L. Liu. On a Real-Time Scheduling Problem.Oper-
ations Research, 26(1):127–140, 1978.

[FBB06] N. Fisher, S. Baruah, and T. P. Baker. The Partitioned Scheduling of
Sporadic Tasks According to Static-Priorities. InProceedings of the
EuroMicro Conference on Real-Time Systems, pages 118–127, 2006.

[Gho] Fault-tolerant scheduling on a hard real-time multiprocessor system , au-
thor=Ghosh, S. and Melhem, R. and Mossé, D., booktitle=Proceedings
of the International Parallel Processing Symposium, pages=775-782,
year=1994,.

[GJ79] M. R. Garey and D. S. Johnson.Computers and Intractability: A Guide
to the Theory of NP-Completeness. W. H. Freeman & Co., New York,
NY, USA, 1979.

[GMM95] S. Ghosh, R. Melhem, and D. Mossé. Enhancing real-time schedules to
tolerate transient faults. InProceedings of the IEEE Real-Time Systems
Symposium, pages 120–129, 1995.

[GMM97] S. Ghosh, R. Melhem, and D. Mossé. Fault-Tolerance Through Schedul-
ing of Aperiodic Tasks in Hard Real-Time Multiprocessor Systems.
IEEE Transactions on Parallel and Distributed Systems, 8(3):272–284,
1997.

[GMMS98a] S. Ghosh, R. Melhem, D. Mossé, and J. S. Sarma. Fault-Tolerant Rate-
Monotonic Scheduling.Real-Time Systems., 15(2):149–181, 1998.

[GMMS98b] S. Ghosh, Rami Melhem, Daniel Mossé, and Joydeep SenSarma. Fault-
Tolerant Rate-Monotonic Scheduling.Real-Time Systems., 15(2):149–
181, 1998.

[HSW03] C.-C. Han, K. G. Shin, and J. Wu. A Fault-Tolerant Scheduling Algo-
rithm for Real-Time Periodic Tasks with Possible Software Faults.IEEE
Transactions on Computers, 52(3):362–372, 2003.

[IRH86] R. K. Iyer, D. J. Rossetti, and M. C. Hsueh. Measurement and modeling
of computer reliability as affected by system activity.ACM Transactions
on Computer Systems, 4(3):214–237, 1986.

BIBLIOGRAPHY 107

[JHCS02] A. Jhumka, M. Hiller, V. Claesson, and N. Suri. On systematicdesign
of globally consistent executable assertions in embedded software. In
Proceedings of the joint conference on Languages, compilers and tools
for embedded systems, pages 75–84, 2002.

[Joh88] B. W. Johnson.Design & analysis of fault tolerant digital systems.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
1988.

[JP86] M. Joseph and P. Pandya. Finding Response Times in a Real-Time Sys-
tem. The Computer Journal, 29(5):390–395, 1986.

[KAO05] P. Kongetira, K. Aingaran, and K. Olukotun. Niagara: a 32-way multi-
threaded Sparc processor.IEEE Micro, 25(2):21–29, 2005.

[KLL09] K. Klonowska, L. Lundberg, and H. Lennerstad. The maximum gain
of increasing the number of preemptions in multiprocessor scheduling.
Acta Informatica., 46(4):285–295, 2009.

[KLLS05a] K. Klonowska, H. Lennerstad, L. Lundberg, and C. Svahnberg. Optimal
recovery schemes in fault tolerant distributed computing.Acta Informat-
ica., 41(6):341–365, 2005.

[KLLS05b] K. Klonowska, L. Lundberg, H. Lennerstad, and C. Svahnberg. Ex-
tended Golomb rulers as the new recovery schemes in distributed de-
pendable computing. InProceedings of the IEEE International Parallel
and Distributed Processing Symposium, page 8, April 2005.

[KS86] C.M. Krishna and K.G. Shin. On Scheduling Tasks with a Quick Recov-
ery from Failure. IEEE Transactions on Computers, C-35(5):448–455,
1986.

