
An Agda Formalisation of the Transitive
Closure of Block Matrices (Extended Abstract)

Adam Sandberg Eriksson Patrik Jansson
Chalmers University of Technology, Sweden

{saadam,patrikj}@chalmers.se

Abstract
We define a block based matrix representation in Agda and lift
various algebraic structures (semi-near-rings, semi-rings and closed
semi-rings) to matrices in order to verify algorithms that can be
implemented using the closure operation in a semi-ring.

Categories and Subject Descriptors D.1.1 [Programming Tech-
niques]: Applicative (Functional) Programming; F.3.1 [Logics and
Meanings of Programs]: Specifying and Verifying and Reasoning
about Programs

Keywords Dependent types, Linear Algebra

1. Introduction
Bernardy and Jansson (2016) used a recursive block formulation
of matrices to certify Valiant’s parsing algorithm (Valiant 1975).
Their matrix formulation was restricted to matrices of size 2n × 2n

and this work extends the matrix formulation to allow for all sizes
of matrices and applies similar techniques to algorithms that can
be described as transitive closures of semi-rings of matrices with
inspiration from (Dolan 2013) and (Lehmann 1977).

Development Structure To structure the formal development we
define a hierarchy of ring structures as Agda records: A semi-near-
ring for some type s needs an equivalence relation 's, a distin-
guished element 0s and operations addition +s and multiplica-
tion ·s. Our semi-near-ring requires that 0s and +s form a com-
mutative monoid (i.e. +s commutes and 0s is the left and right
identity of +s), 0s is the left and right zero of ·s, +s is idempotent
(∀ x → x +s x 's x ) and ·s distributes over +s.

For the semi-ring we extend the semi-near-ring with another
distinguished element 1s and proofs that ·s is associative and that
1s is the left and right identity of ·s.

Finally we extend the semi-ring with an operation closure
that computes the Kleene star (reflexive and transitive closure)
of an element of the semi-ring (c is the closure of w if c 's

1s +s w ·s c holds), we denote the closure of w with w∗.
We use two examples of semi-rings with transitive closure: (1)

the Booleans with disjunction as addition, conjunction as multipli-
cation and the closure being true; and (2) the natural numbers (N)
extended with an element ∞, we let 0s = ∞, 1s = 0 , min

plays the role of +s, addition of natural numbers the role of ·s and
the closure is 0 .

2. Shapes, Matrices and Closure
To represent the dimensions of matrices we use a type of non-empty
binary trees:

data Shape : Set where
L : Shape
B : Shape → Shape → Shape

This representation follows the structure of the (block) matrix
representation more closely than natural numbers and we can easily
compute the corresponding natural number:

toNat : Shape → N
toNat L = 1
toNat (B l r) = toNat l + toNat r

while the other direction is slightly more complicated because we
want a somewhat balanced tree and we have no representation for 0 .

Matrices are parametrised by the type of elements they contain
and indexed by a Shape for each dimension. We use a datatype M
with four constructors: One , Row , Col , and Q . The first One lifts
an element into a 1-by-1 matrix:

data M (a : Set) : (rows cols : Shape)→ Set where
One : a → M a L L

Row and column matrices are built from smaller matrices which are
either 1-by-1 matrices or further row or column matrices

Row : {c1 c2 : Shape } →
M a L c1 → M a L c2 → M a L (B c1 c2 )

Col : {r1 r2 : Shape } →
M a r1 L→ M a r2 L→ M a (B r1 r2 ) L

and matrices of other shapes are built from 2 × 2 smaller matrices

Q : {r1 r2 c1 c2 : Shape } →
M a r1 c1 → M a r1 c2 →
M a r2 c1 → M a r2 c2 →
M a (B r1 r2 ) (B c1 c2 )

This matrix representation allows us to lift a semi-ring to a
semi-ring of matrices and allows for intuitive definitions of matrix
operations and proofs that the lifted structures satisfy the laws of
our semi-rings.

To give a taste of the formal development we include one simple
proof and a fragment of the larger development. The proof examples
show how we use the Agda standard library’s equational reasoning
framework to make the proofs easier to write and read, this tool is
used heavily throughout the development. To prove that the zero
matrix is the right identity of addition we use commutativity of

This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive version was published in the following publication:

TyDe’16, September 18, 2016, Nara, Japan
c© 2016 ACM. 978-1-4503-4435-7/16/09...

http://dx.doi.org/10.1145/2976022.2976025

60



addition and the proof of the left identity of addition (which itself is
a proof by cases on the shapes of the matrix):

identrS : (r : Shape) (c : Shape) (x : M s r c)→
x +S 0S r c 'S x

identrS r c x =
let open EqReasoning setoidS
in begin

x +S 0S r c
≈〈 commS r c x (0S r c) 〉

0S r c +S x

≈〈 ident lS r c x 〉
x

�

The second proof example (in Fig. 1) shows how we use local
modules (lemma1) and abbreviations (X ) to make the proof terms
resemble hand-written proofs.