[KY07] S. Kato and N. Yamasaki. Real-Time Scheduling with Task Splitting
on Multiprocessors. InProceedings of the IEEE International Confer-
ence on Embedded and Real-Time Computing Systems and Applications,
pages 441–450, 2007.

[KY08a] S. Kato and N. Yamasaki. Portioned EDF-based scheduling onmulti-
processors. InProceeding of the International Conference on Embedded
Software, pages 139–148, 2008.

[KY08b] S. Kato and N. Yamasaki. Portioned static-priority scheduling onmulti-
processors. InProceedings of the IEEE International Parallel and Dis-
tributed Processing Symposium, pages 1–12, 2008.

[KY09a] S. Kato and N. Yamasaki. Semi-Partitining Fixed-Priority Scheduling
on Multiprocessor. InProceedings of the IEEE Real-Time Technology
and Applications Symposium, pages 23–32, 2009.

[KY09b] S. Kato and N. Yamasaki. Semi-Partitioned Scheduling of Sporadic Task
Systems on Multiprocessors. InProceedings of the EuroMicro Confer-
ence on Real-Time Systems, pages 249–258, 2009.

108 BIBLIOGRAPHY

[LBOS95] J. Liebeherr, A. Burchard, Y. Oh, and S. H. Son. New Strategies for As-
signing Real-Time Tasks to Multiprocessor Systems.IEEE Transactions
on Computers, 44(12):1429–1442, 1995.

[LDG04] J. M. López, J. L. Díaz, and D. F. García. Minimum and Maximum Uti-
lization Bounds for Multiprocessor Rate Monotonic Scheduling.IEEE
Transactions on Parallel and Distributed Systems, 15(7):642–653, 2004.

[LGDG03] J. M. López, M. García, J. L. Díaz, and D. F. García. Utilization Bounds
for Multiprocessor Rate-Monotonic Scheduling.Real-Time Systems,
24(1):5–28, 2003.

[LL73] C. L. Liu and J. W. Layland. Scheduling Algorithms for Multiprogram-
ming in a Hard-Real-Time Environment.Journal of the ACM, 20(1):46–
61, 1973.

[LL08] Lars Lundberg and Hakan Lennerstad. Slack-based globalmultiproces-
sor scheduling of aperiodic tasks in parallel embedded real-time systems.
In Proceedings of the IEEE/ACS International Conference on Computer
Systems and Applications, pages 465–472, 2008.

[LLWS08] W.-C. Lu, K.-J. Lin, H.-W. Wei, and W.-K. Shih. EfficientExact Test
for Rate-Monotonic Schedulability Using Large Period-Dependent Ini-
tial Values.IEEE Transactions on Computers, 57(5):648–659, 2008.

[LMM98] S. Lauzac, R. Melhem, and D. Mossé. An Efficient RMS Control and Its
Application to Multiprocessor Scheduling. InProceedings of the Inter-
national Parallel Processing Symposium, pages 511–518, 1998.

[LMM00] F. Liberato, R. Melhem, and D. Mossé. Tolerance to Multiple Transient
Faults for Aperiodic Tasks in Hard Real-Time Systems.IEEE Transac-
tions on Computers, 49(9):906–914, 2000.

[LRL09] K. Lakshmanan, R. Rajkumar, and J. Lehoczky. PartitionedFixed-
Priority Preemptive Scheduling for Multi-core Processors. InProceed-
ings of the EuroMicro Conference on Real-Time Systems, pages 239–
248, 2009.

[LSD89] J. Lehoczky, L. Sha, and Y. Ding. The rate monotonic scheduling algo-
rithm: exact characterization and average case behavior. InProceedings
of the IEEE Real-Time Systems Symposium, pages 166–171, 1989.

[LSL+94] J.W.S. Liu, W.-K. Shih, K.-J. Lin, R. Bettati, and J.-Y. Chung. Imprecise
computations.Proceedings of the IEEE, 82(1):83–94, 1994.

[Lun02] L. Lundberg. Analyzing Fixed-Priority Global MultiprocessorSchedul-
ing. InProceedings of the IEEE Real-Time Technology and Applications
Symposium, pages 145–153, 2002.

[MAAMM00] P. Mejia-Alvarez, H. Aydin, D. Mossé, and R. Melhem. Scheduling op-
tional computations in fault-tolerant real-time systems. InProceedings

BIBLIOGRAPHY 109

of the Conference on Real-Time Computing Systems and Applications,
page 323, 2000.

[MAM99] P. Mejia-Alvarez and D. Mossé. A responsiveness approach for schedul-
ing fault recovery in real-time systems. InProceedings of the IEEE
Real-Time Technology and Applications Symposium, pages 4–13, 1999.

[MBS07] A. Meixner, M.E. Bauer, and D.J. Sorin. Argus: Low-Cost, Compre-
hensive Error Detection in Simple Cores. InProceedings of the Annual
IEEE/ACM International Symposium on Microarchitecture, pages 210–
222, 2007.

[MCS91] H. Madeira, J. Camoes, and J. G. Silva. A watchdog processor for con-
current error detection in multiple processor systems.Microprocessors
and Microsystems, 15(3):123–130, 1991.

[MdALB03] G. M. de A. Lima and A. Burns. An optimal fixed-priority assignment
algorithm for supporting fault-tolerant hard real-time systems.IEEE
Transactions on Computers, 52(10):1332–1346, 2003.

[MM98] G. Manimaran and C. S. R. Murthy. A Fault-Tolerant Dynamic Schedul-
ing Algorithm for Multiprocessor Real-Time Systems and Its Analysis.
IEEE Transactions on Parallel and Distributed Systems, 9(11):1137–
1152, 1998.

[OB98] D.-I. Oh and T. P. Baker. Utilization Bounds for N-ProcessorRate Mono-
tone Scheduling with Static Processor Assignment.Real-Time Systems,
15(2):183–192, 1998.

[OS94] Y. Oh and S. H. Son. Enhancing fault-tolerance in rate-monotonic
scheduling.Real-Time Systems., 7(3):315–329, 1994.

[OS95] Yingfeng Oh and Sang H. Son. Allocating fixed-priority periodic tasks
on multiprocessor systems.Real-Time Systems., 9(3):207–239, 1995.

[Pat06] R. M. Pathan. Probabilistic Analysis of Real-Time Scheduling of Sys-
tems Tolerating Multiple Transient Faults. InProceedings of the Inter-
national Conference of Computer and Information Technology, 2006.

[PBD01] S. Punnekkat, A. Burns, and R. Davis. Analysis of Checkpointing for
Real-Time Systems.Real-Time Systems., 20(1):83–102, 2001.

[PJ09] R. M. Pathan and J. Jonsson. Load Regulating Algorithm for
Static-Priority Task Scheduling on Multiprocessors.Technical Report,
Chalmers University of Technology, Sweden, May 2009.
http://www.cse.chalmers.se/~risat/lraspts.pdf.

[PM98] M. Pandya and M. Malek. Minimum Achievable Utilization for Fault-
Tolerant Processing of Periodic Tasks.IEEE Transactions on Comput-
ers, 47(10):1102–1112, 1998.

[Pra96] D. K. Pradhan.Fault-tolerant computer system design. Prentice-Hall,
Inc., Upper Saddle River, NJ, USA, 1996.

http://www.cse.chalmers.se/~risat/lraspts.pdf

110 BIBLIOGRAPHY

[SAA+04] L. Sha, T. Abdelzaher, K.-E. Årzén, A. Cervin, T. Baker, A. Burns,
G. Buttazzo, M. Caccamo, J. Lehoczky, and A. K. Mok. Real Time
Scheduling Theory: A Historical Perspective.Real-Time Systems, 28(2-
3):101–155, 2004.

[SABR04] J. Srinivasan, S. V. Adve, P. Bose, and J. A. Rivers. The Impact of
Technology Scaling on Lifetime Reliability. InProceedings of the Inter-
national Conference on Dependable Systems and Networks, pages 177–
186, 2004.