Transitive Closure Lehmann (1977) presents a definition of the
closure on square matrices, A∗ = 1+A ·A∗: Given a square matrix

A =
A11 A12

A21 A22

the transitive closure of A is defined inductively as

A∗ =
A∗

11 + A∗
11 ·A12 ·∆∗ ·A21 ·A∗

11 A∗
11 ·A12 ·∆∗

∆∗ ·A21 ·A∗
11 ∆∗

where ∆ = A22 + A21 ·A∗
11 ·A12 and the base case is the 1-by-1

matrix where we use the transitive closure of the element of the
matrix: a ∗ = a∗ .

We have encoded this definition of closure in Agda and imple-
mented a constructive correctness proof using structural induction
and equational reasoning. The full development of around 2500
lines of literate Agda code (including this abstract) is available on
GitHub (https://github.com/DSLsofMath/FLABloM).

Example: Graph Reachability Using this definition of transitive
closure of matrices instantiated with the boolean semi-ring defined
above we get an implementation of a graph reachability algorithm.
If we have a graph (Fig. 2a) and its adjacency matrix (as below) we
can find all reachable nodes (Fig. 2b) by computing the transitive
closure of the adjacency matrix.

0 0
0 0

0 0
0 1

0 1
0 0

0 0
0 0

∗

=

1 0
0 1

0 0
0 1

0 1
0 0

1 1
0 1

3. Conclusions
We have presented an algebraic structure useful for (block) matrix
computations and implemented and proved correctness of reflexive
transitive closure. Compared to (Bernardy and Jansson 2016) our
implementation handles arbitrary matrix dimensions but is restricted
to semi-rings. Future work would be to extend the proof to cover
both arbitrary dimensions and the more general semi-near-ring
structure which would allow parallel parsing as an application.

Acknowledgments
This work was partially supported by the projects GRACeFUL
(grant agreement No 640954) and CoeGSS (grant agreement No

module lemma1

(sh sh1 : Shape)
(C C ∗ : M s sh sh)
(D : M s sh sh1)
(E : M s sh1 sh)
(∆∗ : M s sh1 sh1)
(ih : C ∗ 'S I + C ∗ C ∗) where

X = D ∗ ∆∗ ∗ E ∗ C ∗

entire-lem1 : C ∗ ∗ X 'S C ∗ C ∗ ∗ X + X
entire-lem1 =
let open EqReasoning setoidS
in begin

C ∗ ∗ X
≈〈 <·> sh sh sh ih (reflS sh sh) 〉

(I + C ∗ C ∗) ∗ X
≈〈 distrS X I (C ∗ C ∗) 〉

I ∗ X + (C ∗ C ∗) ∗ X
≈〈 <+> sh sh

(∗-identlS X )
(∗-assocS sh sh sh sh C C ∗ X ) 〉

X + C ∗ C ∗ ∗ X
≈〈 commS sh sh X (C ∗ C ∗ ∗ X ) 〉

C ∗ C ∗ ∗ X
+ X

�

Figure 1: Example lemma from the closure proof. We use a local
parametrised module to introduce short parameter names and a local
definition of the often used subterm X .

1 2

3 4

(a) A graph

1 2

3 4

(b) Reachable nodes

Figure 2: Graph with reachable nodes

676547), which have received funding from the European Union’s
Horizon 2020 research and innovation programme.

References
J.-P. Bernardy and P. Jansson. Certified context-free parsing: A formalisation

of Valiant’s algorithm in Agda. Logical Methods in Computer Science,
12, 2016. doi: 10.2168/LMCS-12(2:6)2016.

S. Dolan. Fun with semirings: A functional pearl on the abuse of linear
algebra. In Proceedings of the 18th ACM SIGPLAN International
Conference on Functional Programming, ICFP ’13, pages 101–110,
New York, NY, USA, 2013. ACM. ISBN 978-1-4503-2326-0. doi:
10.1145/2500365.2500613.

D. J. Lehmann. Algebraic structures for transitive closure. Theoretical
Computer Science, 4(1):59–76, 1977. ISSN 0304-3975. doi: 10.1016/
0304-3975(77)90056-1.

L. G. Valiant. General context-free recognition in less than cubic time. J. of
computer and system sciences, 10(2):308–314, 1975.

61

https://github.com/DSLsofMath/FLABloM

	Introduction
	Shapes, Matrices and Closure
	Conclusions