[SH98] M. Sjödin and H. Hansson. Improved Response-Time AnalysisCalcula-
tions. InProceedings of the IEEE Real-Time Systems Symposium, page
399, 1998.

[SKK+08] P. N. Sanda, J. W. Kellington, P. Kudva, R. Kalla, R. B. McBeth,
J. Ackaret, R. Lockwood, J. Schumann, and C. R. Jones. Soft-error
resilience of the IBM POWER6 processor.IBM J. Res. Dev., 52(3):275–
284, 2008.

[SKM+78] D.P. Siewiorek, V. Kini, H. Mashburn, S. McConnel, and M. Tsao.
A case study of C.mmp, Cm*, and C.vmp: Part I–Experiences with
fault tolerance in multiprocessor systems.Proceedings of the IEEE,
66(10):1178–1199, 1978.

[SLR86] L. Sha, J. P. Lehoczky, and R. Rajkumar. Solutions for Some Practical
Problems in Prioritized Preemptive Scheduling. InProceedings of the
IEEE Real-Time Systems Symposium, pages 181–191, 1986.

[SRL90] L. Sha, R. Rajkumar, and J.P. Lehoczky. Priority Inheritance Proto-
cols: An Approach to Real-Time Synchronization.IEEE Transactions
on Computers, 39(9):1175–1185, 1990.

[SSO05] R. M. Santos, J. Santos, and J. D. Orozco. A least upper bound on the
fault tolerance of real-time systems.Journal of Systems and Software.,
78(1):47–55, 2005.

[SUSO04] R. M. Santos, J. Urriza, J. Santos, and J. Orozco. New methods for redis-
tributing slack time in real-time systems: applications and comparative
evaluations.Journal of Systems and Software, 69(1-2):115–128, 2004.

[SWG92] S. M. Shatz, J.-P. Wang, and M. Goto. Task allocation for maximiz-
ing reliability of distributed computer systems.IEEE Transactions on
Computers, 41(9):1156–1168, Sep 1992.

[WEMR04] C. Weaver, J. Emer, S. S. Mukherjee, and S. K. Reinhardt. Techniques
to Reduce the Soft Error Rate of a High-Performance Microprocessor.
In Proceedings of the annual international symposium on Computer ar-
chitecture, pages 264–275, 2004.

	Abstract
	List of Publications
	Acknowledgments
	Introduction
	Preliminaries
	Real-Time Systems
	Periodic Task Systems
	Task Independence
	Ready Tasks
	Task Priority
	Preemptive Scheduling
	Work-Conserving Scheduling
	Feasibility and Optimality of Scheduling
	Minimum Achievable Utilization
	Scheduling Algorithms
	Offline and Online Scheduling

	Fault-Tolerant Systems
	Failure, Error, and Faults
	Error Detection Techniques

	Goals and Contributions
	Models
	Task Model
	System Model
	Fault Model

	Uniprocessor Scheduling
	Introduction
	Background
	Task Model
	Fault Model
	RM Schedulability

	Related Work
	Problem Formulation
	Load Factors and Composability
	Calculation of Load-Factor-i
	Calculation of Load-Factor-HPi

	Exact Feasibility Condition
	Algorithm FTRM
	Multiprocessor Scheduling

	Discussion and Summary

	Multiprocessor Scheduling
	Introduction
	Important Features of IBPS
	Task Model
	Task Assignment and Splitting Overview
	Task Assignment: First Phase
	Task Assignment: Second Phase
	Task Assignment: Third Phase
	Residue Task Assignment: CAT-0
	Residue Task Assignment: CAT-1
	Residue Task Assignment: CAT-2

	Performance of IBPS
	Admission Controller OIBPS
	Related Work
	Fault-Tolerant Scheduling
	Direct Rejection
	Criticality-Based Eviction
	Imprecise Computation

	Discussion and Summary

	Conclusion

